
SpeedShop User’s Guide
007–3311–006

© Copyright 1998–1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

IRIX and Silicon Graphics are registered trademarks and ProDev and the Silicon Graphics logo are trademarks of Silicon Graphics,
Inc. NFS is a trademark of Sun Microsystems, Inc. Purify is a trademark of Rational Software Corporation. R4000 and R5000 are
trademarks of MIPS Technologies, Inc. R10000 and R12000 are trademarks or registered trademarks exclusively used under license
by Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. X Window System is a trademark of The Open Group.

New Features

SpeedShop User’s Guide 007–3311–006

This revision of the manual includes bug fixes and the following updates for the SpeedShop 1.4 release:

• Support in ssrun (1) for displaying Message Passing Interface (MPI) trace experiments.

• A conversion command, ssfilter (1), that translates MPI experiment files into vampir trace format.

• A new command, ssaggregate (1), that combines multiple experiment files into a single experiment file.

• Support for hardware counter experiments on systems with R12000 processors.

Record of Revision

Version Description

1.3.2 August 1998
Brings the manual into conformance with the 1.3.2 version of the SpeedShop
software.

1.4 April 1999
Supports the 1.4 version of the SpeedShop software.

007–3311–006 i

Contents

Page

About This Guide xi

Related Publications . xi

Obtaining Publications . xii

Conventions . xii

Reader Comments . xiii

Introduction to Performance Analysis [1] 1

Sources of Performance Problems 1

CPU-Bound Processes . 2

I/O-Bound Processes . 2

Memory-Bound Processes . 2

Bugs . 3

Fixing Performance Problems . 3

SpeedShop Tools . 3

Main Commands . 4

Additional Commands . 4

Experiment Types . 5

SpeedShop Libraries . 6

API . 7

Supported Programming Models and Languages 7

Using SpeedShop Tools for Performance Analysis 8

Using ssusage to Evaluate Machine Resource Use 9

Using ssrun and prof to Gather and Analyze Performance Data 9

Collecting Data for Part of a Program 11

Tutorial for C Users [2] 13

007–3311–006 iii

SpeedShop User’s Guide

Page

Tutorial Overview . 13

Contents of the generic Program 13

Output from the generic Program 14

Tutorial Setup . 15

Analyzing Performance Data . 15

A usertime Experiment . 16

Performing a usertime Experiment 16

Generating a Report . 17

Analyzing the Report . 18

A pcsamp Experiment . 19

Generating a Report . 20

Analyzing the Report . 22

A Hardware Counter Experiment 22

Performing a Hardware Counter Experiment 22

Generating a Report . 22

Analyzing the Report . 23

An ideal Experiment . 24

Performing an ideal Experiment 25

Generating a Report . 26

Analyzing the Report . 28

An fpe Trace . 29

Performing an fpe Trace . 29

Generating a Report . 29

Analyzing the Report . 30

Tutorial for Fortran Users [3] 31

Tutorial Overview . 31

Tutorial Setup . 32

iv 007–3311–006

Contents

Page

Analyzing Performance Data . 33

A usertime Experiment . 33

Performing a usertime Experiment 33

Generating a Report . 34

Analyzing the Report . 36

A pcsamp Experiment . 37

Performing a pcsamp Experiment 37

Generating a Report . 37

Analyzing the Report . 38

A Hardware Counter Experiment 39

Performing a Hardware Counter Experiment 39

Generating a Report . 39

Analyzing the Report . 40

An ideal Experiment . 41

Performing an ideal Experiment 42

Generating a Report . 42

Analyzing the Report . 45

MPI Tracing tutorial . 45

Experiment Types [4] 49

Selecting an Experiment . 49

usertime Experiment . 50

pcsamp Experiment . 51

ideal Experiment . 52

How SpeedShop Prepares Files 52

How SpeedShop Calculates Ideal CPU Time 52

Inclusive Basic Block Counting 53

Using pcsamp and ideal Together 54

007–3311–006 v

SpeedShop User’s Guide

Page

I/O Trace Experiment . 54

Hardware Counter Experiments . 55

Two Tools for Hardware Counter Experiments 55

SpeedShop Hardware Counter Experiments 56

The [f]gi_hwc Experiment . 56

The [f]cy_hwc Experiment . 56

The [f]ic_hwc Experiment . 57

The [f]isc_hwc Experiment . 57

The [f]dc_hwc Experiment . 57

The [f]dsc_hwc Experiment . 57

The [f]tlb_hwc Experiment . 57

The [f]gfp_hwc Experiment . 58

The prof_hwc Experiment . 58

Hardware Counter Numbers 58

Floating-Point Exception Trace . 61

Heap Trace Experiments . 61

Combining Multiple Experiment Files into One 62

Collecting Data on Machine Resource Usage [5] 65

ssusage Syntax . 65

ssusage Results . 65

Setting Up and Running Experiments: ssrun [6] 67

Building Your Executable . 67

Special Information for MP Fortran Programs 68

Setting Up Output Directories and Files 69

Using Run-Time Environment Variables 70

User Environment Variables . 70

Process Tracking Environment Variables 71

vi 007–3311–006

Contents

Page

Expert-Mode Environment Variables 72

Using Marching Orders . 74

Defining the Base Experiment . 75

Running Experiments . 77

ssrun Syntax . 77

ssrun Examples . 79

Example Using the pcsampx Experiment 79

Example Displaying Data in WorkShop 81

Example Using the -v Option 81

Using ssrun with a Debugger 81

Running Experiments on MPI Programs 82

Generating MPI Tracing Experiments 83

Generating Other Experiments for Programs Using MPI 85

Running Experiments on Programs Using Pthreads 86

Using Calipers . 86

Setting Calipers with ssrt_caliper_point 88

Setting Time-Oriented Calipers 88

Setting Calipers with Signals . 89

Setting Calipers with a Debugger 90

Effects of ssrun . 90

Effects of ssrun -ideal . 91

Analyzing Experiment Results: prof [7] 93

Using prof to Generate Performance Reports 93

prof Arguments . 93

prof Options . 94

prof Output . 98

Using prof with ssrun . 98

007–3311–006 vii

SpeedShop User’s Guide

Page

usertime Experiment Reports 98

pcsamp Experiment Reports . 100

Hardware Counter Experiment Reports 101

ideal Experiment Reports . 102

fpe Trace Reports . 105

Using prof Options . 106

Using the -dis Option . 106

Using the -S Option . 111

Using the -calipers Option . 113

Using the -butterfly Option 114

Generating Reports for Different Machine Types 118

Generating Reports for Multiprocessed Executables 119

Generating Feedback Files . 119

Using SpeedShop in Expert Mode: pixie [8] 121

Using pixie . 121

pixie Syntax . 122

pixie Options . 122

pixie Output . 123

Obtaining Basic Block Counts . 124

Examples of Basic Block Counting 127

Example Using prof with No Options 127

Example Using prof -heavy 128

Example Using prof -quit 129

Obtaining Inclusive Basic Block Counts 130

Example of prof -butterfly 131

Miscellaneous Commands [9] 133

viii 007–3311–006

Contents

Page

Using the thrash Command . 133

thrash Syntax . 133

Effects of thrash . 134

Using the squeeze Command . 134

squeeze Syntax . 134

Effects of squeeze . 135

Calculating the Working Set of a Program 135

Dumping Performance Data Files 137

ssdump Syntax . 137

Experiment File Format . 138

Dumping Compiler Feedback Files 143

fbdump Syntax . 143

Converting an MPI Experiment File to Vampir Format 144

Glossary [10] 147

Index 149

Figures
Figure 1. An MPI Experiment in cvperf 47

Figure 2. MPI Numerical Format 84

Figure 3. How Basic Block Counting Works 126

Tables
Table 1. SpeedShop Main Commands 4

Table 2. SpeedShop Additional Commands 4

Table 3. SpeedShop Libraries . 7

Table 4. Letter Codes in Process Experiment ID Numbers 11

Table 5. Summary of Experiments 50

007–3311–006 ix

SpeedShop User’s Guide

Page

Table 6. Basic Block Counts and PC Profile Counts Compared 54

Table 7. R10000 Hardware Counter Numbers 59

Table 8. R12000 Hardware Counter Numbers 60

Table 9. General Environment Variables 70

Table 10. Process Tracking Environment Variables 72

Table 11. Expert-Mode Environment Variables 73

Table 12. Flags for the ssrun Command 78

Table 13. Setting Caliper Points 87

Table 14. Options for prof . 94

Table 15. Options for pixie . 122

Table 16. Options for fbdump . 143

x 007–3311–006

About This Guide

The SpeedShop User’s Guide describes and illustrates methods for measuring
program performance using SpeedShop commands such as ssrun (1) and
prof (1). It contains tutorials that generate performance statistics for C and
Fortran programs.

This manual is a user’s guide for the SpeedShop performance tools, release 1.4.

It contains the following chapters:

• Chapter 1, page 1, provides a general introduction to performance analysis
concepts and techniques, plus an overview of the SpeedShop tools.

• Chapter 2, page 13, provides a tutorial on how to collect performance data
and generate reports for a C program.

• Chapter 3, page 31, provides a tutorial on how to collect performance data
and generate reports for Fortran programs running on single-processor
machines.

• Chapter 4, page 49, describes the types of experiments that can be
performed using SpeedShop tools.

• Chapter 5, page 65, describes how to use the ssusage (1) command to
collect information about a program’s machine resource usage.

• Chapter 6, page 67, explains in detail how to set up and run experiments
using ssrun (1), and explains how to use caliper points to generate reports
for part of a program.

• Chapter 7, page 93, explains how to generate reports from performance data
using prof (1).

• Chapter 8, page 121, explains how to use pixie (1) and prof directly,
without invoking ssrun (1).

• Chapter 9, page 133, explains how to use the thrash (1) and squeeze (1)
commands to determine the memory usage, or working set, of your
application. It also includes commands to print performance data files.

Related Publications

The following documents contain additional information that may be helpful:

007–3311–006 xi

SpeedShop User’s Guide

• Developer Magic: Performance Analyzer User’s Guide

• C Language Reference Manual

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

• ProDev ProMP User’s Guide

• Developer Magic: Debugger User’s Guide

• Developer Magic: Static Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Fortran 77 Language Reference Manual

• MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Fortran Language Reference Manual, Volumes 1–3

Obtaining Publications

Silicon Graphics maintains publications information at the following World
Wide Web site:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1 800 627 9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

xii 007–3311–006

About This Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Contact your customer service representative and ask that a PV be filed.

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using the following number:

1 800 800 4SGI

• Send mail to the following address:

007–3311–006 xiii

SpeedShop User’s Guide

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

xiv 007–3311–006

Introduction to Performance Analysis [1]

This chapter provides a brief introduction to performance analysis techniques
for Silicon Graphics systems and describes how to use them with SpeedShop to
solve performance problems. It includes the following sections:

• Sources of Performance Problems. This section provides a general overview
of potential performance problems. See Section 1.1, page 1.

• Fixing Performance Problems. This section discusses how you can use
SpeedShop to determine what the problems are. See Section 1.2, page 3.

• SpeedShop Tools. This section lists SpeedShop commands, experiment
types, and libraries. See Section 1.3, page 3.

• Using SpeedShop Tools for Performance Analysis. This section steps you
through the steps to take when using SpeedShop. See Section 1.4, page 8.

1.1 Sources of Performance Problems

To tune a program’s performance, you need to determine its consumption of
machine resources. At any point in a process, there is one limiting resource
controlling the speed of execution. Processes can be slowed down by any of the
following:

• CPU speed and availability

• I/O processing

• Memory size and availability

• Bugs

Performance problems may span the entire run of a process, or they may occur
in just a small portion of the program. For example, a function that performs a
lot of I/O processing might be called regularly as the program runs, or a
particularly CPU-intensive calculation might occur in just one portion of the
program. When there are performance problems in a small portion of the
program, collect data for just that part of the program.

Because programs exhibit different behavior during different phases of
operation, you need to identify the limiting resource for each phase. A program
can be I/O-bound while it reads in data, CPU-bound while it performs
computation, and I/O-bound again in its final stage while it writes out data.

007–3311–006 1

SpeedShop User’s Guide

Once you have identified the limiting resource in a phase, you can perform an
in-depth analysis to find the problem. After you have solved that problem, you
can check for other problems within the same or other phases—performance
analysis is an iterative process.

1.1.1 CPU-Bound Processes

A CPU-bound process spends its time in the CPU and is limited by CPU speed
and availability. To improve performance on CPU-bound processes, streamline
your code using one or more of the following techniques:

• Modifying algorithms

• Reordering code to avoid interlocks

• Removing nonessential steps

• Blocking to keep data in cache and registers

• Using alternative algorithms

1.1.2 I/O-Bound Processes

An I/O-bound process has to wait for I/O to complete and may be limited by
disk access speeds or memory caching. To improve the performance of
I/O-bound processes, try one of the following techniques:

• Improving overlap of I/O with computation

• Optimizing data usage to minimize disk access

• Using data compression

1.1.3 Memory-Bound Processes

A memory-bound program continuously swaps out pages of memory. Page
thrashing is often due to accessing virtual memory on a haphazard rather than
strategic basis. To fix a memory-bound process, try to improve the memory
reference patterns by increasing local references, or, if possible, decrease the
memory used by the program. For more information on paging activity, see the
osview (1) man page or the -w option on the sar (1) man page.

2 007–3311–006

Introduction to Performance Analysis [1]

1.1.4 Bugs

Certain bugs can cause performance problems. Examples include:

• The program is unnecessarily reading the same information from the same
file more than once.

• Floating point exceptions are slowing down the program.

• Old code has not been completely removed.

• The program is leaking memory (making malloc() calls without the
corresponding calls to free()).

1.2 Fixing Performance Problems

The SpeedShop performance tools described in this manual can help you to
identify specific performance problems described later in this chapter. However,
the techniques described in this manual are only a part of performance tuning.
Other areas that you can tune, but that are outside the scope of this document,
include graphics, I/O, the kernel, system parameters, memory, and real-time
system calls.

Although it may be possible to obtain short-term speed increases by relying on
unsupported or undocumented quirks of the compiler, it is a bad idea to do so.
Any such “features” may break in future compiler releases. The best way to
produce efficient code that will remain efficient is to follow good programming
practices. In particular, choose good algorithms and leave the details to the
compiler.

1.3 SpeedShop Tools

The SpeedShop tools allow you to run experiments and generate reports that
track down the sources of performance problems. SpeedShop consists of a set
of commands that can be run in a shell, an application programming interface
(API) to provide some control over data collection, and a number of libraries to
support the commands.

This section provides an overview of the tools by first discussing the main
commands, then providing more detail on additional commands, experiment
types, libraries, the SpeedShop API, and supported programs and languages.

007–3311–006 3

SpeedShop User’s Guide

1.3.1 Main Commands

SpeedShop provides the commands listed in Table 1.

Table 1. SpeedShop Main Commands

Command Description

ssusage Collects information about your program’s use of machine
resources. Output from ssusage can be used to determine
where most resources are being spent.

ssrun Allows you to run experiments on a program to collect
performance data. It establishes the environment to capture
performance data for an executable, creates a process from the
executable (or from an instrumented version of the
executable) and runs it. Input to ssrun consists of an
experiment type, control flags, the name of the target, and the
arguments to be used in executing the target.

prof Analyzes the performance data you have recorded using
ssrun and provides formatted reports. prof detects the type
of experiment you have run and generates a report specific to
the experiment type. You can also use the cvperf command
to display the data through the WorkShop graphic user
interface.

1.3.2 Additional Commands

SpeedShop provides the additional commands shown in Table 2.

Table 2. SpeedShop Additional Commands

Command Description

pixie Makes basic block counting experiments possible. If you use
ssrun , you will not usually need to call pixie directly.

fbdump Prints out the formatted contents of compiler feedback files
generated by prof .

4 007–3311–006

Introduction to Performance Analysis [1]

Command Description

squeeze Allocates a region of virtual memory and locks the virtual
memory down into real memory, making it unavailable to
other processes.

thrash Allows you to allocate a block of memory, then access the
allocated memory to explore system paging behavior.

ssdump Prints out formatted performance data that was collected
while running ssrun . This program is included for
SpeedShop debugging purposes. You do not normally need
to use it.

1.3.3 Experiment Types

The following are the most popular experiments using the ssrun command.
(For the complete list of experiments, see the ssrun (1) man page.)

• Providing information on a program’s CPU usage using statistical program
counter sampling with pcsamp experiments.

Data is measured by periodically sampling the program counter of the target
executable when it is executing in the CPU. The program counter shows the
address of the currently executing instruction in the program. The data that
is obtained from the samples is translated to a time that can be displayed at
the function, source line, and machine instruction levels. The actual CPU
time is calculated by multiplying the number of times a specific address is
found in the PC by the amount of time between samples. (For a definition
of CPU time, wall-clock time, and process virtual time, see the Glossary.)

• Displaying information from a variety of hardware counters using statistical
sampling with hwc experiments.

Hardware counter experiments are available on R10000 and R12000 systems
that have built-in hardware counters. Data is measured by counting each
time the specified hardware counter exceeds its maximum value, or
overflows. You can specify the hardware counter and the overflow interval
you want to use. (For more information on the hardware counter
experiments, see Section 4.6, page 55.)

• Displaying a program’s CPU time (see the Glossary) by statistical call stack
profiling with usertime .

007–3311–006 5

SpeedShop User’s Guide

Data is measured by periodically sampling the call stack. The program’s call
stack data is used to attribute exclusive user time to the function at the
bottom of each call stack (that is, the function being executed at the time of
the sample), and to attribute inclusive user time to all the functions above the
one currently being executed. Exclusive time is the execution time of a given
function but not any functions that function calls, while inclusive time is the
execution time both of a given function and of any functions called by that
function.

• Displaying a program’s best possible time by counting basic blocks with
ideal .

Data is measured by counting the number of executions of each basic block
and calculating an ideal CPU time for each function. This involves
instrumenting the program to divide the code into basic blocks, which are
consecutive sequences of instructions with a single entry point, a single exit
point, and no branches into or out of the sequence. Instrumentation also
records a count of all dynamic (function-pointer) calls. You can compare this
ideal time with the times returned by other experiments to measure the
performance of your code against its potential (see Section 4.4.4, page 54).
Because an exact count of every instruction in your program is recorded,
you can also use the ideal experiment to determine the efficiency of your
algorithm and identify any code that is not executed.

• Tracing floating-point exceptions with fpe .

A floating-point exception trace collects each floating-point exception,
including the exception type and the call stack, at the time of the exception.
prof (1) generates a report showing inclusive and exclusive floating-point
exception counts.

1.3.4 SpeedShop Libraries

Versions of the SpeedShop libraries libss.so and libssrt.so are available
to support applications built using shared libraries (called dynamic shared objects,
or DSOs) only and the old 32-bit, new 32-bit, or 64-bit application binary
interfaces (ABIs).

Table 3 provides information about the different SpeedShop libraries.

6 007–3311–006

Introduction to Performance Analysis [1]

Table 3. SpeedShop Libraries

Library Description

libss.so A shared library (DSO) that supports libssrt.so .
The libss.so data normally appears in experiment
results generated with prof.

libssrt.so A shared library (DSO) that is linked in to the program
you specify when you run an experiment. All the
performance data collection with the SpeedShop system
is done within the target processes by exercising
various pieces of functionality using libssrt . Data
from libssrt.so does not normally appear in
performance data reports generated with prof .

libfpe_ss.so Supplements the standard libfpe.so for the purposes
of collecting floating-point exception data. See the
fpe_ss (3) man page for more information.

libmalloc_ss.so Inserts versions of malloc routines from libc.so.1
that allow tracing all calls to malloc , free , realloc ,
memalign , and valloc . See the malloc_ss (3) man
page for more information.

libpixrt.so A shared library (DSO) used by programs that have
been processed by the pixie (1) command.

1.3.5 API

The SpeedShop application programming interface (API) allows you to use
ssrt_caliper_point to set caliper points in your source code. See Section
6.8, page 86, for information on using caliper points. For information on other
API functions, see the ssapi (3) man page.

1.3.6 Supported Programming Models and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs).

• Unstripped executables.

• Executables that call fork (2), sproc (2), system (3F), or exec (2).

007–3311–006 7

SpeedShop User’s Guide

• Executables using supported techniques for opening, closing, and
delay-loading DSOs.

• C, C++, Fortran (Fortran 77 and Fortran 90), or Ada 95 source code.

• Power Fortran and Power C source code. prof understands the syntax and
semantics of the multiprocessing run time and displays the data accordingly.

• pthreads , supported with data on a per-program basis.

• Message Passing Interface (MPI) or other message-passing paradigms.
Currently supported by providing data on the behavior of each process. The
behavior of the MPI library itself is monitored just like any other user-level
code.

• The OpenMP collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory
parallelism.

1.4 Using SpeedShop Tools for Performance Analysis

Performance tuning typically consists of

• Examining machine resource usage

• Breaking down the process into phases

• Identifying the resource bottleneck within each phase

• Correcting the cause of the bottleneck

Generally, you run the first experiment to break your program down into phases
and run subsequent experiments to examine each phase individually. After you
have solved a problem in a phase, you should re-examine machine resource
usage to see if there is further opportunity for performance improvement.

The general steps for a performance analysis cycle are as follows:

1. Build the application.

2. Run experiments on the application to collect performance data.

3. Examine the performance data.

4. Generate an improved version of the program.

5. Repeat as needed.

8 007–3311–006

Introduction to Performance Analysis [1]

To accomplish this using SpeedShop tools, do the following:

• Use ssusage to capture information on your program’s use of machine
resources.

• Use ssrun to capture different types of performance data over either your
entire program or parts of the program. ssrun can be used in conjunction
with dbx (1) or cvd (1), the WorkShop debugger.

• Use prof to analyze the data and generate reports.

1.4.1 Using ssusage to Evaluate Machine Resource Use

To determine overall resource usage by your program, run the program with
ssusage . The results of this command allow you to identify high-user CPU
time, high-system CPU time, high I/O time, and a high degree of paging. The
ssusage (1) command has the following format:

ssusage executable_name executable_args

From the ssusage output, you can decide which experiments to run to collect
data for further study. For more information on ssusage , see Chapter 5, page
65, or see the ssusage (1) man page.

1.4.2 Using ssrun and prof to Gather and Analyze Performance Data

This section describes the steps involved in a performance analysis cycle when
using the line-based interface to the SpeedShop tools: the ssrun and prof
commands.

You can also call the commands individually. For example, if you are planning
to perform basic block counting experiments that involve instrumenting the
executable, you can do this by calling ssrun with the appropriate experiment
type.

To perform a performance analysis, follow these general steps:

1. Build the executable.

You can usually build the executable as you would normally. See Section
6.1, page 67, for information on how to build the executable.

2. Specify caliper points if you want to analyze data for only a portion of your
program. See Section 1.4.3, page 11, for more information.

007–3311–006 9

SpeedShop User’s Guide

3. To collect performance data, issue the ssrun command with the following
parameters:

ssrun flags exp_type executable_name executable_args

The following options are available with the ssrun command:

flags One or more valid flags. For a complete list
of flags, see the ssrun (1) man page.

exp_type Experiment name.

executable_name Executable name.

executable_args Arguments to the executable

Use the information in the following list to determine which experiments to
run. Each performance problem is followed by one or more experiment
types:

Problem Experiments

High-user CPU time usertime , pcsamp (four variants), hardware
counter experiments, or ideal

High-system CPU time If floating-point exceptions are suspected:
fpe trace

High I/O time ideal , then examine counts of I/O routines

High paging rates ideal , then prof -cordfb and cord to
rearrange procedures. For more information
on rearranging code regions, see the MIPSpro
Compiling and Performance Tuning Guide.

For each process of the executable, the experiment data is stored in a file
with a name in the following form:

executable_name.exp_type.id

The experiment ID consists of one or two letters designating the process
type, followed by the process ID number. An example of a name is:

generic.ideal.m10966

See Table 4 for letter codes and descriptions.

10 007–3311–006

Introduction to Performance Analysis [1]

Table 4. Letter Codes in Process Experiment ID Numbers

Letter Codes Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

For more information on the ssrun command, see Chapter 6, page 67, or
view the ssrun (1) man page.

4. To generate a report from the experiment, issue prof with the following
parameters:

prof options data_file

options One or more valid options. For a complete list of flags, see
the prof (1) man page.

data_file The name of the file in which the experiment data was
recorded.

For more information on using prof , see Chapter 7, page 93, or see the
prof (1) man page.

1.4.3 Collecting Data for Part of a Program

If you have a performance problem in only one part of your program, consider
collecting performance data for just that part. You can do this by setting caliper
points around the problem area when running an experiment, then using the
prof -calipers option to generate a report for the problem area or using the
calipers time line in the cvperf (1) window of WorkShop to view the area
through a graphic user interface.

You can record caliper points using one of the following methods:

• Direct calls to the SpeedShop API.

• The caliper signal environment.

007–3311–006 11

SpeedShop User’s Guide

• A debugger such as the ProDev WorkShop debugger.

• Periodic caliper points with pollpoint caliper points.

For more information on using calipers, see Section 6.8, page 86.

12 007–3311–006

Tutorial for C Users [2]

This chapter provides a tutorial that shows you how to gather and analyze
performance data in a C program, using SpeedShop tools. The tutorial covers
these topics:

• Section 2.1, page 13, introduces the sample program and explains the
different scenarios in which it will be used.

• Section 2.2, page 15, steps you through the necessary setup for running the
experiment.

• Section 2.3, page 15, steps you through five different experiments, discussing
first how to do the experiments, then how to interpret the results.

Note: Because of inherent differences between systems and because of
concurrent processes that may be running on your system, your experiment
will produce different results from the one in this tutorial. However, the basic
structure of the results should be the same.

2.1 Tutorial Overview

This tutorial uses a sample program called generic. There are two versions
of the program:

generic directory Contains files for the n32-bit ABI

generico32 directory Contains files for the (old) 32-bit ABI

When you work with the tutorial, choose the version of generic most
appropriate for your system. A good guideline is to choose the version that
corresponds to the way you expect to develop your programs.

This tutorial was written and tested using the version of generic in the
generic directory.

2.1.1 Contents of the generic Program

The generic program was designed as a test and demonstration application.
It contains code to run scenarios that each test a different area of SpeedShop.
The version of generic used in this tutorial performs scenarios that:

• Build a linked list of structures

007–3311–006 13

SpeedShop User’s Guide

• Use a lot of user time

• Scan a directory and run the stat command on each file

• Perform file I/O

• Generate a number of floating-point exceptions

• Load and call a routine in a DSO

2.1.2 Output from the generic Program

Output from the program looks like the following:

0:00:00.000 ======== (27173) Begin script Fri 06 Feb 1998
15:03:31.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.002 ======== (27173) start of linklist Fri 06 Feb 1998

15:03:31.

linklist completed.
0:00:00.003 ======== (27173) start of usrtime Fri 06 Feb 1998

15:03:31.

usertime completed.

