
Trellis-SDP: A Simple Data-Parallel Programming Interface

Meng Ding and Paul Lu
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8

Canada
{ading|paullu}@cs.ualberta.ca

Abstract

Some datasets and computing environments are inher-
ently distributed. For example, image data may be gathered
and stored at different locations. Although data parallelism
is a well-known computational model, there are few pro-
gramming systems that are both easy to program (for simple
applications) and can work across administrative domains.

We have designed and implemented a simple program-
ming system, called Trellis-SDP, that facilitates the rapid
development of data-intensive applications. Trellis-SDP
is layered on top of the Trellis infrastructure, a software
system for creating overlay metacomputers: user-level ag-
gregations of computer systems. Trellis-SDP provides a
master-worker programming framework where the worker
components can run self-contained, new or existing binary
applications. We describe two interface functions, namely
trellis scan() and trellis gather(), and show how easy it is to
get reasonable performance with simple data-parallel ap-
plications, such as Content Based Image Retrieval (CBIR)
and Parallel Sorting by Regular Sampling (PSRS).

1. Introduction

Data parallelism is a well-known programming model.
However, it can be difficult to write and deploy a sim-
ple data-parallel application, which is unfortunate because
many problems are naturally data parallel. For example,
information retrieval, sorting, and searching have inher-
ent data parallel phases. Parallelizing an existing appli-
cation in these areas may require porting (e.g., to use a
message-passing system) and access to source code. How-
ever, message-passing can be complicated and the applica-
tions may be in binary-only form. Similarly, hardware de-
velopments in workstations and networks have encouraged
distributed computing platforms, such as clusters, meta-
computers over wide-area networks (WAN) [20], and grids

[9, 11]. With the prevalence of inherently data-parallel ap-
plications and platforms, there is a need for a simple data-
parallel programming system for simple data-parallel prob-
lems.

Suppose a company is providing a service for content
based music retrieval, which takes a clip of singing from a
client and then searches through the music database to find
the top 10 most-similar songs. If the database is too large to
fit on one system and/or is already distributed, it would be
impractical for the server to read in all the data and perform
pitch/rhythm extraction [8] and comparison algorithms on a
single site. Instead, one can choose to ship the music fea-
ture extraction and comparison functions to the sites where
data resides and perform the operations there. This func-
tion shipping and remote execution mechanism not only
makes full use of the computational power on each site, but
it also greatly reduces the traffic over the WAN. However,
the problem is, how to support the easy and efficient pro-
gramming of these applications that handle large collections
of distributed datasets?

We have designed, implemented, and performed a pre-
liminary evaluation of a programming system, Trellis-SDP,
for data-intensive applications. Trellis-SDP is designed to
work across WANs, and we have successfully run Trellis-
SDP jobs across multiple administrative domains, but our
empirical evaluation in this paper is limited to the controlled
environment of a network of workstations. Nonetheless, the
design and implementation of Trellis-SDP addresses several
important issues in metacomputing programming [16]:

Security Trellis-SDP is based on the previous work of
the Trellis Project [20, 19, 23]: a software infrastructure for
user-level overlay metacomputers. Our programming sys-
tem takes advantage of the underlying Trellis Security In-
frastructure (TSI) [13], which is layered on the Secure Shell
(SSH) [7, 3], for authentication and secure communication
across different administrative domains.

Resource Specification In Trellis-SDP, a metafile is a
file that is logically contiguous, but (perhaps) physically

distributed across a network. An XML-based metadata file
is used to describe a metafile (e.g., Figure 2), including the
location and the size of the distributed blocks.

Global Naming and Remote Data Access We use Se-
cure Copy Locators (SCL) [23] as the filenames in the
global namespace. Using SCL, Trellis can access remote
data by first copying it into a local disk and then accessing
the local cached copy of the remote file. Our programming
system extends this concept by function shipping the com-
putation to the remote host.

Usability One of our key design philosophies is to make
the programming system as simple as possible while main-
taining the basic metacomputing functionality.

