
Message Passing Toolkit: MPI
Programmer’s Manual
007–3687–003

Copyright © 1996, 2000 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Silicon Graphics, Inc.

CONTRIBUTORS

Written by Julie Boney

Edited by Susan Wilkening

Illustrations by Chris Wengelski

Production by Susan Gorski

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14
and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved
under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy.,
Mountain View, CA 94043-1351.

IRIS, IRIX, and Silicon Graphics are registered trademarks and IRIS InSight and the SGI logo are trademarks of Silicon Graphics, Inc.
DynaWeb is a trademark of INSO Corporation. Kerberos is a trademark of Massachusetts Institute of Technology. MIPS is a trademark
of MIPS Technologies, Inc. NFS is a trademark of Sun Microsystems, Inc. PostScript is a trademark of Adobe Systems, Inc. TotalView
is a trademark of Bolt Beranek and Newman Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. X/Open is a registered trademark of X/Open Company Ltd.

New Features in This Manual

This rewrite of the Message Passing Toolkit: MPI Programmer’s Manual supports the 1.4
release of the Message Passing Toolkit for IRIX (MPT).

007–3687–003 iii

Record of Revision

Version Description

1.0 January 1996
Original Printing. This manual documents the Message Passing
Toolkit implementation of the Message Passing Interface (MPI).

1.1 August 1996
This revision supports the Message Passing Toolkit (MPT) 1.1
release.

1.2 January 1998
This revision supports the Message Passing Toolkit (MPT) 1.2
release for UNICOS, UNICOS/mk, and IRIX systems.

1.3 February 1999
This revision supports the Message Passing Toolkit (MPT) 1.3
release for UNICOS, UNICOS/mk, and IRIX systems.

003 February 2000
This revision supports the Message Passing Toolkit (MPT) 1.4
release for IRIX systems.

007–3687–003 v

Contents

About This Manual . xv

Related Publications . xv

Other Sources . xv

Obtaining Publications . xvi

Conventions . xvi

Reader Comments . xvii

1. Overview . 1

MPI Overview . 1

MPI Components . 2

MPI Program Development . 3

2. Building MPI Applications 5

3. Using mpirun to Execute Applications 7

Syntax of the mpirun Command 7

Using a File for mpirun Arguments 11

Launching Programs on the Local Host Only 11

Using mpirun(1) to Run Programs in Shared Memory Mode 12

Launching a Distributed Program 12

4. Thread-Safe MPI . 15

Initialization . 15

Query Functions . 16

Requests . 16

Probes . 16

007–3687–003 vii

Contents

Collectives . 16

Exception Handlers . 17

Signals . 17

Internal Statistics . 17

Finalization . 17

5. Multiboard Feature . 19

6. Setting Environment Variables 21

Setting MPI Environment Variables 21

Internal Message Buffering in MPI 25

7. Launching Programs with NQE 27

Starting NQE . 27

Submitting a Job with NQE . 27

Checking Job Status with NQE 29

Getting More Information . 30

8. MPI Troubleshooting 31

What does MPI: could not run executable mean? 31

Can this error message be more descriptive? 31

Is there something more that can be done? 31

In the meantime, how can we figure out why mpirun is failing? 31

How do I combine MPI with other tools? 33

Combining MPI with dplace 34

Combining MPI with perfex 34

Combining MPI with rld . 34

Combining MPI with TotalView 34

How can I allocate more than 700 to 1000 MB when I link with libmpi? 35

viii 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

Why does my code run correctly until it reaches MPI_Finalize(3) and then hang? . . 35

Why do I keep getting error messages about MPI_REQUEST_MAX being too small, no matter how
large I set it? . 36

Why am I not seeing stdout or stderr output from my MPI application? 36

Index . 37

007–3687–003 ix

Figures

Figure 7-1 NQE button bar 27

Figure 7-2 NQE Job Submission window 28

Figure 7-3 NQE Status window 29

Figure 7-4 NQE Detailed Job Status window 30

007–3687–003 xi

Tables

Table 6-1 MPI Environment Variables 21

Table 6-2 Outline of Improper Dependence on Buffering 25

007–3687–003 xiii

About This Manual

This publication documents the Message Passing Toolkit for IRIX (MPT) 1.4
implementation of the Message Passing Interface (MPI) supported on SGI MIPS based
systems running IRIX release 6.5 or later.

IRIX systems running MPI applications must also be running Array Services software
version 3.1 or later. MPI consists of a library, a profiling library, and commands that
support MPI. The MPT 1.4 release is a software package that supports parallel
programming across a network of computer systems through a technique known as
message passing.

Related Publications
The following documents contain additional information that might be helpful:

• Message Passing Toolkit: PVM Programmer’s Manual

• Application Programmer’s Library Reference Manual

• Installing Programming Environment Products

To obtain the Message Passing Toolkit: PVM Programmer’s Manual, see "Obtaining
Publications," page xvi. To obtain the Application Programmer’s Library Reference
Manual and Installing Programming Environment Products manuals, contact the
Minnesota Distribution Center at +651 683 5907. SGI employees can contact the
Distribution Center by sending e-mail to orderdsk@sgi.com.