0:00:25.572 ======== (27173) start of cvttrap Fri 06 Feb 1998

15:03:57.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.
0:00:25.806 ======== (27173) start of dirstat Fri 06 Feb 1998

15:03:57.

dirstat of /usr/include completed, 304 files.

0:00:26.618 ======== (27173) start of iofile -- stdio Fri 06 Feb 1998

15:03:58.
stdio iofile on /unix completed, 7307988 chars.

0:00:26.864 ======== (27173) start of fpetraps Fri 06 Feb 1998

15:03:58.

fpetraps completed.

0:00:26.865 ======== (27173) start of libdso Fri 06 Feb 1998
15:03:58.

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’
0:00:27.972 ======== (27173) End script Fri 06 Feb 1998

15:03:59.

14 007–3311–006

Tutorial for C Users [2]

2.2 Tutorial Setup

Copy the program to a directory where you have write permission and compile
it so that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate generic directory and its contents to a directory
where you have write permission:

cp -r generic your_dir

3. Change to the directory you just created:

cd your_dir/generic

4. Compile the program, by entering:

make all

This provides an executable for the experiment.

2.3 Analyzing Performance Data

This section explains how to run the following experiments on the generic
program, generate the experiment’s results, and interpret the results:

• usertime . As a first cut at optimization, this may be the most useful
experiment. It breaks down a program into its functions and returns the
CPU time used in each. See Section 2.3.1, page 16.

• pcsamp . This experiment uses a different method to return the CPU time.
See Section 2.3.2, page 19.

• dsc_hwc . This experiment counts the number of times a required data item
was not in secondary data cache. If the data item is not in secondary data
cache, it must be fetched from memory, which requires more time. See
Section 2.3.3, page 22.

• ideal . This experiment calculates the best time achievable. See Section
2.3.4, page 24.

• fpe . This experiment counts the number of floating-point exceptions in each
function. See Section 2.3.5, page 29.

You can follow the tutorial from start to finish, or you can choose the
experiment you want to perform.

007–3311–006 15

SpeedShop User’s Guide

2.3.1 A usertime Experiment

This section explains how to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of CPU time spent in each
function in your program. For more information on usertime , see Section 4.2,
page 50. For definitions of CPU time, wall-clock time, and process-virtual time, see
the Glossary.

2.3.1.1 Performing a usertime Experiment

From the command line, enter the following:

ssrun -usertime generic

This command starts the experiment. Output from generic and from ssrun is
printed to stdout , as shown in the following example. A data file is also
generated. The name consists of the process name (generic), the experiment
type, usertime , and the experiment ID. In this example, the file name is
generic.usertime.m10981 .

0:00:00.000 ======== (10981) Begin script Mon 02 Feb 1998

11:05:02.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.002 ======== (10981) start of linklist Mon 02 Feb 1998
11:05:02.

linklist completed.

0:00:00.003 ======== (10981) start of usrtime Mon 02 Feb 1998

11:05:02.

usertime completed.
0:00:22.948 ======== (10981) start of cvttrap Mon 02 Feb 1998

11:05:25.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:23.156 ======== (10981) start of dirstat Mon 02 Feb 1998

11:05:25.
dirstat of /usr/include completed, 304 files.

0:00:23.937 ======== (10981) start of iofile -- stdio Mon 02 Feb 1998

11:05:26.

stdio iofile on /unix completed, 7307988 chars.

0:00:24.777 ======== (10981) start of fpetraps Mon 02 Feb 1998

11:05:27.
fpetraps completed.

0:00:24.777 ======== (10981) start of libdso Mon 02 Feb 1998

11:05:27.

dlslave_init executed

16 007–3311–006

Tutorial for C Users [2]

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.
libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:25.866 ======== (10981) End script Mon 02 Feb 1998

11:05:28.

2.3.1.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > usertime.results

The prof command prints results to stdout . Because of line width
restrictions, the DSO, file name, and line number information at the end of each
line is wrapped to the next line in the following sample output.

SpeedShop profile listing generated Mon Feb 2 11:07:15 1998

prof generic.usertime.m10981

generic (n32): Target program
usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)
Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/progs.etc/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure(dso:file,line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

007–3311–006 17

SpeedShop User’s Guide

(generic: generic.c, 1573)

[6] 1.020 4.2% 98.0% 1.020 4.2% 34 slaveusrtime
(dlslave.so: dlslave.c, 22)

[9] 0.210 0.9% 98.9% 0.210 0.9% 7 cvttrap

(generic: generic.c, 317)

[12] 0.120 0.5% 99.4% 0.120 0.5% 4 __read

(libc.so.1: read.s, 20)

[14] 0.090 0.4% 99.8% 0.090 0.4% 3 _xstat
(libc.so.1: xstat.s, 12)

[10] 0.030 0.1% 99.9% 0.180 0.7% 6 iofile

(generic: generic.c, 464)

[11] 0.030 0.1% 100.0% 0.150 0.6% 5 fread

(libc.so.1: fread.c, 34)
[1] 0.000 0.0% 100.0% 24.270 100.0% 809 __start

(generic: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 24.270 100.0% 809 main

(generic: generic.c, 101)

[3] 0.000 0.0% 100.0% 24.270 100.0% 809 Scriptstring
(generic: generic.c, 184)

[5] 0.000 0.0% 100.0% 22.770 93.8% 759 usrtime

(generic: generic.c, 1377)

[15] 0.000 0.0% 100.0% 0.090 0.4% 3 dirstat

(generic: generic.c, 348)

[16] 0.000 0.0% 100.0% 0.090 0.4% 3 _stat
(libc.so.1: stat.c, 31)

[13] 0.000 0.0% 100.0% 0.120 0.5% 4 _read

(libc.so.1: readSCI.c, 27)

[7] 0.000 0.0% 100.0% 1.020 4.2% 34 libdso

(generic: generic.c, 619)
[8] 0.000 0.0% 100.0% 1.020 4.2% 34 dlslave_routine

(dlslave.so: dlslave.c, 7)

2.3.1.3 Analyzing the Report

The report shows information for each function. The meanings of the column
headings are described below:

• The index column assigns a number to each function.

• The excl.secs column shows how much time, in seconds, was spent in
the function itself (exclusive time). For example, less than one hundredth of
a second was spent in __start , but 0.03 of a second was spent in fread .

18 007–3311–006

Tutorial for C Users [2]

• The excl.% column shows the percentage of a program’s total time that
was spent in the function. The anneal function consumed 93.8% of the
program’s time.

• The cum.% column shows the percentage of the complete program time that
has executed in the routines listed so far.

• The incl.secs column shows how much time, in seconds, was spent in
the function and descendents of the function. For example, 0.21 seconds
were spent in cvttrap and the functions that were called by it.

• The incl.% column shows the cumulative percentage of inclusive time
spent in each function and its descendents. For example, 93.8% of the time
was spent in anneal and all the functions that were called through it.

• The samples column shows how many samples were taken when the
process was executing in the function and in all of the function’s
descendants.

• The procedure (dso:file,line) columns list the function name, its
DSO name, its file name, and its line number. For example, the top line
reports statistics for the function anneal , the DSO generic , in the file
generic.c , at line 1573.

2.3.2 A pcsamp Experiment

This section explains how to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each
function in your program. For more information on pcsamp , see Section 4.3,
page 51. For definitions of CPU time, wall-clock time, and process-virtual time, see
the Glossary.

From the command line, enter the following:

ssrun -fpcsamp generic

This starts the experiment. The f prefix is added to pcsamp for this program
because the program runs quickly and does not gather much data using the
default pcsamp experiment name; adding the f prefix results in more data
samples. Output from generic and from ssrun is printed to stdout , as
shown in the example below.

A data file is also generated. The name consists of the process name (generic),
the experiment type (fpcsamp), and the experiment ID. In this example, the file
name is generic.fpcsamp.m11140 .

007–3311–006 19

SpeedShop User’s Guide

0:00:00.000 ======== (11140) Begin script Mon 02 Feb 1998

10:58:41.
begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.003 ======== (11140) start of linklist Mon 02 Feb 1998

10:58:41.

linklist completed.

0:00:00.004 ======== (11140) start of usrtime Mon 02 Feb 1998

10:58:41.
usertime completed.

0:00:22.437 ======== (11140) start of cvttrap Mon 02 Feb 1998

10:59:03.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:22.638 ======== (11140) start of dirstat Mon 02 Feb 1998
10:59:03.

dirstat of /usr/include completed, 304 files.

0:00:23.407 ======== (11140) start of iofile -- stdio Mon 02 Feb 1998

10:59:04.

stdio iofile on /unix completed, 7307988 chars.
0:00:23.750 ======== (11140) start of fpetraps Mon 02 Feb 1998

10:59:04.

fpetraps completed.

0:00:23.751 ======== (11140) start of libdso Mon 02 Feb 1998

10:59:04.

dlslave_init executed
dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:24.778 ======== (11140) End script Mon 02 Feb 1998
10:59:05.

2.3.2.1 Generating a Report

To generate a report on the data collected, and to redirect the output to a file,
enter the following:

prof your_output_file_name > pcsamp.results

Output similar to the following is generated:

--

SpeedShop profile listing generated Mon Feb 2 11:01:36 1998

prof generic.fpcsamp.m11140

generic (n32): Target program

20 007–3311–006

Tutorial for C Users [2]

fpcsamp: Experiment name

pc,2,1000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.fpcsamp.m11140:

Caliper point 0 at target begin, PID 11140

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--

23828: Total samples

23.828: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 22.279 93.5% 93.5% 22279 anneal (generic: generic.c, 1573)

[2] 0.975 4.1% 97.6% 975 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.201 0.8% 98.4% 201 __read (libc.so.1: read.s, 20)

[4] 0.198 0.8% 99.3% 198 cvttrap (generic: generic.c, 317)

[5] 0.121 0.5% 99.8% 121 _xstat (libc.so.1: xstat.s, 12)

[6] 0.010 0.0% 99.8% 10 __open (libc.so.1: open.s, 23)

[7] 0.010 0.0% 99.9% 10 __write (libc.so.1: write.s, 20)

[8] 0.010 0.0% 99.9% 10 __sigfillset (libc.so.1: sigfillset.c, 11)

[9] 0.010 0.0% 99.9% 10 _ecvt_r (libc.so.1: ecvt.c, 70)

[10] 0.003 0.0% 100.0% 3 fread (libc.so.1: fread.c, 34)

[11] 0.003 0.0% 100.0% 3 dirstat (generic: generic.c, 348)

[12] 0.002 0.0% 100.0% 2 _doprnt (libc.so.1: doprnt.c, 285)

[13] 0.001 0.0% 100.0% 1 memcpy (libc.so.1: bcopy.s, 329)

[14] 0.001 0.0% 100.0% 1 _readdir (libc.so.1: readdir.c, 135)

[15] 0.001 0.0% 100.0% 1 _read (libc.so.1: readSCI.c, 27)

[16] 0.001 0.0% 100.0% 1 __sinf (libm.so: fsin.c, 93)

0.002 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

23.828 100.0% 100.0% 23828 TOTAL

007–3311–006 21

SpeedShop User’s Guide

2.3.2.2 Analyzing the Report

The report has the following columns:

• The secs column shows the amount of CPU time, in seconds, that was
spent in the function.

• The %column shows the percentage of the total program time that was
spent in the function.

• The cum.% column shows the percentage of the complete program time in
functions that have been listed so far.

• The samples column shows how many samples were taken when the
process was executing in the function.

• The function (dso: file, line) columns list the function, its DSO
name, its file name, and its line number.

2.3.3 A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in
hardware counters (machines with the R10000 or R12000 class of CPU).

This section takes you through the steps to perform a hardware counter
experiment. There are a number of hardware counter experiments, but this
tutorial describes the steps involved in performing the dsc_hwc experiment.
This experiment captures information about secondary data cache misses. For
more information on hardware counter experiments, see Section 4.6, page 55.

2.3.3.1 Performing a Hardware Counter Experiment

From the command line, enter:

ssrun -dsc_hwc generic

This starts the experiment. Output from generic and from ssrun is printed
to stdout . A data file is also generated. The name consists of the process
name (generic), the experiment type (dsc_hwc), and the experiment ID. In
this example, the file name is generic.dsc_hwc.m294398 .

2.3.3.2 Generating a Report

To generate a report on the data collected and redirect the output to a file, enter
the following:

22 007–3311–006

Tutorial for C Users [2]

prof your_output_file_name > dsc_hwc.results

The report should look similar to the following listing:

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

2.3.3.3 Analyzing the Report

The information immediately preceding the function list displays the following:

• The Total samples is the number of times the program counter was
sampled. It is sampled once for each overflow, or once each time the
hardware counter exceeds the specified value.

007–3311–006 23

SpeedShop User’s Guide

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a
value required in a calculation was not available in secondary cache. For a
complete list of the hardware counters and their numbers, see Table 7, page
59.

• The Counter overflow value is the number at which the hardware
counter overflows, or exceeds its preset value. In this case, the value is 131,
which is the default. You can change the overflow value by setting the
_SPEEDSHOP_HWC_COUNTER_OVERFLOWenvironment variable to a value
larger than 0.

• The Total counts is the total number of times a value was not in
secondary cache when needed. This value is determined by multiplying the
total number of samples by the overflow value; extra counts that do not
cause an overflow are not recorded.

The function list has the following columns:

• The counts column shows the number of times a data item was not in
secondary cache when needed for a calculation during the execution of the
function. As with Total counts (described earlier), a function’s counts
value is determined by multiplying its samples value by the overflow value.

• The %column shows the percentage of the program’s overflows that
occurred in the function.

• The cum.% shows the percentage of the program’s overflows that occurred
in the functions listed so far. A function might have a low number in its %
column but a high value in its cum.% column if it executed late in the
program.

• The samples column shows the number of times the program counter was
sampled during execution of the function. A sample is taken for each
overflow of the hardware counter.

• The function (dso: file, line) columns show the function name,
the DSO, the file name, and line number of the function.

2.3.4 An ideal Experiment

This section takes you through the steps to perform an ideal experiment. The
times returned represent an idealized computation. This experiment ignores
potential floating-point interlocks and memory latency time (cache misses and
memory bus contention). The CPU times returned will always be lower than

24 007–3311–006

Tutorial for C Users [2]

the times for an actual run. For more information on the ideal experiment, see
Section 4.4, page 52.

2.3.4.1 Performing an ideal Experiment

From the command line, enter

ssrun -ideal generic

This starts the experiment. First the executable, rld , and the DSOs are
instrumented using pixie (1). This entails making copies of the libraries and
executables, giving the copies an extension that depends on the ABI, and
inserting information into the copies. The extension is .pixie for the
executable, .pix32 for all old 32-bit libraries, .pixn32 for all n32 libraries,
and .pix64 for all 64-bit libraries.

Output from generic and from ssrun is printed to stdout . A data file is
also generated. The name consists of the process name (generic), the
experiment type (ideal), and the experiment ID. In this example, the file name
is generic.ideal.m10966 , and the following is written to stdout :

Beginning libraries

/usr/lib32/libssrt.so

/usr/lib32/libss.so
/usr/lib32/libm.so

/usr/lib32/libc.so.1

Ending libraries, beginning "generic"

0:00:00.001 ======== (10966) Begin script Mon 02 Feb 1998

11:28:03.
begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.048 ======== (10966) start of linklist Mon 02 Feb 1998

11:28:03.

linklist completed.

0:00:00.072 ======== (10966) start of usrtime Mon 02 Feb 1998
11:28:03.

usertime completed.

0:00:25.057 ======== (10966) start of cvttrap Mon 02 Feb 1998

11:28:28.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:25.377 ======== (10966) start of dirstat Mon 02 Feb 1998
11:28:28.

dirstat of /usr/include completed, 304 files.

0:00:26.232 ======== (10966) start of iofile -- stdio Mon 02 Feb 1998

11:28:29.

007–3311–006 25

SpeedShop User’s Guide

stdio iofile on /unix completed, 7307988 chars.

0:00:27.716 ======== (10966) start of fpetraps Mon 02 Feb 1998
11:28:31.

fpetraps completed.

0:00:27.717 ======== (10966) start of libdso Mon 02 Feb 1998

11:28:31.

Beginning libraries

Ending libraries, beginning "./dlslave.so"
dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’
0:00:30.021 ======== (10966) End script Mon 02 Feb 1998

11:28:33.

In the output section that starts with Beginning libraries and ends with
Ending libraries , beginning "generic" tells you that ssrun is
instrumenting first the libraries listed in the executable and then the generic
executable itself. The text beginning "./dlslave.so" is added when the
DSO dlslave.so is opened by dlopen (3C).

2.3.4.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > ideal.results

This command redirects output to a file called ideal.results . The file
contains results that look similar to the following partial listing. Because of line
length restrictions, the DSO, file name, and line number have been wrapped to
the next line.

SpeedShop profile listing generated Mon Feb 2 13:23:25 1998

prof generic.ideal.m10966

generic (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

26 007–3311–006

Tutorial for C Users [2]

From file generic.ideal.m10966:

Caliper point 0 at target begin, PID 10966

/usr/demos/SpeedShop/linpack.demos/c/generic.pixie

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

2062563179: Total number of instructions executed

3929944273: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function

(dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1 anneal

(generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1 slaveusrtime

(dlslave.so: dlslave.c, 22)

[3] 0.171 0.8% 100.0% 30000081 16000054 1 cvttrap

(generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1 init2da

(generic: generic.c, 1430)

[5] 0.001 0.0% 100.0% 91200 384001600 _drand48

(libc.so.1: drand48.c, 116)

[6] 0.001 0.0% 100.0% 89072 55011 447 fread

(libc.so.1: fread.c, 34)

[7] 0.000 0.0% 100.0% 74854 47366 53 _doprnt

(libc.so.1: doprnt.c, 285)

[8] 0.000 0.0% 100.0% 64035 29479 628 __sinf

(libm.so: fsin.c, 93)

[9] 0.000 0.0% 100.0% 32355 7182 9 offtime

(libc.so.1: time_comm.c, 180)

[10] 0.000 0.0% 100.0% 17112 11916 305 _readdir

(libc.so.1: readdir.c, 135)

[11] 0.000 0.0% 100.0% 16168 10334 1 iofile

(generic: generic.c, 464)

[12] 0.000 0.0% 100.0% 15232 12544 448 _read

(libc.so.1: readSCI.c, 27)

[13] 0.000 0.0% 100.0% 14530 8498 326 memcpy

(libc.so.1: bcopy.s, 329)

[14] 0.000 0.0% 100.0% 10735 6446 1 dirstat

007–3311–006 27

SpeedShop User’s Guide

(generic: generic.c, 348)

[15] 0.000 0.0% 100.0% 6535 2831 106 strlen

(libc.so.1: strlen.s, 58)

[16] 0.000 0.0% 100.0% 6364 4242 304 _xstat

(libc.so.1: xstat.s, 12)

[17] 0.000 0.0% 100.0% 6363 3636 303 _cerror

(libc.so.1: cerror.s, 30)

.

.

.

[129] 0.000 0.0% 100.0% 5 3 1 get_exit_status

(libss.so: sswrap_assembly.s, 6)

[130] 0.000 0.0% 100.0% 4 2 1 __readenv_sigfpe

(libc.so.1: stubfpestart.c, 3)

[131] 0.000 0.0% 100.0% 4 2 1 crtninit.s

(generic: crtninit.s, 3)

[132] 0.000 0.0% 100.0% 1 1 1 __istart

(generic: crt1tinit.s, 14)

2.3.4.3 Analyzing the Report

The columns in the report provide the following information

• The excl.secs column shows the minimum number of seconds that might
be spent in the function under ideal conditions. For example, 21.453 seconds
is optimal for the anneal function, the way it is currently written. The
pcsamp experiment actually timed this function at 22.279 seconds.

• The excl.% column represents how much of the program’s total time was
spent in the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions listed so far.

• The cycles column reports the number of machine cycles used by the
function. For example, 3,754,320,037 CPU clock cycles were spent in the
anneal function.

• The instructions column shows the number of instructions executed by
a function. For example, the anneal function executed 1,971,220,024
instructions.

• The calls column reports the number of calls made to the function. For
example, there was just one call to the anneal function.

28 007–3311–006

Tutorial for C Users [2]

• The function (dso: file, line) column lists the function, its DSO
name, its file name, and the line number. For example, the first line reports
statistics for the function anneal in the file generic.c in the generic
executable on line 1573.

2.3.5 An fpe Trace

This section takes you through the steps to perform a floating-point exception
(fpe) trace, which identifies functions in which floating-point exceptions have
occurred. For more information on the fpe trace, see Section 4.7, page 61.

2.3.5.1 Performing an fpe Trace

From the command line, enter

ssrun -fpe generic

Output from generic and from ssrun is printed to stdout . A data file is
created with a name generated by concatenating the process name (generic),
the experiment type (fpe), and the experiment ID. In this example, the file
name is generic.fpe.m12213 .

2.3.5.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > fpe.results

The report should look similar to the following partial listing:

SpeedShop profile listing generated Mon Feb 2 13:26:33 1998

prof generic.fpe.m12213

generic (n32): Target program

fpe: Experiment name
fpe:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--
From file generic.fpe.m12213:

Caliper point 0 at target begin, PID 12213

/usr/demos/SpeedShop/linpack.demos/c/generic

007–3311–006 29

SpeedShop User’s Guide

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.& cum.% incl.FPEs incl.% function (dso:file)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 405)

[2] 0 0.0% 100.0% 4 100.0% __start (generic: crt1text.s, 101)

[3] 0 0.0% 100.0% 4 100.0% main (generic: generic.c, 101)
[4] 0 0.0% 100.0% 4 100.0% Scriptstring (generic: generic.c, 184)

2.3.5.3 Analyzing the Report

The report shows information for each function. The function names are shown
in the right-hand column of the report. The remaining columns are described
below:

• The excl.FPEs column shows how many floating-point exceptions were
found in the function. Four floating-point exceptions were found in
fpetraps .

• The excl.% column shows the percentage of the total number of
floating-point exceptions that were found in the function.

• The cum.% column shows the percentage of floating-point exceptions in the
functions that have been listed so far. The list is sorted by the number of
floating-point exceptions, with the most in the top line and the least in the
bottom line. Because all of the exceptions are in the first function listed in
this example, all entries in this column are 100%.

• The incl.FPEs columns shows how many floating-point exceptions were
generated by the function and the functions it called.

• The incl.% column provides the percentage of the program’s total number
of floating-point exceptions in this function and the functions it calls.
Because fpetraps is called through all of the other functions, they are all
listed as 100%.

30 007–3311–006

Tutorial for Fortran Users [3]

This chapter provides two tutorials for using the SpeedShop tools to gather and
analyze performance data in a Fortran program. The first tutorial covers the
following topics:

• Section 3.1, page 31, introduces the sample program and explains the
different scenarios in which it will be used.

• Section 3.2, page 32, leads you through the necessary setup for running the
experiment.

• Section 3.3, page 33, steps you through different experiments, discussing
first how to do the experiments, then how to interpret the results.

The second tutorial creates a Message Passing Interface (MPI) experiment. The
experiment file is generated by SpeedShop and displayed by the WorkShop
performance analyzer. See Section 3.4, page 45.

Note: Because of inherent differences between systems and also due to
concurrent processes that may be running on your system, your experiment
will produce different results from the one in this tutorial. However, the basic
structure of the results should be the same.

3.1 Tutorial Overview

This tutorial is based on a standard benchmark program called linpackup.
There are two versions of the program: the linpack directory contains files for
the n32-bit ABI, and the linpacko32 directory contains files for the o32-bit
ABI. Each linpack directory contains versions of the program for a single
processor (linpackup) and for multiple processors (linpackd). When you
work with the tutorial, choose the version of the program that is most
appropriate for your system. A good guideline is to choose whichever version
corresponds to the way you expect to develop your programs.

This tutorial was written and tested using the single-processor version of the
program (linpackup) in the linpack directory.

The linpack program is a standard benchmark designed to measure CPU
performance in solving dense linear equations. The program focuses primarily
on floating-point performance.

Output from the linpackup program looks like the following:

007–3311–006 31

SpeedShop User’s Guide

.

.

.

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300
dgefa dgesl total mflops unit ratio

times for array with leading dimension of 301

3.720E+00 4.000E-02 3.760E+00 4.835E+00 4.136E-01 6.714E+01

3.780E+00 3.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01

3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01
3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01

times for array with leading dimension of 300

3.800E+00 4.000E-02 3.840E+00 4.734E+00 4.224E-01 6.857E+01

3.810E+00 4.000E-02 3.850E+00 4.722E+00 4.235E-01 6.875E+01
3.770E+00 4.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01

3.782E+00 4.000E-02 3.822E+00 4.757E+00 4.205E-01 6.825E+01

3.2 Tutorial Setup

Copy the program to a directory where you have write permission and compile
it so that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate linpack directory and its contents to a directory in
which you have write permission:

cp -r linpack your_dir

3. Change to the directory you just created:

cd your_dir/linpack

4. Compile the program by entering:

make all

This provides an executable for the experiment.

32 007–3311–006

Tutorial for Fortran Users [3]

3.3 Analyzing Performance Data

This section list the steps you need to perform the following experiments on the
linpackup program, generate the experiment’s results, and interpret the
results:

• The usertime experiment. It returns the CPU time (see the Glossary for a
definition) used by each routine in your program. See Section 3.3.1, page 33.

• The pcsamp experiment. It returns CPU time for each routine in your
program. See Section 3.3.2, page 37.

• Hardware counter experiment. In a hardware counter experiment, the
program counter is sampled every time a hardware counter exceeds a
specified limit. In the experiment performed in this section, the hardware
counter keeps track of the number of times a data item required in a
calculation was not present in secondary data cache. When a data item is
not in cache, it must be retrieved from memory, which is a more
time-consuming process. See Section 3.3.3, page 39.

• The ideal experiment. This experiment calculates the best time achievable.
See Section 3.3.4, page 41.

3.3.1 A usertime Experiment

This section lists the steps you need to perform a usertime experiment. The
usertime experiment allows you to gather data on the amount of CPU time
spent in each routine in your program. For more information on usertime , see
Section 4.2, page 50. For definitions of CPU time, wall-clock time, and
process-virtual time, see the Glossary.