We present and evaluate two basic programming in-
terfaces in Trellis-SDP, namely trellis scan() and trel-
lis gather(), which allow remote execution and group com-
munication in WAN. As is, Trellis-SDP is not feature-rich
enough to support all data-parallel applications, but it is ca-
pable of implementing a large class of applications with
minimal effort.

The main contributions of our work are:

1. Trellis-SDP provides a simple master-worker pro-
gramming framework (Figure 1) that facilitates the
rapid development of data-intensive applications. With
a metadata file (Figure 2) representing the naturally-
distributed data, one can easily write a non-trivial data-
parallel application using Trellis-SDP (Figure 3).

2. For many data-parallel codes, Trellis-SDP allows the
loosely-coupled workers to run existing, sequential,
and unmodified binaries; the master and worker bina-
ries can be separate. In contrast, many parallel pro-
gramming systems require the application to be recom-
piled into a single, tightly-coupled binary (e.g., typical
OpenMP and MPI applications).

2. Related Work

The need for reducing the complexity of data-parallel
programming has led to a great deal of work in application-
specific toolkits. These include application or domain-
specific languages and libraries, programming frameworks
and problem-solving environments [9]. Most of these toolk-
its have been adapted from traditional parallel and dis-
tributed computing systems; only a few are designed specif-
ically for grid computing or metacomputing [16]. Exist-
ing programming tools include message-passing libraries,
object-oriented tools, and middleware systems:

MPICH-G2 [14] is a “grid-enabled implementation of
the Message Passing Interface (MPI) that allows the pro-
grammer to run MPI programs across administrative do-
mains using the same commands that would be used on a

cluster of workstations” [10]. The significant advantage of
MPICH-G2 is that the programmer can reuse existing MPI
code. A pragmatic disadvantage is that MPICH-G2 requires
the Globus toolkit to be installed in all the administrative
domains, to address the issues of security, remote process
startup, and cross-domain communications.

DataCutter [5] proposes a filter-stream programming
model (originally designed for Active Disks [1, 21]) in a
grid environment. In this programming model, an appli-
cation is decomposed into a set of filters among which the
communication is done via streams. As with Trellis-SDP,
DataCutter also pushes the computation to the data, instead
of migrating the data to the computation [5]. DataCutter
does not have the concept of a metadata file. All filter place-
ments must be specified in the program. Also, the filter does
not support unmodified binaries. In other words, program-
mers must rewrite their data-intensive components accord-
ing to the filter specifications.

MW [12] is a software framework that allows users to
parallelize scientific applications on a computational grid
using the master-worker programming model. MW pro-
vides two sets of programming interfaces: An Infrastruc-
ture Programming Interface that ports the MW framework
to a grid software toolkit such as Condor [6] and Globus,
and an Application Programming Interface that enables the
master-worker paradigm. In both cases, the user needs to
re-implement a number of virtual functions to address low
level details such as resource request and detection, remote
execution, and communication. In addition, the program-
mer needs to re-implement the workers using MW-specific
classes – MWTask and MWWorker.

3. The Trellis-SDP Approach

The main design goal of Trellis-SDP is to facilitate the
programming of data-intensive applications with coarse-
grained and simple communication patterns. For more fine-
grained and complicated message patterns, we also support
group communication. Of course, the overall performance
depends on the amount and type of communication in the
application, but Trellis-SDP is designed to be easy-to-use
for easy-to-parallelize applications.

Trellis-SDP is well-suited to applications where it is ei-
ther easy to decompose the application into master and
worker components, or where the worker component al-
ready exists (e.g., as a sequential, binary executable). In
both cases, it is the worker component that performs the
data-intensive operations near the data and it is the master
component that synchronizes the computation and collects
the results.

