
University of Alberta

PLACEHOLDER SCHEDULING FOR OVERLAY METACOMPUTING

by

Christopher James Pinchak

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2003

Abstract

The availability of a large number of distributed high-performance computing resources has given

rise to the field of metacomputing in which these resources are coupled to obtain their combined

benefits. Placeholder scheduling and TrellisWeb were developed to provide a metacomputing en-

vironment. Placeholder scheduling takes advantage of existing software infrastructure to minimize

problems introduced by administrative boundaries and provide performance benefits to users. Exist-

ing batch schedulers are not replaced by placeholder scheduling. Placeholders are instead layered on

top of existing schedulers to take advantage of the local policies they represent. Experimental results

show that placeholder scheduling scales to a large number of sites and administrative domains, and

can dynamically load balance jobs across all participating sites in such a way that the makespan is

significantly lower than with an alternative method.

Acknowledgements

Seldom is any endeavour the undertaking of a single individual, and this thesis is no exception.

Many people played many parts during the research described herein, and without their help this

thesis would not exist. For research to be successful, someone must have the ability to judge what is

reasonable and what is not. To this end, I credit my supervisor, Dr. Paul Lu. Paul gave me ideas when

I had none, motivation when things looked bleak, and assurances that I was on the right track. Paul,

along with Dr. Jonathan Schaeffer, conceived of the CISS project and, through their determination,

set it in motion, providing me with an opportunity to showcase my work in the public eye. This was

a unique experience that I will always remember.

Also important are those involved in a less technical sense. Lesley Schimanski helped greatly

by always being supportive of my goals, in addition to her endless proof-reading of this thesis. It

would not be nearly the work that it is without her help. Also important are my parents, Bob and

Sherry Pinchak, for always being excited and interested in my continuing education.

Lastly, I would like to thank the participants of CISS-1. The hours leading up to and during

the experiment were fraught with minor glitches, and many of you went beyond the call of duty to

ensure that our big day went as smoothly as possible. This thesis is as much a testament of your

hard work as it is mine.

Table of Contents

1 Introduction 1
1.1 Goals of a Metacomputing System . 2
1.2 Goals of Global Scheduling . 4
1.3 Features of Placeholder Scheduling and TrellisWeb 4
1.4 Overview of Placeholder Scheduling and TrellisWeb 6
1.5 Concluding Remarks . 6

2 Related Work 8
2.1 Globus . 8

2.1.1 Globus Resource Allocation . 10
2.1.2 Globus Security . 11

2.2 Legion . 11
2.3 EveryWare . 12
2.4 Batch Scheduling Systems . 13

2.4.1 Conventional Batch Schedulers . 13
2.4.2 Condor . 14
2.4.3 Condor-G . 15

2.5 Parameter Space Systems . 15
2.5.1 Nimrod . 16
2.5.2 Nimrod/G . 16

2.6 Portals . 17
2.6.1 GridPort . 17
2.6.2 Legion Grid Portal . 17
2.6.3 PUNCH . 18

2.7 Self-Scheduling . 18
2.8 Concluding Remarks . 19

3 Placeholder Scheduling 20
3.1 Overview . 21
3.2 Advantages of Placeholder Scheduling . 24
3.3 Placeholders in Action . 26
3.4 Command-Line Server . 27
3.5 Implementation of Placeholder Scheduling . 28

3.5.1 Placeholders . 29
3.5.2 Batch Scheduled Placeholders . 29
3.5.3 Zero-Infrastructure Placeholders . 30
3.5.4 Self-Regulating Placeholders . 30
3.5.5 The Command-Line Server . 31

3.6 Concluding Remarks . 33

4 TrellisWeb 35
4.1 Overview . 35
4.2 Key Features . 36
4.3 TrellisWeb Walkthrough . 37

4.3.1 Application Upload . 37
4.3.2 Placeholder Group Creation . 38
4.3.3 Loading the Command-line Server . 40
4.3.4 Dispatching Placeholders . 41
4.3.5 Monitoring and Managing Placeholders 41

4.4 Additional Command-line Server Functionality 43
4.5 Simple Fault Tolerance . 44

4.6 Concluding Remarks . 45

5 Empirical Evaluation 47
5.1 Experiment #1: Proof-of-Concept . 47

5.1.1 User Scripts . 48
5.1.2 Placeholders: Example with 50 Jobs . 53
5.1.3 Placeholders: Example with 200 Jobs . 58
5.1.4 Placeholders: Example with 200 Jobs, Uniprogrammed 58
5.1.5 Summary of Proof-of-Concept Experiments 58

5.2 Experiment #2: Multiple Administrative Domains 61
5.2.1 Summary of Multiple Administrative Domains Experiment 65

5.3 Experiment #3: The CISS Project . 65
5.3.1 The CISS-1 Experiment . 67
5.3.2 Summary of the CISS-1 Experiment . 75

5.4 Discussion of Results . 75

6 Concluding Remarks 78
6.1 Future Work . 80

Bibliography 81

A Individual CISS-1 Site Results 83

List of Tables

2.1 Advantages and Disadvantages of Related Systems 9

3.1 Batch Scheduling vs. Placeholder Scheduling . 21

5.1 Summary of Proof-of-Concept Results . 48
5.2 Experimental Platform: Three Independent Systems and PBS Execution Queues . 49
5.3 Experimental Platform for the Parallel Sorting Application 61
5.4 CISS Sites . 66
5.5 CISS-1 Throughput . 68
5.6 Overall Hourly Throughput . 70

A.1 athlon-cluster.nic.ualberta.caHourly Throughput 84
A.2 aurora.nic.ualberta.caHourly Throughput 85
A.3 brule.cs.ualberta.ca Hourly Throughput 86
A.4 bugaboo.hpc.sfu.ca Hourly Throughput 87
A.5 chromosome1.ocgc.ca Hourly Throughput 88
A.6 gnome.usask.ca Hourly Throughput . 89
A.7 herzberg.physics.mun.caHourly Throughput 90
A.8 maci-cluster.ucalgary.caHourly Throughput 91
A.9 mercury.sao.nrc.ca Hourly Throughput 92
A.10 monolith.uwaterloo.caHourly Throughput 93
A.11 myri.ccs.usherbrooke.caHourly Throughput 94
A.12 p4-cluster.nic.ualberta.caHourly Throughput 95
A.13 stokes.clumeq.mcgill.caHourly Throughput 96
A.14 white.cs.umanitoba.caHourly Throughput 97
A.15 Other Hourly Throughput . 98

List of Figures

1.1 Overlay Metacomputers . 2

3.1 Placeholder Scheduling Example . 22
3.2 Placeholder Scheduling Overview . 24
3.3 Steps in Placeholder Execution . 26
3.4 Simple PBS Placeholder . 30
3.5 Simple Zero-infrastructure Placeholder . 31
3.6 Non-blocking Zero-infrastructure Submission Script 31
3.7 Generic PBS Placeholder . 32
3.8 Pseudocode Command-line Server Script . 33

4.1 TrellisWeb Application Upload . 38
4.2 Placeholder Group Creation (step one) . 39
4.3 Placeholder Group Creation (step two) . 39
4.4 Placeholder Template for the University of Alberta MACI SGI Complex 40
4.5 Loading the Command-line Server . 41
4.6 Placeholder Dispatch . 42
4.7 Placeholder Monitoring and Management . 43
4.8 Pseudocode TrellisWeb Fault Tolerance Script 45

5.1 Synthetic Workloads: Service-Time Distribution of Jobs 49
5.2 Throughput with User Scripts, Multiprogrammed, 50 Jobs 50
5.3 System Load with User Scripts, Multiprogrammed, 50 Jobs 51
5.4 Throughput with Placeholder Scheduling, Multiprogrammed, 50 Jobs 54
5.5 System Load with Placeholder Scheduling, Multiprogrammed, 50 Jobs 55
5.6 Throughput with Placeholder Scheduling, Multiprogrammed, 200 Jobs 56
5.7 System Load with Placeholder Scheduling, Multiprogrammed, 200 Jobs 57
5.8 Throughput with Placeholder Scheduling, Uniprogrammed, 200 Jobs 59
5.9 System Load with Placeholder Scheduling, Uniprogrammed, 200 Jobs 60
5.10 Throughput for the Sorting Application . 63
5.11 Queue Lengths of the Parallel Machines . 64
5.12 Number of Placeholders in Parallel Machine Queues 64
5.13 Potential Energy Calculations . 67
5.14 Overall Hourly Throughput . 69
5.15 athlon-cluster.nic.ualberta.caHourly Throughput 71
5.16 brule.cs.ualberta.ca Hourly Throughput 72
5.17 bugaboo.hpc.sfu.ca Hourly Throughput 72
5.18 aurora.nic.ualberta.caHourly Throughput 73
5.19 maci-cluster.ucalgary.caHourly Throughput 73
5.20 p4-cluster.nic.ualberta.caHourly Throughput 74
5.21 stokes.clumeq.mcgill.caHourly Throughput 74
5.22 Potential Energy Surface for

�����
Å . 76

A.1 athlon-cluster.nic.ualberta.caHourly Throughput 84
A.2 aurora.nic.ualberta.caHourly Throughput 85
A.3 brule.cs.ualberta.ca Hourly Throughput 86
A.4 bugaboo.hpc.sfu.ca Hourly Throughput 87
A.5 chromosome1.ocgc.ca Hourly Throughput 88
A.6 gnome.usask.ca Hourly Throughput . 89
A.7 herzberg.physics.mun.caHourly Throughput 90
A.8 maci-cluster.ucalgary.caHourly Throughput 91

A.9 mercury.sao.nrc.ca Hourly Throughput 92
A.10 monolith.uwaterloo.caHourly Throughput 93
A.11 myri.ccs.usherbrooke.caHourly Throughput 94
A.12 p4-cluster.nic.ualberta.caHourly Throughput 95
A.13 stokes.clumeq.mcgill.caHourly Throughput 96
A.14 white.cs.umanitoba.caHourly Throughput 97
A.15 Other Hourly Throughput . 98

Chapter 1

Introduction

The ever-increasing demand for more powerful high-performance computers has spurred the devel-

opment of metacomputing (and the closely-related area of grid computing). The primary goal of

a metacomputing environment is to provide the illusion that the individual member sites, together,

are a single resource. Metacomputers are a subset of computational grids and are more limited, by

design, with respect to the environment they create (e.g., they provide no support for grid-enabled

devices such as those used for data collection or visualization). Without a metacomputing environ-

ment, users view individual sites as just that – individual sites. Each site requires its own login and

has its own policies that users must adhere to. One of the sites may be a local or preferred site

for the user, perhaps where the user develops software or runs tests. The others are seen as remote

sites, and often do not have the same programs and data that the preferred site does. In the common

case, the preferred site is chosen for the majority of application runs, with remote sites being seldom

used. Although hardware continues to make performance leaps and bounds, users are beginning to

demand more computing resources than are currently available. This demand, coupled with current

high-bandwidth networks, has led to many efforts aimed at amalgamating multiple sites into a single

virtual supercomputer.