3.3.1.1 Performing a usertime Experiment

From the command line, enter the following:

ssrun -v -usertime linpackup

This starts the experiment. The -v flag tells ssrun to print a log to stderr .

Output from linpackup and from ssrun is printed to stdout , as shown in
the following example. A data file is also generated. The name consists of the
process name (linpackup), the experiment type (usertime), and the
experiment ID. In this example, the filename is
linpackup.usertime.m12205 .

007–3311–006 33

SpeedShop User’s Guide

ssrun: target PID 12205

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE usertime

ssrun: setenv _SPEEDSHOP_TARGET_FILE linpackup

ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

Please send the results of this run to:

Jack J. Dongarra
Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, Illinois 60439

Telephone: 312-972-7246

ARPAnet: DONGARRA@ANL-MCS

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300

dgefa dgesl total mflops unit ratio

times for array with leading dimension of 301

3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01
3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01

3.970E+00 4.000E-02 4.010E+00 4.534E+00 4.411E-01 7.161E+01

3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01

times for array with leading dimension of 300
3.910E+00 4.000E-02 3.950E+00 4.603E+00 4.345E-01 7.054E+01

3.880E+00 8.000E-02 3.960E+00 4.591E+00 4.356E-01 7.071E+01

3.930E+00 4.000E-02 3.970E+00 4.579E+00 4.367E-01 7.089E+01

3.922E+00 3.800E-02 3.960E+00 4.591E+00 4.356E-01 7.071E+01

3.3.1.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > usertime.results

34 007–3311–006

Tutorial for Fortran Users [3]

The prof command interprets the type of experiment you have performed and
prints results to stdout . The following report shows partial prof output.
Most lines have been wrapped because of line width restrictions:

SpeedShop profile listing generated Mon Feb 2 13:37:38 1998

prof linpackup.usertime.m12205

linpackup (n32): Target program

usertime: Experiment name

ut:cu: Marching orders
R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.usertime.m12205:
Caliper point 0 at target begin, PID 12205

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--
2777: Total Samples

0: Samples with incomplete traceback

83.310: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure

(dso: file, line)

[5] 78.090 93.7% 93.7% 78.090 93.7% 2603 daxpy
(linpackup: linpackup.f, 495)

[6] 2.730 3.3% 97.0% 2.730 3.3% 91 matgen

(linpackup: linpackup.f, 199)

[4] 1.920 2.3% 99.3% 79.680 95.6% 2656 dgefa

(linpackup: linpackup.f, 221)
[8] 0.270 0.3% 99.6% 0.270 0.3% 9 dscal

(linpackup: linpackup.f, 670)

[9] 0.180 0.2% 99.9% 0.180 0.2% 6 idamax

(linpackup: linpackup.f, 700)

[10] 0.090 0.1% 100.0% 0.090 0.1% 3 dmxpy

(linpackup: linpackup.f, 826)
[7] 0.030 0.0% 100.0% 0.810 1.0% 27 dgesl

007–3311–006 35

SpeedShop User’s Guide

(linpackup: linpackup.f, 324)

[1] 0.000 0.0% 100.0% 83.310 100.0% 2777 __start
(linpackup: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 83.310 100.0% 2777 main

(libftn.so: main.c, 76)

[3] 0.000 0.0% 100.0% 83.310 100.0% 2777 linp

(linpackup: linpackup.f, 3)

3.3.1.3 Analyzing the Report

The report shows information for each function. The function names are show
in the right-hand column of the report. The remaining columns are described
below:

• The index column, which enumerates the routines in the program, provides
an index number for reference.

• The excl.secs column shows how much time, in seconds, was spent in
the routine itself (exclusive time). For example, less than one hundredth of a
second was spent in linp , but 1.92 seconds were spent in dgefa .

• The excl.% column shows the percentage of a program’s total time that
was spent in the function.
For example, the daxpy routine consumed 93.7% of the program’s time.

• The cum.% column shows the percentage of the complete program time that
has been spent in the routines that have been listed so far. For instance,
when the dgefa routine completes, 99.3% of the program has completed by
the routines listed so far.

• The incl.secs column shows how much time, in seconds, was spent in
the function and descendents of the function. For example, 0.81 seconds
were spent in dgesl and the routines that were called from it.

• The incl.% column shows the cumulative percentage of inclusive time
spent in each routine and its descendents. For example, 1% of the time was
spent in dgesl and all the routines that were called from it.

• The samples column provides the number of samples taken from the
function and all of its descendants.

• The procedure (dso:file,line) column lists the routine name, its
DSO name, its file name, and its line number. For example, the top line
reports statistics for the routine daxpy , the DSO name linpackup , in the
file linpackup.f , at line 495.

36 007–3311–006

Tutorial for Fortran Users [3]

Note: Many functions shown here have only one or two hits. The data for
those functions is not statistically significant.

3.3.2 A pcsamp Experiment

This section lists the steps you need to perform a pcsamp experiment. The
pcsamp experiment allows you to gather information on actual CPU time for
each source code line, machine line, and function in your program. For more
information on pcsamp , see Section 4.3, page 51. For definitions of CPU time,
wall-clock time, and process-virtual time, see the Glossary.

3.3.2.1 Performing a pcsamp Experiment

From the command line, enter the following:

ssrun -pcsamp linpackup

This starts the experiment.

Output from linpackup and from ssrun is printed to stdout , as shown in
the following example. A data file is also generated. The name consists of the
process name (linpackup), the experiment type (pcsamp), and the experiment
ID. In this example, the file name is linpackup.pcsamp.m12333 .

.

.

.

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

.

.

.

3.3.2.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > pcsamp.results

The prof command interprets the type of experiment you have performed and
prints results to stdout . The following report shows partial prof output, and
most lines have been wrapped because of line width restrictions:

007–3311–006 37

SpeedShop User’s Guide

SpeedShop profile listing generated Mon Feb 2 13:52:27 1998

prof linpackup.pcsamp.m12333

linpackup (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.pcsamp.m12333:

Caliper point 0 at target begin, PID 12333

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

8272: Total samples

82.720: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 77.440 93.6% 93.6% 7744 daxpy (linpackup: linpackup.f, 495)

[2] 2.690 3.3% 96.9% 269 matgen (linpackup: linpackup.f, 199)

[3] 1.940 2.3% 99.2% 194 dgefa (linpackup: linpackup.f, 221)

[4] 0.370 0.4% 99.7% 37 idamax (linpackup: linpackup.f, 700)

[5] 0.210 0.3% 99.9% 21 dscal (linpackup: linpackup.f, 670)

[6] 0.060 0.1% 100.0% 6 dmxpy (linpackup: linpackup.f, 826)

0.010 0.0% 100.0% 1 **OTHER** (includes excluded DSOs, rld, etc.)

82.720 100.0% 100.0% 8272 TOTAL

3.3.2.3 Analyzing the Report

The report has the following columns:

• The secs column shows the amount of CPU time spent in the routine.

• The (%) column shows the percentage of the total program time that was
spent in the function.

38 007–3311–006

Tutorial for Fortran Users [3]

• The cum.% column shows the percentage of the complete program time that
has been spent by the routines listed so far.

• The samples column shows how many samples were taken when the
process was executing in the function.

• The function (dso:file, line) columns list the routine name, its
DSO name, its file name, and its line number. For example, the first line
reports statistics for the routine daxpy , in the DSO linpackup , in the file
linpackup.f , at line number 495.

3.3.3 A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in
hardware counters (the R10000 and R12000 classes of machines).

Hardware counters keep track of a variety of hardware information. For a
complete list of hardware counter experiments, see the ssrun (1) man page.

This section lists the steps you need to perform a hardware counter experiment.
The tutorial describes the steps involved in performing the dsc_hwc
experiment. This experiment allows you to capture information about
secondary data cache misses. For more information on hardware counter
experiments, see Section 4.6, page 55.

3.3.3.1 Performing a Hardware Counter Experiment

From the command line, enter the following:

ssrun -dsc_hwc linpackup

This starts the experiment. Output from linpackup and from ssrun will be
printed to stdout . A data file is also generated. The name consists of the
process name (linpackup), the experiment type (dsc_hwc), and the
experiment ID. In this example, the filename is
linpackup.dsc_hwc.m438011 .

3.3.3.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > dsc_hwc.results

Output similar to the following is generated:

007–3311–006 39

SpeedShop User’s Guide

SpeedShop profile listing generated Mon Feb 2 13:56:59 1998

prof linpackup.dsc_hwc.m438011

linpackup (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file linpackup.dsc_hwc.m438011:

Caliper point 0 at target begin, PID 438011

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

2929: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

383699: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 309029 80.5% 80.5% 2359 daxpy (linpackup: linpackup.f, 495)

[2] 46636 12.2% 92.7% 356 dgefa (linpackup: linpackup.f, 221)

[3] 25938 6.8% 99.5% 198 matgen (linpackup: linpackup.f, 199)

[4] 1310 0.3% 99.8% 10 idamax (linpackup: linpackup.f, 700)

[5] 131 0.0% 99.8% 1 _FWF (libfortran.so: wf90.c, 47)

[6] 131 0.0% 99.9% 1 memset (libc.so.1: bzero.s, 98)

524 0.1% 100.0% 4 **OTHER** (includes excluded DSOs, rld, etc.)

383699 100.0% 100.0% 2929 TOTAL

3.3.3.3 Analyzing the Report

The information immediately above the function list displays the following:

• The Total samples is the number of times the program counter was
sampled. It is sampled once for each overflow, or each time the hardware
counter exceeds the specified value.

40 007–3311–006

Tutorial for Fortran Users [3]

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a
value required in a calculation was not available in secondary cache. For a
complete list of the hardware counters and their numbers, see Table 7, page
59.

• The Counter overflow value is the number at which the hardware
counter overflows, or exceeds its preset value. In this case, the value is 131,
which is the default. You can change the overflow value by setting the
_SPEEDSHOP_HWC_COUNTER_OVERFLOWenvironment variable to a value
larger than 0.

• The Total counts is the total number of times a value was not in
secondary cache when needed. This value is determined by multiplying the
total number of samples by the overflow value; extra counts that do not
cause an overflow are not recorded.

The function list has the following columns:

• The counts column shows the number of times a data item was not in
secondary cache when needed for a calculation during the execution of the
routine. As with Total counts (described earlier), a routine’s counts
value is determined by multiplying its samples value (described later) by
the overflow value.

• The %column shows the percentage of the program’s overflows that
occurred in the routine.

• The cum.% shows the percentage of the program’s overflows that occurred
in the routines listed so far. For example, although the matgen routine had
only 6.8% of the program’s overflows, by the time it is encountered in the
routine list, 99.5% of the program’s total overflows have been recorded.

• The samples column shows the number of times the program counter was
sampled during execution of the routine. A sample is taken for each
overflow of the hardware counter.

• The function (dso: file, line) columns show the name, the DSO,
the file name, and line number of the routine.

3.3.4 An ideal Experiment

This section provides the steps you need to perform an ideal experiment. The
times returned represent an idealized, best-case computation. This experiment
ignores interlocks and memory latency time (cache misses and memory bus

007–3311–006 41

SpeedShop User’s Guide

contention). The CPU times returned will always be lower than for an actual
run. For more information on collecting ideal-time data and basic block
counting, see Section 4.4, page 52.

3.3.4.1 Performing an ideal Experiment

From the command line, enter the following:

ssrun -ideal linpackup

This starts the experiment. First the executable and libraries are instrumented
using pixie . This entails making copies of the libraries and executables, giving
them an extension that depends on the ABI, and inserting information into the
copies. The extension is .pixie for the executable, .pix32 for all 32 libraries,
.pixn32 for all n32 libraries, and .pix64 for all 64 libraries.

Output from linpackup and from ssrun is printed to stdout , as shown in
the following example. A data file is also generated. The name consists of the
process name (linpackup), the experiment type (ideal), and the experiment
ID. In this example, the file name is linpackup.ideal.n11596 .

Beginning libraries

./libssrt.so.pixn32 is up to date.

./libss.so.pixn32 is up to date.

./libfortran.so.pixn32 is up to date.

./libffio.so.pixn32 is up to date.

./libftn.so.pixn32 is up to date.

./libm.so.pixn32 is up to date.

./libc.so.1.pixn32 is up to date.
Ending libraries, beginning "linpackup"

.

.

.

3.3.4.2 Generating a Report

To generate a report on the data collected, enter the following at the command
line:

prof your_output_file_name > ideal.results

The prof command redirects output to a file called ideal.results . The file
should contain results that look something like the following. Most lines have
been wrapped because of line length restrictions.

42 007–3311–006

Tutorial for Fortran Users [3]

SpeedShop profile listing generated Mon Feb 2 14:04:20 1998
prof linpackup.ideal.m11596

linpackup (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs
175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.ideal.m11596:

Caliper point 0 at target begin, PID 11596

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup.pixie
Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

4911547956: Total number of instructions executed

9700441338: Total computed cycles
55.431: Total computed execution time (secs.)

1.975: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls
function (dso: file, line)

[1] 52.073 93.9% 93.9% 9112833799 4637546756 772633

daxpy (linpackup: linpackup.f, 495)

[2] 1.937 3.5% 97.4% 339051600 163885662 18
matgen (linpackup: linpackup.f, 199)

[3] 1.020 1.8% 99.3% 178526333 72336088 17

dgefa (linpackup: linpackup.f, 221)

[4] 0.180 0.3% 99.6% 31463770 17658342 5083

dscal (linpackup: linpackup.f, 670)
[5] 0.166 0.3% 99.9% 28990712 15670260 5083

idamax (linpackup: linpackup.f, 700)

[6] 0.045 0.1% 100.0% 7839357 3605134 1

dmxpy (linpackup: linpackup.f, 826)

[7] 0.009 0.0% 100.0% 1499774 695929 17

dgesl (linpackup: linpackup.f, 324)
[8] 0.000 0.0% 100.0% 54065 30649 53

_sd2udee (libffio.so: sd2udee.c, 104)

[9] 0.000 0.0% 100.0% 44650 28904 1

007–3311–006 43

SpeedShop User’s Guide

linp (linpackup: linpackup.f, 3)

[10] 0.000 0.0% 100.0% 37376 26716 31
_wrfmt (libfortran.so: wrfmt.c, 56)

[11] 0.000 0.0% 100.0% 11448 8427 159

_IEEE_BINARY_SCALE_I4 (libfortran.so: ieee_binary_scale_r_n.c, 41)

[12] 0.000 0.0% 100.0% 8784 5116 492

nvmatch (libc.so.1: getenv.c, 46)

[13] 0.000 0.0% 100.0% 8586 4596 6
getenv (libc.so.1: getenv.c, 25)

[14] 0.000 0.0% 100.0% 7850 4718 4

_get_next_unit (libfortran.so: fortunit.c, 171)

[15] 0.000 0.0% 100.0% 7370 5003 15

_FWF (libfortran.so: wf90.c, 47)
[16] 0.000 0.0% 100.0% 6012 3586 21

_pack (libffio.so: _pack.c, 51)

[17] 0.000 0.0% 100.0% 5293 2273 16

strlen (libc.so.1: strlen.s, 58)

[18] 0.000 0.0% 100.0% 3992 2888 8
_map_to_dv (libfortran.so: dopexfer.c, 964)

[19] 0.000 0.0% 100.0% 3757 2289 9

fflush (libc.so.1: flush.c, 377)

[20] 0.000 0.0% 100.0% 3394 2352 28

_fwch (libfortran.so: fwch.c, 61)

[21] 0.000 0.0% 100.0% 3248 1680 8
_stride_dv (libfortran.so: dopexfer.c, 495)

[22] 0.000 0.0% 100.0% 2809 1908 53

_IEEE_EXPONENT_I4_R (libfortran.so: ieee_exponent_n.c, 73)

[23] 0.000 0.0% 100.0% 2649 1607 18

_unpack (libffio.so: _unpack.c, 54)
[24] 0.000 0.0% 100.0% 2544 1908 159

__is_nan64 (libfortran.so: inline.h, 343; compiled in ieee_binary_scale_r_n.c)

[25] 0.000 0.0% 100.0% 2404 1696 15

setup_format (libfortran.so: f90io.h, 451; compiled in wf90.c)

[26] 0.000 0.0% 100.0% 2052 1296 54
second_ (linpackup: second.c, 8)

[27] 0.000 0.0% 100.0% 1988 1764 28

_sw_endrec (libfortran.so: wf.c, 906)

[28] 0.000 0.0% 100.0% 1712 1252 15

_xfer_iolist (libfortran.so: dopexfer.c, 150)

[29] 0.000 0.0% 100.0% 848 636 53
__is_nan64 (libfortran.so: inline.h, 343; compiled in ieee_exponent_n.c)

[30] 0.000 0.0% 100.0% 795 530 53

isdigit (libc.so.1: ctypefcns.c, 62)

44 007–3311–006

Tutorial for Fortran Users [3]

[31] 0.000 0.0% 100.0% 736 72 8

_tripcnt (libfortran.so: dopexfer.c, 1172)
[32] 0.000 0.0% 100.0% 694 425 3

_s2ui (libffio.so: s2uboiz.c, 394)

.

.

.

[130] 0.000 0.0% 100.0% 1 1 1
__istart (linpackup: crt1tinit.s, 14)

3.3.4.3 Analyzing the Report

The report has the following columns:

• The excl.secs column shows the minimum number of seconds that might
be spent in the routine under ideal conditions. For example, 52.073 seconds
is optimal for the daxpy routine. The pcsamp experiment (see Section 3.3.2,
page 37) times this routine at 77.44 seconds.

• The excl.% column represents how much of the program’s total time was
spent in the routine.

• The cum.% column shows the cumulative percentage of time spent in the
routines listed so far.

• The cycles column reports the number of machine cycles used by the
routine. For example, 91,12,833,799 CPU clock cycles were spent in the
daxpy routine.

• The instructions column shows the number of instructions executed by
a routine. For example, the dgefa routine executed 72,336,088 instructions.

• The calls column reports the number of calls to the routine. For example,
there was just one call to the dmxpy routine.

• The procedure (dso:file, line) column lists the name, the DSO
name, the file name, and the line number for the routine.

3.4 MPI Tracing tutorial

The following steps generate tracing data for an MPI program:

1. First, set the MPI_RLD_HACK_OFFenvironment variable to prevent
SpeedShop confusion over the organization of the DSOs.

007–3311–006 45

SpeedShop User’s Guide

% setenv MPI_RLD_HACK_OFF=1

2. Compile the matmul.f source file and include the MPI library:

% f90 -o matmul matmul.f -lmpi

3. Now run the ssrun command as part of the mpirun (1) command on the
executable file to generate experiment files:

% mpirun -np 4 ssrun -mpi matmul

The result will be a series of experiment files, one for each process (the
identifier begins with an f) and one for the master process (the identifier
begins with an m):

matmul.mpi.f9587021

matmul.mpi.f9905720

matmul.mpi.f9930637

matmul.mpi.f9930718

matmul.mpi.m9951566

4. Finally, display an experiment file with the WorkShop cvperf (1) command.
Remember, you cannot use prof to display an MPI trace experiment.

% cvperf matmul.mpi.f9587021

To display the output, select either MPI Stats View (Graphs) or MPI
Stats View (Numerical) from the Views menu. See Figure 1, page 47
for an illustration of the MPI Stats View (Graphs) .

46 007–3311–006

Tutorial for Fortran Users [3]

Figure 1. An MPI Experiment in cvperf

007–3311–006 47

Experiment Types [4]

This chapter provides detailed information on each experiment type available
within SpeedShop. It contains the following sections:

• Selecting an experiment. See Section 4.1, page 49.

• The usertime experiment. See Section 4.2, page 50.

• The pcsamp experiment. See Section 4.3, page 51.

• The ideal experiment. See Section 4.4, page 52.

• The I/O trace experiment. See Section 4.5, page 54.

• The hardware counter experiments. See Section 4.6, page 55.

• The floating-point exception trace experiment. See Section 4.7, page 61.

• Heap trace experiments. See Section 4.8, page 61.

• Combining multiple experiment files into one file. See Section 4.9, page 62.

For information on how to run the experiments described in this chapter, see
Chapter 6, page 67.

4.1 Selecting an Experiment

Table 5 shows the possible experiments you can perform using the SpeedShop
tools and the reasons why you might want to choose a specific experiment. The
Clues column shows when you might use an experiment. The Data Collected
column indicates performance data collected by the experiment. For detailed
information on the experiments, see the relevant section in the remainder of this
chapter.

007–3311–006 49

SpeedShop User’s Guide

Table 5. Summary of Experiments

Experiment Clues Data Collected

usertime Slow program, nothing else
known.
Not CPU-bound.

Inclusive and exclusive CPU time for each function by
sampling the callstack at 30-millisecond intervals.

pcsamp High user CPU time. Actual CPU time at the source line, machine instruction,
and function levels by sampling the program counter at
10 or 1-millisecond intervals using basic block counting.

ideal CPU-bound. Ideal CPU time at the function, source line, and machine
instruction levels.

_hwc High user CPU time. On R10000 and R12000 class machines, counts at the
source line, machine instruction, and function levels of
various hardware events, including: clock cycles,
graduated instructions, primary instruction cache misses,
secondary instruction cache misses, primary data cache
misses, secondary data cache misses, translation lookaside
buffer (TLB) misses, and graduated floating-point
instructions.

fpe High system time.
Presence of floating-point
operations.

All floating-point exceptions, with the exception type and
the callstack at the time of the exception.

4.2 usertime Experiment

The usertime experiment is a good experiment with which to begin
performance analysis of your program. It returns CPU time (see the glossary)
for each function while your program runs.

It uses statistical call stack profiling to measure inclusive and exclusive user
time. This experiment takes a sample every 3 milliseconds. Data is measured
by periodically sampling the callstack. The program’s callstack data is used to
do the following:

• Attribute exclusive user time to the function at the bottom of each callstack
(that is, the function being executed at the time of the sample).

50 007–3311–006

Experiment Types [4]

• Attribute inclusive user time to all the functions above the one currently
being executed (those involved in the chain of calls that led to the function
at the bottom of the callstack executing).

The time spent in a procedure is determined by multiplying the number of
times an instruction for that procedure appears in the stack by the average time
interval between call stacks. Call stacks are gathered when the program is
running; hence, the time computed represents user time, not time spent when
the program is waiting for a CPU. User time shows both the time the program
itself is executing and the time the operating system is performing services for
the program, such as I/O.

User time runs should incur a program execution slowdown of no more than
15%. Data from a usertime experiment is statistical in nature and shows some
variance from run to run.

Note: For this experiment, o32 executables must explicitly link with -lexc .

4.3 pcsamp Experiment

The pcsamp experiment estimates the actual CPU time (see the glossary) for
each source code line, machine code line, and function in your program. The
prof listing of this experiment shows exclusive PC sampling time. This
experiment is a lightweight, high-speed operation that makes use of the
operating system.

CPU time is calculated by multiplying the number of times an instruction or
function appears in the PC by the interval specified for the experiment (either 1
or 10 milliseconds).

To collect the data, the operating system regularly stops the process, increments
a counter corresponding to the current value of the PC, and resumes the
process. The default sample interval is 10 milliseconds. If you specify the
optional f prefix to the experiment, a sample interval of 1 millisecond is used.

By default, the experiment uses 16-bit counters. If the optional x suffix is used,
a 32-bit counter size will be used. Using a 32-bit bin provides more accurate
information, but requires additional memory and disk space.

• 16-bit bins allow a maximum of 65,536 counts.

• 32-bit bins allow over 4 billion counts.

007–3311–006 51

SpeedShop User’s Guide

PC sampling runs should slow the execution time of the program down no
more than 5 percent. The measurements are statistical in nature, meaning they
exhibit variance inversely proportional to the running time.

4.4 ideal Experiment

The ideal experiment returns information on the fastest possible execution
time for your program. Although your program will never match ideal time, it
is a good tool for finding the bottlenecks in your program. Compare the results
returned by the ideal experiment with those returned by the usertime or
pcsamp experiment (for more information, see Section 4.4.4, page 54).

The ideal experiment gathers information by instrumenting the executables
and any DSOs to count basic blocks and dynamic (function-pointer) calls.

You can also use an ideal experiment file to optimize the way your program
is organized. For more information on reordering code regions, see the MIPSpro
Compiling and Performance Tuning Guide.

4.4.1 How SpeedShop Prepares Files

To permit block counting, SpeedShop does the following:

• Divides the code into basic blocks, which are sets of instructions with a
single entry point, a single exit point, and no branches into or out of the set.

• Inserts counter code at the beginning of each basic block to increment a
counter each time that basic block is executed.

The target executable, rld (1), and all the DSOs are instrumented. Instrumented
files with an extension .pix* , where * depends on the ABI, are written to the
current working directory or to the directory specified by the
_SPEEDSHOP_OUTPUT_DIRECTORYenvironment variable, if set.

After instrumentation, ssrun executes the instrumented program. Data is
generated as long as the process exits normally or receives a fatal signal that the
program does not handle.

4.4.2 How SpeedShop Calculates Ideal CPU Time

The prof command uses a machine model to convert the block execution
counts into an idealized, exclusive CPU time at the function, source line, or
machine instruction levels. By default, the machine model corresponds to the

52 007–3311–006

Experiment Types [4]

machine on which the target was run; the user can specify a different machine
model for the analysis.

Note that the execution time of an instrumented program is three to six times
longer than an uninstrumented one. This timing change may alter the behavior
of a program that deals with a graphical user interface (GUI) or depends on
events such as SIGALRMthat are based on an external clock. Also, during
analysis the instrumented executable might appear to be CPU-bound, whereas
the original executable was I/O-bound.

Basic block counts are translated to ideal CPU time displayed at the function,
source line, and assembly instruction levels.

4.4.3 Inclusive Basic Block Counting

The basic block counting explained in the previous section allows you to
measure ideal time spent in each procedure, but it does not propagate the time
up to the caller of that procedure. For example, basic block counting may tell
you that procedure sin(x) took the most time, but significant performance
improvement can only be obtained by optimizing the callers of sin(x) .
Inclusive basic block counting solves this problem.

Inclusive basic block counting calculates cycles just like regular basic block
counting and then propagates it in proportion to its callers. The cycles of
procedures obtained using regular basic block counting (called exclusive cycles)
are divided up among its callers in proportion to the number of times they
called this procedure. For example, if sin(x) takes 1000 cycles, and its callers,
procedures foo() and bar() , call sin(x) 25 and 75 times respectively, 250
cycles are attributed to foo() and 750 to bar() . By propagating cycles this
way, __start() usually ends up with all the cycles counted in the program.
(It is possible to write code that makes determining the complete call graph
impossible, in which case you may end up with parts of the call graph
disconnected.)

