
Trellis Driver:
Distributing a Java Workflow Across a Network of Workstations

Nicholas Lamb, Paul Lu, and Alona Fyshe
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8�

nlamb|paullu|alona � @cs.ualberta.ca

Abstract

Some applications in science and engineering consist
of a main job that invokes, or drives, other jobs. For ex-
ample, a server process may receive a request, then in-
voke a workflow of stand-alone scripts or executables to
handle the request, and then generate the final response.
Java’s Runtime.exec() function allows jobs to be in-
voked from within a master Java program. However, these
jobs are usually restricted to the same machine. If the num-
ber of jobs in the workflow is large, then it can be desir-
able to load balance the workload across different servers
to maximize throughput.

We describe the design and implementation of the Trellis
Driver, a newly-developed Java module that runs jobs using
TrellisDriver.exec() and allows jobs to be sched-
uled across clusters and metacomputers (i.e., aggregations
of servers). Using a Java-based bioinformatics application
as a case study, we evaluate the performance improvement
Trellis Driver offers through workflow parallelism.

1. Introduction and Related Work

1.1. Motivation

Some applications in science and engineering consist of
a main job that invokes, or drives, other jobs and executa-
bles. For example, a server process may receive a request,
then invoke a workflow of scripts to handle the request,
and then generate the final response. Often, each script is
a stand-alone application, executed as a separate process or
job, that is invoked by the driver process. For example, there
may be a pre-processing application, a main-computation
application, then a post-processing application, organized
as a pipeline. Overall control of the workflow, whether it is

a pipeline or other shape, is often handled by a master script
or driver.

Nearly all scripting languages and modern programming
languages provide an Application Programming Interface
(API) function for an application to run a command string as
a separate process. ANSI C and Unix provide the fork()
function, which creates a new operating system process, and
the exec() function, which starts running a new program.
The system() function automates creating and running a
new process, and waiting for that process’ termination sta-
tus. However, system() blocks the caller until the com-
mand has been completed by the shell. Notably, Unix also
provides popen() as a non-blocking, asynchronous func-
tion for running a command string. Similarly, Java provides
the Runtime.exec() method to invoke executables that
are external to the Java application [8]. In combination with
Java threads, it is possible to develop concurrent Java appli-
cations to exploit multiprocessors.

Regardless of the specific application or language, if
there are many jobs in the workflow, or if the jobs are very
resource-intensive, then throughput may be improved by
load balancing the jobs across a cluster or some aggregation
of different servers. Restricting the concurrent processes or
threads to a single server limits overall performance. There-
fore, a variation of system() or Runtime.exec(),
with similar semantics, which is integrated with a metacom-
puting system such as Trellis [12, 6], can improve perfor-
mance.

1.2. Example Application: Proteome Analyst

Among the many optimization strategies applied to large
scientific and engineering problems is workflow paralleliza-
tion: exploiting concurrency between (not within) jobs with
control-flow (or data-flow) dependencies. Although ex-
ploiting workflow concurrency is a well-known strategy,
parallelizing large scientific applications at the job-level
continues to be a challenge. In particular, the scheduling

and placement of hundreds or thousands of jobs in a work-
flow is typically handled by a batch scheduler, a grid infras-
tructure, or a metacomputer system, which are more com-
plicated than simple library functions like system() or
Runtime.exec().

Proteome Analyst (PA) is a bioinformatics tool that pro-
vides a high-performance proteome classification frame-
work [4] [13]. It consists of a Web interface and a driver
program, written in Java, that invokes other bioinformat-
ics and machine-learning applications. In bioinformatics,
a classifier can be used to make predictions or annotations
of a new protein. The value of predicting the properties
of a new protein is in filtering the vast amounts of bioin-
formatics data and in suggesting the kinds of physical ex-
periments that might be most valuable for a given protein.
Currently, PA exploits process-level concurrency within a
single server, but large analyses can require hours of com-
putation and could benefit from aggregating multiple com-
pute servers.

PA accepts a proteome (i.e., a set of protein sequences)
in the form of text strings and then, based on a homol-
ogy search and the extraction of information from databases
of known proteins, makes predictions about properties of
the new query sequence. When describing PA, we use the
terms “sequence” and “protein” interchangeably. PA cur-
rently provides predictions or annotations for general pro-
tein function (i.e., what does the protein do) and subcellular
localization (i.e., where in the cell the protein performs its
main function), and will provide additional annotations in
the future.