If necessary, the programmer is responsible for identify-
ing the I/O-intensive cores in an application and extracting
them into stand-alone components. We try to simplify this

Metacomputer

HPC Center 2

HPC Center 1

HPC Center 3

HPC Center 4

Master

Worker 1

Worker 2 Worker 3

Worker 4

…
trellis_scan()

trellis_gatherv()

) _

ssh ssh ssh ssh

ssh

Local FS

Figure 1. Programming System Execution En-
vironment

process by allowing worker components to run arbitrary ex-
ecutables. For example, for a distributed sorting applica-
tion, the programmer can choose to reuse an existing se-
quential sorting application as the worker component.

Before the computation is started, Trellis-SDP assumes:

1. The data needed by the computation is already dis-
tributed across the metacomputer, which is a common
case for wide-area data-intensive applications (Fig-
ure 1). Trellis-SDP provides basic tools for scattering
and gathering the data; the tools are used in our testing.

2. The executable code for the worker components is al-
ready distributed across the metacomputer.

3. The metadata file, identifying the distributed data, al-
ready exists (Section 4.1). In our case, the metadata
file contains the location and size of the data on each
participating host.

Figure 1 illustrates the execution environment of our pro-
gramming system. Inside a Trellis-SDP program, a worker
process is invoked by a call to the trellis scan() library func-
tion. It takes an object, representing the metadata file, and
the specified operation as input parameters. The worker
components on remote hosts perform the operations and ei-
ther generate the results on their local disks or return the re-
sults back to the master component via streams. In the for-
mer case, intermediate files generated by different worker
components can also be described using a metadata file.
This intermediate metadata file can be used in a different
trellis scan() or it can be saved to disk. This is especially
useful in a batch-pipelined workload [24], where the output
of one worker component may be the input of a succeeding

worker component. Note in Figure 1 that, if necessary, a
trellis gather() can be used to perform group communica-
tion among worker components.

4. Implementation

4.1. Metafiles: A Metadata File Approach

As discussed earlier, a metafile is a file that is logi-
cally contiguous, but (perhaps) physically distributed across
a network. As with other indexed-based file allocation
schemes, a Trellis-SDP metadata file specifies the name and
location of the distributed blocks of a logical file. The mas-
ter component can either access the file as if it was a sin-
gle, logical file, or use the trellis scan() function to per-
form a data-parallel operation on the physically-distributed
blocks. Given a contiguous file, Trellis-SDP provides a tool
to distribute (i.e., scatter) the data and create a correspond-
ing metadata file. Another tool can take a metadata file and
gather the distributed blocks into a single file on a local file
system.

The metafile is written in XML, as is illustrated in Fig-
ure 2. Each block in the file is specified with a DataBlock
node that contains a Locator (a string in SCL format) node
and a Size (an integer specifying the size of each block, in
bytes) node.

In practice, the programmer creates an in-memory meta-
data object corresponding to a metadata file. This is analo-
gous to an in-memory version (i.e., metadata object) of an
Unix i-node (i.e., metadata file). Upon object creation, all of
the information in the metadata file is parsed and cached in
the object. The object can then be passed to trellis scan(). It
is also possible to export a metadata object to disk, in XML
format.

4.2. Trellis Scan

trellis scan() is the main data-parallel application pro-
gramming interface (API) in Trellis-SDP. The declaration
of trellis scan() is:

int trellis scan(MetaHandler* meta, char* operation,
ScanHandler** scan);

As shown in Figure 3, trellis scan() is (typically) called in
the master component and it takes two input parameters
and one output parameter. For input, there is a handle to
a metadata object and an operation string. For output, trel-
lis scan() will create a scan object and return a handle to
it via the last parameter. The scan object stores the results
from the different worker components. As well, the scan
object provides functions to examine data streams from re-
mote computing hosts in an arbitrary order so that the mas-

<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp:ading@cleardale.cs.ualberta.ca:/usr/scratch/feature.1</Locator>
<Size>5945000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@sullivan.cs.ualberta.ca:/usr/scratch/feature.2</Locator>
<Size>4830000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 2. Example of a Metadata File

ter component can coordinate and merge these information
for future processing.