Other Sources
Material about MPI is available from a variety of other sources. Some of these,
particularly World Wide Web pages, include pointers to other resources. Following is
a grouped list of these sources:

The MPI standard:

• As a technical report: University of Tennessee report (reference [24] from Using
MPI: Portable Parallel Programming with the Message-Passing Interface, by Gropp,
Lusk, and Skjellum)

007–3687–003 xv

About This Manual

• As online PostScript or hypertext on the World Wide Web:

http://www.mpi-forum.org/

• As a journal article in the International Journal of Supercomputer Applications, volume
8, number 3/4, 1994

• As text through the IRIS InSight library (for customers with access to this tool)

Books:

• Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, publication TPD–0011

Newsgroup:

• comp.parallel.mpi

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names. The following list describes the
identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

xvi 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

SGI systems include all MIPS based systems running IRIX 6.5 or later.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number can be found on the
back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

007–3687–003 xvii

About This Manual

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xviii 007–3687–003

Chapter 1

Overview

The Message Passing Toolkit for IRIX (MPT) is a software package that supports
interprocess data exchange for applications that use concurrent, cooperating processes
on a single host or on multiple hosts. Data exchange is done through message passing,
which is the use of library calls to request data delivery from one process to another
or between groups of processes.

The MPT 1.4 package contains the following components and the appropriate
accompanying documentation:

• Parallel Virtual Machine (PVM)

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data-passing routines

The Message Passing Interface (MPI) is a standard specification for a message passing
interface, allowing portable message passing programs in Fortran and C languages.

This chapter provides an overview of the MPI software that is included in the toolkit,
a description of the basic MPI components, and a list of general steps for developing
an MPI program. Subsequent chapters address the following topics:

• Building MPI applications

• Using mpirun to execute applications

• Setting environment variables

• Launching programs with NQE

MPI Overview
MPI is a standard specification for a message passing interface, allowing portable
message passing programs in Fortran and C languages. MPI was created by the
Message Passing Interface Forum (MPIF). MPIF is not sanctioned or supported by any
official standards organization. Its goal was to develop a widely used standard for
writing message passing programs. SGI supports implementations of MPI that are
released as part of the Message Passing Toolkit on IRIX systems. The MPI standard is

007–3687–003 1

1: Overview

available from the IRIS InSight library (for customers who have access to that tool),
and is documented online at the following address:

http://www.mcs.anl.gov/mpi

The MPT MPI implementation is compliant with the 1.0, 1.1, and 1.2 versions of the
MPI standard specification. In addition, the following features from the MPI 2
standard specification are provided:

• Passing NULL arguments to MPI_Init.

• MPI I/O. MPT contains the ROMIO implementation of MPI I/O, in which a rich
API for performing I/O in a message passing application is defined. Most of the
standard-defined functionality is provided. For more information, see the
mpi_io(3)man page.

• MPI one-sided communication. The MPI_Win_create, MPI_Put, MPI_Get,
MPI_Win_fence, and MPI_Win_free routines are provided for single-host MPI
jobs. For more information, see the mpi_win(3) man page.

• C++ bindings.

• Fortran 90 support for the USE MPI statement. Using the USE MPI statement
instead of INCLUDE ’mpif.h’ provides Fortran 90 programmers with parameter
definitions and compile-time MP I subroutine call interface checking.

• MPI bindings for multi-threading inside an MPI process.

MPI Components
The MPI library is provided as a dynamic shared object (DSO) (a file with a name
that ends in .so). The basic components that are necessary for using MPI are the
libmpi.so library, the include files, and the mpirun(1) command.

Profiling support is included in the libmpi.so libraries. Profiling support replaces
all MPI_ Xxx prototypes and function names with PMPI_Xxx entry points.

2 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

MPI Program Development
To develop a program that uses MPI, you must perform the following steps:

Procedure 1-1 Steps for MPI program development

1. Add MPI function calls to your application for MPI initiation, communications,
and synchronization. For descriptions of these functions, see the online man
pages or Using MPI: Portable Parallel Programming with the Message-Passing Interface
or the MPI standard specification.

2. Build programs for the systems that you will use, as described in Chapter 2,
"Building MPI Applications", page 5.

3. Execute your program by using the mpirun(1)command (see Chapter 3, "Using
mpirun to Execute Applications", page 7).

Note: For information on how to execute MPI programs across more than one host or
how to execute MPI programs that consist of more than one executable file, see
Chapter 2, "Building MPI Applications", page 5.

007–3687–003 3

Chapter 2

Building MPI Applications

This chapter provides procedures for building MPI applications on IRIX systems.

After you have added MPI function calls to your program, as described in Procedure
1-1, step 1, page 3, you can compile and link the program, as in the following
examples:

To use the 64-bit MPI library, choose one of the following commands:

CC -64 compute.C -lmpi

cc -64 compute.c -lmpi

f77 -64 compute.f -lmpi

f90 -64 compute.f -lmpi

To use the 32-bit MPI library, choose one of the following commands:

CC -n32 compute.C -lmpi

cc -n32 compute.c -lmpi

f77 -n32 compute.f -lmpi

f90 -n32 compute.f -lmpi

If the Fortran 90 compiler version 7.2.1 or higher is installed, you can add the
-auto_use option as follows to get compile-time checking of MPI subroutine calls:

f90 -auto_use mpi_interface -64 compute.f -lmpi

f90 -auto_use mpi_interface -n32 compute.f -lmpi

007–3687–003 5

Chapter 3

Using mpirun to Execute Applications

The mpirun(1) command is the primary job launcher for the MPT implementations of
MPI. The mpirun command must be used whenever a user wishes to run an MPI
application on an IRIX system. You can run an application on the local host only (the
host from which you issued mpirun) or distribute it to run on any number of hosts
that you specify. Note that several MPI implementations available today use a job
launcher called mpirun, and because this command is not part of the MPI standard,
each implementation’s mpirun command differs in both syntax and functionality.