Users do not need to know or care where their applications execute within a metacomputer, and

would rather focus on more important tasks such as preparing input and examining output. Issues

such as the local scheduler interface, data file locations, and machine load can become overwhelming

to even the most experienced user should they have access to a large number of different sites.

Simply put, such issues are time consuming unless some sort of metacomputing environment is in

place to deal with them.

This work describes placeholder scheduling and its role in a metacomputing environment. Place-

holder scheduling differs from other metacomputing and grid computing software, such as Globus [8,

9] or Legion [4, 13], in that it is not designed to be a comprehensive solution. For example, this work

ignores the legitimate design goal of resource discovery, in which new resources are automatically

located by the system and incorporated into the metacomputer dynamically. Rather, it focusses on

the assignment of jobs to individual sites in an efficient way that is semi-transparent to the user.

1

Group HPC

Dept. HPC

HPC Centre 1

HPC Centre 2

Server

Overlay Metacomputer A
Overlay Metacomputer B

Figure 1.1: Overlay Metacomputers

The user explicitly defines personal overlay metacomputers that they may use to execute jobs. For

example, in Figure 1.1, Researcher A has access to his group’s system, a departmental system, and

a system at a high-performance computing centre. Researcher B has access to her group’s server

and two different high-performance computing centres, including one in common with Researcher

A (HPC Centre 1). With the use of overlay metacomputers, Researcher A creates Overlay Meta-

computer A (containing HPC Centre 1) and Researcher B creates Overlay Metacomputer B (also

containing HPC Centre 1). Now, both Researcher A and Researcher B may make use of all systems

they have access to.

Placeholder scheduling was designed to coexist with local site policies, including batch schedul-

ing systems, rather than replace or circumvent them. To avoid policy conflicts, placeholder schedul-

ing requires as little as possible from sites participating in the overlay metacomputers. For example,

if a user wants to use Site A as part of an overlay metacomputer, all that is required by Site A is

the provision of a user account. Placeholder scheduling is not intended to provide a metacomputer

suitable for all possible situations, but instead deals with many of the practical issues involved in

creating one that incorporates some level of heterogeneity.

1.1 Goals of a Metacomputing System

Because metacomputers are created from multiple computers at multiple sites, the computers in-

volved are often under the control of more than one entity (e.g., universities). Each entity has its

own team of system administrators that set local policy, and these local policies may be incompatible

with each other due to choices made at each site (e.g., using one batch scheduler instead of another).

Each of these entities represents a unique administrative domain within the metacomputer, and must

be dealt with according to the local policies set by the system administrators.

An ideal metacomputing system would create a single, seamless virtual computer from a col-

lection of physical computers. This seamless virtual computer would be manipulated as a single

machine and would provide the aggregate resources of all component computers to the user. The

2

user could submit jobs to the metacomputer without regard to where the resources are physically

located. A comprehensive computational grid is the goal of some existing projects [8, 13].

However, some difficult issues arise when building a metacomputing system. Briefly, they are:

1. Resource Scheduling & Allocation: Because there are potentially a large number of individ-

ual underlying systems, a resource scheduling scheme must exist that decides which resources

will be used for which jobs. The primary resource of interest is CPU time. When a single ad-

ministrative domain is involved, this is usually the responsibility of the batch scheduler. Batch

schedulers are capable of providing a metacomputing environment of sorts through the use of

routing queues (such as those in the Portable Batch System [25]) that are able to forward jobs

to other computer-specific queues that the scheduler controls. The resource allocation policy

may require complete control of the underlying resources (meaning access is only allowed

from the metacomputing system), or it may exist on top of local policies and systems. Finally,

the resource allocation policy may consider any combination of resources (CPU, memory, and

data file location, for example) when making scheduling decisions.

2. Single Log On: For the metacomputing system to provide the illusion of a single virtual

computer, the user must be able to log onto the single computer as if it is real. This passes the

responsibility of executing actions on behalf of the user onto the metacomputing system itself.

The user should not be required to provide authentication credentials (such as a password or

private key, for example) each time the metacomputing system performs some action on his

or her behalf. Some potential solutions for providing a single metacomputer identity are to

execute all commands under a special, well-known account on each system, or to allow the

user to designate credentials to be used by the metacomputing system.

3. Access Control: An important part of any operating system is controlling the access permis-

sions of users. A fundamental question that must be asked by an operating system is “Is this

user allowed to access this computer in this way?” Like an operating system, a metacom-

puting environment must provide some level of access control. Some metacomputer users

may not be permitted to use some machines, and the metacomputing system must respect this.

Ultimately, local policies must be specified and respected so that participating sites maintain

control of their resources.

4. Data Access: Data files are an important part of most computations. As such, their availability

on a system prior to execution of the computation is crucial to the success of that computation.

Operating systems solve this problem by using a filesystem that provides a global namespace

for all files that may be used by applications. Operating systems also provide the ability

to cross-mount filesystems, thereby allowing multiple computers to share a single filesystem.

However, in the absence of a single administrative domain, such cross-mounting of filesystems

3

is usually not allowed. Therefore, global file access must be provided by other means in a

metacomputing system.

In order for the metacomputing system to be usable, some subset of the above concerns must be

addressed. Each of the domains is an individual subject of research, and a metacomputing system

that addresses all domains to the satisfaction of all involved is still a number of years away.

1.2 Goals of Global Scheduling

A mechanism for metacomputing should achieve the following goals with respect to global resource

scheduling and allocation:

1. Handle Multiple Administrative Domains: Although some metacomputers may exist within

the confines of a single administrative domain, most will not be as restricted. Crossing admin-

istrative boundaries is a reality that must be addressed by a modern metacomputing system

because users wish to make use of an increasing number of diverse resources. Different ad-

ministrative domains mean different local policies, such as choice of local batch scheduler

and use of account quotas. A global scheduler must be able to make use of resources from a

wide variety of administrative domains, and should do so while adhering to the local policies

set out by the administration.

2. Batch Scheduler Interaction: Many high-performance computing sites employ one or more

batch schedulers to govern access to local computational resources. A global scheduler should

not have to replace underlying batch schedulers, nor should it create a new one. Rather, a

global scheduler should take advantage of the underlying batch schedulers by layering on top

of them.

3. Performance Benefits: A global scheduler is expected to provide a performance benefit to

users. This performance benefit comes from the ability of users to make use of more re-

sources than they would be able to without a global scheduler. Without a meaningful perfor-

mance gain, users would not use the system. Ideally, a global scheduler should provide lower

makespans for a user workload than any alternative methods the user has available to them.

1.3 Features of Placeholder Scheduling and TrellisWeb

Placeholder scheduling is a mechanism for metacomputing in which each placeholder represents a

potential unit of work. Some of the parameters of a placeholder (such as the executable name) may

be omitted from a placeholder when it is submitted to a computing system. When the placeholder

begins executing, it contacts a central authority and requests the missing parameters. In this way,

parameters are pulled by the placeholder rather than pushed by the central authority. Placeholder

scheduling is described in detail in Chapter 3.

4

Placeholder scheduling and TrellisWeb were designed to address some of the problem domains

just described. TrellisWeb is a continuation of the PBSWeb system [20, 21] that was originally

designed to simplify job submission to the PBS batch scheduling system. Specifically, PBSWeb was

designed to:

1. Provide a portal capable of interacting with PBS systems on behalf of the user.

2. Allow the user to interact with multiple such systems.

3. Make such interactions as easy as possible by simplifying the interface and recording past

settings so that they may be reused.

PBSWeb could be adapted to handle multiple batch scheduling systems in addition to PBS. These

goals are now also part of TrellisWeb.

TrellisWeb provides a convenient interface to placeholder scheduling. TrellisWeb and place-

holder scheduling combine to address three of the four above goals of a metacomputing environment

in the following ways:

1. Resource Scheduling & Allocation: Placeholder scheduling makes use of the underlying

scheduling systems already in place at participating sites. This allows local users access to

the computer whether or not they are using placeholder scheduling. Furthermore, layering

on top of the existing scheduling systems allows each site to specify and enforce its own lo-

cal scheduling policy. Such policies may include, for example, a static or dynamic priority

scheme, and queue structure. Placeholders are only allowed to access the batch schedulers

at the user level, and do not have privileged access to the scheduler. Additionally, place-

holder scheduling may take advantage of sites without underlying batch schedulers (zero-

infrastructure sites) by using special placeholders that assume unrestricted use of the site.

More details are provided in Chapter 3.

2. Single Log On: TrellisWeb provides a web-based graphical user interface (GUI), or portal,

with a username/password log on. Furthermore, TrellisWeb performs all actions at sites on

behalf of the user utilizing the user’s account. This is achieved through existing Secure Shell

(SSH) [3] infrastructure that must be properly configured prior to using TrellisWeb (possibly,

but not necessarily, with the assistance of system administrators). TrellisWeb transparently

accesses an authenticated user’s accounts at all sites such that the user is not prompted multiple

times for a password.

