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�� ��Top 3 Lessons of CMPUT 681

1. Granularity.

2. Optimize for the common case.

3. Donot copy data or block, if you avoid it.
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�� ��Motivation

• Uniprocessors are fast, but somebody always

wants more!

– Some problems require too much

computation

– Some problems use too muchdata

– Aside: Some problems have too many

parameters to explore

• For example: weather simulations, other scientific

simulations, game-tree search, Web servers,

databases, code breaking

=⇒ need good sequential algorithms

=⇒ need good parallel algorithms

=⇒ need good systems software

(e.g., programming systems)

=⇒ need good parallel hardware
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�� ��Parallel vs. Distributed Computing

Some hardware-centric terminology:

• parallel computing=⇒ shared memory

– multiprocessors (important trend)

– processes share logical address spaces

– processes share physical memory

– sometimes refers to the study of parallel

algorithms

• distributed computing=⇒ distributed memory

– clusters and networks of workstations (NOW)

– processes donot share address spaces

– processes donot share physical memory

– sometimes refers to the study of theoretical

distributed algorithms or neural networks
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�� ��Parallel Algorithms: The Basics

• A parallel algorithm solves a specific problem by
dividing the computation into smaller units of
work that can be solved concurrently and then
combined to form the final answer.

• The basic idea:

1. Create work

– partition, divide, embarassingly parallel,
granularity

2. Coordinate computation

– IPC, synchronization, load balancing,
synchronous/asynchronous communication,
dependency

3. Combine results

– termination detection

4. Repeat for all “work”

• The number one lesson of C681:Granularity –
the ratio between computation and
communication / synchronization / coordination
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�� ��Shared Memory

Processor

Interconnection Network (e.g., bus, mesh)

Shared Memory

m = x + y y = 2x = 1

Processor Processor Processor

Node 0 Node 3Node 1 Node 2

• hardware-based shared memory with OS support

Two example systems:

1. SGI Origin 200 (charron.cs)

• 8× 350 MHz R12000, 8 GB

2. SGI Origin Model 3900 (“arcturus”)

• 256× 700 MHz R16000, 256 GB RAM
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�� ��Distributed Memory

PE + Memory

Node 0 Node 2 Node 3Node 1

Network

send receive sendreceive

PE + Memory PE + Memory PE + Memory

• cannot directly and asynchronously read remote

memories

• explicit sendsandreceivesto share data

(e.g., MPI, PVM)

• fast network

(e.g., Myrinet, Gigabit Ethernet, ATM,

InfiniBand, Quadrics)

• For example, Calgary’s clusters and AICT, etc.

– Quadrics-based in Calgary
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�� ��A Case for NOW (1995)

• Cost advantage through large volumes

– Ideas/design move from high to low end (e.g.,
FPU, graphics, vector processing, gigabit
networking)

– Once the mass market adopts the technology,
watch out! Any exceptions?

– Future: Impact of consumer electronics (e.g.,
Playstation 3, iPhone/iPod)

• Switching to commodity parts helps, but..

– Engineering delays to integrate

– Time delays=⇒ inferior performance

– Today: Clusters, Blades, Myrinet SANs

• Software isstill the weak link

– Avoiding N.I.H. syndrome is good

– Today: Free OSes (Linux, *BSD, open source)
changing the landscape

– Future: Shrink-wrapped parallel applications
(e.g., DB2, parallel Matlab)
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�� ��Flynn’s Taxonomy (1966)

Single

Data Stream

Multiple

Data Stream

Single

Instruction

Stream

SISD

(e.g.,

uniprocessor)

SIMD

(e.g., vector

processors,

multimedia

extensions)

Multiple

Instruction

Stream

MISD

(mostly

nonsense)

MIMD

(e.g., SMP,

NOW)

• MIMD is the most general-purpose

– multiple program multiple data (MPMD):

client-server, etc.

– single program multiple data (SPMD):

our focus!
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�� ��Speedup

How do we characterize or measure performance?