Syntax of the mpirun Command
The format of the mpirun command is as follows:

mpirun [global_options]entry[: entry ...]

The global_options operand applies to all MPI executable files on all specified hosts.
The following global options are supported:

Option Description

-a[rray] array_name Specifies the array to use when launching an MPI
application. By default, Array Services uses the default
array specified in the Array Services configuration file,
arrayd.conf.

-d[ir] path_name Specifies the working directory for all hosts. In addition
to normal path names, the following special values are
recognized:

. Translates into the absolute path name of
the user’s current working directory on
the local host. This is the default.

~ Specifies the use of the value of $HOME as
it is defined on each machine. In general,
this value can be different on each
machine.

-f[ile] file_name Specifies a text file that contains mpirun arguments.

007–3687–003 7

3: Using mpirun to Execute Applications

-h[elp] Displays a list of options supported by the mpirun
command.

-p[refix]
prefix_string

Specifies a string to prepend to each line of output from
stderr and stdout for each MPI process. Some
strings have special meaning and are translated as
follows:

• %g translates into the global rank of the process
producing the output. (This is equivalent to the
rank of the process in MPI_COMM_WORLD.)

• %G translates into the number of processes in
MPI_COMM_WORLD.

• %h translates into the rank of the host on which the
process is running, relative to the mpirun(1)
command line.

• %H translates into the total number of hosts in the
job.

• %l translates into the rank of the process relative to
other processes running on the same host.

• %L translates into the total number of processes
running on the host.

• %@ translates into the name of the host on which
the process is running.

For examples of the use of these strings, first consider
the following code fragment:

main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

printf("Hello world\n");

MPI_Finalize();

}

8 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

Depending on how this code is run, the results of
running the mpirun command will be similar to those
in the following examples:

mpirun -np 2 a.out

Hello world
Hello world

mpirun -prefix ">" -np 2 a.out

>Hello world

>Hello world

mpirun -prefix "%g" 2 a.out

0Hello world

1Hello world

mpirun -prefix "[%g] " 2 a.out

[0] Hello world

[1] Hello world

mpirun -prefix "<process %g out of %G> " 4 a.out

<process 1 out of 4> Hello world

<process 0 out of 4> Hello world

<process 3 out of 4> Hello world

<process 2 out of 4> Hello world

mpirun -prefix "%@: " hosta,hostb 1 a.out

hosta: Hello world

hostb: Hello world

mpirun -prefix "%@ (%l out of %L) %g: " hosta 2, hostb 3 a.out

hosta (0 out of 2) 0: Hello world

hosta (1 out of 2) 1: Hello world

hostb (0 out of 3) 2: Hello world

hostb (1 out of 3) 3: Hello world
hostb (2 out of 3) 4: Hello world

007–3687–003 9

3: Using mpirun to Execute Applications

mpirun -prefix "%@ (%h out of %H): " hosta,hostb,hostc 2 a.out
hosta (0 out of 3): Hello world

hostb (1 out of 3): Hello world

hostc (2 out of 3): Hello world

hosta (0 out of 3): Hello world

hostc (2 out of 3): Hello world
hostb (1 out of 3): Hello world

-v[erbose] Displays comments on what mpirun is doing when
launching the MPI application.

The entry operand describes a host on which to run a program, and the local options
for that host. You can list any number of entries on the mpirun command line.

In the common case (same program, multiple data (SPMD)), in which the same
program runs with identical arguments on each host, usually only one entry needs to
be specified.

Each entry has the following components:

• One or more host names (not needed if you run on the local host)

• Number of processes to start on each host

• Name of an executable program

• Arguments to the executable program (optional)

An entry has the following format:

host_list local_options program program_arguments

The host_list operand is either a single host (machine name) or a comma-separated list
of hosts on which to run an MPI program.

The local_options operand contains information that applies to a specific host list. The
following local options are supported:

Option Description

-f[ile] file_name Specifies a text file that contains mpirun arguments
(same as global_options.) For more details, see "Using a
File for mpirun Arguments".

-np np Specifies the number of processes on which to run.

10 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

-nt nt This option behaves the same as -np.

The program program_arguments operand specifies the name of the program that you
are running and its accompanying options.

Using a File for mpirun Arguments
Because the full specification of a complex job can be lengthy, you can enter mpirun
arguments in a file and use the -f option to specify the file on the mpirun command
line, as in the following example:

mpirun -f my_arguments

The arguments file is a text file that contains argument segments. White space is
ignored in the arguments file, so you can include spaces and newline characters for
readability. An arguments file can also contain additional -f options.