3. Access Control: Placeholder scheduling and TrellisWeb use existing user accounts to provide

a metacomputing environment. As a result, placeholder scheduling and TrellisWeb may only

use systems that the user has accounts for. Prior negotiation is required between the user

and system administrators during which site policy is consulted to determine whether the

5

user should be granted access. Furthermore, placeholder scheduling and TrellisWeb are only

capable of performing actions that the user would be able to perform manually. No attempts

are made to circumvent user-level security policies in force at various sites. Therefore, the

local site policies are reflected implicitly within placeholder scheduling and TrellisWeb.

Placeholder scheduling does not address the domain of file access, as the primary goal of place-

holder scheduling is job scheduling. However, another application under the banner of the Trellis

project at the University of Alberta [32], called the Trellis File System [29], addresses this particular

domain exclusively.

1.4 Overview of Placeholder Scheduling and TrellisWeb

Placeholder scheduling concentrates mainly on global scheduling issues, such as load balancing

and makespans for workloads. These particular criteria were chosen because of the observation

that loads are often unbalanced across multiple high performance computing sites. One possible

explanation for this imbalance is that users select favourite or preferred sites to perform the majority

of their computations. A preferred site may be specially configured and may contain the majority of

the data files required by the computation. For whatever reasons, the barriers to using computers at

other sites can cause the sites preferred by a large user base to become heavily used.

To combat the problem of load imbalance, placeholder scheduling abstracts away the individual

computers with the use of an overlay metacomputer. Users create an overlay metacomputer from

a list of computers they have access to. Although the overlay metacomputers may be as restrictive

as desired (they may be composed of as little as one physical computer), the greatest benefit is

obtained from using as many individual computers as possible. More than one overlay metacomputer

may exist at a time, and the user may make each overlay metacomputer as general or specific as

desired. The primary idea behind overlay metacomputers is to specify them on a per-application

basis to ensure that all subsystems of the overlay metacomputer are capable of executing the same

application.

Placeholders do not require any special software, other than SSH, to be installed on individual

computers. Moreover, they utilize existing normal user accounts at various sites, thereby allowing

the sites to enforce per user policies such as disk quotas and access restrictions. Because no special

privileges are required to use an overlay metacomputer, we consider overlay metacomputers created

with TrellisWeb to be user-level overlay metacomputers.

1.5 Concluding Remarks

A metacomputing system is charged with the task of providing access to multiple distributed re-

sources. This environment should also address other concerns such as single log on, access control,

security, and data access. Placeholder scheduling and TrellisWeb are able to address many of these

6

concerns in a simple, straight-forward manner without requiring an excessive amount of control or

additional software. TrellisWeb is built on existing software that was designed to make access to

batch scheduled systems easier for the user, and has the additional requirement of providing access to

multiple resources to form a metacomputing environment. Through the use of placeholder schedul-

ing, a user-specified workload may be balanced across multiple sites so as to provide a noticeable

decrease in execution time (makespan). The key feature of placeholder scheduling and TrellisWeb

is that they obtain a number of benefits while making few sacrifices.

7

Chapter 2

Related Work

Placeholder scheduling is not the first project that attempts to create a metacomputing environment.

A number of projects have addressed problems related to metacomputing, some of which deal with

more fundamental problems than others. In the following sections, some closely-related metacom-

puting projects are discussed.

Placeholder scheduling and TrellisWeb focus on solving a subset of the problems addressed

by other projects. Many projects overlap on some of the problems that they address, but each have

unique advantages and disadvantages. The primary advantages and current disadvantages are briefly

listed in Table 2.1, and the systems themselves are discussed in the remainder of the chapter.

2.1 Globus

The goal of the Globus project [8, 9] is to provide a toolkit sufficient for building a computational

grid. A computational grid is similar to a power grid in which computational cycles are traded

like electricity. Globus represents one of the largest and most mature grid projects, and the toolkit

contains elements that address a large number of issues that could arise when building a grid. The

Globus toolkit is a comprehensive set of software components that includes:

1. Resource management: Globus Resource Allocation Manager (GRAM)

2. Interprocess communication: Nexus

3. Security: Globus Security Infrastructure (GSI)

4. Information service: Metacomputing Directory Service (MDS)

5. Health and status monitoring: Heartbeat Monitor (HBM)

6. Remote data access: Globus Access to Secondary Storage (GASS) (now deprecated)

The goal of the Globus project is to develop standardized components from which grids can be

built. Each component of the toolkit may be used individually, and a grid developer may use any or

8

System Brief Description Main Advantages Current Disadvantages

Globus A comprehensive grid
toolkit.

Comprehensive: Addresses a wide
range of metacomputing issues
including heterogeneous
environments.
Standards-based: Working toward
standardized grid components.

Requires the installation and
maintenance of a great deal of
additional infrastructure.

Legion An object-oriented
metacomputing operating
system.

Object-Oriented: Provides a
standardized interface because
everything is an object.
Wide-Area Operating System:
Provides a seamless operating
system over the entire object space
(including all hosts).

Requires all applications to be cast
in the object-oriented framework of
Legion.
All sites participating in a Legion
metacomputer must run Legion
software.
Scheduling is reservation-based,
which may not be easily supported
by some sites.

EveryWare An application-level grid
toolkit.

Allows the use of resources at the
meta-metacomputing level,
including batch schedulers and
grid-controlled resources (e.g.,
Globus).

Applications must be integrated
with the toolkit to take advantage of
it.

Batch Schedulers Systems designed to queue
and schedule jobs at
high-performance
computing sites.

Scheduling: The system is able to
make scheduling decisions for
submitted applications.
Common Policy: A fixed number of
policies may be implemented for all
participating sites.

May not work well in multiple
administrative domains
(conventional batch schedulers).
Redirects system calls back to the
originating host (Condor and
Condor-G).

Parameter Space
Systems

Systems designed to aid in
the execution of parameter
space studies such as
simulations.

Greatly simplifies the execution of
parameter space studies from start
to finish.

Restricted to applications that are
run as parameter space studies.
Little consideration is made for
applications that do not fit this
model.

Portals GUIs created to ease the use
of widespread resources
such as metacomputers.

Makes access to multiple resources
much easier.

Are limited to assisting in accessing
multiple resources, and do not
incorporate large-scale integration
software.

TrellisWeb A system that provides
metacomputing via
placeholder scheduling and
a GUI to make placeholder
scheduling easily usable.

Only a normal user account and
SSH access are required to obtain
the performance benefits of a
metacomputer.

Not comprehensive enough to allow
for the integration of all possible
systems.
Does not provide facilities for
concurrently executing a single task
on multiple sites.

Table 2.1: Advantages and Disadvantages of Related Systems

9

all of the toolkit components when developing a new grid. The services provided by Globus toolkit

components are meant to deal with low-level issues, such as security, thereby freeing the developer

to concentrate on grid functionality rather than mundane tasks such as dealing with heterogeneity

within the grid.

Placeholder scheduling and TrellisWeb only deal with a subset of areas addressed by the Globus

toolkit, namely those of resource management and security. Globus toolkit components are designed

to be as comprehensive as possible so that a grid can be created out of almost any combination of

systems imaginable, no matter how diverse they may be. As a result, Globus must be as general as

possible. Placeholder scheduling is not as comprehensive, and therefore sacrifices some potential

diversity for decreased complexity and lower infrastructure requirements.

2.1.1 Globus Resource Allocation

Resource allocation is performed in the Globus toolkit using Globus Resource Allocation Managers

(GRAMs) [5]. GRAMs are responsible for allocating resources specified by a description written in

Resource Specification Language, and do not perform scheduling. Rather, GRAMs are responsible

for matching user requests to machines in the Grid.

The GRAM infrastructure matches requests to resources through a network of resource brokers.

Each broker makes a request more specific. For example, a user may specify a requirement such

as “needs at least 1 GB of storage”. The resource brokers then break this requirement down into a

list of computers capable of providing the necessary 1 GB of storage space, and one is eventually

selected. Resource brokers are also able to break a single request into multiple requests, thereby

allowing multiple GRAMs to co-allocate resources on multiple computers.

Placeholder scheduling currently does not provide the means for a user to specify particular re-

source requirements that are then matched with machines. Instead, placeholder scheduling takes a

simpler approach whereby a user may specify an overlay metacomputer such that all sites within the

overlay metacomputer are capable of executing an application. By specifying an overlay metacom-

puter, no explicit resource matching needs to be performed, and the focus can instead be shifted to

scheduling, something not provided by GRAM. Placeholders also schedule jobs on resources such

that the makespan of a set of jobs is minimized.

TrellisWeb does not provide any mechanism for resource discovery or brokering. This is due in

large part to the fact that overlay metacomputers are not expected to change a great deal in a short

amount of time. Users know where they have accounts and what the capabilities of the systems are,

so the burden of discovery and brokering is placed on them. By avoiding resource discovery and

brokering, TrellisWeb avoids the corresponding complexity introduced when appropriate resources

have to be located for jobs.

10

2.1.2 Globus Security

Globus security, provided by the Globus Security Infrastructure (GSI) [10], is based on the use of

Globus credentials and proxies. A user proxy acts on behalf of the user, and a resource proxy acts

on behalf of a site. Whenever a user wishes to access resources at a site, the user proxy must contact

the resource proxy with the provided credentials (or new credentials derived from those provided).

It is then up to the resource proxy to consult local policy to determine whether the user is allowed

access. If so, the resource proxy provides a mapping from Globus identifier to a local identifier (i.e.,

local user ID).

The key feature of GSI is its ability to handle multiple types of secure operations (such as login

via SSH and communication via the Secure Socket Layer). By leaving the mapping of Globus

credential to local credential up to the resource proxies, each site can be dealt with on an individual

basis. This provides the maximum amount of flexibility in terms of local authentication mechanisms,

as a number of options may be specified at the site level.

Placeholder scheduling and TrellisWeb simply use the existing SSH infrastructure instead. Al-

though GSI is capable of handling SSH access via the resource proxy, it is designed to be far more

general. As a result, a resource proxy must exist at each site to provide authentication and mapping

services. Because placeholder scheduling is designed to minimize the amount of required infras-

tructure, for now, it utilizes the existing SSH infrastructure. Basic SSH infrastructure is assumed,

as it is already present and supported on most Unix and POSIX systems. For example, every Linux

distribution comes with OpenSSH.

