Tutorial on MPI: The
Message-Passing Interface

William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
gropp@mcs.anl.gov

Types of parallel computing

All use different data for each worker

Data-parallel Same operations on different
data. Also called SIMD

SPMD Same program, different data
MIMD Different programs, different data

SPMD and MIMD are essentially the same
because any MIMD can be made SPMD

SIMD is also equivalent, but in a less
practical sense.

MPI is primarily for SPMD/MIMD. HPF is
an example of a SIMD interface.

Communicating with other processes

Data must be exchanged with other workers

e Cooperative — all parties agree to
transfer data

e One sided — one worker performs
transfer of data

Cooperative operations

Message-passing is an approach that makes
the exchange of data cooperative.

Data must both be explicitly sent and
received.

An advantage is that any change in the
receiver’'s memory is made with the receiver’s

participation.
Process 0 Process 1

SEND(data)\

B RECV(data)

One-sided operations

One-sided operations between parallel
processes include remote memory reads and
writes.

An advantage is that data can be accessed
without waiting for another process

Process 0 Process 1

PUT(data) \

T (Memory)

Process 0 Process 1

(Memory)

\\

GET(data)

What is MPI1?

A message-passing library specification
— message-passing model

— not a compiler specification

— not a specific product

For parallel computers, clusters, and heterogeneous
networks

Full-featured

Designed to permit (unleash?) the development of
parallel software libraries

Designed to provide access to advanced parallel
hardware for

— end users
— library writers

— tool developers

Motivation for a New Design

e Message Passing now mature as programming
paradigm

— well understood
— efficient match to hardware

— many applications
e Vendor systems not portable

e Portable systems are mostly research projects
— incomplete
— lack vendor support

— not at most efficient level

T he MPI Process

e Began at Williamsburg Workshop in April, 1992

Organized at Supercomputing '92 (November)

Followed HPF format and process

Met every six weeks for two days

Extensive, open email discussions

Drafts, readings, votes

Pre-final draft distributed at Supercomputing '93
Two-month public comment period

Final version of draft in May, 1994

Widely available now on the Web, ftp sites, netlib
(http://www.mcs.anl.gov/mpi/index.html)

Public implementations available

Vendor implementations coming soon

Who Desighed MPI?

e Broad participation

e Vendors

— IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

e Library writers

— PVM, p4, Zipcode, TCGMSG, Chameleon,
Express, Linda

e Application specialists and consultants

Companies Laboratories Universities
ARCO ANL UC Santa Barbara
Convex GMD Syracuse U
Cray Res LANL Michigan State U
IBM LLNL Oregon Grad Inst
Intel NOAA U of New Mexico
KAI NSF Miss. State U.
Meiko ORNL U of Southampton
NAG PNL U of Colorado
nCUBE Sandia Yale U
ParaSoft SDSC U of Tennessee
Shell SRC U of Maryland
TMC Western Mich U

U of Edinburgh

Cornell U.

Rice U.

U of San Francisco

Features of MPI

e General

— Communicators combine context and group for
message security

— Thread safety

e Point-to-point communication

— Structured buffers and derived datatypes,
heterogeneity

— Modes: normal (blocking and non-blocking),

synchronous, ready (to allow access to fast
protocols), buffered
e Collective

— Both built-in and user-defined collective
operations

— Large number of data movement routines

— Subgroups defined directly or by topology

Features of MPI (cont.)

e Application-oriented process topologies
— Built-in support for grids and graphs (uses
groups)
e Profiling

— Hooks allow users to intercept MPI calls to
install their own tools

e Environmental
— inquiry

— error control

Features not in MPI

e Non-message-passing concepts not included:

process management
remote memory transfers
active messages
threads
virtual shared memory
e MPI does not address these issues, but has tried to

remain compatible with these ideas (e.g. thread
safety as a goal, intercommunicators)

Is MPI Large or Small?

e MPI is large (125 functions)

— MPI's extensive functionality requires many
functions

— Number of functions not necessarily a measure
of complexity

e MPI is small (6 functions)
— Many parallel programs can be written with just
6 basic functions.
e MPI is just right
— One can access flexibility when it is required.

— One need not master all parts of MPI to use it.

