
Tutorial on MPI: TheMessage-Passing InterfaceWilliam Gropp
A

R
G

O
N

NE

NATIONAL LABORA
TO

R
Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439gropp@mcs.anl.gov 1

Types of parallel computingAll use di�erent data for each workerData-parallel Same operations on di�erentdata. Also called SIMDSPMD Same program, di�erent dataMIMD Di�erent programs, di�erent dataSPMD and MIMD are essentially the samebecause any MIMD can be made SPMDSIMD is also equivalent, but in a lesspractical sense.MPI is primarily for SPMD/MIMD. HPF isan example of a SIMD interface.
5

Communicating with other processes
Data must be exchanged with other workers� Cooperative | all parties agree totransfer data� One sided | one worker performstransfer of data

6

Cooperative operationsMessage-passing is an approach that makesthe exchange of data cooperative.Data must both be explicitly sent andreceived.An advantage is that any change in thereceiver's memory is made with the receiver'sparticipation.
SEND(data)

Process 0 Process 1

RECV(data)

7

One-sided operationsOne-sided operations between parallelprocesses include remote memory reads andwrites.An advantage is that data can be accessedwithout waiting for another process
Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data) 8

What is MPI?� A message-passing library speci�cation{ message-passing model{ not a compiler speci�cation{ not a speci�c product� For parallel computers, clusters, and heterogeneousnetworks� Full-featured� Designed to permit (unleash?) the development ofparallel software libraries� Designed to provide access to advanced parallelhardware for{ end users{ library writers{ tool developers 11

Motivation for a New Design� Message Passing now mature as programmingparadigm{ well understood{ e�cient match to hardware{ many applications� Vendor systems not portable� Portable systems are mostly research projects{ incomplete{ lack vendor support{ not at most e�cient level
12

The MPI Process� Began at Williamsburg Workshop in April, 1992� Organized at Supercomputing '92 (November)� Followed HPF format and process� Met every six weeks for two days� Extensive, open email discussions� Drafts, readings, votes� Pre-�nal draft distributed at Supercomputing '93� Two-month public comment period� Final version of draft in May, 1994� Widely available now on the Web, ftp sites, netlib(http://www.mcs.anl.gov/mpi/index.html)� Public implementations available� Vendor implementations coming soon 14

Who Designed MPI?� Broad participation� Vendors{ IBM, Intel, TMC, Meiko, Cray, Convex, Ncube� Library writers{ PVM, p4, Zipcode, TCGMSG, Chameleon,Express, Linda� Application specialists and consultantsCompanies Laboratories UniversitiesARCO ANL UC Santa BarbaraConvex GMD Syracuse UCray Res LANL Michigan State UIBM LLNL Oregon Grad InstIntel NOAA U of New MexicoKAI NSF Miss. State U.Meiko ORNL U of SouthamptonNAG PNL U of ColoradonCUBE Sandia Yale UParaSoft SDSC U of TennesseeShell SRC U of MarylandTMC Western Mich UU of EdinburghCornell U.Rice U.U of San Francisco 15

Features of MPI� General{ Communicators combine context and group formessage security{ Thread safety� Point-to-point communication{ Structured bu�ers and derived datatypes,heterogeneity{ Modes: normal (blocking and non-blocking),synchronous, ready (to allow access to fastprotocols), bu�ered� Collective{ Both built-in and user-de�ned collectiveoperations{ Large number of data movement routines{ Subgroups de�ned directly or by topology
16

Features of MPI (cont.)
� Application-oriented process topologies{ Built-in support for grids and graphs (usesgroups)� Pro�ling{ Hooks allow users to intercept MPI calls toinstall their own tools� Environmental{ inquiry{ error control

17

Features not in MPI
� Non-message-passing concepts not included:{ process management{ remote memory transfers{ active messages{ threads{ virtual shared memory� MPI does not address these issues, but has tried toremain compatible with these ideas (e.g. threadsafety as a goal, intercommunicators)

18

Is MPI Large or Small?� MPI is large (125 functions){ MPI's extensive functionality requires manyfunctions{ Number of functions not necessarily a measureof complexity� MPI is small (6 functions){ Many parallel programs can be written with just6 basic functions.� MPI is just right{ One can access
exibility when it is required.{ One need not master all parts of MPI to use it.
19

Where to use MPI?� You need a portable parallel program� You are writing a parallel library� You have irregular or dynamic datarelationships that do not �t a dataparallel modelWhere not to use MPI:� You can use HPF or a parallel Fortran 90� You don't need parallelism at all� You can use libraries (which may bewritten in MPI)
20