#include <string>
#include <stdio.h>
#include <trellis.h>

int main(int argc, char * argv[]){

ScanHandler * scan = NULL;
MetaHandler * meta = NULL;
/* Result buffer */
char buffer[1024];
/* Argument for grep */
char * grep_arg = argv[1];
/* Metadata File */
char * metafile = argv[2];
/* Operations */
string op = "grep " + string(grep_arg);

/* Create Metadata Object */
meta = new MetaHandler(metafile);
/* Trellis Scan */
if(trellis_scan(meta, op.c_str(), &scan)<0){

fprintf(stderr, "Scan Failed\n");
delete meta;
exit(-1);

}else{
memset(buffer, 0, 1024);
/* Read Result */
scan->Read(buffer, 1024);
printf("%s\n", buffer);
delete scan;
delete meta;

}

return 0;
}

Figure 3. Sample Code for trellis grep (master
component). Worker components are Unix
grep executables. Location and distribution
of data is abstracted by the metadata file.

Figure 3 implements a data-parallel trellis grep, which
is a grep operation on distributed data. The code shown
is the complete code for the master component, illustrating
how simple a program can be if the problem is simple. For
the worker component, we use the unmodified Unix grep
program. The trellis scan() reads in metadata information
and starts up the worker component in each remote host to

perform “grep” on its local data. The master component
then reads in the results through the scan object. Note that
trellis grep performs most of its data-intensive operations
on the remote hosts and transfers only a small amount of
data back to the master host.

The scan object also provides a synchronization opera-
tion that waits for the data transmission to complete in all
streams. The synchronization is done automatically when
the scan object is deallocated.

4.3. Trellis Gather

As discussed, trellis scan() establishes communication
channels between the master and worker components. This
interface is sufficient for embarrassingly data-parallel ap-
plications with no communications among worker compo-
nents. However, some complex parallel and distributed
applications do require group communications. Thus we
also propose a group communication interface called trel-
lis gather(). This is quite similar to the MPI collective com-
munication interface MPI Gather/MPI Gatherv [18]. There
are several papers on collective communications in wide-
area networks, including performance issues, fault tolerance
issues, etc [2, 4, 15]. Our efforts focus mainly on the API
issues at this time. We also touch upon a little bit of the
performance issue and will discuss this in the Application
section.

trellis gather() has the following declaration:

int trellis gather(MetaHandler* meta, void* recvbuf,
int* recvbytes, int* starts, int datatype, int root);

The semantics of trellis gather() are similar to those of
MPI Gather. The difference is that in MPI Gather, the re-
mote data resides in the memory of a remote host, but in
trellis gather(), the remote data is stored on disk and is
specified by a metadata file. Note that the first parameter
to trellis gather() is a metadata object that has already been
bound to the metadata file. Therefore, the input parameter
starts, which is an integer array, represents the offsets rel-
ative to files instead of displacements relative to memory

Figure 4. Control flow of CBIR application

buffers. To initiate a group communication, all participat-
ing worker components should call trellis gather(). By de-
fault, data is transferred using ssh-protected channels and
received in each worker component’s recvbuf.

5. Applications

In this section, we describe two applications: Content
Based Image Retrieval (CBIR) and Parallel Sorting by Reg-
ular Sampling (PSRS). We perform some initial bench-
marks on the application and give a discussion on the pre-
liminary performance results.

5.1. Content Based Image Retrieval

For a computer, retrieving images based on image con-
tent is a difficult task. Unlike human beings, who may easily
recognize objects in an image, say “a red car”, computers
do not understand the contents of the image. Researchers in
different disciplines (e.g., computer vision, signal process-
ing, biology, neuro-science, etc. [22]) have proposed vari-
ous algorithms in this area.

5.1.1 Implementation

Writing a CBIR application using our programming system
is quite similar to the CBMR example we described in Sec-
tion 1. The sequential CBIR application takes a sample
query image and performs a feature extraction algorithm
on the image to generate a multidimensional feature vec-
tor. The feature vector is then searched through the feature
space (i.e., the feature vectors of all the images in the image
database) to find the top � most-matched feature vectors.