There are two distinct aspects to PA, but both have sim-
ilar workflows and both are computationally-intensive (dis-
cussed in detail later and illustrated in Figure 3). First, PA
can machine-learn a classifier as part of a training process.
Using a training set of sequences with known annotations,
PA automatically machine-learns a Naive Bayes (NB) clas-
sifier in a learn-by-example fashion. Second, PA can use a
trained classifier to predict an annotation (or class label) for
a new query sequence with an unknown class label.

From a high-level algorithmic standpoint, both training
and prediction processes have three phases (Figure 1): First,
the sequence (i.e., the primary structure of the protein rep-
resented as a string) is compared against the Swiss-Prot bi-
ological database of known sequences [1] using the well-
known Blast toolset [3]. Swiss-Prot is a high-quality, cu-
rated database of known proteins and their various proper-
ties. During the training process, the sequence is from the
training set. During the prediction process, the sequence is a
new query sequence. The output from this string-matching
step is a set of homologues, or proteins with similar pri-
mary structure. Second, the known information about the
homologues is parsed to extract features or keywords from
the Swiss-Prot database. Third, during training, a map-

Parsing

Prediction

MTVA...

>Voltage

Class label
and expla−
nation

Homologues

Features

Sequence

Blast

Figure 1. Job Pipeline for Classification

ping function from the features to a class label is machine-
learned. The result is a classifier. During prediction, a
previously-trained classifier is used to map the features to
a class label.

As shown in Figure 1, the prediction process consists of a
sequential pipeline of jobs in which the output from one job
is the input to the next. Each job is “small” in the sense that
it has a short running time and small input and output data
sizes. However, some proteomes have thousands or tens of
thousands of proteins and so the challenge is in efficiently
“calling out” to the different applications (e.g., Blast, the
parsing tool) in an efficient manner and in a way that can
exploit metacomputers for workflow concurrency.

1.3. Java Support for Workflow Parallelism

Previous to the development of Trellis Driver, PA used
the Java 2 Platform API function Runtime.exec() to
run Blast jobs for individual proteins. Runtime.exec()
is non-blocking and returns a Process object. The caller
may then invoke the Process.waitFor() method to
wait until that process has completed and obtain its exit
code. Thus, PA could theoretically issue many calls to
Runtime.exec() and start multiple Blast jobs in paral-
lel, and later call Process.waitFor() on each process
to verify its outcome.

Unfortunately Runtime.exec() has the drawback
that processes are usually run locally. An individual pro-
teome may consist of tens of thousands of sequences, im-
plying there may be tens of thousands of job pipelines for
classification launched by PA. A single workstation is inca-
pable of executing a workload of this size in less than a few
hours, which is an unacceptably high turnaround time. To

effectively parallelize PA, the distribution of individual jobs
over several machines is required.

We therefore need a replacement for Runtime.
exec() that transparently schedules a job on any one of
several available machines in a pool. While Java does offer
the Remote Method Invocation (RMI) package that allows
programs to invoke methods on remote objects, RMI only
works between Java methods and programs. Runtime.
exec() supports non-Java executables, as does our new
Java package.

1.4. Trellis Driver

We have developed the Trellis Driver Java package to
function as a drop-in replacement for Runtime.exec().
Trellis Driver provides a Java API that includes function-
ality for launching a new process, waiting for that process
to complete, and obtaining its exit status. Trellis Driver is
essentially a layer of software between a Java application
(e.g., PA) and our underlying Trellis metacomputing sys-
tem. Trellis Driver works across local and wide-area net-
works, offering security and load balancing. In contrast to
mechanisms such as fork() or system(), which cre-
ate new processes only within a single server, Trellis Driver
distributes jobs across a network of workstations.

Trellis does work across geographically-distributed ad-
ministrative domains, but our experimental results, in this
paper, are limited to a local-area network. Specifically, we
use a cluster of workstations as the hardware platform.

1.5. Related Work

The Globus Alliance is a well-known research and de-
velopment effort to define new protocols and standards for
grid computing [10, 11, 9]. Although powerful in con-
cept and feature-rich, the Globus solution has the follow-
ing drawbacks: 1) The Globus infrastructure is non-trivial
to set up; 2) Administrators from all participating high-
performance computing (HPC) centres must negotiate ser-
vice level agreements among each other; and 3) Adminis-
trators must install and manage the grid software. For these
reasons, we seek a simpler solution for resource integration.