• Let t1 be the time to solve the problem

sequentially. NOTE: Different from textbook!

• Let tp be the time to solve the problem in parallel

usingp processors

• Then, speedupS(p) for problem sizen is defined

as:

S(p) = t1/tp

• S(p) = p =⇒ linear speedup or unit-linear

speedup or ideal speedup. This is rare!

• S(p) < p =⇒ sublinear speedup. Common!

• S(p + 1) = S(p) + δ, whereδ < 1 =⇒

diminishing returns, especially ifδ ≪ 1

• S(p + 1) < S(p) =⇒ slowdown

• S(p) > p =⇒ superlinear speedup. This is largely

fallacy.
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�� ��Speedup scenarios

• S(p) = p (unit-linear)

– Embarrassingly parallel with low

communications overheads

• S(p) < p (sublinear) andS(p + 1) = S(p) + δ,

whereδ < 1 (diminishing returns)

– Idle time due to load imbalance

– Overhead due to communication, etc.

– Idle time due to synchronization

– Extra computation in parallel program

– And many more reasons.

• S(p + 1) < S(p) (slowdown)

– Overheads areO(p) “but” work is O(n)

– Contention for a resource depends onp

CMPUT 681 Background 12'

&

$

%

�� ��Speedup Skepticism

Is superlinear speedup (S(p) > p) possible? Yes and

no.

• Often, increasingp also increases the amount of

cache memory (or even main memory), which is

unfair to the sequential case.

• For certain search algorithms, a cutoff or “eureka

jump” can cause superlinear speedup.

• If neither of these two explanations apply, ask

some hard questions about the sequential

algorithm.

• But, pragmatically, we are happy to accept

superlinear speedup if it happens.

Bottom line: Do not rely on a single number to tell the

full story.
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�� ��Granularity

Granularity is an informal concept with (at least) two

main definitions:

1. The amount of computation that typically occurs

between communication or synchronization

points.

2. The ratio of computation to communication.

Granularity can be changed by:

• Improving the algorithm to require less or cheaper

communication

• Reducing the cost of communication

• Reducing the amount of synchronization: reduce

contention and reduce idle time

• Increasing the size of the problem

• What if the communication overheads areO(n2)

but computation isO(n3)?
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�� ��Amdahl’s Law

In 1967, Gene Amdahl argued that the inherently

sequential portions of a parallel program will

dominate its speedup performance.

• Let seq be the portion of a program’s execution

time that is inherently sequential. Examples?

• Let para be the portion that is parallelizable,

wheretotal time = seq + para = 1, for

simplicity

• In the ideal case, we can achieve unit-linear

speedup for the parallel portion. Therefore:

S(p) = seq+para
seq+para/p = 1

seq+para/p

• And

limp→∞ S(p) = 1

seq
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�� ��SPMD Programming

Recall that SPMD is one approach to MIMD.

There are usually 3 main parts to a SPMD program.

1. Initialize data structures (and start threads)

• Under Pthreads, start-up is single threaded.

Must create threads.

• Under MPI, start-up is multi-process.

2. SPMD execution

3. Clean up and exit
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�� ��Creating Threads

struct ThreadControlBlock

TCB[ NUM_THREADS ];

pthread_t ThreadID[ NUM_THREADS ];

void * mySPMDMain( void * );

int main( int argc, char ** argv )

{

/ * Initialize global data here * /

/ * Start threads * /

for( i = 1; i < NUM_THREADS; i++ )

{

TCB[ i ].id = i; / * In parameter * /

pthread_create( &( ThreadID[ i ] ), NULL,

mySPMDMain, (void * )&( TCB[ i ] ) );

}

TCB[ 0 ].id = 0;

mySPMDMain( (void * )&( TCB[ 0 ] ) );

/ * Clean up and exit * /

}
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�� ��SPMD Execution

#define MASTER if( myId == 0 )

#define BARRIER barrier( myId, __LINE__ );

void * mySPMDMain( void * arg )

{

struct ThreadControlBlock * myTCB;

int myId;

pthread_t * myThreadIdPtr;

/ * Actual parameter * /

myTCB = (struct ThreadControlBlock * )arg;

/ * Other parameters passed in via global * /

myId = myTCB->id;

/ * Parallel array to TCB * /

myThreadIdPtr = &( ThreadID[ myId ] );

... continued ...
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�� ��SPMD Execution (cont.)