To write a distributed version of CBIR, the application is
first decomposed into a master component and two worker
components: feature extraction and feature comparison.

The number of worker components depends on how the im-
age database is distributed. Figure 4 depicts the control
flow of the distributed CBIR application. Note in the figure
that the interconnection between the different components
is show as being over a LAN (instead of a WAN), since all
the experiments we performed are with a LAN. We will ex-
tend our experiments to WAN in the future.

As shown in the figure, the two worker components are
written using different tools. We build the feature extrac-
tion component using MATLAB since it greatly simplifies
matrix-based programming. And, we build the feature com-
parison component using standard C. In practice, one may
choose to write the worker component using one’s favorite
language, to speed up the software development process.

5.1.2 Experimental Results

The experiment is carried out using a cluster of worksta-
tions with dual 1.5 GHz AMD Athlon CPUs, 1.5 GB RAM
memory per node, and running the Linux kernel 2.4.18.
All nodes are connected via Fast Ethernet. Our image
database contains 60,000 images with a total feature space
of 600MB.

Figure 5. Raw execution time of CBIR appli-
cation: Time is the average execution time (5
repeated runs) in seconds, � is the standard
deviation.

Figure 6. Speedup of distributed CBIR appli-
cation. Image database size: 600MB

Figure 7. Overheads of the programming sys-
tem in CBIR application

The main experiment we performed is the scalability test
by distributing the image database onto different numbers
of nodes. This is shown in Figure 5 where the average raw
execution times of the CBIR application on 2, 4 and 8 hosts
(excluding the master host) plus the sequential execution
time are given. We also present a speedup graph to further
illustrate the scalability of the application (see Figure 6).

The distributed CBIR application shows good scalability
when the number of participating nodes increases. This is
expected since the distributed CBIR is intrinsically embar-
rassingly parallel. The contribution of Trellis-SDP is in sim-
plifying the implementation of the CBIR application and in
minimizing the overheads that detract from linear speedup.

To gain some insight into the overheads (e.g., the startup
time of ssh connections and the encryption of the commu-
nication channel), we measured and factored out the ssh
startup times, as compared to the overall execution time
(Figure 7). The worst case overhead is 15.5% when the
number of nodes is 8. This is understandable since the num-
ber of ssh calls and connections grows linearly, at least
for CBIR, with the number of nodes. As shown with the
next application, ssh startup overheads can become a bot-
tleneck, especially when group communication is involved.

5.2. Parallel Sorting by Regular Sampling

Parallel Sorting by Regular Sampling(PSRS) [17] is a
parallel sorting algorithm that is suitable for many paral-
lel architectures. It has a “good load balancing properties,
modest communication needs and good of locality refer-
ences”. To sort the data distributed on � hosts, the algorithm
divides the whole process into four phases, which fits well
with our remote execution programming system.

In phase one, each worker component sorts its local data

using quick sort. Then regular samples are collected from
each sorted local data and merged together in the master
component. Merged regular samples are also sorted using
quick sort. In phase two, ����� pivots are found from the
sorted regular samples and sent back to each worker compo-
nent, which partition its local data according to the pivots.
In phase three, there is a communication-intensive data ex-
change where the ���	� partition in each worker component is
transferred to the ���	� worker. Finally, in phase four, the ex-
changed partitions in each worker are merged using n-way
merge sort and the algorithm ends. The main purpose of the
PSRS experiment is to show that our programming system
works for non-embarrassingly parallel applications.

5.2.1 Implementation

To simplify the implementation, we create three worker
components on each remote host: The first component per-
forms the local sort and collects samples. The second com-
ponent reads in pivots and generates partition index infor-
mation. The last component exchanges the data partitions
using trellis gather() and does a final local merge sort. The
sorted data still resides in remote hosts and is represented
by a metadata file in the master host.