In the absence of any grid infrastructure, there is a need
to create an abstraction of a virtual supercomputer. The goal
of metacomputing is to combine resources from multiple
HPC centres, not by replacing existing infrastructure with a
computational grid, but by building on top of the individual
HPC systems. Overlay metacomputing provides resource
aggregation at the user-level, meaning users may configure
and use their own metacomputer without any system admin-
istrator support.

There are several automated job batching systems in
widespread use. The Portable Batch System (PBS) is a

feature-rich, multi-platform job queueing system [2]. Sun’s
N1 Grid Engine [7] is a resource management tool for dis-
tributed environments that includes a job queueing system.
N1 Grid Engine allows the creation of grids that allow
users to share resources across multiple domains. The prob-
lem with basing Trellis Driver on any one particular batch
scheduler system is that it requires system administrators
from all HPC centres to use the same local batch sched-
uler, which is an unrealistic assumption. Globus offers the
promise that heterogeneous batch schedulers can be used
within a single computational grid, but once again, all sites
must first deploy the Globus infrastructure.

The purpose of this paper is two-fold. First, we describe
the design and implementation of our Trellis Driver pack-
age, which integrates the PA application with the Trellis
metacomputing environment. Second, as a case study, we
describe the performance improvement Trellis Driver offers
PA through workflow parallelism. Our experiments show
Trellis Driver is effective at launching multiple jobs in a
short time frame (typically on the order of seconds), and can
provide, as expected, almost linear speed-up of data parallel
application phases. Our main conclusion is that the PA sys-
tem can be effectively integrated with the Trellis system, in
order to take advantage of load balancing and other benefits,
and that the Trellis overheads can be fully amortized.

2. Trellis System Architecture

2.1. Overview

Trellis is a thin layer of software that sits between ap-
plications and the infrastructure of HPC centres. Com-
munication between domains is accomplished via message
passing over Secure Shell (SSH) channels. Trellis uses the
OpenSSH implementation of SSH.

The Trellis scheduler provides load balancing of work-
loads across multiple administrative domains. The Trellis
system allows users to submit jobs to one or more metaque-
ues without concern about where and when those jobs will
be run. A metaqueue is a queue of pending Trellis jobs that
is visible to all hosts in the metacomputer. Users can create
distinct metaqueues for different workloads, allowing them
to run and monitor multiple applications concurrently.

Jobs are assigned to specific hosts through place-
holder scheduling, whereby local batch queues interact with
metaqueues to retrieve and execute jobs on demand. Place-
holders are special-purpose programs running on a user’s
behalf on host machines. Each placeholder is associated
with a specific metaqueue at the time it is started. The place-
holder scheduling strategy follows a “pull” model in which
jobs are retrieved from the metaqueue by programs on host
machines. This is in contrast to a “push” model in which a
central job server offloads jobs onto individual computers it

contents
Metaqueue

Mqsub
Process

System
Local Operating

Consumer 1

per−producer
next

per−producer
next

Producer 2

Producer 1

Trellis CLI

Buffer
1

2

3

n

Trellis Driver

n − 1

Application
Java

Figure 2. Bounded Buffer with Per-Producer Links

detects are idle. Since jobs are assigned on demand, hosts
that are heavily loaded will have fewer placeholders asking
for work over a given time interval and will pull fewer jobs
from the metaqueue. Hosts with a lighter load will have
more placeholders asking for work and pull more jobs from
the metaqueue. Placeholder scheduling therefore achieves
implicit load balancing across all hosts.

The Trellis Command Line Interface (CLI) is the front
end of the Trellis job scheduler. The names and semantics
of the Trellis CLI commands for submitting and monitoring
jobs are based on those of the PBS batch scheduler. PBS
provides the commands qsub, qdel, and qstat to add jobs,
remove jobs, and list the contents of a local job queue, re-
spectively. Trellis CLI provides the equivalent commands
of mqsub, mqdel, and mqstat.