2.2 Legion

The Legion system [4, 13] is designed to provide a single virtual computer from a collection of

physical computers. Legion is based on an object model in which everything (hosts, users, files)

is an object. Legion places all resources under common control, effectively creating a wide area

operating system. This is different than Globus and placeholder scheduling, in which users need not

see the entire metacomputer, but simply the parts they wish to use.

To be part of a Legion metacomputer, Legion hosts must run Legion software. However, the

hosts are free to define their own policies by providing an implementation of a host object. Host

objects are the final authority on which applications are permitted to run on a computer. This allows

Legion to accept some level of heterogeneity in the hosts.

Scheduling is performed by either user-defined or generic schedulers provided with Legion.

Scheduling is intended to be performed by schedulers that are aware of the characteristics of the

application. This way, a scheduler creates the best schedule for the application, but not necessarily

the overall system. A scheduler may also query information about other objects, such as hosts and

users, in order to make scheduling decisions. Once a scheduler has produced a schedule, it passes

11

the schedule to an enactor that makes reservations with the host objects. Because host objects have

the final say, they may accept or reject reservations made by the enactor.

Native Legion applications are written to make use of Legion system objects, although legacy

applications are also supported. By requiring that Legion applications be tightly integrated with

the Legion system to achieve optimal performance, the Legion system requires applications to be

written in a Legion-specific format. This may be problematic should the developer of the application

wish to create a widely available and easily accessible version.

A drawback of the Legion system is the requirement of writing native Legion applications for

maximum advantage. At the very least, legacy applications must be wrapped in Legion objects so

that they may obtain some of the Legion benefits. Each Legion application must interact with the

underlying Legion system at some point. The fact that Legion files are objects is an example of

one such interaction. It is often the case that users are not developing their own applications, but

are purchasing them in binary form. Expecting such users to then wrap the application in a Legion

object adds an extra burden on the user.

Placeholder scheduling does not require applications to be rewritten or modified in any way to

take advantage of an overlay metacomputer. If an application is available in binary form only, the

overlay metacomputer must be restricted to sites capable of executing the binary, but this is to be

expected. Moreover, placeholder scheduling does not impose a model of computation akin to that of

Legion objects. An application used with placeholder scheduling is simply an application that may

be run with or without placeholders.

2.3 EveryWare

The EveryWare toolkit [34] provides what can be considered meta-metacomputing software. Whe-

reas metacomputing systems seek to combine multiple computers into a single virtual resource,

EveryWare goes a step further and is capable of combining multiple distinct metacomputers into a

single virtual metacomputer. EveryWare integrates with particular applications and allows them to

be run on systems as varied as Globus, Legion, Condor, NetSolve, Java, Windows NT, and Unix.

EveryWare applications can be run across any or all of these system boundaries, effectively turning

such resources into a single parallel computer. Applications are written such that they take advan-

tage of EveryWare toolkit components for operations such as file access. The underlying EveryWare

toolkit implements such operations differently depending on which system the application compo-

nent executes on. By interfacing with such a variety of resources, EveryWare greatly increases the

number of resources available to users and their applications.

Unfortunately, for an application to obtain EveryWare benefits it must be integrated with Ev-

eryWare software. Unlike a batch scheduling system, in which the scheduler controls the execution

of the application, EveryWare must be linked with the application before it can be run. Therefore,

the application itself must use services provided by the EveryWare API. Applications not explicitly

12

written in such a way must be at least relinked with the EveryWare toolkit before they may be run,

resulting in another step for the user. Moreover, such relinked applications may not run in another

non-EveryWare setting.

Placeholder scheduling and TrellisWeb do not require any integration of application software and

TrellisWeb software. Placeholder scheduling and TrellisWeb are more like a batch scheduler in the

sense that they control the execution of the application without explicitly requiring the application

to make use of additional software. Because placeholder scheduling does not provide inter-site com-

munication beyond that already present in the application, such integration can be avoided. In many

other respects, such as handling resource heterogeneity, placeholder scheduling and TrellisWeb are

similar to EveryWare (except that EveryWare has demonstrated use with more diverse platforms).

2.4 Batch Scheduling Systems

Batch scheduling systems are often used as a means of controlling and limiting access to the compu-

tational resources of a computer or site. Batch schedulers are responsible for accepting requests and

allocating resources that are capable of servicing such requests. Without batch schedulers, many

systems would experience over-utilization as users would have to manually allocate resources to

their tasks.

Some batch schedulers, such as PBS, are capable of providing a metacomputer-like abstraction

through the use of routing queues. Routing queues accept jobs and then forward (or route) the jobs

into a number of other queues. The routing is done with global knowledge of all jobs in all queues,

and as a result good schedules can be created. However, these schedulers come at a cost. In order

for the scheduling system to have global knowledge and control, all sites participating in routing

queues must be controlled by the same scheduler. Likewise, all sites must run the same software.

This requirement is often too strict to accommodate a diverse metacomputing environment.

2.4.1 Conventional Batch Schedulers

Conventional batch schedulers, such as the Portable Batch Scheduler (PBS) [25], Sun Grid Engine

(SGE) [30], the Load Sharing Facility (LSF) [19], and others, are designed primarily to enforce

resource access on high performance computers. Users submit jobs to the scheduler, along with

a specification of the resources required to execute the job (sometimes included in the job script).

Depending on the system, the user must also specify the job queue to use for the job. It is then the

responsibility of the batch scheduler to locate sufficient resources to execute the job, and to begin

execution when these resources become available, subject to the requirements provided by the user

at job submission time.

Most conventional batch schedulers are intended to control access to a single computer or site.

In general, they must be installed with superuser privileges, and execute with superuser permissions.

They make scheduling decisions based on global information of all currently executing and waiting

13

jobs. Priority schemes may be implemented to favour certain jobs over others. These properties

make batch schedulers ideal for computer or site access, but batch schedulers are far too restrictive

for all but the smallest metacomputing systems. Moreover, two or more differing batch scheduling

systems are not able to interoperate.

Placeholder scheduling, on the other hand, is explicitly designed to schedule across multiple

sites and administrative domains. Some control and precision is lost due to the fact that different

administrative domains do not share scheduling information, but nonetheless, placeholder schedul-

ing provides good performance improvements, as shown in the experiments of Chapter 5. The ideal

situation is to have a batch scheduler control multiple computers from multiple sites, but when this

is not possible due to administrative boundaries, placeholder scheduling is an alternative.

2.4.2 Condor

The Condor system [17, 18], although technically a cycle-stealing system (in which otherwise idle

computers are used for background processing), is similar to a conventional batch scheduler. Condor

was originally developed to allow a network of individual workstations to be treated as a combined

pool of processors. Each workstation runs Condor software that allows it to execute waiting jobs

when idle, and submit jobs to the Condor queue when requested by the user. Idle workstations

execute jobs and preempt such jobs when the workstation returns to use. Condor is able to locate

idle resources and migrate jobs to new sites. All system calls made by a remotely executing process

are routed back to the originating machine, so the process has access to all features of the originating

system. Together, the features of Condor create the illusion that the user has access to a large

multiprocessor machine.

Additional work [26] has been done to allow parallel applications to execute on a Condor pool,

but the applications must be sufficiently flexible to account for the opportunistic nature of Condor.

Because a workstation may return to use at any time, the parallel application must be able to tolerate

the sudden disappearance of one or more of the subprocesses. Although some parallel applica-

tions can tolerate dynamic resource loss (for example, parallel processes using the master/workers

paradigm), many parallel applications cannot tolerate such losses (Parallel Sorting by Regular Sam-

pling [16], for example). This makes Condor more suitable for a large number of sequential jobs

rather than parallel jobs. Placeholder scheduling has no such restriction on parallel jobs, so long as

the underlying sites are capable of executing the parallel application.

Condor suffers from the same restrictions as do the conventional batch schedulers. In order for

a computer to take part in a Condor pool, it must run Condor software and must be placed into the

Condor domain. Although the computer may safely be used interactively (and possibly by other

batch schedulers), Condor was not designed to place a single computer into multiple individual

pools, and includes no notion of an overlay metacomputer. In contrast, placeholder scheduling and

TrellisWeb allow a single computer to be used in more than one overlay metacomputer so that users

14

are able to define overlay metacomputers of their choosing.

2.4.3 Condor-G

Condor-G [11] builds upon the Condor system by replacing the custom resource discovery and al-

location software with Globus toolkit components. Beyond that, Condor-G retains much of the

functionality of the original Condor system. Condor-G is enhanced by the use of the Globus Se-

curity Infrastructure, Globus Resource Allocation Managers, the Globus Metacomputing Directory

System, and Globus Access to Secondary Storage, all of which are Globus Toolkit components.

These components make Condor-G a more extensive high-throughput computing system.

Condor-G uses the Globus infrastructure to obtain resources from computers that are part of the

Globus grid. Condor-G provides its own scheduler, and makes use of GlideIns to perform execution

on remote machines. GlideIns are simply jobs submitted through the Globus infrastructure that con-

tact a Condor-G scheduling component to receive work when they first begin executing. GlideIns

then fork processes to perform the alloted work, and all system calls from these processes are redi-

rected back to the originating machine. In this way, jobs in Condor-G function similarly to jobs in

the original Condor system.

The GlideIn functionality of Condor-G closely mirrors that of placeholders. Both provide the

late binding of job to execution entity, an idea that allows for good load balancing. Both also

provide the notion of a metaqueue (although Condor-G does not refer to it as such) in which waiting

jobs are held until they are assigned to requesting execution entities. However, placeholders differ

from GlideIns with respect to the execution model. GlideIns execute Condor-like jobs that redirect

system calls back to the originating machine. This provides the illusion that the originating machine

has more computational resources (more processors) than it really does. However, in situations

that involve a large number of system calls (such as when a large number of jobs are concurrently

executed remotely), or when system calls require a large overhead (such as I/O-intensive operations),

the overhead of such redirection may be considerable. Placeholders do not reroute system calls and

are capable of executing experiments such as that shown in Section 5.3, which involved overheads

that would bring any contemporary submitting computer to its knees if used with Condor-G.