The assumption can be very misleading. If foo calls matmult 99 times for
2–by–2 matrices, while bar calls it once for 100–by–100 matrices, the inclusive
time report will attribute 99% of matmult() ’s time to foo() , but actually
almost all the time could derive from the one call from bar() .

To generate a report that shows inclusive time (see the glossary), specify the
-gprof option to the prof command.

007–3311–006 53

SpeedShop User’s Guide

4.4.4 Using pcsamp and ideal Together

The ideal experiment can be used together with the pcsamp experiment to
compare actual and ideal times spent in the CPU. A major discrepancy between
pcsamp CPU time and ideal CPU time indicates one or more of the following
situations:

• Cache misses and floating-point interlocks in a single process application.

• Secondary cache invalidations in an application with multiple processes that
is run on a multiprocessor.

A comparison between basic block counts (ideal experiment) and PC profile
counts (pcsamp experiment) is shown in Table 6.

Table 6. Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time. Used to estimate actual CPU time.

Data collection by
instrumentation.

Data collection by the kernel.

Slows program down by factor
of three.

Has minimal impact on program speed.

Generates an exact count of
every instruction.

Generates statistical, inexact counts.

4.5 I/O Trace Experiment

The I/O trace experiment shows you the level of I/O activity in your program
by tracing various I/O system calls, for example read (2) and write (2).

The prof output of an I/O trace experiment yields the following information:

• The number of I/O system calls executed.

• The number of calls with an incomplete traceback.

• The number of I/O-related system calls from each function in the program.

• The percentage of I/O-related system calls from each function in the
program.

54 007–3311–006

Experiment Types [4]

• The percentage of I/O-related system calls encountered so far in the list of
functions.

• The number of I/O-related system calls made by a given function and by all
the functions ultimately called by that given function. For example, the
main function will probably include all of the program’s I/O calls with
complete tracebacks.

• The percentage of I/O-related system calls made by a given function and by
all the functions ultimately called by that given function.

• The DSO, file name, and line number for each function.

The following ssrun command creates an I/O trace experiment file from the
executable file generic :

% ssrun -io generic

4.6 Hardware Counter Experiments

The experiments described in this section are available for systems that have
hardware counters (R10000 and R12000 class machines). Hardware counters
allow you to count various types of events, such as cache misses and counts of
issued and graduated instructions.

A hardware counter works as follows: for each event, the appropriate hardware
counter is incremented on the processor clock cycle. For example, when a
floating-point instruction is graduated in a cycle, the graduated floating-point
instruction counter is incremented by 1.

These experiments are detailed by nature. They return information gathered at
the hardware level. You probably want to run a higher level experiment first.
Once you have narrowed the scope, you can use hardware counter experiments
to pinpoint the area to be tuned.

4.6.1 Two Tools for Hardware Counter Experiments

There are two tools that allow you to access hardware counter data:

• perfex (1) is a command-line interface that provides program-level event
information. For more information on perfex , see the perfex (1) man
page. For more information on hardware counters, see the
r10k_counters (1) man page.

007–3311–006 55

SpeedShop User’s Guide

• SpeedShop allows you to perform the hardware counter experiments
described in the next section (Section 4.6.2).

4.6.2 SpeedShop Hardware Counter Experiments

In the SpeedShop hardware counter experiments, overflows of a particular
hardware counter are recorded. (Each hardware counter is configured to count
from zero to a number designated as the overflow value. When the counter
reaches the overflow value, the system resets it to zero and increments the
number of overflows at the present program instruction address.) Each
experiment provides two possible overflow values; the values are prime
numbers, so any profiles that seem the same for both overflow values should be
statistically valid.

The hardware counter experiments show where the overflows are being
triggered in the program, at the function, source-line, and individual instruction
level. When you run prof on the data collected during the experiment, the
overflow counts are multiplied by the overflow value to compute the total
number of events. These numbers are statistical, meaning they are not precise.
The generated reports show exclusive hardware counts: that is, information
about where the program counter was. They do not show the callstack to get
there.

Hardware counter overflow profiling experiments should incur a slowdown of
execution of the program of no more than 5%. Count data is kept as 32-bit
integers only.

The available hardware experiments are described in the following sections.

4.6.3 The [f]gi_hwc Experiment

The [f]gi_hwc experiment counts overflows of the graduated instruction
counter. The graduated instruction counter is incremented by the number of
instructions that were graduated on the previous cycle. The experiment uses
statistical PC sampling based on an overflow interval of 32,771. If the optional
f prefix is used, the overflow interval is 6,553.

4.6.4 The [f]cy_hwc Experiment

The [f]cy_hwc experiment counts overflows of the cycle counter. The cycle
counter is incremented on each clock cycle. The experiment uses statistical PC
sampling based on an overflow interval of 16,411. If the optional f prefix is
used, the overflow interval is 3,779.

56 007–3311–006

Experiment Types [4]

4.6.5 The [f]ic_hwc Experiment

The [f]ic_hwc experiment counts overflows of the primary instruction cache
miss counter. The counter is incremented one cycle after an instruction fetch
request is entered into the miss handling table. The experiment uses statistical
PC sampling based on an overflow interval of 2,053. If the optional f prefix is
used, the overflow interval is 419.

4.6.6 The [f]isc_hwc Experiment

The [f]isc_hwc experiment counts overflows of the secondary instruction
cache miss counter. The secondary instruction cache miss counter is
incremented after the last 16-byte block of a 64-byte primary instruction cache
line is written into the instruction cache. The experiment uses statistical PC
sampling based on an overflow interval of 131. If the optional f prefix is used,
the overflow interval is 29.

4.6.7 The [f]dc_hwc Experiment

The [f]dc_hwc experiment counts overflows of the primary data cache miss
counter. The primary data cache miss counter is incremented on the cycle after
a primary cache data refill is begun. The experiment uses statistical PC
sampling based on an overflow interval of 2,053. If the optional f prefix is
used, the overflow interval is 419.

4.6.8 The [f]dsc_hwc Experiment

The [f]dsc_hwc experiment counts overflows of the secondary data cache miss
counter. The secondary data cache miss counter is incremented on the cycle
after the second 16-byte block of a primary data cache line is written into the
data cache. The experiment uses statistical PC sampling, based on an overflow
interval of 131. If the optional f prefix is used, the overflow interval is 29.

4.6.9 The [f]tlb_hwc Experiment

The [f]tlb_hwc experiment counts overflows of the translation lookaside
buffer (TLB) counter. The TLB counter is incremented on the cycle after the TLB
miss handler is invoked. The experiment uses statistical PC sampling based on
an overflow interval of 257. If the optional f prefix is used, the overflow
interval is 53.

007–3311–006 57

SpeedShop User’s Guide

4.6.10 The [f]gfp_hwc Experiment

The [f]gfp_hwc experiment counts overflows of the graduated floating-point
instruction counter. The graduated floating-point instruction counter is
incremented by the number of floating-point instructions that graduated on the
previous cycle. The experiment uses statistical PC sampling based on an
overflow interval of 32,771. If the optional f prefix is used, the overflow
interval is 6,553.

4.6.11 The prof_hwc Experiment

The prof_hwc experiment allows you to set a hardware counter to use in the
experiment and to set a counter overflow interval using the following
environment variables:

_SPEEDSHOP_HWC_COUNTER_NUMBER

The value of this variable can be between 0 and 31. Hardware
counters are described in the MIPS R10000 Microprocessor User’s
Manual, Chapter 14, and on the r10k_counters (1) man page.
The hardware counter numbers are provided in Section 4.6.11.1,
page 58.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW

The value of this variable can be any number greater than 0.
Some numbers may produce data that is not statistically
random, but rather reflects a correlation between the overflow
interval and a cyclic behavior in the application. You may want
to do two or more runs with different overflow values.

The default counter is the primary instruction-cache miss counter; the default
overflow interval is 2,053.

The experiment uses statistical PC sampling based on the overflow of the
specified counter, at the specified interval. Note that these environment
variables cannot be used for other hardware counter experiments. They are
examined only when the prof_hwc experiment is specified.

4.6.11.1 Hardware Counter Numbers

The possible numeric values for the _SPEEDSHOP_HWC_COUNTER_NUMBER
variable are shown in the following tables. Table 7, page 59, gives the hardware
counter numbers for systems with R10000 processors, and Table 8, page 60,
gives them for systems with R12000 processors.

58 007–3311–006

Experiment Types [4]

Table 7. R10000 Hardware Counter Numbers

0 Cycles

1 Issued instructions

2 Issued loads

3 Issued stores

4 Issued store conditionals

5 Failed store conditionals

6 Decoded branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way prediction table

12 External interventions

13 External invalidations

14 Virtual coherency conditions (or functional unit completions, depending
on hardware version)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

007–3311–006 59

SpeedShop User’s Guide

26 Secondary data cache misses

27 Data misprediction from secondary cache way prediction table

28 External intervention hits in secondary cache

29 External invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

Table 8. R12000 Hardware Counter Numbers

0 Cycles

1 Decoded instructions

2 Decoded loads

3 Decoded stores

4 Miss Handling Table occupancy

5 Failed store conditionals

6 Resolved conditional branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way prediction table

12 External interventions

13 External invalidations

14 ALU/FPU progress cycles

15 Graduated instructions

16 Executed prefetch instructions

17 Prefetch primary data cache misses

18 Graduated loads

60 007–3311–006

Experiment Types [4]

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary data cache misses

27 Data misprediction from secondary cache way prediction table

28 State of intervention hits in secondary cache

29 State of invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

4.7 Floating-Point Exception Trace

A floating-point exception trace collects each floating-point exception with the
exception type and the callstack at the time of the exception. Floating-point
exception tracing experiments should incur a slowdown in execution of the
program of no more than 15%. These measurements are exact, not statistical.

The prof command generates a report that shows inclusive and exclusive
floating-point exception counts.

4.8 Heap Trace Experiments

If you are running a heap trace experiment on a multiprocessor application, you
will get an experiment file for each process and an additional experiment file
for the master process. Each process experiment file can either contain a sample
of the data from the whole application or its own data only, as follows:

• By default, the experiment file for each process will contain data from all
processes.

007–3311–006 61

SpeedShop User’s Guide

• If you set the _SSMALLOC_NO_BUFFERINGenvironment variable before
executing ssrun , the experiment file for each process will contain only its
own heap trace data.

4.9 Combining Multiple Experiment Files into One

The ssaggregate (1) command lets you combine the data from two or more
experiment files of the same experiment type (such as ideal) into a single file.
You can then view the new file with either prof (1) or the WorkShop
performance analyzer, cvperf (1).

The ssaggregate command takes the following form:

ssaggregate -e files -noverbose -o output_file

The following example combines two pcsamp experiments into a single file and
displays the file with prof :

% ssaggregate -e generic.pcsampx.f14636 generic.pcsamp.f14635 -o combo
% prof combo

The output from prof is as follows:

SpeedShop profile listing generated Tue Nov 24 11:30:03 1998

prof combo

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file combo:

Caliper point 0 at target begin, PID 14635

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 0 at target begin, PID 14636

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

4012: Total samples

40.120: Accumulated time (secs.)

10.0: Time per sample (msecs.)

62 007–3311–006

Experiment Types [4]

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 37.480 93.4% 93.4% 3748 anneal (generic: generic.c, 1573)

[2] 1.450 3.6% 97.0% 145 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.490 1.2% 98.3% 49 _read (libc.so.1: read.s, 15)

[4] 0.330 0.8% 99.1% 33 _xstat (libc.so.1: xstat.s, 12)

[5] 0.300 0.7% 99.8% 30 cvttrap (generic: generic.c, 317)

[6] 0.030 0.1% 99.9% 3 _write (libc.so.1: write.s, 15)

[7] 0.010 0.0% 99.9% 1 fread (libc.so.1: fread.c, 27)

[8] 0.010 0.0% 100.0% 1 _syscall (libc.so.1: syscall.s, 15)

0.020 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

40.120 100.0% 100.0% 4012 TOTAL

By default, ssaggregate issues periodic status message while it is processing.
The -noverbose option turns the status messages off. See the
ssaggregate (1) man page.

007–3311–006 63

Collecting Data on Machine Resource
Usage [5]

This chapter describes how to collect machine resource usage data using the
SpeedShop ssusage (1) command. Finding out the machine resources that your
program uses can help you identify performance bottlenecks and determine
which performance experiments you need to run. You can use the list in Section
1.4.2, page 9, to identify which experiments to run, based on the results of
running ssusage on your program.

5.1 ssusage Syntax

The ssusage command has no options of its own. It takes the following form:

ssusage executable_name [executable_args]

executable_name Name of the executable for which you want to
collect machine resource usage data

executable_args Arguments to your executable, if any

5.2 ssusage Results

The ssusage command prints output to stderr . For example, the ssusage
generic command provides output similar to the following:

...

22.03 real, 18.18 user, 0.21 sys, 7 majf, 120 minf, 0 sw, 241 rb, 0

wb, 135 vcx, 648 icx

The last two lines of the output constitute the machine resource usage
information that ssusage provides. Following is a description of each field
from the report:

real The real, or wall-clock, time in which the executable ran, in
seconds.

user User CPU time, excluding the time the operating system was
performing services for the executable, in seconds.

sys System CPU time, during which the system was performing
services for the executable, in seconds.

007–3311–006 65

SpeedShop User’s Guide

majf Major page faults that cause physical I/O.

minf Minor page faults that require mapping only.

sw Process swaps.

rb/wb Physical blocks read or written. These are attributed to the
process that first requests a block, but they do not necessarily
directly correlate with the process’s own I/O operations.

vcx Voluntary context switches; those caused by the process’ own
actions.

icx Involuntary context switches; those caused by the scheduler.

If the program terminates abnormally, a message is printed before the usage line.

66 007–3311–006

Setting Up and Running Experiments:
ssrun [6]

This chapter provides information on how to set up and run performance
analysis experiments using the ssrun command. It consists of the following
sections:

• Building Your Executable, see Section 6.1, page 67.

• Setting Up Output Directories and Files, see Section 6.2, page 69.

• Using Run-Time Environment Variables, see Section 6.3, page 70.

• Using Marching Orders, see Section 6.4, page 74.

• Running Experiments, see Section 6.5, page 77.

• Running Experiments on MPI Programs, see Section 6.6, page 82.

• Running Experiments on Programs Using Pthreads, see Section 6.7, page 86.

• Using Calipers, see Section 6.8, page 86.

• Effects of ssrun , see Section 6.9, page 90.

6.1 Building Your Executable

The ssrun command is designed to be used with normally built executables
and default environment settings. However, there are some cases where you
need to change the way you build your executable or set certain environment
variables.

This section explains when to change the way you build your executable
program. For information on setting environment variables, see Section 6.3,
page 70.

• If you have used the ssrt_caliper_point (3) function provided in the
SpeedShop libraries, you have to explicitly link in the SpeedShop libraries
file, libss.so . For more information on setting caliper points, see Section
6.8, page 86.

• If you are planning to build your executable using the -32 option to the cc
command, and you want to run the usertime experiment, you must add

007–3311–006 67

SpeedShop User’s Guide

-lexc to the link line. For more information on cc -32 , see the cc (1) man
page.

• If you have built a stripped executable, you need to rebuild a nonstripped
version to use with SpeedShop. For example, if you are using ld to link
your C program, do not use the -s option. Using the -s option strips
debugging information from the program object and makes the program
unusable for performance analysis.

• If you have used compiler optimization level 3 and you are performing
experiments that report function-level information, inlining can result in
extremely misleading profiles. The time spent in the inlined procedure will
show up in the profile as time spent in the procedure into which it was
inlined. It is generally better to use compiler optimization level 2 or less
when gathering an execution profile.

6.1.1 Special Information for MP Fortran Programs

If you are compiling MP Fortran programs, you may encounter anomalies in
the displayed data:

• For all f90 (1), f77 (1), and fort77 (1) MP compilations, parallel loops
within the program are represented as subroutines with names relating to
the source routine in which they are embedded. The naming conventions for
these subroutines are different for 32-bit and 64-bit compilations.

For example, in the linpack example program, most of the time is spent in
the routine DAXPY, which can be parallelized. The name differences are as
follows:

– In an n32 or 64-bit MP version, the routine has the name DAXPY, but
most of that work is done in the MP routine named DAXPY.PREGION1.

– In an o32-bit version, the DAXPYroutine is named daxpy_ , and the MP
routine is _daxpy_519_aaab_ .

• If you perform an ideal experiment, the source annotations for 32-bit and
64-bit compilations with the -g option differ and are not correct in most
cases.

– In 64-bit source annotations, the exclusive time is correctly shown for
each line, but the inclusive time for the first line of the loop (do
statement) includes the time spent in the loop body. This same time
appears on the lines comprising the loop’s body, in effect representing a
double-counting.

68 007–3311–006

Setting Up and Running Experiments: ssrun [6]

– In 32-bit source annotations, the exclusive time is incorrectly shown for
the line comprising the loop’s body. The line-level data for the loop-body
routine (_daxpy_519_aaab_) doesn’t refer to proper lines. If the
program was compiled with the -mp_keep flag, the line-level data
should refer to the temporary files that are saved from the compilation.
But the temporary files do not contain that information, so no source or
disassembly data can be shown. The disassembly data for the main
routine does not show the times for the loop body.

– If the 32-bit program was compiled without the -mp_keep flag, the
line-level data for the loop-body routine is incorrect. Most lines refer to
line 0 of the file and the rest to other lines at seemingly random places in
the file. Consequently, false annotations will appear on some lines.
Disassembly correctly shows the instructions and their data, but the line
numbers are wrong. This reflects essentially the same double-counting
problem as seen in 64-bit compilations, but the extra counts go to other
places in the file, rather than to the first line of the loop.

6.2 Setting Up Output Directories and Files

When you run an experiment, performance data files are written to the current
working directory by default. They are named using the following convention:

executable_name.exp_name.exp_type.id

The experiment ID, id, consists of one or two letters (designating the process
type) and the process ID number. See Table 4 for letter codes and descriptions.

The following are examples of data file names:

stat.ideal.m10966

engines.pcsamp.m14493

In a single-process application, ssrun generates a single performance data file.
In a multiprocessor application, ssrun generates a performance data file for
each process.

You can change the default file name or directory for performance data files
using environment variables. See _SPEEDSHOP_OUTPUT_DIRECTORYand
_SPEEDSHOP_OUTPUT_FILENAMEin Table 9 for more information.

007–3311–006 69

SpeedShop User’s Guide

6.3 Using Run-Time Environment Variables

This section provides information about available environment variables,
grouped by functionality:

• User Environment Variables, see Section 6.3.1, page 70.

• Process Tracking Environment Variables, see Section 6.3.2, page 71.

• Expert-Mode Environment Variables, see Section 6.3.3, page 72.

6.3.1 User Environment Variables

A number of environment variables are normally used to control the operation
of SpeedShop. Table 9 lists these variables.

Table 9. General Environment Variables

Variable Description

_SPEEDSHOP_VERBOSE Causes a log of each program’s operation to be
written to stderr . If this variable is set to an
empty string, only major events are logged; if it
is set to a non-empty string, more detailed
events are logged.

_SPEEDSHOP_SILENT Suppresses all SpeedShop output other than
fatal error messages.

If both _SPEEDSHOP_VERBOSEand
_SPEEDSHOP_SILENTare set,
_SPEEDSHOP_VERBOSEis ignored.

_SPEEDSHOP_CALIPER_POINT_SIGsig_num Causes the specified signal number to be used
for recording a caliper point in the experiment.

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS Opens and closes the file descriptors for the
output files every time performance data is to
be written.

70 007–3311–006

Setting Up and Running Experiments: ssrun [6]

Variable Description

_SPEEDSHOP_HWC_COUNTER_NUMBER Specifies the counter to be used for prof_hwc
experiments. Counters are numbered between 0
and 31, and are described in the MIPS R10000
Microprocessor’s User’s Manual, Chapter 14.
Counter 0 counters are numbered 0-15, and
counter 1 counters are numbered 16–31.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW Specifies the overflow value for the counter to
be used in prof_hwc experiments. The value
chosen can be any number greater than 0. Some
choices may produce data that is not statistically
random but reflects a correlation between the
overflow interval and a cyclic behavior in the
application. Users may want to do two or more
runs with different overflow values.

_SPEEDSHOP_OUTPUT_NOCOMPRESS Disables the compression of performance data.

_SPEEDSHOP_OUTPUT_DIRECTORY Causes the output data files to be placed in the
specified directory rather than the current
working directory.

_SPEEDSHOP_OUTPUT_FILENAME Causes the output file to be saved under the
specified name. If
_SPEEDSHOP_OUTPUT_FILENAMEis set to
myfile , the experiment file is named
myfile. suffix (for example, myfile.m12345).

If _SPEEDSHOP_OUTPUT_DIRECTORYis also
specified, the directory is prepended to the file
name you specify.

6.3.2 Process Tracking Environment Variables

A number of environment variables may be used for controlling the treatment
of processes spawned from the original target. Table 10, page 72, lists these
variables.

007–3311–006 71

SpeedShop User’s Guide

Table 10. Process Tracking Environment Variables

Variable Description

_SPEEDSHOP_TRACE_FORK [True|False] If True, specifies that processes spawned by
calls to fork() will be monitored if they do
not call exec() . If they do call exec() and
_SPEEDSHOP_TRACE_FORK_TO_EXECis not
set to True, the data covering the time between
the fork() and exec() will be discarded. It is
True by default.

_SPEEDSHOP_TRACE_FORK_TO_EXEC [True|False] If True, specifies that a process spawned by
calls to fork() will be monitored, even if they
also call exec() . It is False by default.

_SPEEDSHOP_TRACE_EXEC [True|False] If True, specifies that a process spawned by
calls to any of the various flavors of exec()
will be monitored. It is True by default.

_SPEEDSHOP_TRACE_SPROC [True|False] If True, specifies that a process spawned by
calls to sproc() will be monitored. It is True
by default.

_SPEEDSHOP_TRACE_SYSTEM [True|False] If True, specifies that system() calls will be
monitored. It is False by default.

6.3.3 Expert-Mode Environment Variables

A number of variables may be used for debugging and finer control of the
operation of SpeedShop. Table 11, page 73, lists these variables.

72 007–3311–006

Setting Up and Running Experiments: ssrun [6]

Table 11. Expert-Mode Environment Variables

Variable Description

_SPEEDSHOP_SAMPLING_MODE Used for PC sampling and hardware counter
profiling. If set to 1, generates data for the
base executable only. If not set or set to a
value other than 1, data is generated for the
executable and all the DSOs it uses.

_SPEEDSHOP_INIT_DEFERRED_SIGsig_num If specified, initialization of the experiment is
not performed when the target process starts.
Initialization is delayed until the specified
signal is sent to the process. A handler for
the given signal is installed when the process
starts. It is the user’s responsibility to ensure
that it is not overridden by the target code.

_SPEEDSHOP_SHUTDOWN_SIGsig_num If specified, termination of the experiment is
not performed when the target process exits.
Termination happens when the specified
signal is sent to the process. A handler for
the given signal is installed when the process
starts, and it is the user’s responsibility to
ensure that it is not overridden by the target
code.

_SPEEDSHOP_EXPERIMENT_TYPE Passes the name of the experiment to the
run–time DSO. It is normally set by ssrun
but can be overwritten.

_SPEEDSHOP_MARCHING_ORDERS Passes the marching orders of the experiment
to the run–time DSO. The marching orders
are usually set by ssrun from the
experiment type, but they can be overwritten.

_SPEEDSHOP_SBRK_BUFFER_LENGTH Defines the maximum size of the internal
malloc (memory allocation) area used. This
area is completely separate from the user’s
area and has a default size of 0x100000.

007–3311–006 73

SpeedShop User’s Guide

Variable Description

_SPEEDSHOP_FILE_BUFFER_LENGTH Defines the size of the buffer used for writing
the experiment files. The default length is 8
KB. The buffer is used only for writing small
records to the file; large records are written
directly to avoid the buffering overhead.

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS Disables the normal setting of signal handlers
for all fatal and exit signals.

_SPEEDSHOP_DEBUG_NO_STACK_UNWIND Suppresses the stack unwind, as in
usertime experiments and at caliper
samples, for all experiments. The option is
used as a workaround for various unwind
bugs in libexc .

6.4 Using Marching Orders

Using marching orders is another method of specifying what experiment type
you want to run. One of the benefits of using marching orders is that it lets you
customize experiments.

Each experiment type corresponds to a marching orders specification. You can
use marching orders in either of the following ways:

• The _SPEEDSHOP_MARCHING_ORDERSenvironment variable. The following
example selects the usertime experiment:

setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu

• The -mo option on the ssrun command line. The following example selects
the pcsamp experiment:

ssrun -mo pc,2,10000,0:cu ...

• Adding marching orders to a predefined experiment by using the
_SPEEDSHOP_EXTRA_MARCHING_ORDERSenvironment variable. The
following example generates a useful resource usage graph when viewed
with the cvperf (1) command:

setenv _SPEEDSHOP_EXTRA_MARCHING_ORDERS hb

ssrun -pcsamp a.out

74 007–3311–006

Setting Up and Running Experiments: ssrun [6]

If the marching orders on the command line differ from those specified with the
environment variable, the command-line version takes precedence.

The number and meaning of the arguments for each marching order depend on
the specific marching order. The following specifies PC sampling, using 16-bit
bins, sampling every 10 ms, and sampling both the executable and all of its
DSOs:

pc,2,10000,0

The following specifies call stack sampling every 10 ms, based on process
virtual time plus system time spent on behalf of the process:

ut,10000,2

6.4.1 Defining the Base Experiment

The experiment specifier, with which a marching order begins, takes one of the
following values:

ut A time experiment that returns real time, virtual time, or user
time. The default arguments are 30000,2 . The first argument is
the interval between callstack samples in microseconds. The
second argument is the timer type used to measure the intervals;
the supported values are 0, 1, and 2, with the same meanings as
for the second argument of hb (described later). The argument
value -1 is not valid for ut .

pc A 16-bit or 32-bit PC sampling (pcsamp) experiment. The default
arguments are 2,10000,0 . The first argument is the size of the
sample count bins in bytes. The supported values are 2 (16 bits)
and 4 (32 bits). The second argument is the sampling rate in
microseconds. Supported values are 10000 (10-millisecond sample
interval) and 1000 (1-millisecond sample interval). The third
argument is the sampling mode:

0 Selects the user executable and all its dynamic
shared objects

1 Selects only the user executable (without any
dynamic shared objects)

it A 32-bit ideal experiment. Only 4-byte (32-bit) counters are
supported.

mf A memory allocation and deallocation experiment that traces calls
to malloc , realloc , free , memalign , and valloc routines.

