A Case Study of Improving Memory Locality In
Polygonal Model Simplification:
Metrics and Performance

Victor Salamon®, Paul Lu', Ben Watson?, Dima Brodsky?, Dave Gomboc!

! Dept. of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2ES8, {salamon,paullu,dave}@cs.ualberta.ca
2 Dept. of Computer Science, Northwestern University,
Evanston, IL, USA, watsonb@cs.nwu.edu
3 Dept. of Computer Science, University of British Columbia,
Vancouver, BC, Canada, dima@cs.ubc.ca

Abstract. Polygonal model simplification algorithms take a full-sized
polygonal model as input and output a less-detailed version of the model
with fewer polygons. When the internal data structures for the input
model are larger than main memory, many simplification algorithms suf-
fer from poor performance due to paging.

We present a case study of the recently-introduced R-Simp algorithm
and how its data locality and performance can be substantially im-
proved through an off-line spatial sort and an on-line reorganization of
its internal data structures. When both techniques are used, R-Simp’s
performance improves by up to 7-fold. We empirically characterize the
data-access pattern of R-Simp and present an application-specific metric,
called cluster pagespan, of R-Simp’s locality of memory reference.

1 Introduction

Trade-offs between quality and performance are important issues in real-time
computer graphics and visualization. In general, the more polygons in a three-
dimensional (3D) computer graphics model, the more detailed and realistic is
the rendered image. However, the same level of detail and realism may not
be required in all computer graphics applications. For real-time display, fewer
polygons result in a faster rendering; rendering speed may be the most important
criteria. For other applications, the speed of rendering may be traded off for
improved image quality. The flexibility to select a version of the same model with
a different level of detail (i.e., a different number of polygons) can be important
when designing a graphics system.

Polygonal model simplification algorithms take a full-sized polygonal model
as input and output a version of the model with fewer polygons. Although the
simplified models are often of high quality, it is also clear that, upon close ex-
amination, some details have been sacrificed to reduce the size of the model
(Figure 1). A number of model simplification algorithms have been proposed [3],

Original, 871,306 polygons Simplified, R-Simp, 40,000 polygons

Fig. 1. Original and Simplified Versions of Polygonal Models: dragon

each with their different strengths and weaknesses in terms of execution time and
the resulting image quality. In general, the algorithms are used to pre-compute
simplified versions of the models that can be selected for use at run-time.

However, models that have over a million polygons require tens of megabytes
of disk storage, and require hundreds of megabytes of storage for their in-memory
data structures (Table 1). For example, the blade model has almost 1.8 million
polygons and requires 331.3 megabytes (MB) of virtual memory after being read
in from an 80.1 MB disk file.!

Consequently, we examine the problem of data-access locality and its effect
on performance for a model simplification algorithm. In particular, we make a
case study of the recently-introduced R-Simp simplification algorithm. We focus
on systems-oriented run-time performance and related metrics of R-Simp, as
opposed to measures of model quality.

1.1 Motivation and Related Work: Large Models

As new model acquisition technologies have developed, the complexity and size
of 3D polygonal models have increased. First, model producers have begun to
use 3D scanners (for example, [5]). Second, as the speed and resolution of sci-
entific instrumentation increases, so has the size of the data sets that must be
visualized. Both of these technology changes have resulted in models with hun-
dreds of millions to billions of polygons. Current hardware cannot come close
to displaying these models in real time. Consequently, there is a large body of
“model simplification” research addressing this problem [3].

Most of these model simplification algorithms (e.g., [9, 4, 2]) use a greedy
search approach with a time complexity of O(n log n), where n is the number of
polygons in the original model. Also, the greedy algorithms have poor locality
of memory access, jumping around the surface of the input model, from puzzle
piece to puzzle piece. One exception to this trend is the simplification algorithm

! Initial virtual memory size is read from the /proc file system’s stat device under
Linux 2.2.12 before any simplification computation is performed.

Model ||Faces (Polygons) |Vertices |Initial Virtual Memory |File Size for PLY
Size (MB) Model (MB) [7]

hand _ ||654,666 327,323 |123.6 311

dragon (871,306 435,545 164.1 32.2

blade 1,765,388 882,954 331.3 80.1

Table 1. Summary of Full-Sized Polygonal Models

described by Lindstrom [6], based on the algorithm by Rossignac and Borrel [8].
Lindstrom’s algorithm is fast, but it produces simplified models of poor quality
and, by its nature, it is difficult to control the exact number of polygons in the
simplified model.