Writing MPI programs#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{MPI_Init(&argc, &argv);printf("Hello world\n");MPI_Finalize();return 0;}
23

Commentary
� #include "mpi.h" provides basic MPIde�nitions and types� MPI_Init starts MPI� MPI_Finalize exits MPI� Note that all non-MPI routines are local;thus the printf run on each process

24

Compiling and linking
For simple programs, special compilercommands can be used. For large projects,it is best to use a standard Make�le.The MPICH implementation providesthe commands mpicc and mpif77as well as `Makefile' examples in`/usr/local/mpi/examples/Makefile.in'

25

Special compilation commandsThe commandsmpicc -o first first.cmpif77 -o firstf firstf.fmay be used to build simple programs when usingMPICH.These provide special options that exploit the pro�lingfeatures of MPI-mpilog Generate log �les of MPI calls-mpitrace Trace execution of MPI calls-mpianim Real-time animation of MPI (not availableon all systems)There are speci�c to the MPICH implementation;other implementations may provide similar commands(e.g., mpcc and mpxlf on IBM SP2). 26

Running MPI programsmpirun -np 2 hello`mpirun' is not part of the standard, butsome version of it is common with severalMPI implementations. The version shownhere is for the MPICH implementation ofMPI.� Just as Fortran does not specify howFortran programs are started, MPI does notspecify how MPI programs are started.� The option -t shows the commands thatmpirun would execute; you can use this to�nd out how mpirun starts programs on yorsystem. The option -help shows all optionsto mpirun. 30

Finding out about the environment
Two of the �rst questions asked in a parallelprogram are: How many processes are there?and Who am I?How many is answered with MPI_Comm_sizeand who am I is answered with MPI_Comm_rank.The rank is a number between zero andsize-1.

31

A simple program#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{int rank, size;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &size);printf("Hello world! I'm %d of %d\n",rank, size);MPI_Finalize();return 0;}
32

Sending and Receiving messages
Process 0 Process 1

A:

B:

Send RecvQuestions:� To whom is data sent?� What is sent?� How does the receiver identify it?
35

Current Message-Passing� A typical blocking send looks likesend(dest, type, address, length)where{ dest is an integer identi�er representing theprocess to receive the message.{ type is a nonnegative integer that thedestination can use to selectively screenmessages.{ (address, length) describes a contiguous area inmemory containing the message to be sent.and� A typical global operation looks like:broadcast(type, address, length)� All of these speci�cations are a good match tohardware, easy to understand, but too in
exible. 36

The Bu�erSending and receiving only a contiguous array ofbytes:� hides the real data structure from hardware whichmight be able to handle it directly� requires pre-packing dispersed data{ rows of a matrix stored columnwise{ general collections of structures� prevents communications between machines withdi�erent representations (even lengths) for samedata type
37

Delimiting Scope of Communication� Separate groups of processes working onsubproblems{ Merging of process name space interferes withmodularity{ \Local" process identi�ers desirable� Parallel invocation of parallel libraries{ Messages from application must be keptseparate from messages internal to library.{ Knowledge of library message types interfereswith modularity.{ Synchronizing before and after library calls isundesirable.
46

Generalizing the Process Identi�er� Collective operations typically operated on allprocesses (although some systems providesubgroups).� This is too restrictive (e.g., need minimum over acolumn or a sum across a row, of processes)� MPI provides groups of processes{ initial \all" group{ group management routines (build, deletegroups)� All communication (not just collective operations)takes place in groups.� A group and a context are combined in acommunicator.� Source/destination in send/receive operations referto rank in group associated with a givencommunicator. MPI_ANY_SOURCE permitted in areceive. 47

MPI Basic Send/ReceiveThus the basic (blocking) send has become:MPI_Send(start, count, datatype, dest, tag,comm)and the receive:MPI_Recv(start, count, datatype, source, tag,comm, status)The source, tag, and count of the message actuallyreceived can be retrieved from status.Two simple collective operations:MPI_Bcast(start, count, datatype, root, comm)MPI_Reduce(start, result, count, datatype,operation, root, comm)
48

Getting information about a message
MPI_Status status;MPI_Recv(..., &status);... status.MPI_TAG;... status.MPI_SOURCE;MPI_Get_count(&status, datatype, &count);MPI_TAG and MPI_SOURCE primarily of use whenMPI_ANY_TAG and/or MPI_ANY_SOURCE in the receive.MPI_Get_count may be used to determine how muchdata of a particular type was received.