Where to use MPI?

e YOU need a portable parallel program
e You are writing a parallel library

e You have irregular or dynamic data
relationships that do not fit a data
parallel model

Where not to use MPI:
e YOou can use HPF or a parallel Fortran 90

e You don’t need parallelism at all

e You can use libraries (which may be
written in MPI)

Writing MPI programs

#include '"mpi.h"

#include <stdio.h>

int main(argc, argv)
int argc;
char **argv,

{

MPI_Init(&argc, &argv);
printf("Hello world\n");
MPI_Finalize();

return O;

+

Commentary

#include "mpi.h" provides basic MPI
definitions and types

MPI_Init starts MPI
MPI_Finalize exits MPI

Note that all non-MPI routines are local;
thus the printf run on each process

Compiling and linking

For simple programs, special compiler
commands can be used. For large projects,
it is best to use a standard Makefile.

The MPICH implementation provides
the commands mpicc and mpif77
as well as ‘Makefile’ examples in

‘/usr/local/mpi/examples/Makefile.in’

Special compilation commands

The commands

mpicc -o first first.c
mpif77 -o firstf firstf.f

may be used to build simple programs when using
MPICH.

These provide special options that exploit the profiling
features of MPI

-mpilog Generate log files of MPI calls
-mpitrace Trace execution of MPI calls

-mpianim Real-time animation of MPI (not available
on all systems)

There are specific to the MPICH implementation;

other implementations may provide similar commands

(e.g., mpcc and mpxlf on IBM SP2).

Running MPI programs

mpirun -np 2 hello

‘mpirun’ IS not part of the standard, but
some version of it is common with several
MPI implementations. The version shown
here is for the MPICH implementation of
MPI.

@ Just as Fortran does not specify how
Fortran programs are started, MPI does not
specify how MPI programs are started.

@ T he option -t shows the commands that
mpirun would execute; you can use this to

find out how mpirun Starts programs on yor
system. The option -help shows all options

{0 mpirun.

Finding out about the environment

Two of the first questions asked in a parallel
program are: How many processes are there?
and Who am 17

How many is answered with MPI_Comm_size

and who am I is answered with MPI_Comm_rank.

The rank is a number between zero and

size-1.

A simple program

#include "mpi.h"
#include <stdio.h>

int main(argc, argv)

int argc;

char **xargv;

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I’m %d of %d\n",
rank, size);

MPI_Finalize();

return O;

}

Sending and Receiving messages

Process O Process 1

g Send

Questions:
e [0 whom is data sent?
e VWhat is sent?

e How does the receiver identify it?

Current Message-Passing

e A typical blocking send looks like

send(dest, type, address, length)

where

— dest is an integer identifier representing the
process to receive the message.

— type iS @ nonnegative integer that the
destination can use to selectively screen
messages.

— (address, length) describes a contiguous area in
memory containing the message to be sent.

and

e A typical global operation looks like:

broadcast(type, address, length)

e All of these specifications are a good match to
hardware, easy to understand, but too inflexible.

T he Buffer

Sending and receiving only a contiguous array of
bytes:

e hides the real data structure from hardware which
might be able to handle it directly

e requires pre-packing dispersed data
— rows of a matrix stored columnwise
— general collections of structures
e prevents communications between machines with

different representations (even lengths) for same
data type

Delimiting Scope of Communication

e Separate groups of processes working on
subproblems

— Merging of process name space interferes with
modularity

“Local” process identifiers desirable

e Parallel invocation of parallel libraries

— Messages from application must be kept
separate from messages internal to library.

— Knowledge of library message types interferes
with modularity.

— Synchronizing before and after library calls is
undesirable.

Generalizing the Process Identifier

Collective operations typically operated on all
processes (although some systems provide
subgroups).

This is too restrictive (e.g., need minimum over a
column or a sum across a row, of processes)

MPI provides groups of processes

— initial “all” group

— group management routines (build, delete
groups)

All communication (not just collective operations)
takes place in groups.

A group and a context are combined in a
communicator.

Source/destination in send/receive operations refer
to rank in group associated with a given
commuhnicator. MPI_ANY_SOURCE permitted in a
receive.

MPI Basic Send/Receive

Thus the basic (blocking) send has become:

MPI_Send(start, count, datatype, dest, tag,
comm)

and the receive:

MPI_Recv(start, count, datatype, source, tag,
comm, status)

The source, tag, and count of the message actually
received can be retrieved from status.