2.5 Parameter Space Systems

Parameter space systems are designed to handle situations in which a user wishes to execute the same

application multiple times while varying certain execution parameters. For example, the experiment

presented in Section 5.3.1 deals with a parameter space study in which the potential energy between

two molecules was examined by varying the position of one of the molecules in a three-dimensional

grid. Typically, a user wishes to observe the effect that varying a parameter has on the corresponding

output so that the impact of the parameter on the overall model can be better understood. Many

15

scientific studies are organized as parameter space studies (including that described in Section 5.3),

and so a supportive environment is a valuable tool.

2.5.1 Nimrod

The goal of the Nimrod system [2] is to support parameter space studies common to many scientific

computations. Scientific simulations are often performed repeatedly through a range of parameter

values. For example, a weather simulation may vary the geographic scale of a weather model from

one to one hundred kilometers. Each value in between the end points represents a single run of the

simulation.

Nimrod explicitly supports these types of simulation studies. It handles user input, parameter

generation, job distribution, and output collection. Users interact with a GUI to provide application

information and parameter ranges. The Nimrod system then takes over and executes the application

for each parameter value in the specified range. Because each job is independent of the others,

Nimrod is able to utilize multiple machines in parallel. The user is able to monitor the progress

of the computations, as well as the output that is being created. Essentially, Nimrod is a batch

scheduling system similar in form to Condor, but specialized for parameter space studies.

Nimrod is restricted to parameter space studies in which a user wishes to vary parameters over

multiple values. TrellisWeb has no such restriction, and instead allows the user to textually specify

jobs to be performed. Although this is somewhat more difficult than in Nimrod, it is more general.

As a result, TrellisWeb can handle computational studies that do not fit well into the realm of a

parameter space system such as Nimrod, along with those that do.

2.5.2 Nimrod/G

Nimrod/G [1] builds upon the original Nimrod by incorporating Globus toolkit components to pro-

vide a more advanced parameter space system. Nimrod/G improves upon Nimrod in two major

ways: 1) use of the Globus toolkit for resource access; and 2) incorporation of deadlines into

scheduling decisions. Nimrod/G is intended to appeal to a larger number of users by accessing

grid-enabled resources and by allowing users to specify deadlines for their studies.

The switch from customized resource access systems to Globus infrastructure marks a trend

in many metacomputing systems. The original Nimrod had to address each type of system in a

customized way, and incorporation of new systems required additions to the Nimrod code. By

using Globus for resource access instead of custom code, the responsibility for interfacing with

incorporated systems is passed from Nimrod developers onto the Globus toolkit. Also, incorporating

existing grid-enabled resources is much easier for Nimrod/G.

Unlike Nimrod/G, placeholder scheduling and TrellisWeb do not yet make use of Globus in-

frastructure and do not provide deadline-based scheduling. Instead, placeholder scheduling uses

existing infrastructure (SSH) and attempts to minimize the makespan for a set of jobs. Attempting

16

to meet a user-specified deadline is largely irrelevant if the makespan is already minimized. Most

often, a user is interested in minimizing the entire makespan rather than trying to meet a specific

deadline (which may or may not be possible to meet).

2.6 Portals

The main idea behind portals is to make metacomputers more accessible to a wider audience. Meta-

computers usually provide some form of command line utilities, which are fine for those who are

familiar with command line tools (such as computer scientists). However, an important observa-

tion is that metacomputers are targeted at users other than those familiar with command line tools.

Should such users be required to interact with a shell to use tools intended to make their life eas-

ier? Portals bridge the gap between a user’s familiar environment (the web) and the command line

interface to metacomputing tools.

2.6.1 GridPort

GridPort [33] is a portal toolkit designed to ease access to Globus grids. Common actions, such

as logging in and submitting jobs, can be performed via a command line interface with Globus

toolkit components. GridPort allows a user to interact with Globus-enabled resources in the familiar

environment of a web browser. Additionally, some aspects of using a Globus grid, such as credential

management, can be awkward for users unconcerned with the intricacies of grid security. GridPort

manages credentials on behalf of the user, and provides those credentials to the various Globus

components as necessary.

GridPort is targeted primarily at Globus grids, just as TrellisWeb is targeted primarily at place-

holder scheduling. Both projects acknowledge that command line tools alone are difficult to use,

and so develop a more user-friendly environment. TrellisWeb goes a bit further by providing addi-

tional benefits such as fault tolerance. Also, placeholder scheduling and TrellisWeb were developed

in tandem, which allows for better integration of functionality.

2.6.2 Legion Grid Portal

The Legion Grid Portal [23] is similar in function to GridPort, except for Legion rather than Globus.

In addition to making access to Legion metacomputers easier, it also simplifies installation of Legion

command line tools. The tools need only be installed in a central location (i.e., the web server), and

may be used by any number of users. So, not only can users fill in form information instead of using

command line tools, they may not need to install any local software at all. TrellisWeb is similar in

that no software must be installed locally for a user to make use of TrellisWeb (except for a web

browser, of course).

17

2.6.3 PUNCH

The Purdue University Network Computing Hubs (PUNCH) system allows users to access and run

software tools via the web [15]. PUNCH is based on a three-level system of units: the client unit, the

management unit, and the execution unit. Users interact with the client unit via a network desktop

interface (through a web browser), and the client acts on behalf of the user. Management units

manage interactions between clients and execution units, and execution units are responsible for

interacting with the actual resources at a site (e.g., Condor pool). PUNCH is primarily interested in

providing easy access to software tools present at one or more sites.

Unlike the other two portals discussed above, PUNCH does not interface with existing meta-

computing software. Instead, PUNCH must directly interact with resources, and must hide the

complexity of such interactions from the users. As a result, PUNCH software is more complex than

simply a front-end for metacomputing software.

Placeholder scheduling and TrellisWeb differ from PUNCH mainly in that placeholder schedul-

ing provides the notion of an overlay metacomputer. While PUNCH may abstract the location of

particular tools from users, no attempt is made to schedule work across multiple resources. Also, the

PUNCH system multiplexes logical user accounts (PUNCH users) into a single site account. This

places the burden of user management on PUNCH rather than the underlying system, a situation that

is avoided in TrellisWeb.

2.7 Self-Scheduling

Self-scheduling [27], is a mechanism for scheduling and executing tasks within a parallel applica-

tion. Self-scheduling is based on the notion of a local workpile in which processors each have a

private workpile and decide independently when to load balance with other processors. This is in

contrast to the more-familiar global workpile in which each processor accesses the same workpile

when work is required.

Self-scheduling is related to placeholder scheduling in that the processing elements dynamically

obtain work to perform. In self-scheduling, the work is continually redistributed amongst the pro-

cessors. In placeholder scheduling, the placeholders always request additional work when required.

Both schemes focus on load balancing through the use of dynamic scheduling of jobs, and neither

require an external entity to make scheduling decisions.

Placeholders schedule at the application level instead of within a parallel application. Because

of this, placeholder scheduling more closely resembles a global workpile with jobs centralized at the

metaqueue. But, because placeholders schedule jobs rather than work within jobs, the contention for

the global workpile is significantly reduced from conditions anticipated with self-scheduling. The

important common aspect of self-scheduling and placeholder scheduling is that both dynamically

load balance work across their respective processing entities.

18

2.8 Concluding Remarks

With the increasing popularity of metacomputing and metacomputing-like environments, a large

number of projects have been developed that address some of the fundamental problems behind

metacomputing. Some projects, such as Globus and Legion, envision metacomputers being built

out of many diverse resources and are therefore designed to be as comprehensive as possible. Ev-

eryWare takes this goal ever further by allowing for the creation of metacomputers out of other

metacomputers. Some of the issues addressed by these systems were traditionally the domain of the

batch scheduler, and some of the batch schedulers have been developed for metacomputing uses.

But ultimately, a metacomputer is about usability, which gives rise to parameter space systems such

as Nimrod and Nimrod/G, and Grid portals, such as GridPort and the Legion Grid Portal.

Placeholder scheduling and TrellisWeb were created to provide an alternative to the systems

described in this chapter. None of the systems described here (including placeholder scheduling)

are amicable to all users and all administrators. If such an ideal system existed, it would be in

widespread use due to the demand for metacomputing resources. Placeholder scheduling and Trel-

lisWeb contain many compromises in design decisions, but try to provide similar benefits to other

systems while at the same time avoiding some of the less-appealing aspects.

19

Chapter 3

Placeholder Scheduling

Scheduling is an important component of any metacomputing system. Because metacomputers

can cross many administrative domains, the mechanisms behind scheduling can be complex. Even

systems that are constrained to a single or small number of administrative domains can have sophis-

ticated scheduling policies [6].

At the core of any scheduling system is the desire to provide increased performance and con-

trol over the available resources. Performance may be measured in a number of ways, including

throughput (the number of jobs processed by the system in a given time frame), utilization (how

much of a resource was in use over a given time frame), response time (how long it took an applica-

tion to complete), load balancing (a measure of how much work a subsystem performed in relation

to how much others performed), and makespan (the total time required to complete a workload),

among many others. In general, throughput, utilization, and load balancing should be maximized,

whereas response time and makespan should be minimized. It is usually the responsibility of the

system developer or administrator to choose the metric(s) of interest.

Placeholder scheduling is a mechanism for creating a metacomputing environment, and a conve-

nient interface for it is described in Chapter 4. Placeholders deal with how the actions of a metacom-

puter are performed. Issues such as remote machine access, job submission, assignment of jobs to

various sites, and ensuring a balanced load are all primary aspects of placeholder scheduling. How-

ever, placeholder scheduling (as described here) is simple in terms of the policy that is implemented.

Placeholders are only used for basic First-Come-First-Served (FCFS) scheduling in which jobs may

begin execution in only one possible order. Other work [24] has examined the effects of modifying

the scheduling policy to respect inter-job dependencies.