BARRIER;

startTiming();

/ * Phase 1 * /

BARRIER;

/ * Phase 2 * /

MASTER

{

}

BARRIER;

/ * Phase 3 * /

BARRIER;

/ * Phase 4 * /

BARRIER;

stopTiming();

} / * mySPMDMain * /
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�� ��Non-Determinism

In the absence of very fine-grained synchronization, it

is possible that instructions will be interleaved in a

pseudo-random order.

Timer interrupts (i.e., end of time quantum), I/O,

cache coherence actions, contention for resources,

other users, etc. can all cause non-determinism.

The implications are:

1. Bugs may be hard to re-produce.

2. Slight variations in (real time) timings.

3. Depending on the algorithm and dataset, you can

get different answers on different runs (e.g.,

floating point computations)

A related concept to non-determinism is a

“race condition.”

Solution? Synchronize properly/more. But, be careful

of how that impact performance.
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�� ��Parallel Sorting by Shan and Singh

My comments so far:

• Sorting is a fundamental problem and widely
studied

• Sorting can be highly architecture-specific. Many
sorting algorithms are too fine-grained to be
practical on real machines.

• Sorting algorithms differ in their:

1. Granularity

2. Number of messages required

3. Size of messages required

• Therefore, an algorithm that is good for one
architecture is not necessarily good on another
architecture

• Tradeoffs can be made between extra computation
and cheaper communication

• The specific programming model affects how an
algorithm is implemented
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�� ��DSM vs. DSD

DSM DSD

What is shared? Memory in

an address space

Data structures

Naming Pointer ADT and pointer

Mechanisms Page faults ADT and interfaces

Unit of

management

Fixed: page Variable: object or

region

x y

or

y

x

x

y

Can suffer from

false sharing?

Yes No
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�� ��DSM vs. DSD (2)

DSM DSD

Unit of

management

Fixed: page Variable: object or

region

x y

or

y

x

x

y

Unit of

sharing policy

All shared pages;

sometimes

per-page

Object or region

Can alter

sharing policy on

per-context

basis?

Possible, but... Yes
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�� ��Data Sharing Patterns

// Sequential matrix multiplication

for( i = 0; i < size; i++ )

for( j = 0; j < size; j++ )

mC[i][j] = dotProd( &mA[i][0], mB, j, size );

Matrix A Matrix B Matrix C

1. Matrix A is read-only; rows are independent

2. Matrix B is read-only; large working set

3. Matrix C is write-only

• What if, later on, we want B× C = A?
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�� ��Optimizing Patterns: Bulk Data

• Consider Matrix B

• Basic DSM faults and transfers each page

individually

P0

P1

request

interrupt

response

fault fault fault

• If possible, better to do a bulk-data transfer

P0

P1

request

interrupt

response
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�� ��Optimizing Patterns: Write-Only

• Consider Matrix C

• Basic DSM faults and transfers each page before
writing over

P0

P1

request

interrupt

response

fault fault fault

write-over write-over

• If possible, avoid paging-in for write-only

P0

P1

write-over write-over
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�� ��Optimization Flexibility

Observations:

• Can optimize for data sharing patterns

• Data sharing patterns can change from phase to

phase (i.e., A× B = C then B× C = A)

=⇒ reduce number of messages and bytes sent

Issues:

• Which mechanisms are useful?

• How to implement? Pre-processors? Compiler

#pragma s? Run-time flags?