Launching Programs on the Local Host Only
For testing and debugging, it is often useful to run an MPI program on the local host
only without distributing it to other systems. To run the application locally, enter
mpirun with the -np or -nt argument. Your entry must include the number of
processes to run and the name of the MPI executable file.

The following command starts three instances of the application mtest, to which is
passed an arguments list (arguments are optional).

mpirun -np 3 mtest 1000 "arg2"

You are not required to use a different host in each entry that you specify on the
mpirun(1) command. You can launch a job that has two executable files on the same
host. In the following example, both executable files use shared memory:

mpirun host_a -np 6 a.out : host_a -nt 4 b.out

007–3687–003 11

3: Using mpirun to Execute Applications

Using mpirun(1) to Run Programs in Shared Memory Mode

For running programs in MPI shared memory mode on a single host, the format of
the mpirun(1) command is as follows:

mpirun -nt[nt]progname

The -nt option specifies the number of tasks for shared memory MPI. A single UNIX
process is run with multiple tasks representing MPI processes. The progname operand
specifies the name of the program that you are running and its accompanying options.

Originally, the -nt option to mpirun was supported on IRIX systems for consistency
across platforms. Since the default mode of execution on a single IRIX system is to
use shared memory, the -nt option behaves the same as if you specified the -np
option to mpirun. The following example runs ten instances of a.out in shared
memory mode on host_a:

mpirun -nt 10 a.out

Launching a Distributed Program
You can use mpirun(1) to launch a program that consists of any number of
executable files and processes and distribute it to any number of hosts. A host is
usually a single Origin system, or can be any accessible computer running Array
Services software. Array Services software runs on IRIX systems and must be running
to launch MPI programs. For available nodes on systems running Array Services
software, see the /usr/lib/array/arrayd.conf file.

You can list multiple entries on the mpirun command line. Each entry contains an
MPI executable file and a combination of hosts and process counts for running it.
This gives you the ability to start different executable files on the same or different
hosts as part of the same MPI application.

The following examples show various ways to launch an application that consists of
multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a:

mpirun host_a -np 10 a.out

12 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

When specifying multiple hosts, you can omit the -np or -nt option, listing the
number of processes directly. The following example launches ten instances of fred
on three hosts. fred has two input arguments.

mpirun host_a, host_b, host_c 10 fred arg1 arg2

The following example launches an MPI application on different hosts with different
numbers of processes and executable files, using an array called test:

mpirun -array test host_a 6 a.out : host_b 26 b.out

The following example launches an MPI application on different hosts out of the
same directory on both hosts:

mpirun -d /tmp/mydir host_a 6 a.out : host_b 26 b.out

007–3687–003 13

Chapter 4

Thread-Safe MPI

The SGI implementation of MPI assumes the use of POSIX threads or processes (see
the pthread_create(3) or the sprocs(2) commands, respectively). MPI processes
can be multithreaded. Each thread associated with a process can issue MPI calls.
However, the rank ID in send or receive calls identifies the process, not the thread. A
thread behaves on behalf of the MPI process. Therefore, any thread associated with a
process can receive a message sent to that process.

Threads are not separately addressable. To support both POSIX threads and processes
(known as sprocs), thread-safe MPI must be run on an IRIX 6.5 system or later.

It is the user’s responsibility to prevent races when threads within the same
application post conflicting communication calls. By using distinct communicators at
each thread, the user can ensure that two threads in the same process do not issue
conflicting communication calls.

All MPI calls on IRIX 6.5 or later systems are thread-safe. This means that two
concurrently running threads can make MPI calls and the outcome will be as if the
calls executed in some order, even if their execution is interleaved.

Blocking MPI calls block the calling thread only, allowing another thread to execute, if
available. The calling thread is blocked until the event on which it waits occurs. Once
the blocked communication is enabled and can proceed, the call completes and the
thread is marked runnable within a finite time. A blocked thread does not prevent
progress of other runnable threads on the same process, and does not prevent them
from executing MPI calls.

Initialization
To initialize MPI for a program that will run in a multithreaded environment, the user
must call the MPI-2 function, MPI_Init_thread(). In addition to initializing MPI
in the same way as MPI_Init(3) does, MPI_Init_thread() also initializes the
thread environment.

It is possible to create threads before MPI is initialized, but before
MPI_Init_thread() is called, the only MPI call these threads can execute is
MPI_Initialized(3).

007–3687–003 15

4: Thread-Safe MPI

Only one thread can call MPI_Init_thread(). This thread becomes the main
thread. Since only one thread calls MPI_Init_thread(), threads must be able to
inherit initialization. With the SGI implementation of thread-safe MPI, for proper MPI
initialization of the thread environment, a thread library must be loaded before the
call to MPI_Init_thread(). This means that dlopen(3c) cannot be used to open a
thread library after the call to MPI_Init_thread().

Query Functions
The MPI-2 query function, MPI_Query_thread(), is available to query the current
level of thread support. The MPI-2 function, MPI_Is_thread_main(), can be used
to find out whether a thread is the main thread. The main thread is the thread that
called MPI_Init_thread().