007–3311–006 75

SpeedShop User’s Guide

There are no arguments to this marching order. The arguments to
these routines and bad calls are recorded. Bad calls include
malloc calls of 0 bytes, freeing invalid memory blocks,
reallocating invalid memory pointers, and calling memalign with
invalid arguments. (For descriptions of these routines, see the
malloc (3) man page.

fpe A floating-point exceptions (fpe) experiment. There are no
arguments. The call stack is sampled whenever a floating-point
exception occurs.

io An I/O trace experiment. There are no arguments. The start time
and end time for each of the following I/O system calls are
recorded: creat (2), open (2), read (2), write (2), close (2),
pipe (2), dup (2), readv (2), and writev (2).

mpi MPI experiment. There are no arguments. The beginning time,
ending time, return value, and arguments are recorded.

Note: The output from this experiment can only be displayed
by using the cvperf (1) user interface; it cannot be displayed
through prof .

For a list of the routines traced, see .

hwct A hardware counter call stack profiling experiment (_hwct).

hwc A hardware counter profiling experiment (_hwc).

hb Heart beat data collection. System-wide, per-process, and MPI
resource usage data is collected at regular time intervals. If the
program creates multiple processes, data is collected for each
process. If the process is using the MPI library, MPI library
statistics are also recorded.

The default arguments are 1000000,2 . The first argument is the
interval in microseconds between samples. The second argument
is the time type to use, as follows:

-1 Use alarm (2) instead of setitimer (2) to deliver
the periodic signal. In this case, the interval is
rounded to the nearest second (periods of less than
1 second are rounded up to 1 second). The interval
is in real (wall-clock) time.

0 Real (wall-clock) time.

1 Virtual time. The timer runs while the user
program is executing.

76 007–3311–006

Setting Up and Running Experiments: ssrun [6]

2 User time. The timer runs while the user program
is executing or the system is processing system calls
made by the program.

cu Caliper point usage data collection. It usually appears at the end
of a marching order, and there are no arguments. Usage data is
recorded at caliper points. As with the hb marching order, you
can collect system-wide, per-process, and MPI resource usage
data.

The hb marching order collects data based on time, and the cu marching order
is based on caliper points that you can set anywhere in your source code. For
more information on setting caliper points, see Section 6.8, page 86.

6.5 Running Experiments

This section describes how to use ssrun to perform experiments. For
information on using pixie directly, see Chapter 8, page 121.

6.5.1 ssrun Syntax

The ssrun command takes the following form:

ssrun ssrun_options - exp_type executable_name executable_args

The arguments are as follows:

ssrun_options Zero or more of the flags described in Table 12,
page 78. These options control the data collection
and the treatment of descendent processes or
programs, and they specify how the data is to be
externalized.

-exp_type The experiment type. Experiments are described
in detail in Chapter 4, page 49.

executable_name The name of the program on which you want to
run an experiment.

executable_args Arguments to your program, if any.

The ssrun command generates a performance data file that is named as
described in Section 6.2, page 69.

007–3311–006 77

SpeedShop User’s Guide

Table 12. Flags for the ssrun Command

Name Result

-hang Specifies that the process should be left waiting just before executing its
first instruction. This allows you to attach the process to a debugger.

-mo marching_orders Allows you to specify marching orders. If this option is used, the
environment variable _SSRUNTIME_MARCHING_ORDERSis not examined.

-name target_name Specifies that the target should be run with argv[0] set to target_name.

-port hostname portno Specifies that the process is to be left waiting, and notifications of status
are to be sent to the socket on the host named by hostname and the port
specified by portno. When the process is ready, a message of the form
"running pid host" will be sent to inform the requester of the PID of the
target process and the host, which may be remote. A debugger can then
attach to it and take control of its execution.

-purify Can be used only when the Purify product is installed. Specifies that
purify should be run on the target, and then runs the resulting
“purified” executable. Note that -purify and SpeedShop performance
experiments cannot be combined.

-quiet Suppresses all output other than error messages. If -quiet is specified,
the _SPEEDSHOP_SILENTenvironment variable is also set.

-v Prints a log of the operation of ssrun to stderr . The same behavior
occurs if the environment variable _SPEEDSHOP_VERBOSEis set to an
empty string.

-V Prints a detailed log of the operation of ssrun to stderr . The same
behavior occurs if the environment variable _SPEEDSHOP_VERBOSEis
set to a nonzero-length string. This option can be used to see how to set
the various environment variables, and how to invoke instrumentation
when necessary.

-workshop Specifies special instrumentation so that the experiment files can be read
by WorkShop’s cvperf analyzer.

-x display-id window-id Specifies that the process is to be left waiting and that the window of the
WorkShop debugger requesting the creation (as specified by the display-id
and window-id arguments on the command line) be informed of the PID
of the target process. A debugger can then attach to it and take control
of its execution.

78 007–3311–006

Setting Up and Running Experiments: ssrun [6]

6.5.2 ssrun Examples

This section provides examples of using ssrun with options and experiment
types. For additional examples, see Chapter 2, page 13, or Chapter 3, page 31.

6.5.2.1 Example Using the pcsampx Experiment

The pcsampx experiment collects data to estimate the actual CPU time for each
source code line, machine instruction, and function in your program. The
optional x suffix causes a 32-bit bin size to be used, allowing a larger number of
counts to be recorded. For a more detailed description of the pcsamp
experiment, see Section 4.3, page 51.

The following example performs a pcsampx experiment on the generic
executable:

ssrun -pcsampx generic

To see the performance data that has been generated, run prof on the
performance data file, generic.pcsampx.12185 , as shown in the following
example:

prof generic.pcsampx.m12185

The report is printed to stdout . (This layout of this report has been altered
slightly to accommodate presentation needs.) For more information on prof
and the reports generated by prof , see Chapter 7, page 93.

007–3311–006 79

SpeedShop User’s Guide

SpeedShop profile listing generated Mon Feb 2 15:08:14 1998
prof generic.pcsampx.m12185

generic (n32): Target program

pcsampx: Experiment name

pc,4,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs
175: Clock frequency (MHz.)

Experiment notes--

From file generic.pcsampx.m12185:

Caliper point 0 at target begin, PID 12185

/usr/demos/SpeedShop/linpack.demos/c/generic
Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsampx)--

2729: Total samples

27.290: Accumulated time (secs.)
10.0: Time per sample (msecs.)

4: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.470 93.3% 93.3% 2547 anneal (generic: generic.c,

1573)

[2] 1.100 4.0% 97.4% 110 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.310 1.1% 98.5% 31 __read (libc.so.1: read.s, 20)
[4] 0.240 0.9% 99.4% 24 cvttrap (generic: generic.c, 317)

[5] 0.150 0.5% 99.9% 15 _xstat (libc.so.1: xstat.s,

12)

[6] 0.010 0.0% 100.0% 1 __write (libc.so.1: write.s, 20)

[7] 0.010 0.0% 100.0% 1 _morecore (libc.so.1: malloc.c, 632)

27.290 100.0% 100.0% 2729 TOTAL

80 007–3311–006

Setting Up and Running Experiments: ssrun [6]

6.5.2.2 Example Displaying Data in WorkShop

To use WorkShop’s graphic user interface to display the information gathered
by ssrun , include the -workshop option on the ssrun command line, as
shown in the following example:

ssrun -workshop -pcsampx generic

The result is a file viewable through the cvperf WorkShop command:

cvperf generic.pcsampx.m44800

6.5.2.3 Example Using the -v Option

To get information about how a SpeedShop experiment is set up and
performed, you can supply the -v option to ssrun .

The following example performs another pcsampx experiment on the generic
executable:

ssrun -v -pcsampx generic

The ssrun command writes the following output to stderr . It displays
information as the command line is parsed and shows the environment
variables that ssrun sets.

fraser 75% ssrun -v -pcsampx generic

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS pc,4,10000,0:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE pcsampx

ssrun: setenv _SPEEDSHOP_TARGET_FILE generic

ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

...

The _RLD32_LIST environment variable is for new 32-bit programs.
_RLD64_LIST is used for 64-bit programs. If neither is set, the value of
_RLD_LIST is the default.

6.5.3 Using ssrun with a Debugger

To use the ssrun command in conjunction with a debugger such as dbx or the
WorkShop debugger, you need to call ssrun with the -hang option and the
name of your program.

Follow these steps to run the floating-point exceptions trace experiment on
generic , and then run generic in a debugger.

007–3311–006 81

SpeedShop User’s Guide

1. Call ssrun as follows:

ssrun -hang -fpe generic

The ssrun command parses the command line, sets up the environment
for the experiment, calls the target process using exec , and hangs the target
process on exiting from the call to exec .

2. Note the process ID returned by ssrun .

3. Start your debugging session as follows:

cvd -pid process_id_number

4. Attach the process to the debugger.

5. Run the process from the debugger.

You can also invoke ssrun from within a debugger. In this case, ssrun leaves
the target hung on exiting the call to exec and informs the debugger of that fact.

You can also use a debugger to set calipers for the purpose of recording
performance data for a part of your program. See Section 6.8, page 86, for more
information on setting calipers.

6.6 Running Experiments on MPI Programs

The Message Passing Interface (MPI) is a library specification for message
passing, proposed as a standard by a committee of vendors, implementors, and
users. It allows processes to communicate by passing data messages to other
processes, even those running on distant computers.

SpeedShop offers two types of experiments for MPI programs, the first of which
can only be displayed in cvperf (1):

MPI tracing
experiments

Traces the use of MPI send, receive, and
synchronization routines and a few other routines.
See the following section for more information.

82 007–3311–006

Setting Up and Running Experiments: ssrun [6]

Other SpeedShop
experiments

Generates other SpeedShop experiments, such as
usertime and pcsamp . For more information,
see Section 6.6.2, page 85.

Note: Before executing the ssrun command on an MPI executable, you must
set the MPI_RLD_HACK_OFFenvironment variable as follows:

% setenv MPI_RLD_HACK_OFF 1

6.6.1 Generating MPI Tracing Experiments

MPI tracing experiments tell you how many times, and at what points in the
application, various routines from the MPI library are called.

You can use either of the following versions of the ssrun command on an
executable named a.out :

% mpirun -np 4 ssrun -mpi a.out
% mpirun -np 4 ssrun -mo mpi:cu a.out

If you are running the application on four processors, you will see five output
files: one for each processor and one for the master process. The identifier
portions of the file names will start either with m for the master process or f
(forked) for a process running on one of the processors. Names such as the
following might be assigned to an executable with the name verge :

verge.mpi.m12345
verge.mpi.f12346

verge.mpi.f12347

verge.mpi.f12348

verge.mpi.f12349

The identifiers do not correspond to a processor number.

MPI output from the ssrun command can only be viewed in the WorkShop
Performance Analyzer window. You can bring that window up with the
cvperf (1) command. You can view the information in either chart or
numerical format. Charts that do not contain data are not displayed. For an
example of a portion of a numerical display, see Figure 2, page 84.

Note: The MPI tracing experiment does not track down communicators, and
it does not trace all collective operations. These limitations may also affect
the translation of some events by ssfilter (1).

007–3311–006 83

SpeedShop User’s Guide

Figure 2. MPI Numerical Format

84 007–3311–006

Setting Up and Running Experiments: ssrun [6]

The following routines are traced:

MPI_Barrier MPI_Send

MPI_Bsend MPI_Ssend

MPI_Rsend MPI_Isend

MPI_Ibsend MPI_Issend

MPI_Irsend MPI_Sendrecv

MPI_Sendrecv_replace MPI_Bcast

MPI_Recv MPI_Irecv

MPI_Wait MPI_Waitall

MPI_Waitany MPI_Waitsome

MPI_Test MPI_Testall

MPI_Testany MPI_Testsome

MPI_Request_free MPI_Cancel

MPI_Pcontrol

6.6.2 Generating Other Experiments for Programs Using MPI

If your program uses MPI, you must set up SpeedShop experiments that will be
displayed in prof a little differently. There are two ways to accomplish this.
The first method takes two steps:

1. Set up a shell script that contains the call to ssrun and the experiment you
want to run.

For example, if you have a program called testit and you want to run
the pcsampx experiment with a script named exp_script , the process
might look like the following:

#!/bin/sh

ssrun -pcsampx testit

2. Call mpirun with the script name using one of the following commands:

% mpirun -np 6 exp_script

% mpirun host1 2, host2 2 exp_script

The second method is to use one of the following:

007–3311–006 85

SpeedShop User’s Guide

% mpirun -np 6 ssrun -pcsampx testit

% mpirun host1 2, host2 2 ssrun -pcsampx testit

The master experiment file created on each MPI host might not contain
performance data from the application (depending on the MPI version) but
from a master program that spawns the members of an application group. You
can choose to exclude that file from performance analysis.

When using ssrun -ideal or ssrun -purify , you should take care that the
code for each separate host executes out of a different physical directory, not
out of the same directory mounted by the network file system (NFS). During
process creation, instrumentation is performed, and since different hosts may
have different versions of the same named library (libc.so.1 , for example),
conflicts may occur. You may also need to use the -d option with mpirun to
specify the directory on each host.

6.7 Running Experiments on Programs Using Pthreads

Pthreads is the multithreading model defined by the POSIX operating system
standard (IEEE1003.1c-1995). This standard contains a set of interfaces and
semantics for creating and managing threads within the POSIX operating
system definition. The basic Silicon Graphics pthreads implementation consists
of a library and a header file.

Applications using pthreads are specifically identified by SpeedShop.
Performance data collection is done on a per-program basis, rather than on a
per-pthread basis. Under IRIX 6.2, 6.3, and 6.4, SpeedShop creates as many
experiment files as the number of sproc (2) system calls used by the pthreads
library to create and manage the pthreads. In addition, cm_usage data is not
supported, and SIGTERMis reserved to be used to terminate the application
normally. You should analyze all the experiment files together via prof to get a
valid profile for the code. Under IRIX 6.5, SpeedShop creates only one
experiment file. For usertime and fpe experiments, however, you can specify
the -pthreads option with prof to get per-pthread performance reports.

6.8 Using Calipers

In some cases, you may want to generate performance data reports for only a
part of your program. You can do this by selecting caliper points to identify the
area of your program or the time interval during execution for which you want
to see performance data. When you run prof , you can specify a region for
which to generate a report by supplying the -calipers option and the

86 007–3311–006

Setting Up and Running Experiments: ssrun [6]

appropriate caliper numbers. For more information on prof -calipers , see
Section 7.3.3, page 113.

Table 13, page 87, shows the different ways you can set caliper points.

Table 13. Setting Caliper Points

Use This Approach... For These Benefits...

Explicitly link with the SpeedShop run-time and call
ssrt_caliper_point to set a caliper sample.

Lets you set a caliper point at a specific
location in the source program.

Set pollpoint caliper points at specified time intervals during
program execution using the
_SPEEDSHOP_POLLPOINT_CALIPER_POINTenvironment
variable.

Lets you set caliper points at time
intervals rather than at places in the
code.

Define a signal to be used to set a caliper sample by specifying
a signal as a value to the environment variable
_SPEEDSHOP_CALIPER_POINT_SIGand then sending the
target the given signal.

Useful if you want to be able to set a
caliper point as your program is
running.

Set a caliper sample trap in dbx or the WorkShop debugger.
Setting a trap involves setting a breakpoint and evaluating the
expression libss_caliper_point(1) when the process
stops.

Useful if you are working with a
debugger in conjunction with
SpeedShop.

An implicit caliper point is always present at the start of execution of the
process. A final caliper point is set when the process calls _exit . The implicit
caliper point at the beginning of the program is numbered 0, the first caliper
point recorded is numbered 1, and any additional caliper points are numbered
sequentially.

In addition, caliper points are automatically set under the following
circumstances to ensure that at least one valid set of data is recorded.

• When a fatal signal is received, such as SIGQUIT , SIGILL , SIGTRAP,
SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, or
SIGXFSZ. Note that this list does not and cannot include SIGKILL .

• When the program calls an exec function, such as execve() or execvp() .

007–3311–006 87

SpeedShop User’s Guide

• When an exit signal is received, such as SIGHUP, SIGINT , SIGPIPE ,
SIGALRM, SIGTERM, SIGUSR1, SIGUSR2, SIGPOLL, SIGIO , SIGRTMIN, or
SIGRTMAX.

6.8.1 Setting Calipers with ssrt_caliper_point

To set caliper points with ssrt_caliper_point (3), follow these steps:

1. Insert calls to ssrt_caliper_point in your source code. Call the
function with the argument 1 (meaning, True) and a string to help identify
the caliper point in the experiment file later on.

...

ssrt_caliper_point(1,"bgn_calc");

...

You can insert one or more calls at any point in your code.

2. Link the SpeedShop library libss.so into your application.

The library should be placed last on the link line.

3. Run your program with ssrun and the desired experiment type.

For example, if you want to run the ideal experiment on generic :

ssrun -ideal generic

The caliper points you have set in the source file are recorded in the
performance data file that is generated by ssrun .

6.8.2 Setting Time-Oriented Calipers

To add caliper points at a regular time interval into your experiment file, set the
_SPEEDSHOP_POLLPOINT_CALIPER_POINTenvironment variable before you
generate an experiment. It takes the following form:

_SPEEDSHOP_POLLPOINT_CALIPER_POINTtimer_type, timer_interval

timer_type One of the following:

0 Real time. This is the total time a
program spent while executing. It
includes both time spent when a
program is swapped out waiting for
a CPU and the time the operating

88 007–3311–006

Setting Up and Running Experiments: ssrun [6]

system is in control, performing
some task for the program such as
I/O or executing a system call.

1 Process virtual time. This is the
time spent when the program is
actually running. This does not
include either the time spent when
a program is swapped out waiting
for a CPU or the time the operating
system is in control, performing
some task for the program such as
I/O or executing another system
call.

2 CPU time. This is process virtual
time plus the time the system is
running on behalf of the process.
The system time could include
performing I/O or executing other
system calls.

timer_interval The interval, in seconds, at which a new caliper will be set.

The caliper points you have set with the
_SPEEDSHOP_POLLPOINT_CALIPER_POINTenvironment variable are
recorded in the performance data file that is generated by ssrun .

6.8.3 Setting Calipers with Signals

To set calipers with signals, follow these steps:

1. Set the _SPEEDSHOP_CALIPER_POINT_SIGvariable to the signal number
you want to use.

Choose a signal that does not terminate the program. The signal should
also not be caught by the target program; doing so would interfere with its
triggering a caliper point.

The following signals are good choices because they do not have
system-defined semantics already associated with them:

SIGUSR1 16 /* user defined signal 1 */

SIGUSR2 17 /* user defined signal 2 */

2. Run ssrun with your program.

007–3311–006 89

SpeedShop User’s Guide

3. Enter a command such as ps or top to determine the process ID of ssrun .
This is also the process ID of the program you are working on.

4. Send the signal you used in step 1 to the process using the kill command:

kill - sig_num pid

A caliper point is set at the point in the program where the signal was
received by the SpeedShop run time.

6.8.4 Setting Calipers with a Debugger

From either dbx or the WorkShop debugger, you can set a caliper point
anywhere it is possible to set a breakpoint: at a function entry or exit, a line
number, an execution address, a watchpoint, or a pollpoint (timer-based). You
can also attach conditions and or cycle counts.

Use the following procedure:

1. Set a breakpoint in your program where you want a caliper point.

2. When the process stops, evaluate the expression ssrt_caliper_point (3).
The evaluation of the expression always returns zero, but a side effect of the
evaluation is the recording of the appropriate data.

3. Resume execution of the process.

6.9 Effects of ssrun

When you call ssrun , the system performs the following operations for all
experiments:

• Sets various environment variables like _SPEEDSHOP_MARCHING_ORDERS
and _SPEEDSHOP_EXPERIMENT_TYPE.

For more information on these environment variables, see Section 6.3, page
70.

• Inserts the SpeedShop libraries libss.so and libssrt.so as part of your
executable using the environment variable _RLD_LIST .

• Invokes the target process by calling exec() .

• The SpeedShop run-time library writes the appropriate experiment data to
the output file.

90 007–3311–006

Setting Up and Running Experiments: ssrun [6]

6.9.1 Effects of ssrun -ideal

When you run an ideal experiment, the following additional operations occur:

• libpixrt.so is inserted first in the executable’s library list.

• libssrt.so and libss.so are inserted in the executable’s library list.

• ssrun runs pixie (1) on all the libraries that the program uses, as well as
on the executable.

The generated pixified versions have an extension that depends on the ABI:

– .pixie for the executable

– .pix32 for all o32 libraries

– .pixn32 for all n32 libraries

– .pix64 for all 64-bit libraries

The generated files are written either to the current working directory or, if
set, to the directory specified by the _SPEEDSHOP_OUTPUT_DIRECTORY
environment variable. They include code that allows performance data to be
collected for each function and basic block.

For more information on the ideal experiment, see Section 4.4, page 52.

007–3311–006 91

Analyzing Experiment Results: prof [7]

This chapter provides information on how to view and analyze experiment
results. It consists of the following sections:

• Using prof to Generate Performance Reports, see Section 7.1, page 93.

• Using prof with ssrun , see Section 7.2, page 98.

• Using prof Options, see Section 7.3, page 106.

• Generating Reports for Different Machine Types, see Section 7.4, page 118.

• Generating Reports for Multiprocessed Executables, see Section 7.5, page 119.

• Generating Compiler Feedback Files, see Section 7.6, page 119.

7.1 Using prof to Generate Performance Reports

Performance data is examined using prof , a text-based report generator that
prints to stdout .

To generate a report from performance data gathered during experiments
recorded by ssrun (1) or pixie (1):

prof [options] executable_name [speedshop_data_file] | [pixie_counts_file]

7.1.1 prof Arguments

The arguments for prof when used with data files from ssrun or pixie are
as follows:

options Zero or more of the options described in Table 14,
page 94.

executable_name The name of the executable file created by the
compiler.

speedshop_data_file One or more names of performance data files
generated by ssrun .

007–3311–006 93

SpeedShop User’s Guide

pixie_counts_file One or more names of data files generated by
pixie with .Counts suffixes.

7.1.2 prof Options

Table 14, page 94, lists prof options. For more information, see the prof (1)
man page.

Table 14. Options for prof

Name Result

-archinfo

Reports the number of times each register was used as a destination, base
(integer registers only) or source, how many times each instruction opcode
was used, and some detailed statistics concerning branches jumps, and
how many delay slots were filled with no-op instructions. Works only with
ideal experiments.

-basicblocks
Prints a list of all the basic blocks executed, ordered by the number of
cycles spent in each basic block. Works only with ideal experiments.

-b[utterfly] Causes prof to print a report showing the callers and callees of each
function, with inclusive time attributed to each. For ideal experiments,
the attribution is based on a heuristic. For the various callstack sampling
and tracing experiments, the attribution is precise, although usertime ,
totaltime , and some _hwctime experiments are statistical in nature.
This option is ignored for experiments in which the data does not support
inclusive calculations. It delivers the same display as -gprof .

-calipers [n1] n2 Restricts analysis to a segment of program execution. This option works
only for SpeedShop experiments.

Causes prof to compute the data between caliper points n1 and n2, rather
than for the entire experiment.
If n1 >= n2, an error is reported.

If n1 is negative, it is set to the beginning of the experiment.

If n2 is greater than the maximum number of caliper points recorded, it is
set to the maximum.

If n1 is omitted, zero (the beginning of the program) is assumed.

94 007–3311–006

Analyzing Experiment Results: prof [7]

Name Result

-calls Sorts the function list by the number of procedure calls rather than by
time. This option can only be used when generating reports for ideal
experiments or for basic block counting data obtained with pixie .

-c [lock] [n] Sets the CPU clock speed to (n), expressed in megahertz. This option is
useful when generating reports for ideal experiments or for basic block
counting data obtained with pixie . The default is the clock speed of the
machine on which the performance data was collected.

-[no]cordfb Disables or enables cord feedback file generation for the executable only.
Cord feedback is used to arrange procedures in the binary in an optimal
ordering. This improves both paging and instruction cache performance.
Users can use cord (1) or ld (1) to actually do the procedure ordering. For
more information on how to reorder code regions, see the MIPSpro
Compiling and Performance Tuning Guide.

-cordfball Enables cord feedback for the executable and all DSOs.

-cycle n Sets the cycle time to n nanoseconds.

-debug : dbg_flags Sets dbg_flags to combinations of the following:

GPROF_FLAG 0x00000001

COUNTS_FLAG 0x00000002

SAMPLE_FLAG 0x00000004

MISS_FLAG 0x00000008
FEEDBACK_FLAG 0x00000010

CORD_FLAG 0x00000020

USERPC_FLAG 0x00000040

MDEBUG_FLAG 0x00000080

BEAD_FLAG 0x00000100

LIBSSRT_FLAG 0x00000200

-dis[assemble] Disassembles and annotates the analyzed object code with cycle times if
you have run an ideal experiment, collected data using pixie , or have
run a pcsamp or prof_hwc experiment.

-dislimit n Disassembles only those basic blocks with a frequency >= n.

-dso [dso_name] Generates a report only for the named DSO. If you do not specify a value
for dso_name, prof prints a list of applicable DSO names. Only the base
name, not the full path name, of the DSO needs to be specified.

-dsolist List all the DSOs in the program and their start and end text addresses.

007–3311–006 95

SpeedShop User’s Guide

Name Result

-e [xclude] procs Excludes information on the specified procedures. If you specify uppercase
-E , prof also omits the specified procedures from the base upon which it
calculates percentages.

-feedback Produces files with information that can be used to (a) arrange procedures
in the binary in an optimal ordering using cord , and (b) tell the compiler
how to optimize compilation of the program using cc -fb
filename.cfb . This option can be used when generating reports for
ideal experiments or for basic block counting data obtained with pixie .

cord feedback files are named program.fb or libso.fb. Compiler feedback
files are named program.cfb or libso.cfb. These are binary files and may be
dumped using the fbdump command.

Procedures are normally ordered by their measured invocation counts; if
-gprof is also specified, procedures are ordered using call graph counts,
rather than invocation counts.

-h [eavy] Lists the most heavily used lines of source code in descending order of use,
sorting lines by their frequency of use. This option can be used when
generating reports for ideal , pcsamp , or prof_hwc experiments or for
basic block counting data obtained with pixie .

-inclusive Sorts function list by inclusive data rather than by exclusive data. This
option can only be used when generating reports for those experiments
that have inclusive data; it is ignored for others.