• What algorithms and strategies are useful?
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�� ��Scoped Behaviour and Aurora

mCPU

Node 0 Node 2 Node 3Node 1

Network

DSD Abstraction

x = 1 m = x + y y = 2

mCPU mCPU mCPU

1. Ease of use:High-level abstract data types (ADT)

for shared data using C++ objects

2. Implementation: Class hierarchy and novel

scoped behaviour approach

3. Performance: Optimizations that exploit

semantics about data-sharing patterns
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�� ��Layered View of Aurora

Layer Main Components and Functionality

Programmer’s

Interface

Process models

Distributed vector and scalar objects

Scoped behaviour

Shared-Data Class

Library

Handle-body shared-data objects

Scoped handles implementing

data-sharing optimizations

Run-Time System Active objects and remote method

invocation (currently, ABC++)

Threads (currently, POSIX threads)

Communication mechanisms (shared

memory, MPI, UDP sockets)
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�� ��Example: Simple Update Loop

Shared data as objects:

GVector<int> vector1( vsize );

Original code:

for( i = 0; i < vsize; i++ )

vector1[ i ] = someFunc(); // Context 1

vector1[ 0 ] = 1; // Context 2

With scoped behaviour

(i.e., programmer annotations):

{ // Begin scope

NewBehaviour( vector1, GVReleaseC, int );

for( i = 0; i < vsize; i++ )

vector1[ i ] = someFunc(); // Context 1

} // End scope

vector1[ 0 ] = 1; // Context 2
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�� ��Example: Matrix Multiplication

Scoped behaviour is a flexible programmer’s in-

terface to system-provided data-sharing

optimizations.

GVector<int> mA; GVector<int> mB; GVector<int> mC;

{ // Begin scope

NewBehaviour( mA, GVOwnerComputes, int );

NewBehaviour( mB, GVReadCache, int );

NewBehaviour( mC, GVReleaseC, int );

while( mA.doParallel( myTeam ) )

for(i = mA.begin();i < mA.end();i += mA.step())

for( j = 0; j < size; j++ )

mC[i][j] = dotProd( &mA[i][0], mB, j, size);

} // End scope
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�� ��Implementing Scoped Behaviour

GVector<int> vector1( vsize );

{ // Begin scope

GPortal<GVector<int> > AU_vector1( vector1 );

GVReleaseC<int> vector1( AU_vector1 );

for( i = 0; i < vsize; i++ )

vector1[ i ] = someFunc( i );

} // End scope

vector1[ 0 ] = 1;

GVector

{

}

GVReleaseC

vector1[ i ] = someFunc( i );

vector1[ 0 ] = 1;
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�� ��An Implementation Framework

Scoped behaviour is a change in the interface or

implementation of an ADT for the lifetime of a

language scope.

Scoping View: Begin scope—In scope—End scope

Scoped Behaviour

GVector GVReleaseC

Begin scope

(Constructor)

Create shared-

data objects

Create update

buffers

In scope

(operator[] )

Immediate data

access

Buffer updates,

synchronous reads

End scope

(Destructor)

Delete objects Flush and

free buffers

• Within the framework, a number of optimizations

can be implemented

• High-level semantics of the behaviour can be

exploited at various software layers
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�� ��Class Hierarchy for Handles

GHandle

GVHandle

GVScopedHandle

GSHandle

GScalar GVector GVOwnerComputes GVReleaseCGVReadCache

GVRWBehaviour

GPointerSC

GPointerRC

is−a relationship

holds−a relationship

creates−a relationship

• Focus on inheritance and operator overloading

• Programmer only concerned withGScalar ,

GVector , GVOwnerComputes,

GVReadCache, andGVReleaseC
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�� ��Experimental Evaluation

1. Cluster of 16 workstations with ATM (POW)

2. Compare 3 different systems:

(a) Aurora (DSD, scoped behaviour)

(b) TreadMarks (DSM)

(c) MPICH (message passing)

3. Compare using 4 different applications (and 10

different datasets)