In contrast, the recently-introduced R-Simp algorithm [1] produces approxi-
mated models of substantially higher quality than those produced by Rossignac
and Borrel’s approach, and R-Simp allows for exact control of output size, all
without a severe cost in execution speed. R-Simp is unique in that it iteratively
refines an initial and poor approximation, rather than simplifying the full in-
put model. Consequently, R-Simp has a time complexity of O(n log m), rather
than O(n log n), where m is the number of polygons outputted in the simplified
model. Since m < n in practice, R-Simp’s advantage can be substantial.

2 The Problem: Locality of Memory Accesses

To understand the data-access patterns of R-Simp, we hand-instrumented a
version of the code such that an on-line trace is produced of all the model-
related memory accesses. Each memory access is timestamped using the value
returned by the Unix system call gettimeofday(), where the first access is fixed
at time 0. The ability to map and label a memory access to a specific R-Simp
data structure is beyond the ability of most standard tools. The resulting trace
file is processed off-line.

A scatter plot of the virtual address of each memory access versus the times-
tamp shows a “white noise” pattern (Figure 2), which indicates relatively poor
locality of reference due to a large working set. The graph intuitively explains
why paging is a performance problem for models that do not fit in main memory.
We only show the scatter plot for dragon as the plots for the other two models
are similar. The hardware platform is a 500 MHz Pentium III system, running
Linux 2.2.12, with 128 MB of RAM, and a IDE swap disk. Although there are
dual processors, R-Simp is a single-threaded application. All reported real times
are the average of 5 runs.

The instrumentation and tracing adds significant overhead to R-Simp’s ex-
ecution time. Consequently, we have scaled the X-axis. For example, the non-
instrumented R-Simp requires 7,736 seconds to compute the simplified model for
dragon. The instrumented R-Simp requires much more time to execute, but we
have post-processed the trace information so that the X-axis appears to be 7,736

X-axis is scaled real time in milliseconds,
LHS Y-axis is virtual address (scatter plot),
RHS Y-axis is cumulative major page faults (solid curve)
in the instrumented version
NOTE: X and Y-axes have different ranges for each graph

3.5e+08

a5

2.58+05

Address
Hajor page faults

ZeHiE

1.5e+0&

o 1etog 2e+06 Jet05 det0g Setoh BetOG Te+0g
Time [mgecl

Dragon: 7,736 seconds run-time, 6,410,393 major page faults
in non-instrumented version

Fig. 2. Memory-Access Pattern for Original R-Simp on dragon: Computing 40,000
polygon simplified model

seconds. Although the scaling may introduce some distortions to the figure, it
still captures the basic nature of the memory-access patterns.

Figure 2 has some notable patterns. The darker horizontal band, between
addresses 1.3 x 10® and 1.8 x 10® on the LHS Y-axis, is the region of virtual
memory where the data structure for the vertex list is stored. The horizontal
region above the vertices is where the face list is stored. The data structures
and details of R-Simp are discussed in Section 3. There is a vertical line at time
5.0 10° milliseconds for dragon, which is when R-Simp finishes the simplification
process and begins to create the new simplified model. The band of memory
accesses at the top of the graph, and to the immediate right of the vertical line,
is where the new model is stored.

Superimposed on Figure 2 is a solid curve representing the cumulative major
page faults of R-Simp over time, as reported by the Unix function getrusage().
A major page fault may require a disk access to swap out the victim page and
does require a disk access to swap in the needed page of data. Note that there is
some discrepancy between the major page faults incurred by the instrumented
R-Simp (Y-axis on the RHS) and the major page faults incurred by the non-
instrumented R-Simp (noted in the captions of Figure 2 and Table 3). We have

purposely not scaled the RHS Y-axis since that is more problematic than scaling
real time. Again, the figures are only meant to give an intuitive picture of the
data-access patterns inherent to R-Simp.

3 The R-Simp Algorithm

We briefly summarize the main data structures in R-Simp and the main phases
of the computation [1].

3.1 Data Structures

R-Simp uses three main data structures to perform model simplification. The
first two data structures are static and are used to store the original model. The
last data structure, the cluster, is more dynamic.