-l [ines] Lists the most heavily used lines of source code in descending order of use,
but lists lines grouped by procedure, sorted by cycles executed per
procedure. This option can be used when generating reports for ideal ,
pcsamp , or prof_hwc experiments, or for basic block counting data
obtained with pixie .

-nh Supresses various header blocks from the output.

-o [nly] procs Reports information on only the procedures specified.
If you specify uppercase -O , prof uses only the procedures, rather than
the entire program, as the base upon which it calculates percentages.

-pthreads pthread id Analyzes data only for the specified pthread identifier (for usertime and
fpe experiments on applications that use pthreads on IRIX 6.5 or later
systems).

-q [uit] n Condenses output listings by truncating -p[rocedures] , -h[eavy] ,
-l[ines] , and -gprof listings. You can specify n in three ways:

n, an integer, truncates everything after n lines;

96 007–3311–006

Analyzing Experiment Results: prof [7]

Name Result

n%, an integer followed by a percent sign, does not print any procedure or
line with less than n in the % column;

ncum%, an integer followed by cum%, does not print any procedure or line
with more than n in the cum%column. That is, it truncates the listing after
the last procedure or line which brings the cumulative total to n%. If
-gprof is also specified, it behaves the same as -q n%.

For example, -q 15 truncates each part of the report after 15 lines of text.
-q 15% truncates each part of the report that represents less than 15% of
the whole, and -q 15cum% truncates each part of the report that has a
cumulative percentage above 15%.

-rel[ative] Shows percentage attribution in a butterfly report relative to the central
function. The default is to show percentages as absolute percentages over
the whole run.

-r12000|-r10000|-
r8000
|-r5000|-r4000
|-r3000

Overrides the default processor scheduling model that prof uses to
generate a report. If this option is not specified, prof uses the scheduling
model for the processor on which the experiment is being run.

-showss Enables the display of functions from the SpeedShop run–time DSO.
Usually those functions are suppressed from the reports and computations.
In addition, some statistics for the prof command’s own memory usage
will be printed.

-S (-source) Disassembles and annotates the analyzed object code with cycle times, or
PC samples, and source code, if you have run an ideal , pcsamp , or
prof_hwc experiment, or collected data using pixie .

-u[sage] Prints a report on system statistics and timers.

-ws Generates, for the executable only, a working-set file for the current caliper
setting.

-wsall Generates, for the executable and all the non-ignored DSOs, a working-set
file for the current caliper setting.

-xdso dso_name Excludes the named DSO from any reports. Only the base name, not the
full path name, of the DSO need be specified; the .so suffix is required.
Multiple instances of the -xdso flag can be specified.

007–3311–006 97

SpeedShop User’s Guide

7.1.3 prof Output

The prof command generates a performance report that is printed to stdout .
Warning and fatal errors are printed to stderr .

Note: Fortran alternate entry point times are attributed to the main function
or subroutine, since there is no general way for prof to separate the times
for the alternate entries.

7.2 Using prof with ssrun

When you call prof with one or more SpeedShop performance data files, it
collects the data from all the output files and produces a listing. The prof
command is able to detect which experiment was run and generate an
appropriate report. It provides reports for all experiment types.

In cases where prof accepts more than one data file as input, it sums up the
results. The multiple input data files must be generated from the same
executable, using the same experiment type.

The prof command may report times for procedures named with a prefix of
DF, for example *DF*_hello.init_2 . DF stands for Dummy Function and
indicates cycles spent in parts of text which are not in any function: init ,
fini , and MIPS.stubs sections, for example.

The most frequently used reports that prof generates are described in the
following sections:

• usertime Experiment Reports, see Section 7.2.1, page 98.

• pcsamp Experiment Reports, see Section 7.2.2, page 100.

• Hardware Counter Experiment Reports, see Section 7.2.3, page 101.

• ideal Experiment Reports, see Section 7.2.4, page 102.

• fpe Trace Reports, see Section 7.2.5, page 105.

7.2.1 usertime Experiment Reports

For usertime experiments, prof generates CPU times for individual routines
and shows how those times compare with the rest of the program. The column
heading are as follows:

• The index column provides an index number for reference.

98 007–3311–006

Analyzing Experiment Results: prof [7]

• The excl.secs column shows how much time, in seconds, was spent in
the function itself (exclusive time). For example, less than one hundredth of
a second was spent in __start() , but 0.03 of a second was spent in fread .

• The excl.% column shows the percentage of a program’s total time that
was spent in the function.

• The cum.% column shows the percentage of the complete program time that
has been spent in the functions that have been listed so far.

• The incl.secs column shows how much time, in seconds, was spent in
the function and descendents of the function.

• The incl.% column shows the cumulative percentage of inclusive time
spent in each function and its descendents.

• The samples column provides the number of samples of the function and
all of its descendants.

• The procedure (dso:file,line) columns list the function name, its
DSO name, its file name, and its line number

The following example is an abbreviated version of the full report. For a
complete report, see Section 2.3.1.2, page 17.

SpeedShop profile listing generated Mon Feb 2 11:07:15 1998

prof generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name
ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--
From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--
809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

007–3311–006 99

SpeedShop User’s Guide

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure

(dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

(generic: generic.c, 1573)

7.2.2 pcsamp Experiment Reports

For [f]pcsamp[x] experiments, prof generates a function list annotated with
the number of samples taken for the function and the estimated time spent in
the function. The column headings are as follows:

• The secs column shows the amount of CPU time that was spent in the
function.

• The %column shows the percentage of the total program time that was
spent in the function.

• The cum.% column shows the percentage of the complete program time that
has been spent in the functions that have been listed so far.

• The samples column shows how many samples were taken when the
process was executing in the function.

• The function (dso:file, line) columns list the function, its DSO
name, its file name, and its line number.

The following is output from an fpcsamp experiment:

SpeedShop profile listing generated Mon Feb 2 11:01:36 1998

prof generic.fpcsamp.m11140
generic (n32): Target program

fpcsamp: Experiment name

pc,2,1000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)
Experiment notes--

From file generic.fpcsamp.m11140:

Caliper point 0 at target begin, PID 11140

/usr/demos/SpeedShop/linpack.demos/c/generic

100 007–3311–006

Analyzing Experiment Results: prof [7]

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--

23828: Total samples

23.828: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 22.279 93.5% 93.5% 22279 anneal (generic: generic.c,1573)

7.2.3 Hardware Counter Experiment Reports

For the various hwc experiments, prof generates a function list annotated with
the number of overflows of hardware counters generated by the function. The
column headings are as follows:

• The counts column shows the extrapolated event count based on the
number of samples and the overflow value for the particular counter.

• The %column shows the percentage of the program’s overflows that
occurred in the function.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the functions that have been listed so far.

• The samples column shows the number of times the program counter was
sampled during execution of the function.

• The function (dso: file, line) columns show the name, the DSO,
the file name, and line number of the function.

The following is output from a dsc_hwc hardware counter experiment:

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

007–3311–006 101

SpeedShop User’s Guide

195: Clock frequency (MHz.)

Experiment notes--

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

7.2.4 ideal Experiment Reports

For ideal experiments, prof generates a function list annotated with the
number of cycles and instructions attributed to the function and the estimated
time spent in the function.

The prof command does not take into account interactions between basic
blocks. Within a single basic block, prof computes cycles for one execution and
multiplies it with the number of times that basic block is executed.

If any of the object files linked into the application have been stripped of line
number information (with ld -x , for example), prof warns about the affected
procedures. The instruction counts for such procedures are shown as a
procedure total, not on a per-basic-block basis. Where a line number would
normally appear in a report on a function without line numbers, question
marks appear instead. The column headings are as follows:

• The excl.secs column shows the minimum number of seconds that might
be spent in the function under ideal conditions.

102 007–3311–006

Analyzing Experiment Results: prof [7]

• The excl.% column represents how much of the program’s total time was
spent in the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions that have been listed so far.

• The cycles column reports the number of machine cycles used by the
function.

• The instructions column shows the number of instructions executed by
a function.

• The calls column reports the number of calls to the function.

• The procedure (dso: file, line) column lists the procedure, its
DSO name, its file name, and the line number.

The following is output from an ideal experiment:

SpeedShop profile listing generated Mon Feb 2 13:23:25 1998

prof generic.ideal.m10966

generic (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.ideal.m10966:

Caliper point 0 at target begin, PID 10966

/usr/demos/SpeedShop/linpack.demos/c/generic.pixie

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

2062563179: Total number of instructions executed

3929944273: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions

calls function (dso: file, line)

007–3311–006 103

SpeedShop User’s Guide

[1] 21.453 95.5% 95.5% 3754320037 1971220024

1 anneal (generic: generic.c, 1573)

If the -butterfly flag is added to prof , a list of callers and callees of each
function is provided:

Butterfly function list, in descending order by inclusive ideal time

attrib.% attrib.time incl.time caller [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time incl.time callee [index]

[1] 100.0% 22.456 0.0% 0.000 __start [1]

100.0% 22.456 22.456 main [2]

0.0% 0.000 0.000 __readenv_sigfpe [131]

0.0% 0.000 0.000 __istart [132]

100.0% 22.456 22.456 __start [1]

[2] 100.0% 22.456 0.0% 0.000 main [2]

100.0% 22.456 22.456 Scriptstring [3]

100.0% 22.456 22.456 main [2]

[3] 100.0% 22.456 0.0% 0.000 Scriptstring [3]

95.5% 21.454 21.454 usrtime [4]

3.7% 0.829 0.829 libdso [6]

0.8% 0.172 0.172 cvttrap [9]

0.0% 0.001 0.001 iofile [11]

0.0% 0.000 0.000 dirstat [23]

0.0% 0.000 0.001 genLog [12]

0.0% 0.000 0.000 linklist [26]

0.0% 0.000 0.000 fpetraps [27]

0.0% 0.000 0.000 fprintf [21]

0.0% 0.000 0.000 sprintf [17]

0.0% 0.000 0.000 strcmp [60]

95.5% 21.454 22.456 Scriptstring [3]

[4] 95.5% 21.454 0.0% 0.000 usrtime [4]

95.5% 21.454 21.454 anneal [5]

0.0% 0.000 0.001 genLog [12]

0.0% 0.000 0.000 fprintf [21]

--

104 007–3311–006

Analyzing Experiment Results: prof [7]

7.2.5 fpe Trace Reports

The fpe trace report shows information for each function. The function name is
shown in the right column of the report. The remaining columns are described
below.

• The excl.FPEs column shows how many floating point exceptions were
found in the function.

• The excl.% column shows the percentage of the total number of
floating-point exceptions that were found in the function.

• The cum.% column shows the percentage of floating-point exceptions in the
program that have been encountered so far in the list.

• The incl.FPEs column shows how many floating-point exceptions were
attributed to the function and all of the functions it called.

• The incl.% column provides information on the percentage of the
program’s total number of floating-point exceptions.

SpeedShop profile listing generated Mon Feb 2 13:26:33 1998

prof generic.fpe.m12213

generic (n32): Target program

fpe: Experiment name

fpe:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.fpe.m12213:

Caliper point 0 at target begin, PID 12213

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.% cum.% incl.FPEs incl.% function (dso:file)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 405)

007–3311–006 105

SpeedShop User’s Guide

7.3 Using prof Options

This section shows the output from calling prof with some of the options
available for prof .

7.3.1 Using the -dis Option

For pcsamp and ideal experiments, the -dis option to prof can be used to
obtain machine instruction information. prof provides the standard report and
then appends the machine instruction information to the end of the report. The
following example shows partial output from prof for a pcsamp experiment.

SpeedShop profile listing generated Tue Feb 3 10:48:59 1998
prof -dis generic.pcsamp.m14493

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU
1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.pcsamp.m14493:

Caliper point 0 at target begin, PID 14493

/usr/demos/SpeedShop/c/generic
Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

2707: Total samples

27.070: Accumulated time (secs.)
10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.240 93.2% 93.2% 2524 anneal (generic: generic.c, 1573)

[2] 1.090 4.0% 97.3% 109 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.390 1.4% 98.7% 39 __read (libc.so.1: read.s, 20)

[4] 0.230 0.8% 99.6% 23 cvttrap (generic: generic.c, 317)

[5] 0.090 0.3% 99.9% 9 _xstat (libc.so.1: xstat.s, 12)
[6] 0.010 0.0% 99.9% 1 __write (libc.so.1: write.s, 20)

[7] 0.010 0.0% 100.0% 1 _ngetdents (libc.so.1: ngetdents.s, 16)

106 007–3311–006

Analyzing Experiment Results: prof [7]

[8] 0.010 0.0% 100.0% 1 _doprnt (libc.so.1: doprnt.c, 285)

27.070 100.0% 100.0% 2707 TOTAL

Disassembly listing, annotated with PC sampling overflows

.

.

.

/usr/demos/SpeedShop/linpack.demos/c/generic.c

anneal: <0x10006830-0x10006b3c> 2524 total samples(93.24%)

[1573] 0x10006830 0x27bdffd0 addiu sp,sp,-48 # 1
[1573] 0x10006834 0xffbc0020 sd gp,32(sp) # 2

[1573] 0x10006838 0xffbf0018 sd ra,24(sp) # 3

[1573] 0x1000683c 0x3c030002 lui v1,0x2 # 4

[1573] 0x10006840 0x246397e8 addiu v1,v1,-26648 # 5

[1573] 0x10006844 0x0323e021 addu gp,t9,v1 # 6
[1575] 0x10006848 0xd7808370 ldc1 $f0,-31888(gp) # 7

<2 cycle stall for following instruction>

[1575] 0x1000684c 0xf7a00000 sdc1 $f0,0(sp) # 10

[1577] 0x10006850 0x24010001 li at,1 # 11

[1577] 0x10006854 0x8f82816c lw v0,-32404(gp) # 12

<2 cycle stall for following instruction>
[1577] 0x10006858 0xac410000 sw at,0(v0) # 15

[1578] 0x1000685c 0x8f998148 lw t9,-32440(gp) # 16

[1578] 0x10006860 0x0c00171b jal 0x10005c6c # 17

[1578] 0x10006864 0000000000 nop # 18

<2 cycle stall for following instruction>
[1586] 0x10006868 0xafa00008 sw zero,8(sp) # 21

[1586] 0x1000686c 0x8fa40008 lw a0,8(sp) # 22

<2 cycle stall for following instruction>

[1586] 0x10006870 0x28842710 slti a0,a0,10000 # 25

[1586] 0x10006874 0x108000ac beq a0,zero,0x10006b28 # 26
[1586] 0x10006878 0000000000 nop # 27

<2 cycle stall for following instruction>

[1588] 0x1000687c 0x24070001 li a3,1 # 30

[1588] 0x10006880 0xafa7000c sw a3,12(sp) # 31

[1588] 0x10006884 0x8f868164 lw a2,-32412(gp) # 32

<2 cycle stall for following instruction>
[1588] 0x10006888 0x8cc60000 lw a2,0(a2) # 35

<2 cycle stall for following instruction>

[1588] 0x1000688c 0x24c6ffff addiu a2,a2,-1 # 38

007–3311–006 107

SpeedShop User’s Guide

[1588] 0x10006890 0x8fa5000c lw a1,12(sp) # 39

<2 cycle stall for following instruction>
[1588] 0x10006894 0x00a6282a slt a1,a1,a2 # 42

[1588] 0x10006898 0x10a0009c beq a1,zero,0x10006b0c # 43

[1588] 0x1000689c 0000000000 nop # 44

<2 cycle stall for following instruction>

[1589] 0x100068a0 0x240a0001 li t2,1 # 47

^------ 1 samples(0.04%)------^
[1589] 0x100068a4 0xafaa0010 sw t2,16(sp) # 48

^------ 1 samples(0.04%)------^

[1589] 0x100068a8 0x8f898164 lw t1,-32412(gp) # 49

<2 cycle stall for following instruction>

[1589] 0x100068ac 0x8d290000 lw t1,0(t1) # 52
<2 cycle stall for following instruction>

[1589] 0x100068b0 0x2529ffff addiu t1,t1,-1 # 55

[1589] 0x100068b4 0x8fa80010 lw t0,16(sp) # 56

<2 cycle stall for following instruction>

[1589] 0x100068b8 0x0109402a slt t0,t0,t1 # 59
[1589] 0x100068bc 0x11000089 beq t0,zero,0x10006ae4 # 60

[1589] 0x100068c0 0000000000 nop # 61

<2 cycle stall for following instruction>

[1590] 0x100068c4 0x8faf000c lw t7,12(sp) # 64

^------ 27 samples(1.00%)------^

<2 cycle stall for following instruction>
[1590] 0x100068c8 0x25ef0001 addiu t7,t7,1 # 67

^------ 7 samples(0.26%)------^

[1590] 0x100068cc 0x000f7080 sll t6,t7,2 # 68

^------ 30 samples(1.11%)------^

[1590] 0x100068d0 0x01cf7021 addu t6,t6,t7 # 69
^------ 8 samples(0.30%)------^

[1590] 0x100068d4 0x000e70c0 sll t6,t6,3 # 70

^------ 5 samples(0.18%)------^

[1590] 0x100068d8 0x8faf0010 lw t7,16(sp) # 71

^------ 8 samples(0.30%)------^
<2 cycle stall for following instruction>

[1590] 0x100068dc 0x01cf7021 addu t6,t6,t7 # 74

^------ 9 samples(0.33%)------^

[1590] 0x100068e0 0x000e70c0 sll t6,t6,3 # 75

^------ 27 samples(1.00%)------^

[1590] 0x100068e4 0x8f8f817c lw t7,-32388(gp) # 76
^------ 14 samples(0.52%)------^

<2 cycle stall for following instruction>

[1590] 0x100068e8 0x01cf7021 addu t6,t6,t7 # 79

108 007–3311–006

Analyzing Experiment Results: prof [7]

^------ 9 samples(0.33%)------^

[1590] 0x100068ec 0x25ce0008 addiu t6,t6,8 # 80
^------ 28 samples(1.03%)------^

[1590] 0x100068f0 0xd5c10000 ldc1 $f1,0(t6) # 81

^------ 7 samples(0.26%)------^

[1590] 0x100068f4 0x8fad000c lw t5,12(sp) # 82

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>
[1590] 0x100068f8 0x25ad0001 addiu t5,t5,1 # 85

^------ 21 samples(0.78%)------^

[1590] 0x100068fc 0x000d6080 sll t4,t5,2 # 86

^------ 19 samples(0.70%)------^

[1590] 0x10006900 0x018d6021 addu t4,t4,t5 # 87
^------ 9 samples(0.33%)------^

[1590] 0x10006904 0x000c60c0 sll t4,t4,3 # 88

^------ 14 samples(0.52%)------^

[1590] 0x10006908 0x8fad0010 lw t5,16(sp) # 89

^------ 8 samples(0.30%)------^
<2 cycle stall for following instruction>

[1590] 0x1000690c 0x018d6021 addu t4,t4,t5 # 92

^------ 8 samples(0.30%)------^

[1590] 0x10006910 0x000c60c0 sll t4,t4,3 # 93

^------ 30 samples(1.11%)------^

[1590] 0x10006914 0x8f8d817c lw t5,-32388(gp) # 94
^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006918 0x018d6021 addu t4,t4,t5 # 97

^------ 8 samples(0.30%)------^

[1590] 0x1000691c 0xd5820000 ldc1 $f2,0(t4) # 98
^------ 28 samples(1.03%)------^

[1590] 0x10006920 0x8fab000c lw t3,12(sp) # 99

^------ 9 samples(0.33%)------^

<2 cycle stall for following instruction>

[1590] 0x10006924 0x256b0001 addiu t3,t3,1 # 102
^------ 11 samples(0.41%)------^

[1590] 0x10006928 0x000b5080 sll t2,t3,2 # 103

^------ 25 samples(0.92%)------^

[1590] 0x1000692c 0x014b5021 addu t2,t2,t3 # 104

^------ 11 samples(0.41%)------^

[1590] 0x10006930 0x000a50c0 sll t2,t2,3 # 105
^------ 8 samples(0.30%)------^

[1590] 0x10006934 0x8fab0010 lw t3,16(sp) # 106

^------ 11 samples(0.41%)------^

007–3311–006 109

SpeedShop User’s Guide

<2 cycle stall for following instruction>

[1590] 0x10006938 0x014b5021 addu t2,t2,t3 # 109
^------ 7 samples(0.26%)------^

[1590] 0x1000693c 0x000a50c0 sll t2,t2,3 # 110

^------ 26 samples(0.96%)------^

[1590] 0x10006940 0x8f8b817c lw t3,-32388(gp) # 111

^------ 13 samples(0.48%)------^

<2 cycle stall for following instruction>
[1590] 0x10006944 0x014b5021 addu t2,t2,t3 # 114

^------ 9 samples(0.33%)------^

[1590] 0x10006948 0x254afff8 addiu t2,t2,-8 # 115

^------ 26 samples(0.96%)------^

[1590] 0x1000694c 0xd5430000 ldc1 $f3,0(t2) # 116
^------ 11 samples(0.41%)------^

[1590] 0x10006950 0x8fa9000c lw t1,12(sp) # 117

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006954 0x00094080 sll t0,t1,2 # 120
^------ 11 samples(0.41%)------^

.

.

.

The listing shows statistics about the procedure anneal() in the file
generic.c and lists the beginning and ending addresses of anneal() :
<0x100065b8-0x100068c4>. The five columns display the following information:

Column Displays

1 Line number of the instruction: [1573].

2 Beginning address of the instruction: 0x10006830.

3 Instruction in hexadecimal: 0x27bdffd0.

4 Assembler form (mnemonic) of the instruction: addiu sp,sp,-48.

5 Cycle in which the instruction executed: # 1.

Other information includes:

• The number of times the immediately preceding branch was executed and
taken (ideal only).

• The total number of cycles in a basic block and the percentage of the total
cycles for that basic block, the number of times the branch terminating that

110 007–3311–006

Analyzing Experiment Results: prof [7]

basic block was executed, and the number of cycles for one execution of that
basic block (ideal only).

• The total number of samples at an instruction (pcsamp only).

• Any cycle stalls, that is, cycles that were wasted.

7.3.2 Using the -S Option

For ideal experiments, the -S option to prof can be used to obtain source
line information. prof provides the standard report and then appends the
source line information to the end of the report.

This example shows output from calling prof for an ideal experiment:

SpeedShop profile listing generated Tue Feb 3 13:49:07 1998

prof -S generic.ideal.m15682
generic (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)
Experiment notes--

From file generic.ideal.m15682:

Caliper point 0 at target begin, PID 15682

/usr/demos/SpeedShop/c/generic.pixie

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

2062563562: Total number of instructions executed

3929944935: Total computed cycles

22.457: Total computed execution time (secs.)
1.905: Average cycles / instruction

.

.

.

disassembly listing

*DF*_generic.MIPS.stubs_1

*DF*_dlslave.text_2@0x5ffe40e0-0x5ffe4ec8: <0x10001ad8-0x10001ec4>

007–3311–006 111

SpeedShop User’s Guide

7 total cycles(0.00%) invoked 0 times, average ? cycles/invocation

[1] 0x10001ad8 0x0006000d break 0x6 # 1
^--- 0 total cycles(0.00%) executed 0 times, average 1 cycles.---^

[1] 0x10001adc 0x8f998010 lw t9,-32752(gp) # 1

[1] 0x10001ae0 0x03e07825 move t7,ra # 2

<1 cycle stall for following instruction>

[1] 0x10001ae4 0x0320f809 jalr ra,t9 # 4

[1] 0x10001ae8 0x3418003a ori t8,zero,0x3a # 5
<2 cycle stall for following instruction>

^--- 7 total cycles(0.00%) executed 1 times, average 7 cycles.---^

[1] 0x10001aec 0000000000 nop # 1

[1] 0x10001af0 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001af4 0x03e07825 move t7,ra # 3
<1 cycle stall for following instruction>

[1] 0x10001af8 0x0320f809 jalr ra,t9 # 5

[1] 0x10001afc 0x3418003b ori t8,zero,0x3b # 6

<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^
[1] 0x10001b00 0000000000 nop # 1

[1] 0x10001b04 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b08 0x03e07825 move t7,ra # 3

<1 cycle stall for following instruction>

[1] 0x10001b0c 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b10 0x3418003c ori t8,zero,0x3c # 6
<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^

[1] 0x10001b14 0000000000 nop # 1

[1] 0x10001b18 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b1c 0x03e07825 move t7,ra # 3
<1 cycle stall for following instruction>

[1] 0x10001b20 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b24 0x3418003d ori t8,zero,0x3d # 6

<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^
[1] 0x10001b28 0000000000 nop # 1

[1] 0x10001b2c 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b30 0x03e07825 move t7,ra # 3

<1 cycle stall for following instruction>

[1] 0x10001b34 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b38 0x3418003e ori t8,zero,0x3e # 6
<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^

[1] 0x10001b3c 0000000000 nop # 1

112 007–3311–006

Analyzing Experiment Results: prof [7]

[1] 0x10001b40 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b44 0x03e07825 move t7,ra # 3
<1 cycle stall for following instruction>

[1] 0x10001b48 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b4c 0x3418003f ori t8,zero,0x3f # 6

<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^

[1] 0x10001b50 0000000000 nop # 1
[1] 0x10001b54 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b58 0x03e07825 move t7,ra # 3

<1 cycle stall for following instruction>

[1] 0x10001b5c 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b60 0x34180040 ori t8,zero,0x40 # 6
<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^

[1] 0x10001b64 0000000000 nop # 1

[1] 0x10001b68 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b6c 0x03e07825 move t7,ra # 3
<1 cycle stall for following instruction>

[1] 0x10001b70 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b74 0x34180041 ori t8,zero,0x41 # 6

<2 cycle stall for following instruction>

^--- 0 total cycles(0.00%) executed 0 times, average 8 cycles.---^

[1] 0x10001b78 0000000000 nop # 1
[1] 0x10001b7c 0x8f998010 lw t9,-32752(gp) # 2

[1] 0x10001b80 0x03e07825 move t7,ra # 3

<1 cycle stall for following instruction>

[1] 0x10001b84 0x0320f809 jalr ra,t9 # 5

[1] 0x10001b88 0x34180042 ori t8,zero,0x42 # 6
<2 cycle stall for following instruction>

.

.

.