Two simple collective operations:

MPI_Bcast(start, count, datatype, root, comm)
MPI_Reduce(start, result, count, datatype,
operation, root, comm)

Getting information about a message

MPI_Status status;
MPI_Recv(..., &status);
status.MPI_TAG;
status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &count);

MPI_TAG and MPI_SOURCE primarily of use when
MPI_ANY_TAG and/or MPI_ANY_SOURCE in the receive.

MPI_Get_count may be used to determine how much
data of a particular type was received.

Six Function MPI

MPI is very simple. These six functions allow
you to write many programs:

MPI_Init

MPI _Finalize
MPI_Comm size
MPI_Comm _rank
MPI_Send

MPI_Recv

A taste of things to come

The following examples show a C and
Fortran version of the same program.

This program computes PI (with a very
simple method) but does not use MPI_Send
and MPI_Recv. Instead, it uses collective
operations to send data to and from all of
the running processes. This gives a different
six-function MPI set:

MPI_Init

MPI _Finalize
MPI_Comm size
MPI_Comm _rank
MPI_Bcast

MPI_Reduce

Broadcast and Reduction

The routine MPI_Bcast sends data from one
process to all others.

The routine MPI_Reduce combines data from
all processes (by adding them in this case),

and returning the result to a single process.

C example: PI

#include ''mpi.h"
#include <math.h>

int main(argc,argv)

int argc;

char xargvl[];

{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;

C example (cont.)

while (!done)
{
if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);
}
MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);
if (n == 0) break;

h =1.0/ (double) n;
= 0.0;

(i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, O,
MPI_COMM_WORLD) ;

if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));
}
MPI_Finalize();

Collective Communications in MPI

Communication is coordinated among a group of
processes.

Groups can be constructed “by hand” with MPI
group-manipulation routines or by using MPI
topology-definition routines.

Message tags are not used. Different
commuhnicators are used instead.

No non-blocking collective operations.

Three classes of collective operations:
— synchronization
— data movement

— collective computation

Synchronization

e MPI Barrier (comm)

e Function blocks untill all processes in

comm call it.

Available Collective Patterns

Broadcast

—

Scatter

Gather

-

All gather

PO |AO|AL1|A2|A3 PO |AO(BO|CO|DO

P1|B0O|B1|B2|B3 All to All P1 |A1B1|C1|D1

—

P2 |CO|C1|C2|C3 P2 |A2|B2|C2|D2

P3 |D0(D1|D2|D3 P3 |A3(B3|C3|D3

Schematic representation of collective data
movement in MPI

Available Collective Computation Patterns

Reduce

=

PO PO A

P1 P1| AB

P2 P2 | ABC

P3 P3 | ABCD

Schematic representation of collective data
movement in MPI

MPI Collective Routines

Many routines:

Allgather Allgatherv Allreduce
Alltoall Alltoallv Bcast
Gather Gatherv Reduce
ReduceScatter Scan Scatter
Scatterv

A1l versions deliver results to all participating
processes.

V versions allow the chunks to have different sizes.

Allreduce, Reduce, ReduceScatter, and Scan take

both built-in and user-defined combination
functions.

Built-in Collective Computation Operations

MPI Name

Operation

MPI _MAX
MPI_MIN
MPI_PROD
MPI_SUM

Maximum
Minimum
Product
Sum

MPI_LAND
MPI_LOR
MPI_LXOR

Logical and
Logical or
Logical exclusive or (xor)

MPI _BAND
MPI _BOR
MPI _BXOR

Bitwise and
Bitwise or
Bitwise xor

MPI _MAXLOC
MPI_MINLOC

Maximum value and location
Minimum value and location

Buffering issues

Where does data go when you send it? One
possibility is:

Process 1 Process 2

A:

Local Buffer

Local Buffer

The Network

Better buffering

This is not very efficient. There are three
copies in addition to the exchange of data

between processes. We prefer
Process 1 Process 2

A:

But this requires that either that MPI_Send
not return until the data has been delivered
or that we allow a send operation to return
before completing the transfer. In this case,
we need to test for completion later.

Blocking and Non-Blocking communication

e SO far we have used blocking communication:

— MPI _Send does not complete until buffer is empty
(available for reuse).

— MPI Recv does not complete until buffer is full
(available for use).

e Simple, but can be “unsafe’:

Process O Process 1
Send(1) Send(0)
Recv(1) Recv(0)

Completion depends in general on size of message
and amount of system buffering.

@ Send works for small enough messages but fails

when messages get too large. Too large ranges from

zero bytes to 100’s of Megabytes.