First, the vertez list is a global array that stores the vertices from the input
model. Each vertex contains (z,y,2) coordinates, an adjacency list of vertices,
and an adjacency list of faces. Second, the face list is also a global array that
stores the faces from the input model. Each face contains its normal, its area,
and pointers to the vertices that make up the face. The global vertex and face
lists are accessed throughout R-Simp’s execution. Third, the cluster structure
represents a portion of the original model and is a node in an n-ary tree. A cluster
contains a list of vertices from the original model and other supplementary data.
Tteratively, a leaf cluster is selected from a priority queue and subdivided into 2,
4, or 8 sub-clusters. At the end of the simplification phase, each cluster represents
one vertex in the simplified model.

3.2 Phases of R-Simp

The first phase is the input phase. The original model is read in from the file and
the initial vertex list and face list are created. These data structures require a
lot of virtual memory (Table 1). The blocks of memory that are allocated in this
phase are used throughout the entire simplification process (Section 2, Figure 2).

In the second phase, the in-memory data structures are initialized. The ini-
tialization phase creates the vertex and face adjacency lists.

The third phase is the heart of R-Simp: the simplification phase. In this phase
the original set of vertices is reduced to the desired size. The simplification phase
starts with all the vertices in a single cluster. This cluster is then subdivided into
a maximum of eight sub-clusters. These clusters are inserted into a priority queue
and the main loop of R-Simp begins.

The priority queue holds references to the clusters and orders the clusters
based on the surface variation (i.e., amount of curvature). The greater the surface
variation, the higher the priority of the cluster. Therefore, the simplified model
will have more vertices in regions of high surface variation. This process iterates
until the priority queue contains the required number of clusters, which is the
number of vertices in the simplified model. Each split causes more clusters to

Model |[Output ||Original R-Simp |w/Spatial Sort |w/Reorg. |w/Both
(polygons)

hand 10,000 1,401 854 305 270
hand 20,000 1,905 1,140 342 293
hand 40,000 2,597 1,582 410 353
dragon (10,000 4,375 1,524 1,409 892
dragon {20,000 5,829 2,058 1,778 1,183
dragon (40,000 7,736 2,781 2,484 1,563
blade 10,000 8,306 4,052 4,539 3,545
blade 20,000 10,877 5,289 5,700 4,792
blade 40,000 14,312 7,084 7,720 6,713

Table 2. Performance of Polygonal Model Simplification: Various Strategies, times in
seconds

be created, thus the amount of memory used by this phase depends on the level
of detail required. In general, the coarser the level of detail required, the less
memory is needed.

The fourth phase is the post-simplification phase: the final set of vertices for
the simplified model are computed. Each cluster represents a single vertex, vs,,
in the simplified model; for each cluster, R-Simp computes the optimal position
of v,,. Finally, the algorithm changes all of the pointers from the original vertices
in a cluster to v,,.

The fifth phase is the triangulation phase, where the algorithm creates the
faces (i.e., polygons) of the new simplified model. The algorithm iterates through
all the faces in the original model and examines where the vertices of these faces
lie in the output cluster. If two or more vertices point to the same new vertex
(i-e., two or more original vertices are within the same cluster) then the face has
degenerated and only if all three original vertices point to different new vertices
do we keep the face and add it to the new face list. The vertices of this new face
point to the vertices in the new vertex list.

In the last phase, the output phase, the algorithm writes the new vertex list
and the new face list to the output file.

4 TImproving Memory Locality and Performance in
R-Simp

In addition to experiments with an instrumented version of R-Simp, we have also
benchmarked versions of R-Simp without the instrumentation and with compiler
optimizations (-0) turned on. R-Simp is written in C++ and we use the egcs
compiler, version 2.91.66, on our Linux platform. The hardware environment is
the same as in Section 2.

When the data structures of a model fit within main memory, R-Simp is
known to have low run times [1]. However, the hand, dragon, and blade models

Model |[Output ||Original R-Simp |w/Spatial Sort|w/Reorg. w/Both
(polygons)
hand 10,000 1,042,444 701,789 265,328 | 249,849
hand 20,000 1,361,492 880,498 281,338 | 254,083
hand 40,000 1,812,649 1,167,593 297,028 | 268,952
dragon 10,000 3,670,516 1,409,489 1,070,466 | 702,050
dragon (20,000 4,892,932 1,808,060 1,329,220 | 875,622
dragon |40,000 6,410,393 2,386,238 1,767,490 (1,084,346
blade 10,000 7,678,929 3,878,566 4,127,079 |3,125,348
blade |20,000 9,988,417 5,002,567 5,195,597 |4,149,098
blade 40,000 13,063,493 6,599,763 6,997,380 |5,717,086