49

Six Function MPIMPI is very simple. These six functions allowyou to write many programs:MPI InitMPI FinalizeMPI Comm sizeMPI Comm rankMPI SendMPI Recv
52

A taste of things to comeThe following examples show a C andFortran version of the same program.This program computes PI (with a verysimple method) but does not use MPI_Sendand MPI_Recv. Instead, it uses collectiveoperations to send data to and from all ofthe running processes. This gives a di�erentsix-function MPI set:MPI InitMPI FinalizeMPI Comm sizeMPI Comm rankMPI BcastMPI Reduce 53

Broadcast and Reduction
The routine MPI_Bcast sends data from oneprocess to all others.The routine MPI_Reduce combines data fromall processes (by adding them in this case),and returning the result to a single process.

54

C example: PI
#include "mpi.h"#include <math.h>int main(argc,argv)int argc;char *argv[];{ int done = 0, n, myid, numprocs, i, rc;double PI25DT = 3.141592653589793238462643;double mypi, pi, h, sum, x, a;MPI_Init(&argc,&argv);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_rank(MPI_COMM_WORLD,&myid);

57

C example (cont.)while (!done){ if (myid == 0) {printf("Enter the number of intervals: (0 quits) ");scanf("%d",&n);}MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);if (n == 0) break;h = 1.0 / (double) n;sum = 0.0;for (i = myid + 1; i <= n; i += numprocs) {x = h * ((double)i - 0.5);sum += 4.0 / (1.0 + x*x);}mypi = h * sum;MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);if (myid == 0)printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));}MPI_Finalize();}
58

Collective Communications in MPI� Communication is coordinated among a group ofprocesses.� Groups can be constructed \by hand" with MPIgroup-manipulation routines or by using MPItopology-de�nition routines.� Message tags are not used. Di�erentcommunicators are used instead.� No non-blocking collective operations.� Three classes of collective operations:{ synchronization{ data movement{ collective computation
72

Synchronization
� MPI_Barrier(comm)� Function blocks untill all processes incomm call it.

73

Available Collective Patterns
P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A A

A

A

A

A B C D A

B

C

D

A

B

C

D

A B C D

A B C D

A B C D

A B C D

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

All to All

All gather

Scatter

Gather

Broadcast

Schematic representation of collective datamovement in MPI 74

Available Collective Computation Patterns
ABC

ABCD

AB

A

ABCD

Reduce

Scan

P3

P3

P0

P1

P2

P0

P1

P2

A

B

C

DP3

A

B

C

DP3

P0

P1

P2

P0

P1

P2

Schematic representation of collective datamovement in MPI
75

MPI Collective Routines� Many routines:Allgather Allgatherv AllreduceAlltoall Alltoallv BcastGather Gatherv ReduceReduceScatter Scan ScatterScatterv� All versions deliver results to all participatingprocesses.� V versions allow the chunks to have di�erent sizes.� Allreduce, Reduce, ReduceScatter, and Scan takeboth built-in and user-de�ned combinationfunctions.
76

Built-in Collective Computation Operations
MPI Name OperationMPI MAX MaximumMPI MIN MinimumMPI PROD ProductMPI SUM SumMPI LAND Logical andMPI LOR Logical orMPI LXOR Logical exclusive or (xor)MPI BAND Bitwise andMPI BOR Bitwise orMPI BXOR Bitwise xorMPI MAXLOC Maximum value and locationMPI MINLOC Minimum value and location

77

Bu�ering issues
Where does data go when you send it? Onepossibility is:

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

85

Better bu�eringThis is not very e�cient. There are threecopies in addition to the exchange of databetween processes. We prefer
B:

A:

Process 1 Process 2

But this requires that either that MPI_Sendnot return until the data has been deliveredor that we allow a send operation to returnbefore completing the transfer. In this case,we need to test for completion later.
86

Blocking and Non-Blocking communication� So far we have used blocking communication:{ MPI Send does not complete until bu�er is empty(available for reuse).{ MPI Recv does not complete until bu�er is full(available for use).� Simple, but can be \unsafe":Process 0 Process 1Send(1) Send(0)Recv(1) Recv(0)Completion depends in general on size of messageand amount of system bu�ering.� Send works for small enough messages but failswhen messages get too large. Too large ranges fromzero bytes to 100's of Megabytes.
87