Figure 8. Raw execution time of PSRS

Figure 9. Speedup of PSRS application

5.2.2 Experiments and Discussions

The experiment setup is the same as the one described in
Section 5.1.2 except that the dataset we use now contains 1

Figure 10. Breakdown execution time of PSRS
application with default ssh. (a) phase-by-
phase with real time. (b) phase-by-phase with
percentage of real time.

GB of unsorted (binary) integers (i.e., 256 million keys) in
total.

Scalability The raw execution time and speedup graphs of
the distributed PSRS application are given in Figure 8 and
Figure 9. The execution time is an average of 5 repeated
runs. As seen from the figure, for 8 hosts, we get a speedup
of 3.7. This is not “high” as compared with the previous
CBIR experiment, but considering the all-to-all communi-
cations, the result is reasonable. In fact, we are more inter-
ested in identifying the overheads of Trellis-SDP for group
communication.

Breakdown Execution Time We use phase-by-phase anal-
ysis to quantify the execution times in each phase. Figure 10
illustrates the breakdown of execution time of PSRS. As
expected, phase three becomes a performance bottleneck
when the number of hosts increases. For example, when
there are only two hosts, phase three is 22% of the total ex-
ecution time. But, when the number of hosts increases to
eight, phase three grows to 55%.

The major reasons for this bottleneck are the satura-
tion of the network bandwidth (i.e., exchanging millions
of keys), the number of ssh connections, and the data en-
cryption overheads. For all-to-all communication among �

worker components in phase three, there are ��� ����� ssh
connections.

To further quantify the overhead, we perform another test
by replacing all ssh connections in phase three with rsh,
which is faster than ssh since rsh uses cleartext chan-
nels. Figure 11 shows the new break down execution time
of PSRS with rsh enabled in phase three. With rsh, both
the total execution time, and percentage of time for phase
three, is reduced. Figure 12 more-directly shows the impact
of the choice of underlying communication mechanism. In
the future, we plan to explore the communication optimiza-
tion of ssh for large data transfers.

Figure 11. Breakdown execution time of PSRS
application with rsh enabled in phase three.
(a) phase-by-phase with real time. (b) phase-
by-phase with percentage of real time.

Figure 12. Overheads of the programming
system in PSRS with different underlying
communication mechanism

6. Concluding Remarks

We present the design and implementation of a simple
programming system, called Trellis-SDP, that facilitates the
rapid development of data-intensive applications in a user-
level metacomputing environment. Trellis-SDP is built on
top of the existing Trellis system and provides a master-
worker programming framework where the worker compo-
nents can run self-contained, purely sequential and existing
(i.e., unmodified) binary applications.

Three data-intensive applications (i.e., grep, image re-
trieval, sorting) that make use of Trellis-SDP are described
and the performance results for two applications are dis-
cussed. The results show that for naturally data-parallel ap-
plications, our programming system is easy to use and has
reasonable performance, especially when considering the
amount of algorithmically-necessary data communication.
In the future, we will continue to investigate other data-
intensive applications to further improve our system with

regard to simplicity and efficiency. Our on-going goals are
to design abstractions (e.g., metafiles), provide library func-
tions (e.g., trellis scan() and trellis gather()), and evaluate
techniques to create data-parallel applications.

7. Acknowledgements

This research was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC), SGI,
the Alberta Science and Research Authority (ASRA), and
C3.ca.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Program-
ming Model, Algorithm and Evaluation. In Proceedings of
the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
81–91, San Jose, California, United States, 1998.

[2] M. Banikazemi, V. Moorthy, and D. Panda. Efficient Collec-
tive Communication on Heterogeneous Networks of Work-
stations. In International Conference on Parallel Process-
ing, pages 460–467, 1998.

[3] D. Barrett and R. Silverman. SSH, the Secure Shell: The
Definitive Guide. O’Reilly and Associates, 2001.

[4] M. Bernaschi and G. Iannello. Collective Communication
Operations: Experimental Results vs. Theory. Concurrency:
Ptractice and Experience, 10(5):359–386, April 1998.