Table 3. Major Page Fault Count of Polygonal Model Simplification: Various Strate-
gies

are large enough that they require more memory than is physically available
(Table 1).2 Consequently, the baseline R-Simp (called “Original R-Simp”) ex-
periences long run times (Table 2) due to the high number of page faults that it
incurs (Table 3). As expected, the larger the input model, the longer the run time
and the higher the number of page faults. As the output model’s size increases,
the run time and page faults also increase.

As previously discussed (Section 3), the global vertex and face lists are large
data structures that are accessed throughout the computation. Therefore, they
are natural targets of our attempts to improve the locality of memory access.
In particular, we have developed two different techniques that independently
improve the memory locality of R-Simp; real-time performance improves by a
factor of 2 to 6-fold, depending on the model and the size of the simplified model.
When combined, the two techniques can improve performance by up to 7-fold.

4.1 Metrics: Cluster Pagespan and Resident Working Set

We introduce cluster pagespan as an application-specific metric of the expected
locality of reference to a model’s in-memory data structure. Cluster pagespan is
defined as the number of unique virtual memory pages that have to be accessed
in order to touch all of the vertices and faces, in the global vertex and face lists, in
the cluster. For each iteration of the simplification phase, R-Simp’s computation
is focussed on a single cluster from the front of the priority queue. Therefore, if
the pagespan of the cluster is large, there is a greater chance that a page fault
will be incurred. The smaller the cluster pagespan, the lower the chance that
one of its pages has been paged out by the operating system.

Figure 3(a) shows the cluster pagespan of the cluster at the front of the
priority queue during an execution of R-Simp with the blade model. Since the

% The hand model by itself would initially fit within 128 MB, but the operating system
also needs memory. Consequently, paging occurs.

Cluster Pagespan: X-axis is scaled Resident Working Set of Original

wallclock time, Y-axis is pagespan of Model: X-axis is scaled wallclock time,

cluster at front of priority queue Y-axis is number of clusters in the model
with > 95% of pages in main memory

(a) Original R-Simp, 40,000 polygons in output

25000 50

20000

15000

10000

5000

il " "
o 3
3 500000 1ew 1.50W06 2e%06 2.50%06 3eW6 3.5e%06 dev0s 3
Tine Inilisec]

(b) R-Simp with both Spatial Sorting and Reorganization, 40,000 polygons in output

25000 50

20000

15000

10000

5000

F o
3 500000 dewd A.8ew06 208 25006 Jewd 3.8er0s devos
Tine Inilisec]

Lese? 120007 Lideso]

Fig. 3. Cluster Pagespan and Resident Working Set for blade

initial clusters are very large, the cluster pagespan is also large at the beginning
of the execution. As clusters are split, the cluster pagespan decreases over time.
The cluster pagespan data points are joined by lines in order to more clearly
visualize the pattern. An instrumented version of R-Simp is used to gather the
data. Furthermore, for each iteration of the simplification loop, all of the clusters
in the priority queue are examined. If > 95% of the pages containing the vertices
and faces of a cluster are in physical memory (as opposed to being swapped out
onto the swap disk), that cluster is considered to be resident in main memory.
Therefore, Figure 3(a) also shows the count of how many of the clusters in the
priority queue are considered to be in memory and part of the resident working
set, over time.

As the clusters decrease in size, more clusters can simultaneously fit into main
memory. Note that the vertices and faces are from the original (not simplified)
model. The graph of the resident working set is not monotonically increasing be-

cause the operating system periodically (not continuously) reclaims pages. Also,
the vertical lines represent important phase transitions. The resident working
set count begins to decrease after the simplification phase because the post-
simplification and triangulation phases dynamically create new vertex and face
lists, which displace from memory the lists from the original model.

The cluster pagespan graph in Figure 3(a) indicates that there is poor mem-
ory locality in how the model is accessed for the initial portion of R-Simp’s
execution. Consequently, the total number of clusters that reside in main mem-
ory remains under 2,000 for most of the simplification phase of the algorithm.

We now describe two techniques that measurably improve memory local-
ity, according to cluster pagespan and the resident working set count, and also
improve real time performance.

