TreadMarks

Shared Memory Computing on Networks of Workstations

Willy Zwaenepoel

ParallelTools LLC and

Department of Computer Science Rice University

Networks of Workstations

Parallel computing on networks of workstations

All commodity technology (including network), thus cheap

Performance?

Faster processors

Faster floating point

More memory

Faster networks (are coming ...)

Bottom line:

Good MIPS/FLOPS per \$ ratio

Distributed Shared Memory (DSM)

Software provides shared memory image

Why Shared Memory?

Easier to go sequential → parallel

```
Sequential = single thread + single address space
```

```
Shared memory = multiple threads + single address space
```

```
Message passing = multiple threads + multiple address spaces
```

Shared Memory API

Threads

Synchronization

- Locks
- Barriers
- Flags

Shared memory allocation

Key Point

Distributed shared memory:

- support for parallel processing
- on networks of workstations
- for real problems
- with reasonable efficiency
- with reasonable programmer effort

Conventional DSM Implementation [Li 86]

Local Physical Memories

Performance Problem: Sequential Consistency

Every write visible "immediately"

Problems:

- Number of messages
- Latency

Performance Problem: False Sharing

Pieces of the same page updated by different processors

Leads to "ping-pong" effect

Performance Problems: Solutions

Goal:

- Reduce communication
- Keep shared memory model

Techniques:

- Lazy release consistency [Keleher 92]
- Multiple writer protocol [Carter 91]

Sequential Consistency

Every write visible "immediately"

Relaxed Consistency Models

Delay making writes visible

Goal:

- Reduce number of messages
- Hide latency

Delay until when?

There is more to this program ...

Program needs to be synchronized

Note: Synchronization is **not** added for RC, it was there already!

Release Consistency (RC)

Delay until Q synchronizes with P

If program is data-race-free, programmer won't notice!

RC Programming Model

Write data-race-free programs

Synchronization through system primitives (no spinlocks!)

Then, RC = SC, but with fewer messages

Lazy RC

Pull modifications at acquire

(rather than push them at release)

Fewer messages

False Sharing

Pieces of the same page updated by different processors

Multiple Writer Protocol

Addresses false sharing

Buffer writes until synchronization

Create diffs

Synchronize \rightarrow pull in modifications

Diff Creation

Release:

TreadMarks

Standard kernel and compilers

User-level library for C and Fortran

Implemented on

- DEC
- HP
- IBM
- Intel
- Sun
- SGI

Relatively portable

[Keleher et al. 94]

Two Applications

Mixed Integer Programming

Genetic Linkage

Mixed Integer Programming

Mixed Integer Programming =

Linear Programming +

Some of the variables are integers

A 2-dimensional example:

Mixed Integer Programming (continued)

Used in many applications

Hard in a theoretical sense

Hard in a practical sense:

real instances run for a long time

Branch-and-Bound

Algorithmic Smarts

Plunging

Pick the right variable

Pick the right node

Cutting planes (branch-and-cut)

10,000 lines of C code (excluding LP solver)

Results

MIPLIB problems longer than 2,000 seconds on 1 processor.


```
    ★ 8672
    ★ 22285
    ★ 2548
    + 469955
    ★ 29857
    ★ 11405
```

[Lee et al., 1995]

Neat Result

D. Bienstock and O. Gunluk, Lightwave network configuration (Bellcore), to appear in Mathematical Programming

521 variables, 56 0/1 variables

664 constraints

Previously unsolved

Solved on an 8-node IBM SP2 (3 1/2 days)

Genetic Linkage Analysis

Disease gene location:

- biological experiments
- computational steps (linkage analysis)

Computation is bottleneck

Hours to months is normal

Better accuracy desired

A 1-Minute Intro to Genetics

Probability of recombination θ

The Linkage Computation

Maximum likelihood optimization of θ

Linkage Parallelized

Optimize for θ

For each nuclear family
Split up rows over processors
For each processor
Do updates for assigned rows
Synchronize

Load balancing in splitting

13,000 lines of C code

Results

[Gupta et al., 1995]

Parallel FASTLINK Sites

ANGIS, Sydney, Australia (SPARC SMP)

Columbia University, New York (Alpha SMP)

Fox Chase Cancer Center, Philadelphia (Alpha network)

Griffith University, Brisbane, Australia (IBM SP-2)

Human Genome Project, Hinxton, U.K. (SGI SMP)

Infobiogen, Paris, France (SPARC SMP)

MDC für Mol. Medizin, Berlin, Germany (SPARC SMP)

NIH (IBM SP-2 and SPARC network)

Ospedale San Raffaele, Milan, Italy (SPARC SMP)

Sequana Therapeutics, La Jolla (SPARC network)

University of Antwerp, Belgium (Alpha SMP)

Conclusion

Real problems can be solved

on networks of workstations
using distributed shared memory

with reasonable efficiency
with reasonable programmer effort

Further Work

Better support tools

Compiler support

Performance visualization

Multiprocessor support