Some Solutions to the “Unsafe” Problem

e Order the operations more carefully:

Process O Process 1
Send(1) Recv(0)
Recv(1) Send(0)

e Supply receive buffer at same time as send, with
MPI _Sendrecv:

Process O Process 1
Sendrecv(1l) Sendrecv(0)

e Use non-blocking operations:

Process O Process 1

Isend(1) Isend(0)
Irecv(l) Irecv(0)
Waitall Waitall

e Use MPI_Bsend

MPI’'s Non-Blocking Operations

Non-blocking operations return (immediately)
“request handles” that can be waited on and queried:

MPI Isend(start, count, datatype, dest, tag, comm,
request)

MPI Irecv(start, count, datatype, dest, tag, comm,
request)

MPI Wait(request, status)

One can also test without waiting: MPI_Test(request,

flag, status)

Multiple completions

It is often desirable to wait on multiple requests. An
example is a master/slave program, where the master
waits for one or more slaves to send it a message.

MPI Waitall(count, array of requests,
array_of statuses)

MPI Waitany(count, array of requests, index,
status)

MPI Waitsome(incount, array of requests, outcount,
array of indices, array of statuses)

There are corresponding versions of test for each of
these.

@ The MPI_WAITSOME and MPI_TESTSOME may be used to

implement master/slave algorithms that provide fair

access to the master by the slaves.

Fairness

What happens with this program:

#include ''mpi.h"

#include <stdio.h>

int main(argc, argv)

int argc;

char x**argv;

{

int rank, size, i, buf[1];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0) {
for (i=0; i<100*(size-1); i++) {
MPI_Recv(buf, 1, MPI_INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf("Msg from /d with tag %d\n",
status.MPI_SOURCE, status.MPI_TAG);
}
}
else {
for (i=0; i<100; i++)
MPI_Send(buf, 1, MPI_INT, O, i, MPI_COMM_WORLD);
}
MPI_Finalize();
return O;

+

Fairness in message-passing

An parallel algorithm is fair if no process
Is effectively ignored. In the preceeding
program, processes with low rank (like
process zero) may be the only one whose
messages are received.

MPI makes no guarentees about fairness.
However, MPI makes it possible to write
efficient, fair programs.

Providing Fairness

One alternative is

#define large 128
MPI_Request requests[large];
MPI_Status statuses[large];
int indices[large];
int buf [large];
for (i=1; i<size; i++)
MPI_Irecv(buf+i, 1, MPI_INT, 1i,
MPI_ANY_TAG, MPI_COMM_WORLD, &requests[i-1]);
while(not done) {
MPI_Waitsome(size-1, requests, &ndone, indices, statuses);
for (i=0; i<ndone; i++) {
j = indices[i];
printf("Msg from /d with tag %d\n",
statuses[i] .MPI_SOURCE,
statuses[i] .MPI_TAG);
MPI_Irecv(buf+j, 1, MPI_INT, j,
MPI_ANY_TAG, MPI_COMM_WORLD, &requests[j]);
}

More on nonblocking communication

In applications where the time to send data between
processes is large, it is often helpful to cause
communication and computation to overlap. This can
easily be done with MPI's non-blocking routines.

For example, in a 2-D finite difference mesh, moving
data needed for the boundaries can be done at the
same time as computation on the interior.

MPI_Irecv(... each ghost edge ...);

MPI_Isend(... data for each ghost edge ...);
. compute on interior

while (still some uncompleted requests) {

MPI_Waitany(... requests ...)
if (request is a receive)
. compute on that edge ...

}

Note that we call MPI_Waitany several times. This
exploits the fact that after a request is satisfied, it
is set to MPI_REQUEST_NULL, and that this is a valid

request object to the wait and test routines.

Communication Modes

MPI provides mulitple modes for sending messages:

Synchronous mode (MPI_Ssend): the send does not
complete until a matching receive has begun.
(Unsafe programs become incorrect and usually
deadlock within an MPI_Ssend.)

Buffered mode (MPI_Bsend): the user supplies the
buffer to system for its use. (User supplies enough
memory to make unsafe program safe).

Ready mode (MPI_Rsend): user guarantees that

matching receive has been posted.

— allows access to fast protocols

— undefined behavior if the matching receive is not
posted

Non-blocking versions:
MPI_Issend, MPI_Irsend, MPI_Ibsend

Note that an MPI_Recv may receive messages sent with
any send mode.