Requests
More than one thread cannot work on the same request. A program in which two
threads block, waiting on the same request is erroneous. Similarly, the same request
cannot appear in the array of requests of two concurrent
MPI_Wait{any|some|all} calls. In MPI, a request can be completed only once.
Any combination of wait or test that violates this rule is erroneous.

Probes
A receive call that uses source and tag values returned by a preceding call to
MPI_Probe(3) or MPI_Iprobe(3) will receive the message matched by the probe call
only if there was no other matching receive call after the probe and before that
receive. In a multithreaded environment, it is up to the user to use suitable mutual
exclusion logic to enforce this condition. You can enforce this condition by making
sure that each communicator is used by only one thread on each process.

Collectives
Matching collective calls on a communicator, window, or file handle is performed
according to the order in which the calls are issued at each process. If concurrent

16 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

threads issue such calls on the communicator, window, or file handle, it is up to the
user to use interthread synchronization to ensure that the calls are correctly ordered.

Exception Handlers
An exception handler does not necessarily execute in the context of the thread that
made the exception-raising MPI call. The exception handler can be executed by a
thread that is distinct from the thread that will return the error code.

Signals
If a thread that executes an MPI call is cancelled by another thread, or if a thread
catches a signal while executing an MPI call, the outcome is undefined. When not
executing MPI calls, a thread associated with an MPI process can terminate and can
catch signals or be cancelled by another thread.

Internal Statistics
The SGI internal statistics diagnostics are not thread-safe.

Finalization
The call to MPI_Finalize(3) occurs on the same thread that initialized MPI (also
known as the main thread.) It is up to the user to ensure that the call occurs only
after all the processes’ threads have completed their MPI calls, and have no pending
communications or I/O operations.

007–3687–003 17

Chapter 5

Multiboard Feature

MPI automatically detects multiple HIPPI network adapters and uses as many of
them as possible when sending messages among hosts. The multiboard feature uses a
"round robin" selection scheme in choosing the next available adapter over which to
send the current message. The message is sent entirely over one adapter.

During the initialization of the MPI job, each detected adapter is tested to determine
which hosts it can reach. It is then added to the list of available adapters for messages
among the reachable hosts.

By means of the multiboard feature, messages are sent over as many HIPPI network
adapters as are available between any pair of hosts.

The multiboard feature is enabled by default and relaxes the requirements of earlier
MPI releases that the HIPPI interface adapters be located in the same board slot and
have the same interface number, such as hip0. A series of new environment variables
with this release allows the user to further specify the desired network connection.

007–3687–003 19

Chapter 6

Setting Environment Variables

This chapter describes the variables that specify the environment under which your
MPI programs will run. Environment variables have predefined values. You can
change some variables to achieve particular performance objectives; others are
required values for standard-compliant programs.

Setting MPI Environment Variables
This section provides a table of MPI environment variables you can set for IRIX
systems.

Table 6-1 MPI Environment Variables

Variable Description Default

MPI_ARRAY Sets an alternative array name to be used for
communicating with Array Services when a job is
being launched.

The default
name set in the
arrayd.conf
file

MPI_BUFS_PER_HOST Determines the number of shared message buffers (16
KB each) that MPI is to allocate for each host. These
buffers are used to send long messages.

16 pages (each
page is 16 KB)

MPI_BUFS_PER_PROC Determines the number of private message buffers (16
KB each) that MPI is to allocate for each process. These
buffers are used to send long messages.

16 pages (each
page is 16 KB)

MPI_BYPASS_DEVS Sets the order for opening HIPPI adapters. The list of
devices does not need to be space-delimited (0123 is
also valid).

0 1 2 3

An array node usually has at least one HIPPI adapter,
the interface to the HIPPI network. The HIPPI bypass
is a lower software layer that interfaces directly to this
adapter. The bypass sends MPI control and data
messages that are 16 Kbytes or shorter.

007–3687–003 21

6: Setting Environment Variables

Variable Description Default

When you know that a system has multiple HIPPI
adapters, you can use the MPI_BYPASS_ DEVS
variable to specify the adapter that a program opens
first. This variable can be used to ensure that multiple
MPI programs distribute their traffic across the
available adapters. If you prefer not to use the HIPPI
bypass, you can turn it off by setting the
MPI_BYPASS_OFF variable.

When a HIPPI adapter reaches its maximum capacity
of four MPI programs, it is not available to additional
MPI programs. If all HIPPI adapters are busy, MPI
sends internode messages by using TCP over the
adapter instead of the bypass.

MPI_BYPASS_OFF Disables the HIPPI bypass. Not enabled

MPI_BYPASS_SINGLE Allows MPI messages to be sent over multiple HIPPI
connections if multiple connections are available. The
HIPPI OS bypass multiboard feature is enabled by
default. This environment variable disables it. When
you set this variable, MPI operates as it did in previous
releases, with use of a single HIPPI adapter connection,
if available.

MPI_BYPASS_VERBOSE Allows additional MPI initialization information to be
printed in the standard output stream. This
information contains details about the HIPPI OS
bypass connections and the HIPPI adapters that are
detected on each of the hosts.

MPI_CHECK_ARGS Enables checking of MPI function arguments.
Segmentation faults might occur if bad arguments are
passed to MPI, so this is useful for debugging
purposes. Using argument checking adds several
microseconds to latency.