One of the primary features of placeholder scheduling is its ability to function in the absence of

a ubiquitous software infrastructure (beyond that of SSH). In order to use placeholder scheduling

on a system, a user merely requires an account and a means of accessing that account. Placeholder

scheduling is flexible enough to work with only these requirements, and this makes it a useful

alternative to some other, better-established metacomputing systems (such as Globus).

20

Parameter Batch Scheduler Binding Time Placeholder Binding Time

Job Name Submission Submission
Shell Submission Submission
Machine Submission Submission
Queue Submission Submission
Maximum Run Time Submission Submission
Mail Options Submission Submission
Executable Name Submission Execution
Arguments Submission Execution

Table 3.1: Batch Scheduling vs. Placeholder Scheduling

3.1 Overview

A placeholder is defined as a unit of potential work. A placeholder is capable of performing a wide

range of tasks, or even no task at all. Placeholders operate as a group, with each group responsible

for a set of jobs waiting to be performed. Placeholders in a group work as a team to complete

all waiting jobs stored in a job repository. Each such group forms an overlay metacomputer for a

particular set of jobs.

Placeholders work based on the observation that only certain information is required when queu-

ing a job. Table 3.1 presents some parameters and the time at which they are required for batch

scheduling and placeholder scheduling. Because certain parameters, such as the executable, are not

required until the placeholder actually starts, we can delay the binding of job to placeholder until

the time at which the placeholder is prepared to execute. We call this the late binding of job to

placeholder.

Placeholders are able to take advantage of multiple machines by exploiting this late binding

property. When a placeholder is eligible to execute on a machine, it contacts a central authority for

information about which application to execute. It is the sole responsibility of this authority to allo-

cate jobs to placeholders. Multiple placeholders on multiple machines make contact with the same

authority, and hence any one may receive any available job. Users select how many placeholders

should be assigned to each machine. In the event that no more jobs are available, the placeholders

terminate with minimal resource consumption.

Consider Figure 3.1 as a small example. Here, there are three queues with one placeholder each.

Each of the placeholders must pull jobs from the metaqueue. The thickness of the lines indicates

the frequency of pulling jobs. In this case, placeholder PH2 demands jobs most frequently, and

PH1 demands least frequently. As a result, PH2 will execute a larger proportion of jobs in the

metaqueue, and PH1 will execute less. Exactly which jobs are allocated to which placeholder is

largely unimportant, so long as the load is balanced over all placeholders and the overall makespan

is reduced.

Late binding of job to placeholder also affords performance benefits. A placeholder that requests

21

PH1

Queue1 Queue2 Queue3

PH2 PH3

Job1

Job2

JobN

Metaqueue

Figure 3.1: Placeholder Scheduling Example

a job is a placeholder that is prepared and fully capable of executing at that exact moment in time.

As a result, the assigned job has waited a low amount of time to begin executing. Hence, it has a

low queuing time. The throughput of the entire set of jobs is maximized by repeatedly binding the

next available job to a placeholder prepared to execute. By binding only to placeholders prepared to

execute, “slow” systems (systems that have a relatively low rate of execution due to high utilization

or slower processors) are avoided. Additionally, load balancing is maximized because no capable

placeholder remains idle while there are available jobs.

Placeholder scheduling is purposely designed as a pull model rather than a push model. In a

push model, a central authority actively identifies available resources (e.g., idle processors) and

assigns jobs to them. A push model is a natural way to implement a scheduling system, as the

central authority has knowledge of all jobs. A pull model, on the other hand, has the resources (e.g.,

placeholders) actively contact a passive central authority when ready to execute. The benefits of a

pull model are:

1. The problems of admission control of placeholders, placing jobs, and fault tolerance are or-

thogonal. The local batch schedulers are responsible for deciding exactly when placeholders

will be allocated resources. A user selects which sites will be used with placeholder schedul-

ing (and how many placeholders should be started on each machine), but the batch scheduler

has the final say. Orthogonal to this process is the issue of job placement. Placeholders pull

jobs when they are prepared to execute (i.e., permitted to execute by the underlying sched-

uler). Furthermore, detecting and correcting faults are orthogonal to these issues because

22

faults can be isolated to an individual placeholder and may be dealt with independently of

other placeholders and their activities. Restarting simply involves recycling the incomplete

job and submitting a new placeholder. This orthogonality affords the pull model a great deal

of flexibility that may not otherwise be available.

2. Jobs are self scheduling in the pull model, which requires less overhead and results in easier

load balancing. There is less overhead because placeholders are only considered when they

require work. A push model would have to consider a number of placeholders when work is

available so that jobs can be pushed to them. By having placeholders pull, a central authority

only has to respond when contacted. Likewise, load balancing is easier because placeholders

pull at a rate that is equivalent to their computational abilities. A placeholder will not become

unbalanced if it obtains work as fast as it is able to compute it.

3. Placeholders contain more state information in a pull model. Placeholder scheduling can

work in situations in which the central authority has no knowledge of placeholder state. The

placeholder simply stores this information and provides it when pulling jobs. As a result,

placeholders are capable of making “smart” decisions based on the state information they

contain. Such decisions may include dynamically increasing or decreasing the number of

placeholders present at a site. Push models require more state information to reside in the

central authority and would therefore have “dumb” placeholders.

Placeholder scheduling does not address the issue of executable or data staging. Other work on

data grids (e.g., the Trellis Filesystem [29]) explores some of the problems of accessing data files.

Although executable and data file staging are important issues, underlying systems may already

support this task. Instead, the onus for executable and data staging is placed on the user (with the as-

sistance of the TrellisWeb system, discussed in Chapter 4), thereby allowing placeholder scheduling

to focus purely on scheduling jobs.

Figure 3.2 presents a high-level, graphical overview of placeholder scheduling. Sites 1 through

n represent the overlay metacomputer for this placeholder group. Each site of the overlay meta-

computer has one or more placeholders present. For example, Site 1 has three placeholders (one

in each batch scheduler queue) that have reached the front of the queue and have begun executing.

Site n, on the other hand, is not batch scheduled (zero-infrastructure) and has only one special zero-

infrastructure placeholder. Each of the placeholders make contact with a central authority (called

the command-line server, and discussed in Section 3.4) via SSH to obtain work (late binding). The

command-line server is responsible for selecting and returning executable information to each of the

requesting placeholders. Other placeholder and non-placeholder jobs may be present in the queues,

but are omitted for clarity.

23

Queue 3

PH2 PH3PH1

Queue 1 Queue 2

PH4 PH5

Command−line
Server

Queue 1 Queue 2

Secure
Shell

Command Contents of metaqueue

PH6

Zero Infrastructure

Site 1 Site 2 Site n

lines

Figure 3.2: Placeholder Scheduling Overview

3.2 Advantages of Placeholder Scheduling

Placeholder scheduling is certainly not the only method for running jobs across multiple systems.

Placeholder scheduling, as a mechanism for metacomputing, is advantageous for several reasons:

1. Minimal Infrastructure Requirements: Placeholders are often implemented as batch sched-

uler jobs for batch scheduled sites, or as shell scripts for zero-infrastructure sites. This means

that no additional software is required for placeholders to execute on these machines. Fur-

thermore, access to the sites requires only a login account so that the user (or proxy on the

user’s behalf) may submit or start the placeholder. Some other metacomputing systems re-

quire a substantial amount of software infrastructure to be in place before a user may run

applications.

2. Resource Heterogeneity: Placeholders may be implemented in any desired language, pro-

vided they exhibit correct placeholder behaviour (further discussed in Section 3.3). The eas-

iest way to implement this behaviour is via a job or shell script, but compiled programs may

also suffice. Although placeholders are targeted mainly at high-performance batch scheduled

systems, the flexibility of placeholders allows any system, batch scheduled or not, to partici-

pate in placeholder scheduling.

24

3. Loose Coupling of Participant Sites: Most systems that provide a metacomputing environ-

ment require some degree of integration of participant sites – that is, the sites must agree to

certain software and policies governing the use of that software (e.g., Globus). Although re-

solving these issues may be trivial within a single administrative domain, larger metacomput-

ers will inevitably involve the crossing of one or more administrative boundaries. Placeholder

scheduling minimizes the integration of participant sites by allowing each site to set its own

policies. Placeholders are executed as user-level processes, and are therefore subject to local

policy. Moreover, different users may specify different overlay metacomputers to use during

scheduling, a situation that would require union of all possible metacomputers to be integrated

into a metacomputing system.

4. Cooperation with Underlying Schedulers: Although a metacomputing environment con-

veys a large number of benefits to users, one must realize that some users are content to simply

use resources at a single site and will therefore not require a metacomputing environment. If a

metacomputing environment were to replace the underlying access system, such users would

have no choice but to use the metacomputing environment. Placeholder scheduling does not

replace underlying scheduling systems, but rather layers on top of them and makes use of their

job submission services. Placeholders are also able to operate in the absence of any schedul-

ing system without requiring full control of the computer. By cooperating with them, much

of the scheduling work can be offloaded to the local schedulers.

5. Improved Performance: Placeholders are more than tools used to access multiple sites. They

are able to load balance a set of jobs at high throughput and with low queuing times across

a number of sites. This is possible because of the late binding of job to placeholder. Eli-

gible placeholders contact a central job repository for the next available job. Thus, jobs are

served only to those placeholders currently capable of executing, and “slow” placeholders are

avoided. Also, a greater proportion of executables will be served to placeholders that com-

plete their work quickly as opposed to those that work more slowly, which ensures a balanced

load.

Placeholder scheduling is largely a mechanism for metacomputing. In terms of policy, place-

holders are simple. However, the scheduling policy implemented by placeholders is not strictly

limited to simple schemes. One interesting property of placeholders is the retrieval of jobs from a

central repository. In the simplest policy, the jobs are served in the order they were entered into

the repository. In previous work [24], jobs were served according to pre-determined dependencies.