Buffered Send

MPI provides a send routine that may be used when
MPI_Isend is awkward to use (e.g., lots of small
messages).

MPI_Bsend makes use of a user-provided buffer to save
any messages that can not be immediately sent.

int bufsize;
char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);

MPI_Bsend(... same as MPI_Send ...);

MPI_Buffer_detach(&buf, &bufsize);

The MPI_Buffer_detach call does not complete until all
messages are sent.

@ The performance of MPI_Bsend depends on the

implementation of MPI and may also depend on
the size of the message. For example, making a
message one byte longer may cause a significant drop

in performance.

Tools for writing libraries

MPI is specifically designed to make it easier
to write message-passing libraries

e Communicators solve tag/source

wild-card problem

e Attributes provide a way to attach
information to a communicator

Private commmunicators

One of the first thing that a library should
normally do is create private communicator.
This allows the library to send and receive
messages that are known only to the library.

MPI_Comm_dup(old_comm, &new_comm) ;

MPI Objects

@ MPI has a variety of objects
(communicators, groups, datatypes, etc.)
that can be created and destroyed. TAhis
section discusses the types of these data and

how MPI manages them.

@ T his entire chapter may be skipped by
beginners.

The MPI Objects

MPI Request Handle for nonblocking
communication, normally freed by MPI in
a test or wait

MPI Datatype MPI datatype. Free with
MPI_Type_free.

MPI Op User-defined operation. Free with
MPI_Op_free.

MPI _Comm Communicator. Free with
MPI_Comm_free.

MPI Group Group of processes. Free with

MPI_Group_free.

MPI _Errhandler MPI errorhandler. Free with
MPI_Errhandler_free.

Tools for evaluating programs

MPI provides some tools for evaluating the
performance of parallel programs.

T hese are
e [imer

e Profiling interface

The MPI Timer

The elapsed (wall-clock) time between two
points in an MPI program can be computed
using MPI_Wtime:

double t1l, t2;
t1 = MPI_Wtime();

t2 = MPI_Wtime();
printf("Elapsed time is %f\n", t2 - t1);

The value returned by a single call to
MPI_Wtime has little value.

@ The times are local; the attribute
MPI_WTIME_IS_GLOBAL may be used to determine
if the times are also synchronized with each
other for all processes in MPI_COMM_WORLD.

Profiling

e All routines have two entry points: MPI_... and
PMPI_. ...

e This makes it easy to provide a single level of
low-overhead routines to intercept MPI calls
without any source code modifications.

e Used to provide “automatic” generation of trace

' MPI_Send T MPI_Send MPI_Send

| PMPI_Send = PMPI_Send

i MPI_Bcast - = MPI_Bcast

User Program Profile Library MPI Library

static int nsend = 0;

int MPI_Send(start, count, datatype, dest, tag, comm)
{

nsend++;

return PMPI_Send(start, count, datatype, dest, tag, comm)
}

Writing profiling routines

The MPICH implementation contains a program for
writing wrappers.

This description will write out each MPI routine that

is called.:
##ifdef MPI_BUILD_PROFILING

#undef MPI_BUILD_PROFILING
#endif

#include <stdio.h>
#include "mpi.h"

{{fnall fn_namel}}
{{vardecl int 1llrank}}
PMPI_Comm_rank(MPI_COMM_WORLD, &llrank);
printf("[/d] Starting {{fn_namel}}...\n",

llrank); fflush(stdout);

{{callfn}}

printf("[/d] Ending {{fn_name}}\n", llrank);
fflush(stdout);
{{endfnalll}}

The command
wrappergen -w trace.w -o trace.c

converts this to a C program. The complie the file
‘trace.c’ and insert the resulting object file into your
link line:

cc -o a.out a.o ... trace.o -lpmpi -1lmpi

MPI-2

e The MPI Forum (with old and new participants)
has begun a follow-on series of meetings.

e Goals
— clarify existing draft
— provide features users have requested

— make extensions, not changes

e Major Topics being considered
dynamic process management
client/server
real-time extensions

“one-sided” communication (put/get, active
messages)

portable access to MPI system state (for
debuggers)

language bindings for C++4 and Fortran-90

e Schedule

— Dynamic processes, client/server by SC '95

— MPI-2 complete by SC 96

Summary

The parallel computing community has cooperated
to develop a full-featured standard message-passing
library interface.

Implementations abound

Applications beginning to be developed or ported

MPI-2 process beginning

Lots of MPI material available

