Tread Marks
Shared Memory Computing

on Networks of Workstations

Willy Zwaenepoel

ParallelTools LLC
and
Department of Computer Science
Rice University

Networks of Workstations

Parallel computing on networks of workstations

Proc 1 Proc 2 Proc3 ProcN
Meml Mem?2 Mem3 MemN
Network

All commodity technology (including
network), thus cheap

Performance?

Faster processors
Faster floating point
More memory

Faster networks (are coming ...)

Bottom line:

Good MIPS/FLOPS per $ ratio

Distributed Shared Memory (DSM)

Software provides shared memory image

Procl Proc2 Proc3) Proc N

Meml Mem?2 Mem3) MemN

Network

Shared Memory

Why Shared Memory?

Easier to go sequential — parallel

Sequential =
single thread + single address space

Shared memory =
multiple threads + single address space

Message passing =
multiple threads + multiple address spaces

Shared Memory API

Threads

Synchronization

e LLocks

e Barriers

e Flags

Shared memory allocation

Key Point

Distributed shared memory:

e support for parallel processing

e 0on networks of workstations

e with reasonable efficiency

e with reasonable programmer effort

Conventional DSM Implementation [Li 86]

Y/

Local Physical Memories

Performance Problem: Sequential Consistency

Every write visible “immediately”

W(X) w(y)
P i i -
X y
Q e
r(x) r(y)
Problems:

e Number of messages

e Latency

Performance Problem: False Sharing

Pieces of the same page updated by
different processors

page

Leads to “ping-pong” effect

Performance Problems: Solutions

Goal:

e Reduce communication

e Keep shared memory model

Techniques:

e Lazy release consistency [Keleher 92]

e Multiple writer protocol [Carter 91|

Sequential Consistency

Every write visible “immediately”

w(x) w(y)

Q
r(x) ry)

Relaxed Consistency Models

Delay making writes visible

w(x) w(y)

X,y

r(x) r(y)

Goal:

e Reduce number of messages

e Hide latency

Delay until when?

There is more to this program ...

Program needs to be synchronized

acq(l) w(x) w(y) rel(l)

P >
Q >
acq(l) r(x) r(y) rel(l)
Note: Synchronization is added for

RC, it was there already!

Release Consistency (RC)

Delay until @ synchronizes with P

acq(l) w(x) w(y) rel(l)
P >

Q >
acq(l) r(x) r(y) rel(l)

If program is data-race-free, programmer
won’t notice!

RC Programming Model

Write data-race-free programs

Synchronization through system primitives
(no spinlocks!)

Then, RC = SC, but with fewer messages

Lazy RC

Pull modifications at acquire

(rather than push them at release)

acq(l) w(x) w(y) rel(l)
P >

X,y

| >
acq(l) r(x) r(y) rel(l)

Fewer messages

False Sharing

Pieces of the same page updated by
different processors

page

Multiple Writer Protocol

Addresses false sharing
Buffer writes until synchronization
Create

Synchronize — pull in modifications

Q Ve 1 1 1 /

=
I [I I I I I

Barrier

Write(x)

Diff Creation

Create twin

Twin:

|
\ Make X

X: writable

Encode
Changes

| g Diff
Diff
i If replicated,
g . write protect

TreadMarks

User-level library for C and Fortran

Implemented on

e DEC
o« HP

e« IBM
e Intel

e SUN

o SGI

Relatively portable

[Keleher et al. 94]

Two Applications

Mixed Integer Programming

Genetic Linkage

Mixed Integer Programming

Mixed Integer Programming =
Linear Programming +
Some of the variables are integers

A 2-dimensional example:

Mixed Integer Programming (continued)

Used in many applications
Hard in a theoretical sense
Hard in a practical sense:

real instances run for a long time

Branch-and-Bound

X

S

Algorithmic Smarts

Plunging
Pick the right variable

Pick the right node

Cutting planes (branch-and-cut)

10,000 lines of C code (excluding LP
solver)

Results

MIPLIB problems longer than 2,000
seconds on 1 processor.

14 —
12 ; .
10 ; /
o] /
3 8 - /
(b] |
g _
(0))] 6 N
=
2 —
0 | | | |
1 2 3 4 5 6 7 8
Processors
> 8672 * 22285 A 2548

=+ 469955 & 29857 H 11405

[Lee et al., 1995]

Neat Result

D. Bienstock and O. Gunluk, Lightwave
network configuration (Bellcore), to appear
in Mathematical Programming

521 variables, 56 0/1 variables
664 constraints

Previously unsolved

Solved on an 8-node IBM SP2 (3 1/2 days)

Genetic Linkage Analysis

Disease gene location:

e biological experiments

o computational steps (linkage analysis)

Computation is bottleneck
Hours to months 1s normal

Better accuracy desired

A 1-Minute Intro to Genetics

Probability of recombination 6

Mendel

Recombinatio

The Linkage Computation

Maximum likelihood optimization of 4

Linkage Parallelized

Optimize tfor 4
For each nuclear family
Split up rows over processors
For each processor
Do updates for assigned rows

Synchronize

Load balancing in splitting

13,000 lines of C code

Results

Speedup

Processors

> 901 + 4682 ¥ 774 ® 4085 4 9570

|Gupta et al., 1995]

Parallel FASTLINK Sites

ANGIS, Sydney, Australia (SPARC SMP)
Columbia University, New York (Alpha SMP)

Fox Chase Cancer Center, Philadelphia (Alpha
network)

Griffith University, Brisbane, Australia (IBM SP-2)
Human Genome Project, Hinxton, U.K. (SGI SMP)
Infobiogen, Paris, France (SPARC SMP)

MDC fiir Mol. Medizin, Berlin, Germany (SPARC
SMP)

NIH (IBM SP-2 and SPARC network)
Ospedale San Raffaele, Milan, Italy (SPARC SMP)
Sequana Therapeutics, La Jolla (SPARC network)

University of Antwerp, Belgium (Alpha SMP)

Conclusion

Real problems can be solved

on networks of workstations

using distributed shared memory

with reasonable efficiency

with reasonable programmer effort

Further Work

Better support tools
Compiler support
Pertormance visualization

Multiprocessor support