These dependencies were strict in that subsequent jobs required the results of previous ones before

they could begin. Dependency-based job ordering is just one possible complex policy that place-

holder scheduling may be used to implement.

25

5

1 3

4

Placeholder

2

Server
Cmd−line

Job

Database

server−host
queue1

Request

exec−host

Figure 3.3: Steps in Placeholder Execution

3.3 Placeholders in Action

In order for placeholder scheduling to work correctly, each placeholder must adhere to a protocol

that regulates the binding of jobs to placeholders. In addition to placeholders, there are several other

entities that are part of the binding process. The overall binding process is shown in Figure 3.3.

The steps in the executable binding process are as follows:

1. A placeholder has reached the front of queue1 on exec-host and has begun executing. In

the event that there is no batch scheduler, the placeholder begins executing as soon as the host

operating system allocates processor time to the process. The placeholder is currently capable

of executing many tasks, and is awaiting binding to a specific task.

2. The placeholder requests an available job from the central repository of jobs (via the command-

line server, discussed in Section 3.4) on server-host. The placeholder is now obligated to

perform any work that the command-line server returns, in addition to any other static work

required by the placeholder on this particular system (such as authentication, for example).

3. The command-line server consults a persistent database of jobs. Although the jobs are stored

according to some ordering within the database, the command-line server is free to select

any available job based on constraints. Therefore, the command-line server can impose any

arbitrary ordering on the jobs in the database.

4. A selected job is returned to the waiting placeholder. The returned job is removed from the

database so that no other placeholder may obtain a duplicate job. The placeholder does not

perform any computation while waiting for the job, and is essentially blocked until one is

26

returned. Therefore, it is imperative that the command-line server return a job as expediently

as possible.

5. The placeholder, with job in hand, is permitted to continue execution, eventually performing

the work specified in the job. At this time, the placeholder is fully bound to the job, and will

not contact the command-line server until it requires work once again.

Once a placeholder completes its assigned task, it renews itself according to the underlying

scheduling system. In the presence of a local batch scheduler, the placeholder resubmits itself to the

same queue. This policy allows a one-to-one correspondence between placeholder job and local job.

In addition, the resubmission allows jobs from other users an opportunity to execute. In the absence

of a local batch scheduler, the placeholder is free to repeatedly request jobs until none remain.

3.4 Command-Line Server

The command-line server is the authority responsible for binding jobs to placeholders. Each place-

holder that is prepared to execute must contact the command-line server to obtain the information re-

quired to continue execution. The assignment policy of jobs to placeholders is implemented wholly

within the logic of the command-line server. As a result, the command-line server implements the

global policy of placeholder scheduling. The command-line server may also choose to deny the

placeholder a job (e.g., when no more jobs remain in the metaqueue), effectively halting the execu-

tion of that placeholder.

The jobs for the command-line server are stored in some persistent form, such as in a database

or filesystem. As more than one group of placeholders may be executing at any given time, the jobs

must be keyed according to the group they belong to. The order in which the jobs are stored in the

database is unimportant, as the command-line server is free to select from any available job for the

placeholder group in the database.

The command-line server is also responsible for ensuring that each job is executed by only one

placeholder. Violation of this constraint may have adverse effects, such as corrupted data files.

Typically, requests made by placeholders are serialized and dealt with in some sequential order. The

ordering imposed by the command-line server may be as simple as FCFS, but may be more complex,

servicing requests in some other order (for example, using a priority scheme). This at-most-once

execution of jobs may not hold if a fault occurs at one or more of the sites (see Section 4.5 for more

details on fault tolerance).

A command-line server may be implemented in any number of ways. A simple method is to

return the jobs from the database in the order they are entered (i.e., FCFS). This policy is easy

to implement and also exhibits predictable behaviour. Such a simple policy places the burden of

prioritizing the jobs onto the user. Jobs entered in the database earlier are implicitly of higher

27

priority that those entered later. To prioritize jobs, the user simply adjusts the ordering of the jobs.

This simple policy is the one used in the implementation described in Section 3.5.5.

A command-line server may also be priority-based. Users may attach priorities to jobs entered

into the database such that higher priority jobs are executed before lower-priority jobs. Although

this scheme is implicit with the FCFS policy described above, the main advantage of explicit priority

is that the user does not need to order jobs to specify priority. Newly added jobs may therefore be

served prior to some or all of the jobs previously in the database. Care must be taken by the user not

to starve existing jobs by repeatedly adding higher-priority jobs.

Another command-line server (which was implemented and used in [24]) serves jobs based on

directed acyclic graph (DAG) dependencies. The edges of the DAG represent dependencies, and

the nodes represent jobs. In order for a job to be eligible to execute (i.e., served by the command-

line server), all dependency edges leading from that node must be satisfied (i.e., the prerequisite

jobs must have been completed). A dependency-based command-line server allows workflows to

be easily specified by the user. The parallelism inherent in the workflow can be exploited without

the need to manually break up the workflow into individual parts or stages. The full details of

dependency based job scheduling are beyond the scope of this thesis and are discussed elsewhere

[12].

The command-line server is a critical component of placeholder scheduling. All of the logic

required to obtain a unit of work is concentrated in the command-line server. The server implements

the policy of obtaining work, and this policy may be as simple or complex as desired. The command-

line server also allows all placeholders to contact a single entity when in need of work, rather than

requiring the placeholders to make decisions for themselves.

3.5 Implementation of Placeholder Scheduling

Placeholders, and the associated command-line server, may be implemented in a number of differ-

ent ways so long as they adhere to the functionality described in Section 3.3. Both placeholders and

the command-line server are free to perform tasks in addition to those required to carry out place-

holder scheduling, especially those tasks that allow the components to better handle heterogeneous

environments (e.g., special commands for certain operating systems) and faults (e.g., crashes). All

components may be implemented in any desired language, and they may be mixed and matched for

greater flexibility. Without this flexibility in implementation, placeholder scheduling would not be

as effective in handling heterogeneity.

The implementations described here are intended as reference implementations only. The im-

plementations of placeholders used in this thesis are written as shell scripts because the majority of

batch scheduling systems work on job scripts. These job scripts must be written as shell scripts, so

placeholders naturally fit as shell scripts. The portability of job scripts between different machines

with identical batch scheduling systems is also beneficial. The command-line server does not require

28

the same degree of portability because it must only run on a single machine, but is best written as a

script so that it can be easily migrated to another machine.

3.5.1 Placeholders

The notion of a placeholder is intended to be as simple as possible and, as such, placeholders can

be implemented on a variety of systems. Placeholders can be implemented to exploit the underlying

batch scheduling system, thereby allowing other users and placeholders an opportunity to execute.

An underlying scheduler also provides the benefits of local job scheduling, submission, monitoring,

and management. These benefits are as equally applicable to placeholders submitted via the batch

scheduling interface as they are to normal jobs. An underlying batch scheduler is therefore the

preferred implementation method, when possible.

Unfortunately, underlying batch scheduling systems do not exist at all sites. In the event of,

say, a dedicated system, there may be little need for a batch scheduler. Therefore, placeholder

scheduling should not require the existence of a batch scheduler, which would make these systems

inaccessible. As a result, placeholders may be implemented as zero-infrastructure placeholders.

Such an implementation makes no use of an underlying batch scheduler, and instead accesses the

machine directly by creating processes itself.

Each of the implementations are presented next. Placeholders are written as abstract shell scripts

(i.e., some of the details are omitted for clarity), but are similar in form to a minimal placeholder. As

stated earlier, placeholders may include code to perform additional tasks. Likewise, the command-

line server is presented as pseudocode to illustrate its intended functionality.

3.5.2 Batch Scheduled Placeholders

Figure 3.4 presents an example placeholder for PBS. At only 30 lines in length, the placeholder is

compact. The preamble of the script (lines 1–13) contains PBS-specific directives. These directives

control parameters such as the job name (line 7), the number of processors required (line 9) and the

time limit of the job (line 10), among others, and are fixed at job submission time. Other scheduling

systems, such as Sun Grid Engine, have similar parameters that are specified differently.

When a placeholder begins executing, its first task is to contact the command-line server. The re-

mote program getcmdline is used to contact the command-line server. The placeholder connects

to the command-line server machine ($CLS-MACHINE, line 21), and executes getcmdline, pass-

ing the contents of $ID-STR as arguments. $ID-STR is intended to contain identifying or state

information about the placeholder (for identification and authentication), but may contain nothing at

all if no such information is required.

The command-line server may wish to inform this placeholder to discontinue execution. This

is done by returning a non-zero value from getcmdline, and is checked by the placeholder on

lines 22–24. The placeholder then executes the job returned by the command-line server (line 27).

29

1 #!/bin/sh
2
3 ## Simple placeholder for PBS.
4
5 ## PBS-specific options.
6 #PBS -S /bin/sh
7 #PBS -N Placeholder
8 #PBS -q dque
9 #PBS -l ncpus=1
10 #PBS -l walltime=02:00:00
11 #PBS -j oe
12 #PBS -M pinchak@cs.ualberta.ca
13 #PBS -m ae
14
15 ## Environment variables:
16 ## CLS-MACHINE - points to the command-line server’s host.
17 ## CLS-DIR - remote directory in which the command-line server
18 ## is located.
19 ## ID-STR - information to pass to the command-line server.
20 ## Note the backquote, which executes the quoted command.
21 JOB=‘/usr/local/bin/ssh $CLS-MACHINE "$CLS-DIR/getcmdline $ID-STR"‘
22 if [$? -ne 0]; then
23 exit 111
24 fi
25
26 ## Execute the command from the command-line server.
27 eval $JOB
28
29 ## Resubmit the placeholder to "play nice" with the scheduler.
30 qsub placeholder.pbs

Figure 3.4: Simple PBS Placeholder

Finally, the placeholder resubmits itself to the batch scheduling system using the provided interface

(line 30). This is done to allow other batch scheduler jobs an opportunity to execute. It also allows an

arbitrary number of low-limit placeholder invocations to execute, as PBS may kill any job exceeding

the specified limits.