Not enabled

MPI_COMM_MAX Sets the maximum number of communicators that can
be used in an MPI program. Use this variable to
increase internal default limits. (May be required by
standard-compliant programs.)

256

22 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_DIR Sets the working directory on a host. When an mpirun
command is issued, the Array Services daemon on the
local or distributed node responds by creating a user
session and starting the required MPI processes. The
user ID for the session is that of the user who invokes
mpirun, so this user must be listed in the .rhosts
file on the responding nodes. By default, the working
directory for the session is the user’s $HOME directory
on each node. You can direct all nodes to a different
directory (an NFS directory that is available to all
nodes, for example) by setting the MPI_DIR variable to
a different directory.

$HOME on the
node. If using
-np or -nt, the
default is the
current
directory.

MPI_DSM_OFF Turns off nonuniform memory access (NUMA)
optimization in the MPI library.

Not enabled

MPI_DSM_MUSTRUN Specifies the CPUs on which processes are to run. You
can set the MPI_DSM_VERBOSE variable to request that
the mpirun command print information about where
processes are executing.

Not enabled

MPI_DSM_PPM Sets the number of MPI processes that can be run on
each node of an IRIX system.

2

MPI_DSM_VERBOSE Instructs mpirun to print information about process
placement for jobs running on NUMA systems.

Not enabled

MPI_GROUP_MAX Sets the maximum number of groups that can be used
in an MPI program. Use this variable to increase
internal default limits. (May be required by
standard-compliant programs.)

256

007–3687–003 23

6: Setting Environment Variables

Variable Description Default

MPI_MSGS_PER_HOST Sets the number of message headers to allocate for MPI
messages on each MPI host. Space for messages that
are destined for a process on a different host is
allocated as shared memory on the host on which the
sending processes are located. MPI locks these pages
in memory. Use the MPI_MSGS_PER_HOST variable to
allocate buffer space for interhost messages.

!
Caution: If you set the memory pool for interhost
packets to a large value, you can cause allocation of so
much locked memory that total system performance is
degraded.

128

MPI_MSGS_PER_PROC Sets the maximum number of buffers to be allocated
from sending process space for outbound messages
going to the same host. (May be required by
standard-compliant programs.) MPI allocates buffer
space for local messages based on the message
destination. Space for messages that are destined for
local processes is allocated as additional process space
for the sending process.

128

MPI_REQUEST_MAX Sets the maximum number of simultaneous
nonblocking sends and receives that can be active at
one time. Use this variable to increase internal default
limits. (May be required by standard-compliant
programs.)

1024

MPI_TYPE_DEPTH Sets the maximum number of nesting levels for derived
datatypes. (May be required by standard-compliant
programs.) The MPI_TYPE_DEPTH variable limits the
maximum depth of derived datatypes that an
application can create. MPI logs error messages if the
limit specified by MPI_TYPE_DEPTH is exceeded.

8 levels

MPI_TYPE_MAX Sets the maximum number of derived data types that
can be used in an MPI program. Use this variable to
increase internal default limits. (May be required by
standard-compliant programs.)

1024

24 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

Internal Message Buffering in MPI
An MPI implementation can copy data that is being sent to another process into an
internal temporary buffer so that the MPI library can return from the MPI function,
giving execution control back to the user. However, according to the MPI standard,
you should not assume any message buffering between processes because the MPI
standard does not mandate a buffering strategy. Some implementations choose to
buffer user data internally, while other implementations block in the MPI routine until
the data can be sent. These different buffering strategies have performance and
convenience implications.

Most MPI implementations do use buffering for performance reasons and some
programs depend on it. Table 6-2, page 25 illustrates a simple sequence of MPI
operations that cannot work unless messages are buffered. If sent messages were not
buffered, each process would hang in the initial MPI_Send call, waiting for an
MPI_Recv call to take the message. Because most MPI implementations do buffer
messages to some degree, often a program such as this will not hang. The MPI_Send
calls return after putting the messages into buffer space, and the MPI_Recv calls get
the messages. Nevertheless, program logic such as this is not valid by the MPI
standard. The SGI implementation of MPI for IRIX systems buffers messages of all
sizes. For buffering purposes, this implementation recognizes short message lengths
(64 bytes or shorter) and long message lengths (longer than 64 bytes).

Table 6-2 Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

007–3687–003 25

Chapter 7

Launching Programs with NQE

After an MPI program is debugged and ready to run in a production environment, it
is often useful to submit it to a queue to be scheduled for execution. The Network
Queuing Environment (NQE) provides this capability. NQE selects a node
appropriate for the resources that an MPI job needs, routes the job to a node, and
schedules it to run.

This chapter explains how to use the NQE graphical interface to submit an MPI
program for execution.

Starting NQE
Before you begin, set your DISPLAY variable so that the NQE screens appear on your
workstation. Then enter the nqe command, as shown in the following example:

setenv DISPLAY myworkstation:0
<nqe

Figure 7-1 shows the NQE button bar, which appears after your entry.

a11378

Figure 7-1 NQE button bar

Submitting a Job with NQE
To submit a job, click the Submit button on the NQE Job Submission window.
Figure 7-2 shows the NQE Job Submission window with a sample job script ready to
be submitted.