7.3.3 Using the -calipers Option

When you run prof on the output of an experiment in which you have
recorded caliper points, you can use the -calipers option to specify the area
of the program for which you want to generate a performance report. For
example, if you record just one caliper point in the middle of your program,
prof can provide a report from the beginning of the program up to the first
caliper point using the following command:

007–3311–006 113

SpeedShop User’s Guide

prof -calipers 0 1

The prof command can also provide a report from the caliper point to the end
of the program using the following command:

prof -calipers 1 2

If you record two caliper points (0, 1, 2, 3), prof can generate a report from the
second to the third caliper point:

prof -calipers 1 2

7.3.4 Using the -butterfly Option

For ideal , usertime , and fpe experiments, the -butterfly option to prof
can be used to obtain inclusive metric information. prof provides the standard
report and then appends the inclusive function counts information to the end of
the report. The following example is partial output from prof , showing just
the inclusive function counts report.

With inclusive cycle counting, prof prints a list of functions at the end, which
are called but not defined. It also includes functions from libss ; they are
instrumented, but their data is normally excluded.

prof does not list the cycles of a procedure in the inclusive listing for the
following reasons:

• init , fini , and MIPS.stubs sections are not part of any procedure.

• Calls to procedures that do not use a “jump and link” are not recognized as
procedure calls. (This is not true for ideal experiments.)

• When global procedures with the same name are executed in different
DSOs, only one of them is listed.

These exceptions are listed at the end of the report.

This example shows output from calling prof for a usertime experiment:

SpeedShop profile listing generated Thu Feb 12 13:52:09 1998
prof -gprof generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

114 007–3311–006

Analyzing Experiment Results: prof [7]

1: Number of CPUs

175: Clock frequency (MHz.)
Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure

(dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

(generic: generic.c, 1573)

[6] 1.020 4.2% 98.0% 1.020 4.2% 34 slaveusrtime

(dlslave.so: dlslave.c, 22)

[9] 0.210 0.9% 98.9% 0.210 0.9% 7 cvttrap
(generic: generic.c, 317)

[12] 0.120 0.5% 99.4% 0.120 0.5% 4 _pm_create_special

(libc.so.1: pm.c, 191)

[14] 0.090 0.4% 99.8% 0.090 0.4% 3 _migr_policy_args_init

(libc.so.1: pm.c, 398)
[10] 0.030 0.1% 99.9% 0.180 0.7% 6 iofile

(generic: generic.c, 464)

[11] 0.030 0.1% 100.0% 0.150 0.6% 5 _doscan_f

(libc.so.1: inline_doscan.c, 615)

[1] 0.000 0.0% 100.0% 24.270 100.0% 809 __start
(generic: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 24.270 100.0% 809 main

(generic: generic.c, 101)

[3] 0.000 0.0% 100.0% 24.270 100.0% 809 Scriptstring

(generic: generic.c, 184)

[5] 0.000 0.0% 100.0% 22.770 93.8% 759 usrtime
(generic: generic.c, 1377)

[15] 0.000 0.0% 100.0% 0.090 0.4% 3 dirstat

(generic: generic.c, 348)

007–3311–006 115

SpeedShop User’s Guide

[16] 0.000 0.0% 100.0% 0.090 0.4% 3 _pread

(libc.so.1: preadSCI.c, 33)
[13] 0.000 0.0% 100.0% 0.120 0.5% 4 _fullocale

(libc.so.1: _locale.c, 77)

[7] 0.000 0.0% 100.0% 1.020 4.2% 34 libdso

(generic: generic.c, 619)

[8] 0.000 0.0% 100.0% 1.020 4.2% 34 dlslave_routine

(dlslave.so: dlslave.c, 7)

Butterfly function list, in descending order by inclusive time

attrib.% attrib.time incl.time caller
(callsite) [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time incl.time callee

(callsite) [index]

[1] 100.0% 24.270 0.0% 0.000 __start [1]

100.0% 24.270 24.270 main

(@0x10001fac; generic: crt1text.s, 177) [2]

100.0% 24.270 24.270 __start

(@0x10001fac; generic: crt1text.s, 177) [1]
[2] 100.0% 24.270 0.0% 0.000 main [2]

100.0% 24.270 24.270 Scriptstring

(@0x10002040; generic: generic.c, 111) [3]

100.0% 24.270 24.270 main
(@0x10002040; generic: generic.c, 111) [2]

[3] 100.0% 24.270 0.0% 0.000 Scriptstring

[3]

93.8% 22.770 22.770 usrtime

(@0x10002460; generic: generic.c, 214) [5]
4.2% 1.020 1.020 libdso

(@0x10002460; generic: generic.c, 214) [7]

0.9% 0.210 0.210 cvttrap

(@0x10002460; generic: generic.c, 214) [9]

0.7% 0.180 0.180 iofile

(@0x10002460; generic: generic.c, 214) [10]
0.4% 0.090 0.090 dirstat

(@0x10002460; generic: generic.c, 214) [15]

116 007–3311–006

Analyzing Experiment Results: prof [7]

93.8% 22.770 22.770 usrtime

(@0x10005c30; generic: generic.c, 1393) [5]
[4] 93.8% 22.770 93.8% 22.770 anneal [4]

93.8% 22.770 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[5] 93.8% 22.770 0.0% 0.000 usrtime [5]

93.8% 22.770 22.770 anneal
(@0x10005c30; generic: generic.c, 1393) [4]

4.2% 1.020 1.020 dlslave_routine

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [8]

[6] 4.2% 1.020 4.2% 1.020 slaveusrtime
[6]

4.2% 1.020 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[7] 4.2% 1.020 0.0% 0.000 libdso [7]
4.2% 1.020 1.020 dlslave_routine

(@0x100032a0; generic: generic.c, 650) [8]

4.2% 1.020 1.020 libdso

(@0x100032a0; generic: generic.c, 650) [7]

[8] 4.2% 1.020 0.0% 0.000 dlslave_routine [8]
4.2% 1.020 1.020 slaveusrtime

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [6]

0.9% 0.210 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]
[9] 0.9% 0.210 0.9% 0.210 cvttrap [9]

0.7% 0.180 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[10] 0.7% 0.180 0.1% 0.030 iofile [10]
0.6% 0.150 0.150 _doscan_f

(@0x10002d48; generic: generic.c, 483) [11]

0.6% 0.150 0.180 iofile

(@0x10002d48; generic: generic.c, 483) [10]

[11] 0.6% 0.150 0.1% 0.030 _doscan_f [11]
0.5% 0.120 0.120 _fullocale

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [13]

007–3311–006 117

SpeedShop User’s Guide

0.5% 0.120 0.120 _fullocale

(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [13]
[12] 0.5% 0.120 0.5% 0.120 _pm_create_special [12]

0.5% 0.120 0.150 _doscan_f

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [11]

[13] 0.5% 0.120 0.0% 0.000 _fullocale [13]

0.5% 0.120 0.120 _pm_create_special
(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [12]

0.4% 0.090 0.090 _pread

(@0x0fb05928; libc.so.1: preadSCI.c, 33) [16]

[14] 0.4% 0.090 0.4% 0.090 _migr_policy_args_init [14]

0.4% 0.090 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[15] 0.4% 0.090 0.0% 0.000 dirstat [15]

0.4% 0.090 0.090 _pread
(@0x10002a5c; generic: generic.c, 381) [16]

0.4% 0.090 0.090 dirstat

(@0x10002a5c; generic: generic.c, 381) [15]

[16] 0.4% 0.090 0.0% 0.000 _pread [16]

0.4% 0.090 0.090 _migr_policy_args_init
(@0x0fb05928; libc.so.1: preadSCI.c, 33) [14]

7.4 Generating Reports for Different Machine Types

If you need to generate a report for a machine model that is different from the
one on which the experiment was performed, you can use several of the prof
options to specify a machine model.

For example, if you record an ideal experiment on an R4000 processor with a
clock frequency of 100 megahertz, but you want to generate a report for an
R10000 processor, the prof command would be the following:

prof -r10000 -clock 196 generic.ideal.m4561

118 007–3311–006

Analyzing Experiment Results: prof [7]

7.5 Generating Reports for Multiprocessed Executables

You can gather data from executables that use the sproc (2) and sprocsp (2)
system calls, such as those executables generated by POWER Fortran and
POWER C. Prepare and run the job using the same method as for uniprocessed
executables. For multiprocessed executables, each thread of execution writes its
own separate data file. View these data files with prof .

The only difference between multiprocessed and regular executables is how the
data files are named. The data files are named prog_name.experiment_type.id.

The experiment ID, id , consists of one or two letters (designating the process
type) and the process ID number. See Table 4 for the letter codes and their
meanings. This naming convention avoids the potential conflict of multiple
threads attempting to write simultaneously to the same file.

7.6 Generating Feedback Files

If you run an ideal experiment, run prof with the -feedback option to
generate a feedback file that can be used to arrange procedures more efficiently
on the next compilation. You can rearrange procedures using the -fb on
compiler command lines.

To reorder code regions for the cord (1) command, use the -cordfb or
-cordfball option to prof .

For more information, see your compiler man page, the cord (1) man page, or
the MIPSpro Compiling and Performance Tuning Guide.

007–3311–006 119

Using SpeedShop in Expert Mode:
pixie [8]

This chapter provides information on how to run pixie and prof without
invoking ssrun . By calling pixie directly, you can generate the following
performance data:

• An exact count of the number of times each basic block in your program is
executed. A basic block is a sequence of instructions that is entered only at
the beginning of the sequence and is exited only at the end. No jumps into
or out of a basic block are permitted.

• Counts for callers of a routine as well as counts for callees. prof can
provide inclusive basic block counting by propagating regular counts to
callers of a routine.

For more information on basic block counting and inclusive basic block
counting, see Section 7.2.4, page 102.

This chapter contains the following sections:

• Using pixie , see Section 8.1, page 121.

• Obtaining Basic Block Counts, see Section 8.2, page 124.

• Obtaining Inclusive Basic Block Counts, see Section 8.3, page 130.

8.1 Using pixie

Your can use pixie to measure the frequency of code execution. pixie reads
an executable program, partitions it into basic blocks, and writes (instruments)
an equivalent program containing additional code that counts the execution of
each basic block.

Note that the execution time of an instrumented program is two to five times
longer than that of an uninstrumented one. This timing change may alter the
behavior of a program that deals with a graphical user interface (GUI) or
depends on events that are based on an external clock, such as SIGALRM.

007–3311–006 121

SpeedShop User’s Guide

8.1.1 pixie Syntax

The syntax for pixie is as follows:

pixie prog_name [options]

prog_name Name of the input program.

options Zero or more of the keywords listed in Table 15.

8.1.2 pixie Options

Table 15 lists pixie options. For a complete list of options, view the pixie (1)
man page.

Table 15. Options for pixie

Name Result

-addlibs lib1.so: ...libn.so Adds lib1.so: ... libn.so to the library list of the executable. No
libraries are added by default.

- [no]autopixie Permits or prevents a recursive instrumenting of all dynamic
shared libraries used by the input file during run time. pixie
keeps the timestamp and checksum from the original executable.
Thus, before instrumenting a shared library, pixie checks any
files that it has already processed that match the lib it is to
instrument. If the fields match, they are not instrumented. pixie
cannot detect shared libraries opened with dlopen() , and hence it
does not instrument them. All used DSOs need to be instrumented
for the pixified executable to work. The default behavior with
shared libraries is -noautopixie . The default behavior with an
executable is -autopixie .

-copy Produces a copy of the target with function list (map) and arc list
(graph) sections but does not instrument the target.

-counts_file file Specifies the name to be used for the output .Counts file. By
default, .Counts is appended to the original program name.

-directory dir_name Writes output files to dir_name. Files are written to the current
directory by default.

-dso Treats the executable as an o32 DSO. Performs a search of standard
o32 library directories. A .pix32 extension is used.

122 007–3311–006

Using SpeedShop in Expert Mode: pixie [8]

Name Result

-dso32 Treats the executable as an n32 DSO. Performs a search of standard
n32 library directories. A .pixn32 extension is used.

-dso64 Treats the executable as an n64 DSO. Performs a search of standard
n64 library directories. A .pix64 extension is used.

-fcncounts Produces an instrumented executable that counts function calls
and arc calls but not basic-block or branch counts.

-[no]longbranch During instrumentation, some transformations can push a branch
offset beyond its legal range and pixie generates warnings about
branch offsets being out of range. This option causes pixie to
transform these instructions into jumps. The default is
-nolongbranch .

-[no]pids The -pids option appends the process ID number to the end of
the file.Counts . This is useful if you want to run the program
instrumented with pixie through a variety of tests before
generating the statistics with prof (1). If specified, the -nopids
option is overridden by any process that issues a fork (2) or
sproc (2) system call. The default is -nopids .

-pixie_file name Specifies the name of the executable processed by pixie .

- [no]verbose Prints or suppresses messages summarizing the binary-to-binary
translation process. The default is -noverbose .

-suffix .suffix Appends .suffix to the executable and DSOs processed by pixie . .
The default suffix is .pixie .

8.1.3 pixie Output

The pixie command generates a set of files with a .pixie extension. These
files are essentially copies of your original executable and any DSOs you
specified in the call to pixie with code inserted to enable the collection of
performance data when the .pixie version of your program is run.

If you use the -verbose flag with pixie , it reports the size of the old and
new code. The new code size is the size of the code pixie will actually
execute. It does not count read-only data (including a copy of the original text
and another data block the same size as the original text) put into the text
section. Calling size on the .pixie file reports a much larger text size than
pixie -verbose , because size also counts everything in the text segment.

007–3311–006 123

SpeedShop User’s Guide

When you run the .pixie version of your program, one or more .Counts
files are generated. The name of an output .Counts file is that of the original
program with any leading directory names removed and .Counts appended.
If the program executes calls to sproc() , sprocsp() , or fork() , multiple
.Counts files are generated: one for each process in the shared group. In this
case, each file will have the process ID appended to its name.

8.2 Obtaining Basic Block Counts

Use this procedure to obtain basic block counts. Also refer to Figure 3, page
126, which illustrates how basic block counting works. Though the preferred
method of getting basic block information is using ssrun -ideal , you can use
pixie directly.

1. Compile and link your program. The following example uses the input file
myprog.c :

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog .

2. Run pixie to generate the equivalent program containing
basic-block-counting code.

% pixie myprog

The pixie command takes myprog and writes an equivalent program,
myprog.pixie , containing additional code that counts the execution of
each basic block. pixie also writes an equivalent program for each shared
object used by the program (in the form: libname.so.pix*), containing
additional code that counts the execution of each basic block. For example,
if myprog uses libc.so.1 , pixie generates libc.so.1.pix* . (The
value of * depends on the ABI.)

3. Execute the files generated by pixie (myprog.pixie) in the same way
you executed the original program:

% myprog.pixie

This program generates a list of basic block counts in files named
myprog.Counts . If the program executes fork or sproc , a process ID is
appended to the end of the file name (for example,
myprog.Counts.34521) for each process.

124 007–3311–006

Using SpeedShop in Expert Mode: pixie [8]

Note: Your program may not run as you expect when you invoke it with
a .pixie extension. Some programs, uncompress and vi , for example,
treat their arguments differently when the name of the program changes.
You may need to rename the .pixie version of your program back to its
original name.

A valid .Counts file is generated under most normal and abnormal
program terminations. If signal handlers are installed, you must use exit (2)
to terminate, since the run-time fatal signal handlers will be overwritten.

4. Run the profile formatting program prof (1), specifying the name of the
.Counts file for the program, as shown in the following example:

% prof myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily
readable format. If multiple .Counts files exist, you can use the wildcard
character (*) to specify all the files.

% prof myprog.Counts*

You can run the program several times, altering the input data, to create
multiple profile data files.

The time computation assumes a best case execution; actual execution takes
longer. This is because the time includes predicted stalls within a basic block,
but not actual stalls that may occur entering a basic block. It also assumes that
all instructions and data are in cache, that is, it excludes the delays due to cache
misses, memory fetches and stores, translation lookaside buffer and page faults,
and other operating system overhead.

007–3311–006 125

SpeedShop User’s Guide

Formatted listing

of profile statistics

Execute

prof progname.Counts

to format data

Execute new program

(progname.pixie)

to collect data

Execute pixie to create

a new equivalent program

pixie progname

Compile

progname.c

Data Files

(progname.

Counts)

a11550

Figure 3. How Basic Block Counting Works

126 007–3311–006

Using SpeedShop in Expert Mode: pixie [8]

8.2.1 Examples of Basic Block Counting

The examples in this section illustrate how to use prof to obtain basic block
counting information from a C program, generic .

8.2.1.1 Example Using prof with No Options

The partial listing that follows illustrates the report generated for basic block
counts generic . The prof command first provides a standard report of basic
block counts, then provides a report reflecting any options provided to prof .

SpeedShop profile listing generated Tue Feb 3 14:25:43 1998

prof generic generic.Counts
generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs
175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)
1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls
function (dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1

anneal (generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1

slaveusrtime (dlslave.so: dlslave.c, 22)
[3] 0.171 0.8% 100.0% 30000081 16000054 1

cvttrap (generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1

init2da (generic: generic.c, 1430)

[5] 0.001 0.0% 100.0% 91200 38400 1600

_drand48 (libc.so.1: drand48.c, 116)
[6] 0.001 0.0% 100.0% 89072 55011 447

fread (libc.so.1: fread.c, 34)

007–3311–006 127

SpeedShop User’s Guide

[7] 0.000 0.0% 100.0% 74859 47364 53

_doprnt (libc.so.1: doprnt.c, 285)
[8] 0.000 0.0% 100.0% 64035 29479 628

__sinf (libm.so: fsin.c, 93)

[9] 0.000 0.0% 100.0% 32355 7182 9

offtime (libc.so.1: time_comm.c, 180)

[10] 0.000 0.0% 100.0% 17112 11916 305

_readdir (libc.so.1: readdir.c, 135)

• The excl.secs column shows the number of seconds spent in each
procedure. For example, 21.453 seconds were spent in the anneal function.
The time represents an idealized computation based on modeling the
machine. It ignores potential floating-point interlocks and memory latency
time (cache misses and memory bus contention).

• The excl.% column lists the percentage of the program’s total time spent in
each function. The anneal function takes 95.5% of the total time.

• The cum%column shows the cumulative percentage of calls. For example,
99.2% of the total program time was spent in the top two functions in the
listing: anneal and slaveusrtime .

• The cycles column reports the number and percentage of machine cycles
used for the procedure. For example, 3,754,320,037 cycles were spent in the
anneal function.

• The instructions column shows the number of instructions executed by
a function. For example, the anneal function executed 1,971,220,024
instructions.

• The calls column reports the number of calls to each function. For
example, there was just one call to the anneal function.

• The procedure (dso: file, line) columns list the function name, its
DSO name, its file name, and its line number. For example, the first line
reports statistics for the function anneal , in the file generic , the DSO
generic.c , and the line number 1573.

8.2.1.2 Example Using prof -heavy

The partial listing that follows shows the source code lines responsible for the
largest portion of execution time produced using the -heavy option.

% prof -heavy generic generic.Counts

128 007–3311–006

Using SpeedShop in Expert Mode: pixie [8]

The following partial listing shows basic block counts sorted in descending
order of cycles used:

SpeedShop profile listing generated Tue Feb 3 15:02:11 1998

prof -heavy generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

.

.

.

Line list, in descending order by time

excl.secs % cum.% cycles invocations function (dso: file, line)

19.800 88.2% 88.2% 3464962830 14440000 anneal (generic: generic.c, 1590)

1.608 7.2% 95.3% 281457170 14440000 anneal (generic: generic.c, 1589)

0.497 2.2% 97.5% 87000454 5000000 slaveusrtime (dlslave.so: dlslave.c, 29)

0.331 1.5% 99.0% 57999996 5000000 slaveusrtime (dlslave.so: dlslave.c, 30)

0.048 0.2% 99.2% 8437511 500000 cvttrap (generic: generic.c, 327)

0.048 0.2% 99.4% 8437511 500000 cvttrap (generic: generic.c, 334)

0.044 0.2% 99.6% 7770000 380000 anneal (generic: generic.c, 1588)

0.037 0.2% 99.8% 6562500 500000 cvttrap (generic: generic.c, 328)

0.037 0.2% 100.0% 6562500 500000 cvttrap (generic: generic.c, 335)

0.001 0.0% 100.0% 130009 10000 anneal (generic: generic.c, 1586)

0.000 0.0% 100.0% 43919 1600 init2da (generic: generic.c, 1443)

8.2.1.3 Example Using prof -quit

You can limit the output of prof to collect information on only the most
time-consuming parts of the program by specifying the -quit option. You can
instruct prof to quit after a particular number of lines of output, after listing

007–3311–006 129

SpeedShop User’s Guide

the elements consuming more than a certain percentage of the total, or after the
portion of each listing whose cumulative use is a certain amount.

Consider the following sample listing, which displays only the first four entries:

% prof -quit 4 generic generic.Counts

SpeedShop profile listing generated Wed Feb 4 10:18:58 1998

prof -quit 4 generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function

(dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1 anneal

(generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1 slaveusrtime

(dlslave.so: dlslave.c, 22)

[3] 0.171 0.8% 100.0% 30000081 16000054 1 cvttrap

(generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1 init2da

(generic: generic.c, 1430)

8.3 Obtaining Inclusive Basic Block Counts

Inclusive basic block counting counts basic blocks and generates a call graph.
By propagating regular counts to callers of a routine, prof provides inclusive
basic block counting. For more information on inclusive basic block counting,
see Section 4.4.3, page 53.

130 007–3311–006

Using SpeedShop in Expert Mode: pixie [8]

To see inclusive data, run the profile formatting program prof , specifying the
name of the original program, the -butterfly flag, and the .Counts file for
the program, as follows:

% prof -butterfly myprog myprog.Counts

In the following example, prof extracts information from myprog.Counts and
prints it in an easily readable format. If multiple .Counts files exist, you can
use the wildcard character (*) to specify all of the files.

% prof -butterfly myprog myprog.Counts*

8.3.1 Example of prof -butterfly

This section contains part of a sample output obtained by using the
-butterfly option. For more information on the -butterfly option, see
Section 7.3.4, page 114. The following command generated the output:

% prof -butterfly generic generic.Counts

The following output, which has been adjusted slightly in this example,
concentrates on the butterfly function list part of the display. The first line in
the header applies to the function that called the function under consideration.
The second line in the header applies to the function under consideration. The
third line applies to the functions it called.

SpeedShop profile listing generated Wed Feb 4 10:22:01 1998

prof -butterfly generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

.

.

007–3311–006 131

SpeedShop User’s Guide

.

Butterfly function list, in descending order by inclusive ideal time

attrib.% attrib.time incl.time caller (callsite) [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time incl.time callee (callsite) [index]

.

.

.

100.0% 22.456 22.456 main [2]

[3] 100.0% 22.456 0.0% 0.000 Scriptstring [3]

95.5% 21.454 21.454 usrtime [4]

3.7% 0.829 0.829 libdso [6]

0.8% 0.172 0.172 cvttrap [9]

0.0% 0.001 0.001 iofile [11]

0.0% 0.000 0.000 dirstat [23]

0.0% 0.000 0.001 genLog [12]

0.0% 0.000 0.000 linklist [26]

0.0% 0.000 0.000 fpetraps [27]

0.0% 0.000 0.000 fprintf [21]

0.0% 0.000 0.000 sprintf [17]

0.0% 0.000 0.000 strcmp [60]

95.5% 21.454 22.456 Scriptstring [3]

[4] 95.5% 21.454 0.0% 0.000 usrtime [4]

95.5% 21.454 21.454 anneal [5]

0.0% 0.000 0.001 genLog [12]

0.0% 0.000 0.000 fprintf [21]

132 007–3311–006

Miscellaneous Commands [9]

This chapter describes SpeedShop commands for exploring memory usage and
paging, and for printing data files generated by SpeedShop tools. It contains
the following sections:

• Using the thrash Command, see Section 9.1, page 133.

• Using the squeeze Command, see Section 9.2, page 134.

• Calculating the Working Set of a Program, see Section 9.3, page 135.

• Dumping Performance Data Files, see Section 9.4, page 137.

• Dumping Compiler Feedback Files, see Section 9.5, page 143.

• Filtering an MPI experiment file to vampir format with ssfilter (1), see
Section 9.6, page 144.

9.1 Using the thrash Command

The thrash command allows you to explore paging behavior by allocating a
region of virtual memory and accessing that memory either randomly or
sequentially.

9.1.1 thrash Syntax

The syntax for the thrash (1) command is as follows:

thrash [args]

args One or more of the following flags:

-k n The amount of memory to access in kilobytes,
where n is the number of kilobytes.

-m n The amount of memory to access in megabytes,
where n is the number of megabytes.

-p n The amount of memory to access in pages, where n
is the number of pages.

-n [count] The number of references to make before exiting.
The default is 10,000.

007–3311–006 133

SpeedShop User’s Guide

-s Sequential thrashing. The default is random.

-w time The amount of time, in seconds, thrash should
sleep after thrashing but before exiting.

9.1.2 Effects of thrash

Once the memory is allocated, thrash prints a message on stdout , saying
how much memory it is using and then proceeds to access it. The following is
an example:

% thrash -m 4

thrashing randomly: 4.00 MB (= 0x00400000 = 4194304 bytes = 1024 pages)

10000 iterations

You can use thrash in conjunction with ssusage (1) and squeeze (1) to
determine the approximate available working memory on a system, as
described in Section 9.3, page 135.

9.2 Using the squeeze Command

The squeeze command lets you specify an amount of virtual memory to lock
down into real memory, thus making it unavailable to other processes. This
command can be used only in superuser mode.

9.2.1 squeeze Syntax

The syntax for the squeeze (1) command is as follows:

squeeze [unit] amount

unit One of the following options indicating the unit of measure. If no
option is specified, the default is megabytes.

-k Kilobytes

-m Megabytes

-p Pages

-% A percentage of the installed memory

134 007–3311–006

Miscellaneous Commands [9]

amount The amount of memory to be locked.

9.2.2 Effects of squeeze

The squeeze (1) command performs the following operations:

• Locks down the amount of virtual memory you supply as an argument to
the command.

• Prints a message to stdout that provides information on how much
memory has been locked and how much working memory is available.

• Sleeps indefinitely, or until interrupted by SIGINT or SIGTERM. At that
time, it frees up the memory and exits with an exit message.

Wait until after the exit message is printed before doing any experiments.

Here is an example:

% squeeze 4
squeeze: leaving 60.00 MB (= 0x03c01000 = 62918656) available memory;

pinned 4.00 MB (= 0x00400000 = 4194304) at address 0x1000e000;

from 64.00 MB (= 0x04001000 = 67112960) installed memory.