2.2. Trellis Driver Architecture

Trellis Driver is implemented as a Java package. Java ap-
plications import this package and call TrellisDriver.
exec() to run jobs in the Trellis metacomputing environ-
ment. Communication between the higher-layer application
code and the Trellis Driver is carried out through a well-
defined API, which is described further below. Briefly, to
launch a job, application code passes a command line to
Trellis Driver through API calls. The application can then
obtain that job’s exit status through the API.

The dataflow resulting from a job submission can be
viewed as a producer-consumer situation. Figure 2 illus-
trates the implementation. Threads within the applica-
tion (producers) generate jobs while threads within Trellis
Driver (consumers) process jobs by sending them to the un-
derlying metascheduler. There is no limit on the number
of producer threads, since this depends on the application
code. We wish to avoid starting a consumer thread for every

incoming job, since this could flood the JVM with hundreds
or even thousands of threads. Having this many threads
active at the same time would seriously undermine perfor-
mance. To decouple the producer count from the consumer
count, Trellis Driver uses a standard bounded buffer to store
incoming jobs. The bounded buffer is simply a limited-
size storage space for command lines. Trellis Driver allows
users to set the size of the bounded buffer and the number
of consumers threads.

Applications can submit jobs either synchronously or
asynchronously using Trellis Driver. In synchronous mode,
the calling producer thread blocks until Trellis completes
the given job. In asynchronous mode, the caller continues
after submitting a Trellis job and can later collect results
from any or all jobs it previously submitted. This last task
is done through work barrier functions provided by the Trel-
lis API. Implementing work barrier functions requires keep-
ing track of which jobs are submitted by which producers.
Buffer entries contain special links to maintain this infor-
mation, which we refer to as “per-producer next” links.

In Figure 2 we see there are two producers pushing jobs
into the buffer while one consumer is pulling jobs out of
the buffer. Dark gray entries represent jobs submitted by
Producer 1, white entries jobs submitted by Producer 2, and
the light gray entry a job submitted by a third producer that
is not currently adding a new job to the buffer.

When Producer 1 calls a work barrier function to wait on
all its outstanding jobs, Trellis Driver iterates through the
linked lists of jobs belonging to Producer 1, waiting for each
job to be marked as complete before moving onto the next
one. In the example above, Trellis Driver waits at buffer
entry 1 until that job has completed before examining buffer
entry 3. Only after the job at entry 3 has completed does the
work barrier function return.

Class
labels

Machine
learning Classification

Predicted
class

preprocessing
Data

preprocessing
Datastrings

Protein

?

sequences
training

Unknown

sequences
training

Labeled
Homologues

Parsing

Features

3 4

Prediction

Classifier
FeaturesFeatures

Training

2

1
Blast

Figure 3. Training and Prediction Activities of Proteome Analyst

2.3. Trellis Driver API

The key Trellis Driver API functions are:

� setGroup(group name, batch factor):
Register a new job group (i.e., group name), with a
number indicating how many of such jobs are to be
grouped together in a single mqsub command (i.e.,
batch factor). This is further explained in Section 3.2.

� exec(command line) 1: Run the given command
(i.e., command line) in synchronous mode.

� execAsynch(command line, prod id): Run
the given command on behalf of the specified producer
(i.e., prod id), in asynchronous mode.

� waitForOne(key, prod id) : Wait for the
Trellis job with the given reference (i.e., key) that was
submitted by the specified producer to finish.

� waitForAll(prod id): Wait for all Trellis jobs
that were submitted by the specified producer to finish.

Application code that uses the standard Java runtime en-
vironment to run jobs in parallel can be ported to the Trel-
lis environment with relative ease. The programmer first
defines any job groups they desire using setGroup().
It is sometimes desirable to batch multiple small jobs of

1For consistency in function naming, we offer an alias to this method
called Trellis.execSynch

the same type (into a single call to mqsub) to amortize the
overhead of starting a new job in Trellis. The programmer
can issue exec() and execAsynch() calls as needed to
run jobs either synchronously or asynchronously. The pro-
grammer can call waitForOne() or waitForAll() to
await completion of one or several jobs at appropriate exe-
cution points.

3. Empirical Results: Parallelizing Proteome
Analyst

Note that, although the Trellis system supports metacom-
puting across administrative domains and across a wide-
area network, this following empirical results focus on a
network of workstations hardware platform.