Some Solutions to the \Unsafe" Problem� Order the operations more carefully:Process 0 Process 1Send(1) Recv(0)Recv(1) Send(0)� Supply receive bu�er at same time as send, withMPI Sendrecv:Process 0 Process 1Sendrecv(1) Sendrecv(0)� Use non-blocking operations:Process 0 Process 1Isend(1) Isend(0)Irecv(1) Irecv(0)Waitall Waitall� Use MPI_Bsend
88

MPI's Non-Blocking OperationsNon-blocking operations return (immediately)\request handles" that can be waited on and queried:� MPI Isend(start, count, datatype, dest, tag, comm,request)� MPI Irecv(start, count, datatype, dest, tag, comm,request)� MPI Wait(request, status)One can also test without waiting: MPI_Test(request,flag, status)
89

Multiple completionsIt is often desirable to wait on multiple requests. Anexample is a master/slave program, where the masterwaits for one or more slaves to send it a message.� MPI Waitall(count, array of requests,array of statuses)� MPI Waitany(count, array of requests, index,status)� MPI Waitsome(incount, array of requests, outcount,array of indices, array of statuses)There are corresponding versions of test for each ofthese.� The MPI WAITSOME and MPI TESTSOME may be used toimplement master/slave algorithms that provide fairaccess to the master by the slaves.
90

FairnessWhat happens with this program:#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{int rank, size, i, buf[1];MPI_Status status;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &size);if (rank == 0) {for (i=0; i<100*(size-1); i++) {MPI_Recv(buf, 1, MPI_INT, MPI_ANY_SOURCE,MPI_ANY_TAG, MPI_COMM_WORLD, &status);printf("Msg from %d with tag %d\n",status.MPI_SOURCE, status.MPI_TAG);}}else {for (i=0; i<100; i++)MPI_Send(buf, 1, MPI_INT, 0, i, MPI_COMM_WORLD);}MPI_Finalize();return 0;} 91

Fairness in message-passing
An parallel algorithm is fair if no processis e�ectively ignored. In the preceedingprogram, processes with low rank (likeprocess zero) may be the only one whosemessages are received.MPI makes no guarentees about fairness.However, MPI makes it possible to writee�cient, fair programs.

92

Providing FairnessOne alternative is#define large 128MPI_Request requests[large];MPI_Status statuses[large];int indices[large];int buf[large];for (i=1; i<size; i++)MPI_Irecv(buf+i, 1, MPI_INT, i,MPI_ANY_TAG, MPI_COMM_WORLD, &requests[i-1]);while(not done) {MPI_Waitsome(size-1, requests, &ndone, indices, statuses);for (i=0; i<ndone; i++) {j = indices[i];printf("Msg from %d with tag %d\n",statuses[i].MPI_SOURCE,statuses[i].MPI_TAG);MPI_Irecv(buf+j, 1, MPI_INT, j,MPI_ANY_TAG, MPI_COMM_WORLD, &requests[j]);}}
93

More on nonblocking communicationIn applications where the time to send data betweenprocesses is large, it is often helpful to causecommunication and computation to overlap. This caneasily be done with MPI's non-blocking routines.For example, in a 2-D �nite di�erence mesh, movingdata needed for the boundaries can be done at thesame time as computation on the interior.MPI_Irecv(... each ghost edge ...);MPI_Isend(... data for each ghost edge ...);... compute on interiorwhile (still some uncompleted requests) {MPI_Waitany(... requests ...)if (request is a receive)... compute on that edge ...}Note that we call MPI_Waitany several times. Thisexploits the fact that after a request is satis�ed, itis set to MPI_REQUEST_NULL, and that this is a validrequest object to the wait and test routines. 96

Communication ModesMPI provides mulitple modes for sending messages:� Synchronous mode (MPI Ssend): the send does notcomplete until a matching receive has begun.(Unsafe programs become incorrect and usuallydeadlock within an MPI_Ssend.)� Bu�ered mode (MPI Bsend): the user supplies thebu�er to system for its use. (User supplies enoughmemory to make unsafe program safe).� Ready mode (MPI Rsend): user guarantees thatmatching receive has been posted.{ allows access to fast protocols{ unde�ned behavior if the matching receive is notpostedNon-blocking versions:MPI Issend, MPI Irsend, MPI IbsendNote that an MPI_Recv may receive messages sent withany send mode. 97