Use Ctrl-C to exit squeeze . The following message is printed:

squeeze exiting

9.3 Calculating the Working Set of a Program

You can use the thrash , squeeze , and ssusage commands together to
determine the approximate working set of a program. For all practical
purposes, the working set of your program is the size of memory allocated.

The process involves three steps. First you determine the working set of the
kernel and other applications:

1. Choose a machine that has a large amount of physical memory (enough to
allow your target application to run without any paging other than at
startup).

2. Make sure that the machine is running a minimal number of applications
that will remain fairly consistent for the duration of these steps.

007–3311–006 135

SpeedShop User’s Guide

3. Run thrash with ssusage to determine the working set of the kernel and
any other applications you have running.

In this example, the thrash command uses 4 MB of memory:

% ssusage thrash -m 4

When the thrash command completes, ssusage prints the resource usage
of thrash . The value labeled majf gives the number of major page faults
(that is, the number of faults that required a physical read). When you run
on a machine with a large amount of physical memory, this value is the
number of faults needed to start the program, which is the minimum
number for any run. For more information on ssusage , see Chapter 5,
page 65.

4. As super user in a separate window, run the squeeze command to lock
down an amount of memory.

5. Rerun thrash with ssusage , as shown here:

% ssusage thrash -m 4

6. Repeat steps 1 and 2, increasing the amount of memory for squeeze , until
the majf number begins to rise.

The amount of working memory available reported by squeeze at the
point at which page faults begin to rise for thrash tells you the combined
working set of thrash (approximately 4 MB), the kernel, and any other
applications you have running.

7. Deduct the 4 MB that thrash uses from the amount of working memory
reported by squeeze at the point the page faults began to rise.

This computation helps you find the approximate working set of the kernel
and any other applications that are running on the machine. You will need
this number when you reach the next steps.

8. Determine the working set of the program you are interested in. Make sure
the applications that the machine is running remain consistent with the
setup from step 2.

9. Run ssusage with your program to ensure that the machine has the
amount of memory your program needs.

ssusage prog_name

136 007–3311–006

Miscellaneous Commands [9]

When your program exits, ssusage prints the application’s resource usage.
The majf field gives the number of major page faults. When run on a
machine with a large amount of physical memory, this value is the number
of faults needed to start the program, which is the minimum number for
any run.

10. Switch to super user.

11. Run squeeze to lock down an amount of memory. The following example
locks down 15 megabytes of memory:

squeeze 15

12. Rerun your program with ssusage .

13. Repeat steps 11 and 12 until the majf number begins to rise.

14. Deduct the amount squeezed at the point at which the application begins to
page fault from the total amount of physical memory in the system. This
computation determines the combined working set of your program, the
kernel, and any other applications you have running.

15. Deduct the amount of working memory calculated in step 7 from the total
amount of physical memory in the system. This computation determines
the approximate working set of your program.

9.4 Dumping Performance Data Files

All the performance data for a single process is in one file. The file begins with
a prologue and continues with a mixture of performance data, sample records,
and control records.

The ssdump command can be used for printing performance data files. It
provides a formatted ASCII dump of one or more performance experiment data
files. This command is most likely to be useful in verifying performance data
that does not seem accurate when reported through prof .

9.4.1 ssdump Syntax

The syntax of the ssdump(1) command is as follows:

ssdump [options] files

options Zero or more of the following print options:

007–3311–006 137

SpeedShop User’s Guide

-d Prints detailed information for each record in the
experiment file. For compressed records, the
compressed form will be dumped.

-D Prints detailed information for each record in the
experiment file. For compressed records, the
uncompressed form will be dumped.

-h Prints the hexadecimal contents of the body of each
record in the experiment file.

-i index Prints only one record at index in the file.

-q Suppresses the printing of those fields that will
normally change from run to run, such as process
IDs and time stamps. This option is useful for
quality assurance work to enable automatic
comparisons of recorded experiments.

-s offset Prints only one record of the experiment file at offset
into the file.

files One or more SpeedShop experiment files.

9.4.2 Experiment File Format

The experiment file is written as a string of beads, or experiment records, each
of which has the following characteristics:

• A 32-bit type

• A 32-bit byte count

• A body whose length is given by the byte count, rounded up to a
doubleword boundary

The file prologue consists of the following beads:

• File identifier bead, which acts as a magic number, indicating that the file is
a SpeedShop data file

• Machine and executable name

• Hardware inventory describing the machine

• Machine page size

• O/S revision, date, and checksum information about the executable

138 007–3311–006

Miscellaneous Commands [9]

• Target name (the target is the executable after instrumentation)

• Arguments with which the target was invoked

• Instrumentation performed

• Types of performance data that are to be recorded in the remainder of the file

The following example instructs ssdump to display the performance data of a
pcsamp experiment:

% ssdump generic.pcsamp.m847

The following is partial output from ssdump . The format has been adjusted
slightly to meet presentation needs.

Printing experiment record file ‘‘generic.pcsamp.m847’’ (2688 bytes), last written
on Tue 15 Apr 1997 15:27:02

SpeedShop File Preface 1, offset 0 = 0x00000000 (size 32)

file type 1 (SSRUN); version 4

process control flags: 0xd

_SPEEDSHOP_TRACE_FORK=True
_SPEEDSHOP_TRACE_FORK_TO_EXEC=False

_SPEEDSHOP_TRACE_SPROC=True

_SPEEDSHOP_TRACE_EXEC=True

_SPEEDSHOP_TRACE_SYSTEM=False

ancestor exp file name:

created: Tue 15 Apr 1997 15:26:10.719
Hardware Inventory 2, offset 40 = 0x00000028 (size 280)

hardware inventory: 17 items

class 1, type 1, contrlr 100, unit 255, state 12

class 1, type 3, contrlr 0, unit 0, state 8192

class 1, type 2, contrlr 0, unit 0, state 8208
class 4, type 8, contrlr 0, unit 0, state 2

class 5, type 5, contrlr 0, unit 0, state 1

class 3, type 3, contrlr 0, unit 0, state 16384

class 3, type 4, contrlr 0, unit 0, state 16384

class 3, type 9, contrlr 0, unit 0, state 64
class 3, type 1, contrlr 0, unit 0, state 67108864

class 12, type 3, contrlr 0, unit 0, state 16

class 8, type 7, contrlr 17, unit 0, state 16777472

class 10, type 3, contrlr 0, unit 0, state 16400

class 8, type 0, contrlr 0, unit 0, state 1

class 2, type 1, contrlr 0, unit 13, state 2
class 2, type 2, contrlr 0, unit 2, state 0

007–3311–006 139

SpeedShop User’s Guide

class 2, type 2, contrlr 0, unit 1, state 0

class 7, type 14, contrlr 0, unit 0, state 0

Experiment name 3, offset 328 = 0x00000148 (size 8)

pcsamp

Experiment marching orders 4, offset 344 = 0x00000158 (size 16)

pc,2,10000,0:cu

Capture module symbol 5, offset 368 = 0x00000170 (size 16)

pc,2,10000,0

Capture module symbol 6, offset 392 = 0x00000188 (size 8)
cu

Executable file 7, offset 408 = 0x00000198 (size 8)

generic

Target file 8, offset 424 = 0x000001a8 (size 8)

generic

Target arguments 9, offset 440 = 0x000001b8 (size 32)

Time: Tue 15 Apr 1997 15:26:10.719, process pid = 847

arguments: ""
Target begin 10, offset 480 = 0x000001e0 (size 40)

process # -1, pid = 847, event # 0

event type = 0,0

at time = Tue 15 Apr 1997 15:26:10.719

Program Object List 11, offset 528 = 0x00000210 (size 312)
process # -1, pid = 847, event # 0, -- 5 DSOs

Program Object 0, Named g` eneric’

Link Time Address: 0x0000000010000000

Run Time Address: 0x0000000010000000

Size: 0x0000000000007000 (28672)
Base Pointer: 0x0000000000000000

Program Object 1, Named / ` usr/lib32/libss.so’

Link Time Address: 0x0000000009e50000

Run Time Address: 0x0000000009e50000

Size: 0x0000000000002000 (8192)
Base Pointer: 0x0000000000000000

Program Object 2, Named / ` usr/lib32/libssrt.so’

140 007–3311–006

Miscellaneous Commands [9]

Link Time Address: 0x0000000009da0000

Run Time Address: 0x0000000009da0000
Size: 0x000000000008b000 (569344)

Base Pointer: 0x0000000000000000

Program Object 3, Named / ` usr/lib32/libm.so’

Link Time Address: 0x000000000f840000

Run Time Address: 0x000000000f840000
Size: 0x0000000000028000 (163840)

Base Pointer: 0x0000000000000000

Program Object 4, Named / ` usr/lib32/libc.so.1’

Link Time Address: 0x000000000fa00000
Run Time Address: 0x000000000fa00000

Size: 0x0000000000108000 (1081344)

Base Pointer: 0x0000000000000000

Target DSO open 12, offset 848 = 0x00000350 (size 56)

process # -1, pid = 847, event # 0

at time = Tue 15 Apr 1997 15:27:00.716

fname = ./dlslave.so

Program Object List 13, offset 912 = 0x00000390 (size 360)

process # -1, pid = 847, event # 0, -- 6 DSOs
Program Object 0, Named g` eneric’

Link Time Address: 0x0000000010000000

Run Time Address: 0x0000000010000000

Size: 0x0000000000007000 (28672)

Base Pointer: 0x0000000000000000

Program Object 1, Named / ` usr/lib32/libss.so’

Link Time Address: 0x0000000009e50000

Run Time Address: 0x0000000009e50000

Size: 0x0000000000002000 (8192)
Base Pointer: 0x0000000000000000

Program Object 2, Named / ` usr/lib32/libssrt.so’

Link Time Address: 0x0000000009da0000

Run Time Address: 0x0000000009da0000

Size: 0x000000000008b000 (569344)
Base Pointer: 0x0000000000000000

Program Object 3, Named / ` usr/lib32/libm.so’

007–3311–006 141

SpeedShop User’s Guide

Link Time Address: 0x000000000f840000

Run Time Address: 0x000000000f840000
Size: 0x0000000000028000 (163840)

Base Pointer: 0x0000000000000000

Program Object 4, Named / ` usr/lib32/libc.so.1’

Link Time Address: 0x000000000fa00000

Run Time Address: 0x000000000fa00000
Size: 0x0000000000108000 (1081344)

Base Pointer: 0x0000000000000000

Program Object 5, Named . ` /dlslave.so’

Link Time Address: 0x000000005ffe0000
Run Time Address: 0x000000005ffe0000

Size: 0x0000000000001000 (4096)

Base Pointer: 0x0000000000000000

Sample event trigger 14, offset 1280 = 0x00000500 (size 40)
process # -1, trap index # -1

at time = Tue 15 Apr 1997 15:27:01.989, #-1

Compressed PC sampling array (16-bit) 15, offset 1328 = 0x00000530 (size 320)

compressed short array, dso index = 0, array size = 7168, 156

compressed

Compressed PC sampling array (16-bit) 16, offset 1656 = 0x00000678 (size 16)

compressed short array, dso index = 1, array size = 2048, 4 compressed

Compressed PC sampling array (16-bit) 17, offset 1680 = 0x00000690 (size 40)
compressed short array, dso index = 2, array size = 142336, 16

compressed

Compressed PC sampling array (16-bit) 18, offset 1728 = 0x000006c0 (size 16)

compressed short array, dso index = 3, array size = 40960, 4 compressed

Compressed PC sampling array (16-bit) 19, offset 1752 = 0x000006d8 (size 64)

compressed short array, dso index = 4, array size = 270336, 28

compressed

Compressed PC sampling array (16-bit) 20, offset 1824 = 0x00000720 (size 48)
compressed short array, dso index = 5, array size = 1024, 20 compressed

PC sampling array (16-bit) 21, offset 1880 = 0x00000758 (size 16)

142 007–3311–006

Miscellaneous Commands [9]

short array, dso index = -1, array size = 1

Resource usage 22, offset 1904 = 0x00000770 (size 680)

Sample data end marker 23, offset 2592 = 0x00000a20 (size 40)

Target termination 24, offset 2640 = 0x00000a50 (size 40)

process # -1, pid = 847, event # 0
event type = 0,0 (normal termination, exit status 0)

at time = Tue 15 Apr 1997 15:27:02.231

** End-of-File 25, offset 2688 = 0x00000a80 (size 0)

**** End of experiment record file ‘‘generic.pcsamp.m847’’

9.5 Dumping Compiler Feedback Files

The fbdump command prints the compiler feedback files generated by running
prof -feedback . For more information on using compiler feedback files,
view the cord (1) or cc (1) man pages.

9.5.1 fbdump Syntax

The syntax for the fbdump (1) command is as follows:

fbdump [options] file

options Zero or more of the options described in table Table 16.

file The feedback file name. This file has a .fb extension.

Table 16. Options for fbdump

Option Prints

-all Feedback using all options. This is the default.

-ascii Feedback in the same style as an earlier version of the
feedback dump program.

007–3311–006 143

SpeedShop User’s Guide

Option Prints

-bb Feedback per the basic block table, as described in the
cmplrs/fb.h file. If -verbose is specified, all basic blocks
are printed, even those with zero execution counts. If
-verbose is not specified, fbdump prints only the basic
blocks that have nonzero execution counts.

-call Feedback call table as described in the cmplrs/fb.h file. If
-verbose is specified, all the points of call are printed, even
if they have not been called. If -verbose is not specified,
fbdump prints only the relevant information on the calls.

-header Feedback file header as described in the cmplrs/fb.h file.

-proc Feedback procedure table as described in the cmplrs/fb.h
file. If -verbose is specified, all procedures will be printed,
even if they are not invoked. If -verbose is not specified,
fbdump prints only the relevant information on the
procedures that have been invoked.

-sections Feedback file section headers table as described in the
cmplrs/fb.h file.

-str Feedback string table.

-verbose All the information in verbose mode, including a table with
all zero entries.

9.6 Converting an MPI Experiment File to Vampir Format

The vampir software product displays and analyzes Message Passing Interface
(MPI) experiment files. It is a product of Pallas, a software company
specializing in high performance computing. For more information on the
company and the vampir software, see the following web site:

http://www.pallas.com

The ssfilter (1) command converts a SpeedShop MPI experiment file into a
form in which it can be viewed using vampir. For information on generating
MPI experiment files, see Section 6.6, page 82.

The following commands generate a pcsampx experiment file on each of the
four processors involved in the MPI program and converts them to a single file
in vampir format:

144 007–3311–006

Miscellaneous Commands [9]

mpirun -np 4 ssrun -pcsampx verge

ssfilter a.out.mpi.f* -o verge.vampir

By default, ssfilter periodically returns status information while it is
processing. The status tells you what percentage of its job is complete and what
percentage remains to be done. You can turn the status messages off by
specifying the -noverbose option. For information on all of the options, see
the ssfilter (1) man page.

007–3311–006 145

Glossary [10]

This glossary defines terms used in this document.

basic block A set of instructions with a single entry point, a
single exit point, and no branches into or out of
the set.

bead A record in an experiment.

call stack A software stack of functions and routines that
represent the state of the program at any time.
The functions and routines are listed in the
reverse order, from top to bottom, in which they
were called. If function a is immediately below
function b in the stack, then a was called by b.
The function at the bottom of the stack is the one
currently executing.

context switch The act of saving the state of one process and
replacing it with that of another when both
processes time-share a single processor.

counts The number of times an event takes place during
data gathering. For example, a count may be kept
of the number of times a function executes.

CPU time Process virtual time (see the glossary entry) plus
time spent when the system is running on behalf
of the process, performing such tasks as executing
a system call. This is the time returned in
pcsamp and usertime experiments. It can be
specified in an experiment by using the
ut,30000,2 marching orders.

exclusive time The execution time of a given function but not of
any functions called by that function. See
inclusive time.

graduated instruction As a performance enhancement, when an R10000
system comes to a point in the execution of a
program at which either of two paths might be
taken, it begins to execute both paths until it
knows for sure which path is correct. Graduated
instructions are those on the path it will

007–3311–006 147

SpeedShop User’s Guide

eventually follow. Issued instructions are those on
the path it does not follow.

inclusive time The execution time both of a given function and
of any functions called by that function. See
exclusive time.

issued instruction See the definition of graduated instruction.

overflow interval As used by the hardware counter experiments, it
is the number at which a hardware counter
exceeds a preset value. See the speedshop (1)
man page, dsc_hwc experiment.

PC Program counter. A register that contains the
address of the instruction that is currently
executing.

process virtual time Time spent when a program is actually running.
This does not include either 1) the time spent
when the program is swapped out and waiting
for a CPU or 2) the time when the operating
system is in control, such as executing a system
call for the program. The marching orders
ut,30000,1 return process virtual time.

statistical data Sampling. The results from this method of data
gathering vary from run to run.

system time The time the operating system spends performing
services for a program, such as executing system
calls and I/O.

TLB Translation lookaside buffer. This is hardware
used by the CPU to quickly translate a virtual
address (such as the name of a variable) to a
physical memory address.

TDT model Target Description Table model. A CPU model
used to calculate ideal time.

user time The same as CPU time.

wall-clock time Total time a program takes to execute, including
the time it takes waiting for a CPU. This is real
time, not computer time. The marching orders
ut,30000,0 return wall-clock time.

148 007–3311–006

Index

A

API
setting calipers, 11

B

basic block counting
overview ideal experiment

overview, 6
-butterfly

example, 131

C

calipers
automatic, 87
pollpoint

time oriented, 87
sample traps

using the debugger, 90
sample traps calipers, 87
setting calipers, 86
time-oriented, 88

calipers option to prof, 11
-calipers , 11
commands in SpeedShop, 4
compiler feedback files, 119
compiler optimization restrictions, 68
cord, 119

compiler feedback, 143
.Counts file pixie

.Counts file, 124
cy_hwc experiment, 56

D

data display anomalies, 68
dc_hwc experiment , 57
debugger

setting calipers, 12, 90, 87
using ssrun, 81

demo program SpeedShop
C and C++, 13

dsc_hwc experiment, 57
DSOs shared libraries, 8

E

environment variables, 70
_RLD_LIST, 90
_SPEEDSHOP_CALIPER_POINT_SIG, 70,

87, 89
_SPEEDSHOP_DEBUG_NO_SIG_TRAPS , 74
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND, 74
_SPEEDSHOP_EXPERIMENT_TYPE, 73, 90
_SPEEDSHOP_FILE_BUFFER_LENGTH, 74
_SPEEDSHOP_HWC_COUNTER_NUMBER

, 58, 71
_SPEEDSHOP_HWC_COUNTER_OVERFLOW, 58,

71
_SPEEDSHOP_INIT_DEFERRED_SIG, 73
_SPEEDSHOP_MARCHING_ORDERS, 73, 90
_SPEEDSHOP_OUTPUT_DIRECTORY, 71
_SPEEDSHOP_OUTPUT_FILENAME, 71
_SPEEDSHOP_OUTPUT_NOCOMPRESS, 71
_SPEEDSHOP_POLLPOINT_CALIPER_POINT, 88
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS, 70
_SPEEDSHOP_SAMPLING_MODE, 73
_SPEEDSHOP_SBRK_BUFFER_LENGTH, 73
_SPEEDSHOP_SHUTDOWN_SIG, 73
_SPEEDSHOP_SILENT, 70

007–3311–006 149

SpeedShop User’s Guide

_SPEEDSHOP_TRACE_EXEC [True|False], 72
_SPEEDSHOP_TRACE_FORK, 72
_SPEEDSHOP_TRACE_FORK_TO_EXEC, 72
_SPEEDSHOP_TRACE_SPROC, 72
_SPEEDSHOP_TRACE_SYSTEM, 72
_SPEEDSHOP_VERBOSE, 70

examples
c tutorial, 13
fortran tutorial, 31

exec system call, 7
executable requirements

calipers, 67
executables

calculating a working set, 135
Experiment

gi_hwc, 56
experiment data

controlling output file, 69
file format, 138
file name examples, 69

experiment data files
combining, 62
performance data, 10

experiments
choosing, 49
cy_hwc, 56
dc_hwc, 57
dsc_hwc, 57
fpe, trace floating-point exceptions, 61
gfp_hwc, 58
hardware counter, 55, 101
heap trace, 61
ic_hwc, 57
ideal, 52
isc_hwc , 57
prof_hwc, 58
tlb_hwc, 57

F

fbdump
overview, 4

fbdump files
compiler feedback , 143

feedback, compiler, 143
floating-point exception trace

experiment description, 61
overview, 6

fork processes, 7
Fortran

limitations, multiprocessor executables, 68
fpcsampx, 51
fpe trace experiment , 61

tutorial experiments
fpe trace floating-point exceptions, 29

G

gfp_hwc experiment, 58
gi_hwc experiment, 56

H

hardware counter experiment reports, 101
hardware counter experiments, 55

tutorial experiments, 22, 39
hardware counter numbers, 58
_hwc experiments, 55

I

I/O-bound, 2
ic_hwc experiment, 57
ideal experiment

basic block counting , 52
effects, 90, 91
tutorial experiments

ideal basic block counting, 24, 41
introduction to performance analysis, 1
isc_hwc experiment, 57

150 007–3311–006

Index

L

libfpe_ss.so
overview, 7

libmalloc.so
overview, 7

libpixrt.so
overview, 7

libraries
libss.so, 90
libssrt.so, 90
linking in SpeedShop, 88
overview, 7

libss.so, 7
libssrt.so

overview, 7

M

machine resource usage, 65
marching orders, 74

experiment specifier, 75
memory

locking, 134
MP Fortran limitations, 68
MPI

conversion to vampir format, 144
with ssrun, 82

MPI message-passing paradigms, 8
multiprocessor executables, 8

profiling, 119

O

OpenMP support, 8

P

pc sampling
pcsamp experiment

overview, 5
pcsamp experiment, 37

example, 79
PC sampling program, 51
tutorial experiments

PC sampling tutorial, 19
perfex, 55
performance analysis

introduction, 1
phases, 8
sources of performance problems, , 1

performance problems
bugs, 3
cpu-bound processes, 2
I/O-bound processes, 2
memory-bound processes, 2

pixie, 52, 121
-autopixie option, 122
command syntax pixie

command option, 121
examples, 124
overview, 4
using with prof, 93
-verbose option, 123

prof
-butterfly example profiling

inclusive basic block counts, 104
options, 94
output, 98
overview, 4
-S example, 111
syntax, 93
using with ssrun, 93

prof compiler feedback, 143
prof_hwc experiment, 58
profiling

-clock option, 95
command syntax prof, , 93
-dis option, 95
-dis option prof

-dis example, 106
-dso option, 95

007–3311–006 151

SpeedShop User’s Guide

-dsolist option, 95
–heavy option

example prof, 128
–quit option, 129
-exclude option, 96
-feedback option, 96
fpe trace experiment experiments

fpe fpe trace experiment reports, 105
hardware counter experiments, 101
-heavy option, 96
ideal experiment experiments

ideal ideal experiment reports, 102
-lines option, 96
machine scheduler option reports

for different machine models, 118
-only option, 96
pcsamp experiment experiments

pcsamp pcsamp experiment reports, 100
processor scheduler option option, 97
-quit option, 96
-S option, 97, 111
usertime experiment experiments

usertime usertime experiment reports, 98
pthreads, 8

and ssrun, 86

R

rearranging procedures, 119
reordering code regions, 52
_RLD_LIST variable , 90

S

setup ssrun, 67
signals

setting calipers, 12, 89
SpeedShop

overview, 3
speedshop api , 7
SpeedShop demo

Fortran, 31
SpeedShop libraries, 90

libss.so libraries, 7
linking libss.so, 88

_SPEEDSHOP_CALIPER_POINT_SIG variable
, 70, 87, 89

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS
variable , 74

_SPEEDSHOP_DEBUG_NO_STACK_UNWIND
variable , 74

_SPEEDSHOP_EXPERIMENT_TYPE variable
, 73, 90

_SPEEDSHOP_FILE_BUFFER_LENGTH
variab, 74

_SPEEDSHOP_HWC_COUNTER_NUMBER, 58
_SPEEDSHOP_HWC_COUNTER_NUMBER

variable , 71
_SPEEDSHOP_HWC_COUNTER_OVERFLOW, 58
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

variable , 71
_SPEEDSHOP_INIT_DEFERRED_SIGNAL

variable, 73
_SPEEDSHOP_MARCHING_ORDERS variable

, 73, 90
_SPEEDSHOP_OUTPUT_DIRECTORY variable

, 71
_SPEEDSHOP_OUTPUT_FILENAME variable

, 71
_SPEEDSHOP_OUTPUT_NOCOMPRESS

variable , 71
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

environment variable, 87, 88
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS

variable , 70
_SPEEDSHOP_SAMPLING_MODE variable, 73
_SPEEDSHOP_SBRK_BUFFER_LENGTH

variable, 73
_SPEEDSHOP_SHUTDOWN_SIG variable, 73
_SPEEDSHOP_SILENT variable, 70
_SPEEDSHOP_TARGET_FILE variable, 90
_SPEEDSHOP_TRACE_EXEC variable, 72
_SPEEDSHOP_TRACE_FORK variable, 72

152 007–3311–006

Index

_SPEEDSHOP_TRACE_FORK_TO_EXEC
variable, 72

_SPEEDSHOP_TRACE_SPROC variable, 72
_SPEEDSHOP_TRACE_SYSTEM variable, 72
_SPEEDSHOP_VERBOSE variable

, 70
sproc system call, 7
squeeze

calculating a working set, 135
locking memory , 134
overview, 5

ssdump
overview, 5

ssdump performance data files
dumping files

performance data, 137
ssfilter command, 144
ssrt_caliper_point, 7, 67
ssrt_caliper_point calipers, 87, 88
ssrun

effects, 90
flags, 78
MPI programs , 82
overview, 4
overview ssrun

steps prof, 9
pthreads programs, 86
syntax, 77
using a debugger, 81
-v option example, 81

ssrun command
examples, 79
syntax, 77

ssrun setup, 67
ssusage

calculating a working set, 135
overview, 4

statistical call stack profiling
overview usertime experiment

overview, 5

statistical hardware counter sampling
overview hardware counter experiments

overview hwc experiments, 5
stripped executables programs, 68
system call, 7

T

techniques to improve I/O, 2
thrash

calculating a working set, 135
overview, 5

thrash paging behavior, 133
tlb_hwc experiment, 57
Tutorial

c, 13
tutorial experiments

PC sampling, 37

U

usertime experiment
restrictions, 67
tutorial experiments

call stack profiling, 16
usertime call stack profiling, 33

usertime call stack profiling, 50

V

vampir format, 144

W

working set , 135

007–3311–006 153