007–3687–003 27

7: Launching Programs with NQE

a11379

Figure 7-2 NQE Job Submission window

Notice in this figure that the difference between an NQE job request and a shell script
lies in the use of the #QSUB identifiers. In this example, the directive #QSUB -A
nqearray tells NQE to run this job under the nqearray project account. The
directive #QSUB -a 8:05pm tells NQE to wait until 8:05 p.m. to start the job.

Also notice in Figure 7-2 that the MPI program is already compiled and distributed to
the proper hosts. The file array/hostlist has the list of parameters for this job, as
you can see in the output from the following cat command:

% cat array/hostlist

homegrown, disarray, dataarray

28 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

Checking Job Status with NQE
To see the status of jobs running under NQE, click the Status button to display the
NQE Status window.

Figure 7-3 shows an example of the NQE Status window. Notice in this figure that
the MPI job is queued and waiting to run.

a11380

Figure 7-3 NQE Status window

To verify the scheduled starting time for the job, position the mouse cursor on the line
that shows the job and double-click it.

This displays the NQE Detailed Job Status window, shown in Figure 7-4. Notice that
the job was created at 8:26 PDT and is to run at 20:05 PDT.

007–3687–003 29

7: Launching Programs with NQE

a11381

Figure 7-4 NQE Detailed Job Status window

Getting More Information
For more information on using NQE, see the following NQE publications:

• Introducing NQE

• NQE Release Overview

• NQE Installation

• NQE Administration

• NQE User’s Guide

To obtain the preceding SGI documentation, go to the SGI Technical Publications
Library at http://techpubs.sgi.com.

For general information about NQE, see the following URL:

http://www.sgi.com/software (search for NQE)

30 007–3687–003

Chapter 8

MPI Troubleshooting

This chapter provides answers to frequently asked questions about MPI.

What does MPI: could not run executable mean?
It means that something happened while mpirun was trying to launch your
application, which caused it to fail before all of the MPI processes were able to
handshake with it.

Can this error message be more descriptive?

No, because of the highly decoupled interface between mpirun and arrayd, no other
information is directly available. mpirun asks arrayd to launch a master process on
each host and listens on a socket for those masters to connect back to it. Because the
masters are children of arrayd, whenever one of the masters terminates, arrayd
traps SIGCHLD and passes that signal back to mpirun. If mpirun receives a signal
before it has established connections with every host in the job, that is an indication
that something has gone wrong. In other words, there is one of two possible bits of
information available to mpirun in the early stages of initialization: success or failure.

Is there something more that can be done?

One proposed idea is to create an mpicheck utility (similar to ascheck), which
could run some simple experiments and look for things that are obviously broken
from the mpirun point of view.

In the meantime, how can we figure out why mpirun is failing?

You can use the following checklist:

• Look at the last few lines in /var/adm/SYSLOG for any suspicious errors or
warnings. For example, if your application tries to pull in a library that it cannot
find, a message should appear here.

• Check for misspelling of your application name.

007–3687–003 31

8: MPI Troubleshooting

• Be sure that you are setting your remote directory properly. By default, mpirun
attempts to place your processes on all machines into the directory that has the
same name as $PWD. However, different functionality is required sometimes. For
more information, see the mpirun(1) man page description of the -dir option.

• If you are using a relative path name for your application, be sure that it appears
in $PATH. In particular, mpirun will not look in the . file for your application
unless . appears in $PATH.

• Run /usr/etc/ascheck to verify that your array is configured correctly.

• Be sure that you can use rsh (or arshell) to connect to all of the hosts that you
are trying to use, without entering a password. This means that either the
/etc/hosts.equiv or the ~/.rhosts file must be modified to include the
names of every host in the MPI job. Note that using the -np syntax (that is, not
specifying host names) is equivalent to typing localhost, so a localhost entry
is also needed in either the /etc/hosts.equiv or the ~/.rhosts file.

• If you are using an MPT module to load MPI, try loading it directly from within
your .cshrc file instead of from the shell. If you are also loading a ProDev
module, be sure to load it after the MPT module.

• To verify that you are running the version of MPI that you think you are, use the
-verbose option of the mpirun(1) command.

• Be very careful when setting MPI environment variables from within your
.cshrc or .login files, because these settings will override any settings that you
might later set from within your shell (because MPI creates a fresh login session
for every job). The safe way to set up environment variables is to test for the
existence of $MPI_ENVIRONMENT in your scripts and set the other MPI
environment variables only if it is undefined.

• If you are running under a Kerberos environment, you might encounter difficulty
because currently, mpirun is unable to pass tokens. For example, if you use
telnet to connect to a host and then try to run mpirun on that host, the process
fails. But if you use rsh instead to connect to the host, mpirun succeeds. (This
might be because telnet is kerberized but rsh is not.) If you are running under
a Kerberos environment, you should talk to the local administrators about the
proper way to launch MPI jobs.