[5] M. Beynon, T. M. Kurc, A. Sussman, and J. H. Saltz. De-
sign of a Framework for Data-Intensive Wide-Area Applica-
tions. In Heterogeneous Computing Workshop, pages 116–
130, 2000.

[6] Condor. http://www.cs.wisc.edu/condor.
[7] S. C. S. Corp. Enabling Virtual Private Networks with Public

Key Infrastructure, 2004. http://www.ssh.com.
[8] J. Foote. An Overview of Audio Information Retrieval. Mul-

timedia Systems, 7(1):2–10, 1999.
[9] I. Foster. The GRID: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publishers Inc., San Francisco,
CA, 1998.

[10] I. Foster and N. Karonis. A Grid-Enabled MPI: Message
Passing in Heterogeneous Distributed Computing Systems.
In Proceedings of SC’98. ACM Press, 1998.

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration, 2002. Open Grid Service
Infrastructure WG, Global Grid Forum, http://www.
globus.org/.

[12] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An
Enabling Framework for Master-Worker Applications on the
Computational Grid. In Proc. 9th Int’l Symposium on High
Performance Distributed Computing (HPDC-9), pages 43–
50, 2000.

[13] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson,
M. Ding, M. Goldenberg, N. Lamb, R. Senda, E. Sumbar,
and Y. Wang. The Trellis Security Infrastructure: A Layered
Approach to Overlay Metacomputers. In 18th International

Symposium on High Performance Computing Systems and
Applications (HPCS), pages 109–117, Winnipeg, Manitoba,
Canada, May 16–19, 2004.

[14] N. T. Karonis. MPICH-G2: A Grid-Enabled Implementa-
tion of the Message Passing Interface. Journal of Parallel
and Distributed Computing (JPDC), 63(5):551–563, May
2003.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s Collective Communi-
cation Operations for Clustered Wide Area Systems. ACM
SIGPLAN Notices, 34(8):131–140, 1999.

[16] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller,
G. Allen, and J. Saltz. A Grid Programming Primer, Au-
gust 2001. Advanced Programming Models Working Group,
Global Grid Forum, http://www.gridforum.org/.

[17] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and
H. Shi. On the Versatility of Parallel Sorting by Regular
Sampling. Parallel Computing, 19(10):1079–1103, 1993.

[18] Message Passing Interface Standard 1.1. http://
www-unix.mcs.anl.gov/mpi/.

[19] C. Pinchak, P. Lu, and M. Goldenberg. Practical Heteroge-
neous Placeholder Scheduling in Overlay Metacomputers:
Early Experiences. In Proc. 8th Workshop on Job Schedul-
ing Strategies for Parallel Processing, Edinburgh, Scotland,
UK, July 2002.

[20] C. Pinchak, P. Lu, J. Schaeffer, and M. Golden-
berg. The Canadian Internetworked Scientific Super-
computer. In 17th Annual International Symposium
on High Performance Computing Systems and Applica-
tions (HPCS), Sherbrooke, Quebec, Canada, May 11–
14, 2003. http://www.cs.ualberta.ca/˜ciss,
http://www.cs.ualberta.ca/˜paullu.

[21] E. Riedel and G. Gibson. Active Disks - Remote Execution
for Network-Attached Storage. Technical Report CMS-CS-
99-177, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, United States, November 1999.

[22] Y. Rui, T. S. Huang, and S.-F. Chang. Image Retrieval: Past,
Present, and Future. In International Symposium on Multi-
media Information Processing, December 1997.

[23] J. Siegel and P. Lu. User-Level Remote Data Access in Over-
lay Metacomputers. In Proceedings of the 4th IEEE Int’l
Conference on Cluster Computing, pages 480–483, Sept.
2002.

[24] D. Thain, J. Bent, R. Arpaci-Dusseau, A. Arpaci-Dusseau,
and M. Livny. The Architectural Implications of Pipeline
and Batch Sharing in Scientific Workloads. Technical
Report UW-CS-TR-1463, Computer Sciences Department,
University of Wisconson, January 2003.