4.2 Off-Line Spatial Sorting

The models used in this case study are stored on disk in the PLY file format [7].
The file consists of a header, a list of the vertices, and a list of the faces. Each
polygonal face is a triangle and is defined by a per-face list of three integers, which
are index locations of vertices in the vertex list. There is no requirement that the
order in which vertices appear in the list corresponds to their spatial locality.
Two vertices that are spatial neighbours in the 3D geometry-space can be in
contiguous indices in the vertex list, or they can be separated by an arbitrary
number of other vertices. There is also no spatial locality constraint on the order
of faces in the file. In R-Simp, the vertices and faces are stored in main memory
in the same order in which they appear in the file, therefore the order of the
vertices and faces in the file have a direct impact on the layout of the data
structures in memory.

The large cluster pagespan values seen in the early portion of R-Simp’s ex-
ecution (Figure 3(a)) suggests that perhaps the PLY models have not been
optimized for spatial locality. Therefore, we decided to spatially sort the PLY
file. The model itself is unchanged; it has the same number of vertices and faces
at the same locations in geometry-space, but we change the order in which the
vertices and faces appear in the file. Our spatial sort reads in the model from
the file, sorts the vertices and faces, and then writes the same model back to
disk in the PLY format. Therefore, the spatial sort is a preprocessing step that
occurs before model simplification. The spatially-sorted version of the PLY file
can then be re-used for different runs of the simplification program.

The spatial sort is a recursive Quicksort-like algorithm. After reading the
model into memory, a 3D bounding box for the model is computed, as are three
orthogonal dividing planes that partition the bounding box into eight isomorphic
sub-boxes. Each sub-box is recursively partitioned; the stopping condition for the
recursion is when a sub-box contains less than two vertices. As the sort recurses
back up, the vertices in the vertex list are reordered so that vertices in the same
sub-box at each level of recursion, which are spatial neighbours, have indices
that are contiguous.

100 100 100
100
61.0 59.8 60.9
50 21.8 19.3 18.0 15.4 15.8 13.6
0 NN S NSl —
10,000 polygons 20,000 polygons 40,000 polygons Output size
(a) Hand
100 100 100
100
50 34.832.2 5 4 35.3 30.5 90.3 35.9 32.1 920.2
6 . N NI
10,000 polygons 20,000 polygons 40,000 polygons Output size
(b) Dragon
100 100 100
100
. 48.854.6 4o - 48.6 52.4 44 1 49.5 939 46.9
5 =l SN Sl
0

10,000 polygons

20,000 polygons

40,000 polygons

Output size

(c) Blade

] Original R-Simp w/Spatial Sort w/Reorg.] w/Both

Fig. 4. Normalized Execution Times

We spatially sort the faces according to their vertices to ensure that faces
which are neighbours in geometry-space are also neighbours in the face list.
Finally, the model is written back to disk in the PLY format with the vertex
and face lists in the new, spatially-sorted order.

Our implementation of the spatial sort is written in C++4-. Spatially sorting
the hand, dragon, and blade models require 28, 28, and 89 seconds, respectively,
on our 500 MHz Pentium III-based Linux platform. Again, the models only have
to be sorted once since the new PLY files are retained on disk.

When R-Simp is given a spatially-sorted model for the input, cluster pages-
pan is reduced throughout the process’s execution with a resulting improvement
in the resident working set of the original model. For blade, there are significant
improvements in both cluster pagespan and resident working set, which results
in more than a 50% reduction in R-Simp’s execution time (Table 2). Spatial
sorting also benefits the hand and dragon models.

Spatial sorting is a simple and fast procedure with substantial performance
benefits for R-Simp. Although the spatial sort is currently an off-line preprocess-
ing phase from R-Simp, we may integrate it into our implementation of R-Simp
in the future. In the meantime, our experiments and measurements suggest that

other researchers should consider spatially sorting the input models for their
graphics systems.

4.3 On-Line Reorganization of Data Structures

The performance improvements due to a static spatial sort are substantial. How-
ever, as a model is iteratively simplified, there may be an opportunity to dynam-
ically improve memory locality.