3.1. Proteome Analyst: Application Details

Proteome Analyst conveys information on the biologi-
cal properties of protein sequences through classification.
Each input sequence is mapped to a class that groups other
sequences with similar properties. From an application
perspective, classification involves two major activities: 1)
Training, in which a classifier is built based on a set of pro-
teins whose class memberships are known; and 2) Predic-
tion, in which the classifier is used to predict the classes of
previously unseen proteins.

Before any classifier can be trained or used for predic-
tion, PA must perform data preprocessing to map each input

protein to a set of features or keywords that describe the pro-
tein. The data preprocessing consists of two substeps: find-
ing homologues and extracting features. For every protein,
PA first runs an application called Blast to find homologues,
which are proteins with a common structure. PA then parses
the homologues to extract a set of features. After data pre-
processing, PA can use the extracted features along with the
class labels from proteins in a training set to build a new
classifier. Alternatively, PA can apply the feature lists to an
existing classifier to predict class memberships of unlabeled
proteins.

Figure 3 shows the flow of data and computation for
the two main activities of PA. Rectangular boxes (e.g.,
Data preprocessing, Machine learning) represent applica-
tion tasks while rounded boxes and icons (e.g., Labeled
training sequences, Classifier) represent data elements that
are passed from one task to the next. Note that the tasks
shown for prediction are essentially a reproduction of the
job pipeline shown in Figure 1.

To assess and improve the performance of all tasks in-
volved in either training or prediction, we trained and val-
idated a new classifier with a moderately-sized training set
containing 3,916 sequences and a total of 2,632 different
features. In practice, PA users have used training sets with
up to 100,000 sequences and 6,500 features.

There are four phases of computation in this use case:
1) Blast; 2) Feature Extraction; 3) Machine Learning; and
4) Resubstitution. In the first phase, PA iterates over all se-
quences in the training set and runs Blast on each one, out-
putting the matching homologues in HTML files. In Feature
Extraction, PA parses the HTML files to extract features
corresponding to each input sequence. During the Machine
Learning phase the classifier is constructed using the ex-
tracted features and class labels found in the training set.
The fourth and final phase of Resubstitution entails running
all of the sequences from the training set through the newly-
built classifier to measure the error on the training set itself.
Tasks in Figure 3 are labeled with the number of the corre-
sponding computational phase.

Table 1 shows the average phase times and average total
running time over five execution trials of the original PA,
which executes all four phases sequentially. PA was run on
a single Linux machine with two AMD Athlon MP 1800+
processors (1.533 GHz), 1.5 GB main memory, and Redhat
v7.1. Although PA is multi-threaded, the key Blast phase
discussed in this paper is single-threaded (i.e., it runs on
only one processor). The HTML files outputted by phase
one were stored on a locally-mounted disk volume. The fea-
ture lists produced by phase two were stored in a MySQL
4.0 database that was stored locally and had a server pro-
cess running on the same machine as PA. The total run-
ning time of 6:52:55 for our moderately-sized training set
provides empirical evidence for the need to reduce running

Phase Run time (HH:MM:SS)
Blast 5:19:27

Feature Extraction 0:06:37
Machine Learning 1:08:17

Resubstitution 0:18:34
Total 6:52:55

Table 1. Phase Times for Training and Vali-
dation Pipeline (Sequential Version) of Pro-
teome Analyst

time through parallelism. Notice that the first phase has the
longest running time by far. In this paper, we focus on par-
allelizing Blast.

3.2. Homogeneous Job Batching

The first two phases of PA preprocess the string repre-
sentations of proteins to produce a list of features. Given
the potentially large sizes of input proteomes, it is possible
for PA to invoke Blast tens of thousands of times (i.e., once
per sequence).

The original PA runs Blast on one protein at a time. The
short running time of Blast on an individual protein makes
for poor job granularity. In other words, the amount of com-
putation in a single Blast execution is too short to justify
running a job through Trellis. The ability to launch multi-
ple Blast jobs in a single command line greatly amortizes
the overhead of mqsub. We refer to this strategy of group-
ing together calls to the same program as homogeneous job
batching. We refer to the number of jobs in a group as the
batching factor.

In addition to job batching, the Blast phase can be accel-
erated through parallelism. Since this phase entails apply-
ing the same algorithm on multiple independent proteins,
any number of Blast jobs may be run in parallel. The op-
timized Blast phase uses a combined strategy of homoge-
neous job batching and parallelism.