(a) Matrix multiplication

(b) 2-D diffusion

(c) Parallel sorting (PSRS)

(d) Travelling salesperson (TSP)
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�� ��Characteristics of Applications

Characteristic MM2 2DD PSRS TSP

Communication Intensive Yes No Yes No

Main data-sharing

pattern(s)

Allgather Neighbour Broadcast,

Gather,

Alltoall

(vector

variant)

Master-

worker,

eager

update of

scalar

Explicit data placement No No Yes Yes

Number of computational

phases in algorithm

2 1 4 1

Output of one phase used as

input of another

Yes n/a Yes n/a

Static load balancing Yes Yes No No

Data parallel (SPMD) Yes Yes Yes No

Task parallel

(master-worker)

No No No Yes
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�� ��PSRS: Producer-Consumer

GVector<int> Sample( vsize, Nodes( 0 ) );

Phase 1: All nodes areproducers and use:
{

NewBehaviour( Sample, GVReleaseC, int );

for( i = ... )

Sample[ i ] = ... // Produce

}

Phase 1

Phase 2

Node 0 Node 1

Node 0

Node N−1

Phase 2: Node 0 is theconsumer and uses:
MASTER

{

NewBehaviour( Sample, GVOwnerComputes, int );

quicksort( Sample, 0, n - 1 ); // Consume

}
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�� ��Matrix Multiplication: 512 × 512

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.94 1.96

2

1.97

3.83 3.84

4

3.76

7.21
7.50

8

6.74

13.1
13.6

16

9.49

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��Matrix Multiplication: 704 × 704

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.95 1.95

2

1.95

3.60 3.81

4

3.64

7.04
7.54

8

6.57

12.8

14.0

16

9.94

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��2-D Diffusion: 1536× 1536

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.92
2.18

2

1.93

3.74
4.00

4

3.77

7.08
7.25

8

7.30

12.8

11.8

16

13.8

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��2-D Diffusion: 2048× 2048

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.93
2.39

2

1.96

3.82

4.52

4

3.83

7.39

8.48

8

7.39

13.6

14.7

16

13.6

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��PSRS: 6 million keys

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.19 1.12

2

1.39

2.00 2.15

4

1.98

3.32

4.14

8

2.83

5.62
5.94

16

3.91

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��PSRS: 8 million keys

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.00 1.11

2

1.41

2.00 2.06

4

2.06

3.37

4.20

8

2.86

5.70

6.78

16

1.78

PEs

Speedup

TreadMarks Aurora MPICH
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�� ��TSP: Dataset 17.large

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.51 1.63

2

1.76

2.52
3.13

4

3.26 3.21

6.29

8

6.79

2.51

8.55

16

9.58

PEs

Speedup

TreadMarks Aurora PVM/MPICH
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�� ��TSP: Dataset 18b

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.54 1.72

2

1.84

2.52

3.23

4

3.45
2.89

5.89

8

6.16

2.11

8.76

16

9.59

PEs

Speedup

TreadMarks Aurora PVM/MPICH
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�� ��TSP: Dataset 20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.65

1.50

2

1.59

0.57

2.71

4

2.96

0.46

4.51

8

5.00

0.35

4.90

16

5.46

PEs

Speedup

TreadMarks Aurora PVM/MPICH
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�� ��TSP: Dataset 19b

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.67 1.78

2

1.90

3.00

3.61

4

3.88 3.90

6.99

8

7.34

2.86

12.2

16

12.9

PEs

Speedup

TreadMarks Aurora PVM/MPICH
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�� ��Summary of Performance

1. TreadMarks achieves good performance for

regular problems with good locality of reference

2. MPICH achieves high performance, but has

scalability problems with large data exchanges

and large numbers of processors

3. Aurora generally comparable to or better than

MPICH; usually faster than TreadMarks.

• Significantly outperforms TreadMarks on TSP

• Significantly outperforms MPICH on matrix

multiplication and PSRS