32 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

How do I combine MPI with other tools?
In general, the rule to follow is to run mpirun on your tool and then run the tool on
your application. Do not try to run the tool on mpirun. Also, because of the way that
mpirun sets up stdio, it might require some effort to see the output from your tool.
The simplest case is that in which the tool directly supports an option to redirect its
output to a file. In general, this is the recommended way to mix tools with mpirun.
However, not all tools (for example, dplace) support such an option. But fortunately,
it is usually possible to "roll your own" by wrapping a shell script around the tool
and having the script perform the following redirection:

> cat myscript
#!/bin/sh

setenv MPI_DSM_OFF

dplace -verbose a.out 2> outfile

> mpirun -np 4 myscript

hello world from process 0

hello world from process 1
hello world from process 2

hello world from process 3

> cat outfile

there are now 1 threads

Setting up policies and initial thread.
Migration is off.

Data placement policy is PlacementDefault.

Creating data PM.

Data pagesize is 16k.

Setting data PM.

Creating stack PM.
Stack pagesize is 16k.

Stack placement policy is PlacementDefault.

Setting stack PM.

there are now 2 threads

there are now 3 threads
there are now 4 threads

there are now 5 threads

007–3687–003 33

8: MPI Troubleshooting

Combining MPI with dplace

To combine MPI with the dplace tool, use the following code:

setenv MPI_DSM_OFF
mpirun -np 4 dplace -place file a.out

Combining MPI with perfex

To combine MPI with the perfex tool, use the following code:

mpirun -np 4 perfex -mp -o file a.out

The -o option to perfex became available for the first time in IRIX 6.5. On earlier
systems, you can use a shell script, as previously described. However, a shell script
will allow you to view only the summary for the entire job. You can view individual
statistics for each process only by using the the -o option.

Combining MPI with rld

To combine MPI with the rld tool, use the following code:

setenv _RLDN32_PATH /usr/lib32/rld.debug

setenv _RLD_ARGS "-log outfile -trace"

mpirun -np 4 a.out

You can create more than one outfile, depending on whether you are running out
of your home directory and whether you use a relative path name for the file. The
first will be created in the same directory from which you are running your
application, and will contain information that applies to your job. The second will be
created in your home directory and will contain (uninteresting) information about the
login shell that mpirun created to run your job. If both directories are the same, the
entries from both are merged into a single file.

Combining MPI with TotalView

To combine MPI with the TotalView tool, use the following code:

totalview mpirun -a -np 4 a.out

34 007–3687–003

Message Passing Toolkit: MPI Programmer’s Manual

In this one special case, you must run the tool on mpirun and not the other way
around. Because TotalView uses the -a option, this option must always appear as the
first option on the mpirun command.

How can I allocate more than 700 to 1000 MB when I link with libmpi?
On IRIX versions earlier than 6.5, there are no so_locations entries for the MPI
libraries. The way to fix this is to requickstart all versions of libmpi as follows:

cd /usr/lib32/mips3

rqs32 -force_requickstart -load_address 0x2000000 ./libmpi.so

cd /usr/lib32/mips4

rqs32 -force_requickstart -load_address 0x2000000 ./libmpi.so

cd /usr/lib64/mips3
rqs64 -force_requickstart -load_address 0x2000000 ./libmpi.so

cd /usr/lib64/mips4

rqs64 -force_requickstart -load_address 0x2000000 ./libmpi.so

Note: This procedure requires root access.

Why does my code run correctly until it reaches MPI_Finalize(3) and
then hang?

This problem is almost always caused by send or recv requests that are either
unmatched or not completed. An unmatched request would be any blocking send
request for which a corresponding recv request is never posted. An incomplete
request would be any nonblocking send or recv request that was never freed by a
call to MPI_Test(3), MPI_Wait(3), or MPI_Request_free(3). Common examples of
unmatched or incomplete requests are applications that call MPI_Isend(3) and then
use internal means to determine when it is safe to reuse the send buffer, and
therefore, never bother to call MPI_Wait(3). Such codes can be fixed easily by
inserting a call to MPI_Request_free(3) immediately after all such send requests.

007–3687–003 35

8: MPI Troubleshooting

Why do I keep getting error messages about MPI_REQUEST_MAX being too
small, no matter how large I set it?

You are probably calling MPI_Isend(3) or MPI_Irecv(3) and not completing or
freeing your request objects. You should use MPI_Request_free(3), as described in
the previous question.

Why am I not seeing stdout or stderr output from my MPI application?
Beginning with our MPI 3.1 release, all stdout and stderr output is line-buffered,
which means that mpirun will not print any partial lines of output. This sometimes
causes problems for codes that prompt the user for input parameters but do not end
their prompts with a newline character. The only solution for this is to append a
newline character to each prompt.

36 007–3687–003

Index

A

adapter selection, 19

B

building MPI applications, 5

D

distributed programs, 12

E

environment variable setting, 21

F

frequently asked questions, 31

I

internal message buffering, 25

M

MPI
components, 2
overview, 1

mpirun
argument file, 11

command, 7
for distributed programs, 12
for local host, 11
for shared memory, 12

MPT
components, 1
overview, 1

multiboard feature, 19

N

Network Queuing Environment (NQE), 27

P

program development, 3
program segments, 12

S

shared memory
using mpirun, 12

sprocs, 15

T

threads
collectives, 16
exception handlers, 17
finalization, 17
initialization, 15
internal statistics, 17
probes, 16

007–3687–003 37

Index

query functions, 16
requests, 16
signals, 17

thread-safe systems, 15
troubleshooting, 31

38 007–3687–003