The original PA iterates through the training set, call-
ing Runtime.exec() to run Blast on each sequence.
Thus, the Blast executions are serialized. The par-
allel version of PA first registers the Blast job group
with TrellisDriver.setGroup(), specifying the
desired batching factor. Parallel PA then iterates through
the training sequences and calls TrellisDriver.
execAsynch() to start each Blast job. The actual con-
catenation of Blast commands into one command string that
is passed to mqsub is done by Trellis Driver, and is thus
transparent to the PA application. PA has only to specify
in any call to TrellisDriver.execAsynch() that
the incoming command is of type Blast. Finally, PA calls
TrellisDriver.waitForAll() to await the com-

Phase Times (HH:MM:SS)
No. for Varying Batching Factors

Place- (Original Blast time was 5:19:27)
holders 1 2 4 8 16

2 3:22:05 3:02:13 2:49:06 2:44:09 2:40:34
4 1:42:34 1:30:50 1:25:03 1:21:47 1:20:33
8 0:55:31 0:46:47 0:42:58 0:41:10 0:40:55

Table 2. Phase Times for Parallel Blast

Batching Factor
No. Placeholders 1 2 4 8 16

2 1.58 1.75 1.89 1.95 1.99
4 3.11 3.52 3.76 3.91 3.97
8 5.75 6.83 7.43 7.76 7.81

Table 3. Speed-ups of Parallel Against Se-
quential Blast

pletion of all Blast jobs before proceeding onto the next
phase.

Table 2 shows the average runtimes from five execution
trials for the Blast phase in the parallel version of PA for
varying batching factors and numbers of placeholders. Ta-
ble 3 show speed-ups for the Blast phase. A batching factor
of one means all Blast jobs run individually (i.e., no batch-
ing was done). Our platform was a cluster of Linux hosts
connected by Fast Ethernet. Each host had the exact hard-
ware and software specifications as the host used for mea-
suring phase times for the sequential version of PA, as de-
scribed earlier in Section 3.1.

From Table 3, we see that the speed-ups are reasonable
for a data-parallel phase such as Blast. We do not achieve
linear speed-up. A trade-off is made between the overheads
of mqsub and the extra functionality provided by the Trel-
lis system, especially in terms of load balancing the work-
load across multiple servers. Thus, mqsub’s advantages out-
weigh the increased cost of scheduling jobs using Trellis.

Notice that there are diminishing returns as we increase
the number of placeholders. With a batching factor of one
(no batching), we obtain a speed-up of 1.58 when two place-
holders are used. The speed-up of the Blast phase increases
by 97% (i.e., almost doubles) as we move to four place-
holders, reaching a respectable 3.11. With eight placehold-
ers however, we achieve a speed-up of 5.75, a mere 85%
increase over the four placeholder case.

One reason for this drop-off could be that the single Trel-
lis CLI server, which constantly accepts requests for work
by placeholders and hands out jobs, has a heavier computa-
tional load with a higher number of placeholders. Thus, the
CLI server may be slower in dispatching jobs to placehold-
ers, increasing the amount of time it takes for placeholders
to pull jobs off of the server. Another explanation could be

the overhead of SSH, which is magnified when more place-
holders (and more SSH channels) are communicating with
the CLI server simultaneously.

Performance scalability improves as the batching factor
is increased. Not only do we approach linear speed-up, but
the speed-ups scale with the number of placeholders. With a
batching factor of eight, we observe a doubling of speed-ups
as we move from two to four placeholders, and our speed-
ups almost double as we move from four to eight placehold-
ers. The speed-up is slightly lower than we would expect
for the case of eight placeholders and a batching factor of
16. However, the phase time of 0:40:55 is just 12.8% of the
original Blast time of 5:19:27.

These results show that homogeneous job batching
achieves its objective of amortizing the mqsub overhead.
Moreover, the job batching is transparent to the application,
making it easy for the programmer to take advantage of this
feature of Trellis Driver.

4. Future Work

In this work, we parallelized the Blast phase only. How-
ever, the sequential phase time for Machine Learning,
which entails constructing the classifier, was also quite long
(i.e., over an hour) relative to the remaining phases. Par-
allelization of classifier construction is currently underway
[5].