We have implemented a version of R-Simp that dynamically reorganizes its
internal data structures in order to reduce cluster pagespan. Specifically, before
a sub-cluster or cluster is inserted into the priority queue, the cluster may be
selected for cluster data structure reorganization (or simply, reorganization). If
selected for reorganization, the vertices and faces associated with the cluster
are copied from the global vertex and face lists into new lists on new pages
of virtual memory. The basic idea is similar to compacting memory to reduce
fragmentation in memory management. Internal to the cluster data structure,
the lists of vertices and faces now refer to the new vertex and face lists, thereby
guaranteeing the minimal possible cluster pagespan.

Since there are copying and memory allocation overheads associated with
reorganization, it is not done indiscriminately. Two criteria must be met before
reorganization is performed:

1. The cluster is about to be inserted into the priority queue within the front
50% of clusters in the queue (i.e., the cluster is in the front half of the queue).
2. The cluster pagespan after reorganization must be less than n pages.

The first criteria tries to maximize the chances that a reorganized cluster will
be accessed again (i.e., it will reach the front of the priority queue again and
be re-used). Reducing the pagespan of a cluster that is not accessed again until
the post-simplification phase produces fewer benefits. The value of “50%” was
empirically determined.

The second criteria controls at what point reorganization is performed, in
terms of cluster size. Reorganizing when clusters are large is expensive and in-
herently preserves large cluster pagespans. Reorganizing when clusters are small
may delay reorganization until most of the simplification phase is completed,
thus reducing the chances of benefitting from the reorganization. The specific
value of n chosen as the threshold has, so far, been determined experimentally.
The optimal value for n is found to be 1,024 pages (i-e., 4 MB given the 4 K
pages on our platform) for blade (Figure 5). For the three models, the optimal
value of n was empirically determined to be between 1,024 and 4,096 pages.

The benefits of reorganization are reflected in the reduced cluster pagespan
and increased resident working set (for example, Figure 3(b)), reduced number
of page faults (Table 3), and most importantly, in the lower run times (Table 2).
When both spatial sorting and reorganization are applied to R-Simp, there is
an additional benefit (Table 2 and Figure 4). Unfortunately, the two techniques
have some overlap in how they improve data-access locality, so the benefits are
not completely additive.

Normalized Execution Time (lower is better)

100
100 I 86.4 795 734 724 733 731
64

" “El[IREE

128 256 512 1024 2048 4096

Threshold: n pages

Fig. 5. Varying Reorganization Threshold, blade, Normalized Execution Time, 40,000
polygon output

5 Concluding Remarks

In computer graphics and visualization, the complexity of the models and the size
of the data sets have been increasing. Modern 3D scanners and rising standards
for image quality have fueled a trend towards larger 3D polygonal models and
also into model simplification algorithms. R-Simp is a new model simplification
algorithm with low run times, easy control of the output model size, and good
model quality. However, no matter the amount of RAM that one can afford,
there may be a model that is too large to fit in memory.

Therefore, we have developed spatial sorting and data structure reorganiza-
tion techniques to improve the memory locality of R-Simp and experimentally
shown it to improve performance by up to 7-fold. We have also introduced the
cluster pagespan metric as one measure of memory locality in model simplifica-
tion. For future work, we plan to study if spatial sorting and reorganization can
also improve the performance of other simplification algorithms.

References

[1] D. Brodsky and B. Watson. Model simplification through refinement. In Graphics
Interface ’00, pages 221-228. Canadian Information Processing Society, Canadian
Human-Computer Communications Society, May 2000.

[2] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics.
In Proc. ACM SIGGRAPH 1997, pages 209-216, August 1997.

[3] P.S. Heckbert and M. Garland. Survey of polygonal surface simplification algo-
rithms. Technical report, Carnegie Mellon University, 1997. Draft Version.

[4] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh opti-
mization. In Proc. ACM SIGGRAPH 1993, volume 27, pages 19-26, August 1993.

[6] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michaelangelo
project: 3D scanning of large statues. In Proc. ACM SIGGRAPH 2000, pages 131—
144, 2000.

[6] P. Lindstrom. Out-of-core simplification of large polygonal models. In Proc. ACM
SIGGRAPH 2000, pages 259-262. ACM, 2000.

[7] PLY File Format. http://www.cc.gatech.edu/projects/large models/ply.html.

[8] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering com-
plex scenes. In Modeling in Computer Graphics: Methods and Applications, pages
455-465, Berlin, 1993. Springer-Verlag.

[9] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of triangle meshes.
Computer Graphics, 26(2):65—-70, July 1992.