Bu�ered SendMPI provides a send routine that may be used whenMPI_Isend is awkward to use (e.g., lots of smallmessages).MPI_Bsend makes use of a user-provided bu�er to saveany messages that can not be immediately sent.int bufsize;char *buf = malloc(bufsize);MPI_Buffer_attach(buf, bufsize);...MPI_Bsend(... same as MPI_Send ...);...MPI_Buffer_detach(&buf, &bufsize);The MPI_Buffer_detach call does not complete until allmessages are sent.� The performance of MPI Bsend depends on theimplementation of MPI and may also depend onthe size of the message. For example, making amessage one byte longer may cause a signi�cant dropin performance. 98

Tools for writing libraries
MPI is speci�cally designed to make it easierto write message-passing libraries� Communicators solve tag/sourcewild-card problem� Attributes provide a way to attachinformation to a communicator

115

Private communicators
One of the �rst thing that a library shouldnormally do is create private communicator.This allows the library to send and receivemessages that are known only to the library.MPI_Comm_dup(old_comm, &new_comm);

116

MPI Objects
� MPI has a variety of objects(communicators, groups, datatypes, etc.)that can be created and destroyed. Thissection discusses the types of these data andhow MPI manages them.� This entire chapter may be skipped bybeginners.

133

The MPI ObjectsMPI Request Handle for nonblockingcommunication, normally freed by MPI ina test or waitMPI Datatype MPI datatype. Free withMPI_Type_free.MPI Op User-de�ned operation. Free withMPI_Op_free.MPI Comm Communicator. Free withMPI_Comm_free.MPI Group Group of processes. Free withMPI_Group_free.MPI Errhandler MPI errorhandler. Free withMPI_Errhandler_free. 134

Tools for evaluating programs
MPI provides some tools for evaluating theperformance of parallel programs.These are� Timer� Pro�ling interface

138

The MPI TimerThe elapsed (wall-clock) time between twopoints in an MPI program can be computedusing MPI_Wtime:double t1, t2;t1 = MPI_Wtime();...t2 = MPI_Wtime();printf("Elapsed time is %f\n", t2 - t1);The value returned by a single call toMPI_Wtime has little value.� The times are local; the attributeMPI WTIME IS GLOBAL may be used to determineif the times are also synchronized with eachother for all processes in MPI COMM WORLD. 139

Pro�ling� All routines have two entry points: MPI ... andPMPI� This makes it easy to provide a single level oflow-overhead routines to intercept MPI callswithout any source code modi�cations.� Used to provide \automatic" generation of trace�les.
MPI_Send

PMPI_Send

MPI_Bcast

MPI_Send
PMPI_Send

MPI_Send

MPI_Bcast

User Program MPI LibraryProfile Librarystatic int nsend = 0;int MPI_Send(start, count, datatype, dest, tag, comm){nsend++;return PMPI_Send(start, count, datatype, dest, tag, comm)}
140

Writing pro�ling routinesThe MPICH implementation contains a program forwriting wrappers.This description will write out each MPI routine thatis called.:#ifdef MPI_BUILD_PROFILING#undef MPI_BUILD_PROFILING#endif#include <stdio.h>#include "mpi.h"{{fnall fn_name}}{{vardecl int llrank}}PMPI_Comm_rank(MPI_COMM_WORLD, &llrank);printf("[%d] Starting {{fn_name}}...\n",llrank); fflush(stdout);{{callfn}}printf("[%d] Ending {{fn_name}}\n", llrank);fflush(stdout);{{endfnall}}The commandwrappergen -w trace.w -o trace.cconverts this to a C program. The complie the �le`trace.c' and insert the resulting object �le into yourlink line:cc -o a.out a.o ... trace.o -lpmpi -lmpi 141

MPI-2� The MPI Forum (with old and new participants)has begun a follow-on series of meetings.� Goals{ clarify existing draft{ provide features users have requested{ make extensions, not changes� Major Topics being considered{ dynamic process management{ client/server{ real-time extensions{ \one-sided" communication (put/get, activemessages){ portable access to MPI system state (fordebuggers){ language bindings for C++ and Fortran-90� Schedule{ Dynamic processes, client/server by SC '95{ MPI-2 complete by SC '96 153

Summary
� The parallel computing community has cooperatedto develop a full-featured standard message-passinglibrary interface.� Implementations abound� Applications beginning to be developed or ported� MPI-2 process beginning� Lots of MPI material available

154