We explained and motivated the need for homogeneous
job batching. For reasons of data affinity, it is often practical
to group together jobs of different types that constitute a
job pipeline (i.e., heterogeneous job batching). This is of
particular interest to Proteome Analyst, given the pipeline
shape of its workflows. We are currently implementing this
feature as well.

Finally, testing in an actual metacomputing environment
that consists of an aggregation of geographically distributed
servers is necessary to further verify the effectiveness of
Trellis Driver, and to explore any issues related to job
scheduling through Trellis over wide-area networks.

5. Concluding Remarks

Many applications in science and engineering have nat-
ural workflow parallelism. Some of these, including Pro-
teome Analyst, consist of a driver process that creates thou-
sands of processes or jobs, and could benefit from the ability
to be placed and scheduled on multiple servers.

We have described the design and implementation of
Trellis Driver. As a Java module, Trellis Driver has been
used to parallelize the Proteome Analyst application by pro-
viding a simple API to link the familiar, existing process-
based parallelism with the Trellis metacomputing system.

By exploiting the combined power of different servers, the
PA and Trellis Driver combination can obtain reasonable
throughput speed-ups of up to 7.81 on 8 processors (with 8
placeholders) for large phases such as Blast.

Our case study with Proteome Analyst suggests that
driver-based applications can potentially have significant
amounts of workflow parallelism that are well-suited for
load balancing across a network of workstations.

6. Acknowledgements

Thank you to Duane Szafron, Russ Greiner, David
Wishart, Brett Poulin, Roman Eisner, Zhiyong Lu, John An-
vik, Cam Macdonell, David Meeuwis and the rest of the
Proteome Analyst group.

This research was partially funded by research or equip-
ment grants from the Protein Engineering Network of Cen-
tres of Excellence, the Natural Sciences and Engineering
Research Council of Canada, Alberta Ingenuity Centre for
Machine Learning, Sun Microsystems, SGI, and the Alberta
Science and Research Authority.

References

[1] A. Bairoch, and Rolf Apweiler. The SWISS-PROT protein
sequence data bank and its supplement trEMBL. Nucleic
Acids Research, 25(1):31–36, 1997.

[2] Altair Grid Technologies, [Online 2004]. http://www.
openpbs.org/.

[3] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. Lipman. Gapped BLAST and PSI-
BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Research, 25:3389–3402, 1997.

[4] D. Szafron, P. Lu, R. Greiner, D.S. Wishart, Z. Lu, B. Poulin,
R. Eisner, J. Anvik, and C. MacDonell. Transparent High-
throughput Protein Annotation: Function, Localization and
Custom Predictors. 12th International Conference on Ma-
chine Learning, Workshop on Machine Learning in Bioin-
formatics (ICML Workshop–Bioinformatics), 2003.

[5] N. Lamb. Scheduling Policies for Overlay Metacomputers.
Master’s thesis, Department of Computing Science, Univer-
sity of Alberta, 2004. in preparation.

[6] C. Pinchak, P. Lu, and M. Goldenberg. Practical Heteroge-
neous Placeholder Scheduling in Overlay Metacomputers:
Early Experiences. In Proc. 8th Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP), pages 85–
105, Edinburgh, Scotland, UK, July 24, 2002.

[7] Sun Microsystems Inc., [Online 2004]. Avail-
able: http://www.sun.com/software/grid/
SunClusterGridArchitecture.pdf/.

[8] Sun Microsystems Inc. Java 2 Platform Standard Edi-
tion v1.4.2, API Specification, [Online 2004]. Avail-
able: http://java.sun.com/j2se/1.4.2/docs/
api/index.html/.

[9] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
Grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John
Wiley & Sons Inc., December 2002.

[10] The Globus Alliance, [Online 2004]. Available:
http://www.globus.org/research/papers/
ogsa.pdf/.

[11] The Globus Alliance. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integra-
tion, [Online 2004]. Open Grid Service Infrastructure WG,
Global Grid Forum, http://www.globus.org/.

[12] Trellis Project, [Online 2004]. http://www.cs.
ualberta.ca/˜paullu/Trellis.

[13] Z. Lu, D. Szafron, R. Greiner, P. Lu, D.S. Wishart, B. Poulin,
J. Anvik, C. Macdonell, and R. Eisner. Predicting Subcellu-
lar Localization of Proteins Using Machine-Learned Classi-
fiers. Bioinformatics, 20(4):547–556, 2004.