3.5.3 Zero-Infrastructure Placeholders

An example zero-infrastructure placeholder is presented in Figure 3.5. The zero-infrastructure im-

plementation of a placeholder shares many similarities with a batch scheduled implementation. The

preamble (lines 6–7) simply redirects output to a file instead of to the terminal (as a batch scheduler

would do). The remainder of the placeholder is no different from the batch scheduled implemen-

tation, save for the use of the zinfqsub program. zinfqsub (shown in Figure 3.6), is simply

a script designed to mimic the non-blocking job submission semantics of many batch scheduling

systems.

3.5.4 Self-Regulating Placeholders

A PBS placeholder with the ability to regulate the total number of placeholders on the system is

presented in Figure 3.7. Such a placeholder may be advantageous in situations in which queue con-

ditions are highly variable. When a queue is determined to be “fast”, a self-regulating placeholder

could submit additional placeholders to take advantage of the current conditions. Likewise, the num-

ber of placeholders can be reduced if conditions are such that placeholders must wait in the queue

30

1 #!/bin/sh
2
3 ## Simple zero-infrastructure placeholder.
4
5 ## Redirect output.
6 exec 1>Placeholder.o$$
7 exec 2>&1
8
9 ## Environment variables:
10 ## CLS-MACHINE - points to the command-line server’s host.
11 ## CLS-DIR - remote directory in which the command-line server
12 ## is located.
13 ## ID-STR - information to pass to the command-line server.
14 ## Note the backquote, which executes the quoted command.
15 JOB=‘/usr/local/bin/ssh $CLS-MACHINE "$CLS-DIR/getcmdline $ID-STR"‘
16 if [$? -ne 0]; then
17 exit 111
18 fi
19
20 ## Execute the command from the command-line server.
21 eval $JOB
22
23 ## Resubmit using a special script.
24 zinfqsub placeholder.zinf

Figure 3.5: Simple Zero-infrastructure Placeholder

1 #!/bin/sh
2
3 /bin/sh $@ &
4 echo $!

Figure 3.6: Non-blocking Zero-infrastructure Submission Script

for a long period of time.

A self-regulating placeholder keeps track of the time it spends in the queue by recording the

current time in a file (line 54) immediately before exiting. The subsequent placeholder (submitted

on line 52) consults this file when it begins executing (line 25), and calculates the difference between

the present time and when the file was written (lines 27–31). A local program (decide) is used

to determine what action the placeholder should take (line 34). The possible responses (for this

placeholder, at least) are increase, decrease, or maintain. If the decision is to increase

placeholders, a new placeholder is started immediately (i.e., before the job is performed) (lines

36–39) and the current placeholder resubmits itself before exiting (line 52). If the decision is to

decrease the number of placeholders, the current placeholder simply does not resubmit itself on exit

(lines 45–47). And, if the decision is to maintain the current number of placeholders, the current

placeholder simply resubmits itself as usual (line 52). Thus, the number of placeholders present at a

site is incrementally adjusted by the self-regulating placeholders.

3.5.5 The Command-Line Server

Although the command-line server has been presented as a server (with the implication of a client-

server model), our reference implementation is instead a script remotely executed by a placeholder.

Because the command-line server script can be complex, a pseudocode version is presented in Fig-

31

1 #!/bin/sh
2 ## Self-regulating PBS placeholder.
3
4 ## PBS-specific options.
5 #PBS -S /bin/sh
6 #PBS -N Placeholder
7 #PBS -q dque
8 #PBS -l ncpus=1
9 #PBS -l walltime=02:00:00
10 #PBS -j oe
11 #PBS -M pinchak@cs.ualberta.ca
12 #PBS -m ae
13
14 ## Environment variables:
15 ## CLS-MACHINE - points to the command-line server’s host.
16 ## CLS-DIR - remote directory in which the command-line server is located.
17 ## ID-STR - information to pass to the command-line server.
18 ## Note the backquote, which executes the quoted command.
19 JOB=‘ssh $CLS-MACHINE "$CLS-DIR/getcmdline $ID-STR"‘
20
21 if [$? -ne 0]; then
22 exit 111
23 fi
24
25 STARTTIME=‘cat $HOME/MQ/$PBS_JOBID‘
26 NOWTIME=‘$HOME/bin/mytime‘
27 if [-n "$STARTTIME"] ; then
28 let DIFF=NOWTIME-STARTTIME
29 else
30 DIFF=-1
31 fi
32
33 ## Decide if we should increase, decrease, or maintain placeholders in the queue.
34 WHATTODO=‘$HOME/decide $DIFF‘
35
36 if [$WHATTODO = ’increase’]; then
37 NEWJOBID=‘qsub placeholder.pbs‘
38 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID
39 fi
40
41 ## Execute the command from the command-line server.
42 eval $JOB
43
44 ## Leave if ’reduce’.
45 if [$WHATTODO = ’reduce’] ; then
46 exit 0
47 fi
48
49 /bin/rm -f $HOME/MQ/$PBS_JOBID
50
51 ## Recreate ourselves if ’maintain’ or ’increase’.
52 NEWJOBID=‘qsub placeholder.pbs‘
53
54 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID

Figure 3.7: Generic PBS Placeholder

32

1 ## Assume that ID_STR is passed in as an argument.
2 if not verify(ID_STR) then
3 return failure_value
4
5 lock database
6
7 ## Select the next available job based on the contents of ID_STR.
8 next_job := select-next-job(ID_STR)
9
10 ## Check if anything was available.
11 if next_job = "" then
12 unlock database
13 return stop_value
14
15 unlock database
16
17 ## Print out the job information (so it can be captured).
18 print next_job
19 ## The return value indicates a success or failure.
20 return success_value

Figure 3.8: Pseudocode Command-line Server Script

ure 3.8.

Execution of the command-line server is as follows. First, the command-line server must verify

that a legitimate placeholder is attempting to obtain a job (line 2–3). This represents a minimal level

of security in that someone trying to spoof a placeholder must know this information a priori. Next,

the database must be locked to ensure mutual exclusion (line 5). This is important because multiple

placeholders may invoke the command-line server script concurrently, and we must ensure that each

invocation returns a previously unassigned job. Once the database is locked and mutual exclusion is

ensured, the script is free to select the next job (the policy of which is implemented in the select-

next-job() function) from the database (line 8). In the event that there are no remaining jobs,

the placeholder must be notified to halt execution because all work has been performed for the

placeholder group (lines 11–13). Finally, should a job be available, the job information is printed

(so that it may be captured by the placeholder) and success is reported.

A considerable amount of information has been omitted from Figure 3.8. For example, locking

the database (line 5) may be as simple as requesting that the underlying database system lock the

database, or as complex as manually implementing mutual exclusion. Likewise, the selection of

the exact job to return is abstracted by the select-next-job() function. Although a concrete,

working command-line server has been developed for the experiments in Chapter 5, the full program

is much too large to be adequately described here.

3.6 Concluding Remarks

Placeholder scheduling provides a metacomputing environment with performance benefits for rel-

atively low complexity. Through the mechanism of placeholders, the benefits are provided with

minimal infrastructure and integration of participating sites. Placeholders are able to handle a great

deal of resource heterogeneity (batch scheduled and zero-infrastructure systems) and cooperate with

33

underlying schedulers to avoid interfering with existing operations. The largest benefit, perhaps,

is that placeholder scheduling requires nothing more than what can be easily allocated to a nor-

mal user account. Therefore, placeholder scheduling is appealing from both the user’s (improved

performance) and administrator’s (no special treatment) point of view.

34

Chapter 4

TrellisWeb

Placeholder scheduling is a useful mechanism for taking advantage of computational resources at

multiple sites. The simplicity of placeholders makes them an attractive alternative to other existing

scheduling systems. However, using placeholder scheduling can be somewhat difficult. Placeholders

must be created for each system (often by hand), and must somehow be distributed to each location.

Additionally, the user must somehow start, stop, and monitor the progress of the placeholders as they

do their work. Any one of these tasks becomes a major chore when the number of sites participating

in an overlay metacomputer becomes large.

TrellisWeb was designed to address these user-level complications. By offering a single web-

based interface to placeholder scheduling, TrellisWeb allows non-trivial metacomputers to be com-

posed and managed by non-expert users. TrellisWeb also provides a certain level of fault tolerance

for placeholder scheduling. Without these simplifying features, placeholder scheduling would be a

tedious task.

The target audience of placeholder scheduling is those members of the scientific community pur-

suing computationally-intensive research. The primary focus of such research is not the underlying

details of performing the computations, but rather interpreting the results. Because the computations

are necessary, and only the results are interesting, it stands to reason that time spent on conducting

the computational research is less valuable than time spent on examining and interpreting the results.

TrellisWeb attempts to address this issue by requiring as little user intervention as possible so that

researchers may spend time in a more productive manner.

4.1 Overview

TrellisWeb is based on the PBSWeb system [20, 21]. PBSWeb was originally designed as a web-

based graphical user interface (GUI) to the Portable Batch System. The goal of PBSWeb is to make

PBS job submission easier and more intuitive for novice users. Many of the PBS commands are

complicated beyond the abilities of the casual user, and the forms-based GUI provided by PBSWeb

was purposefully designed to allow for easy selection of the most common options. It is hoped

35

that the ease of use of PBSWeb will encourage scientists in areas other than computing science to

develop and use computationally-intensive applications that require high-performance computing

resources.

TrellisWeb augments PBSWeb functionality with the ability to create and manage overlay meta-

computers. Users can upload applications to multiple computers, create an overlay metacomputer,

specify placeholder parameters, load jobs into the per-metacomputer metaqueue, monitor place-

holder progress, and start and stop placeholder execution. All actions are performed on behalf of

the user via a web browser. Therefore, all actions have the same effect as a user performing them

manually.

It was a deliberate decision to use a web-based portal instead of command line tools. Com-

mand line tools are familiar to most computer scientists, but not to target users such as scientists in

other areas. Due to the great increase in computational aspects of various disciplines, areas other

than computer science would benefit from a metacomputing environment. Command line tools for

placeholder scheduling would likely become unnecessarily arcane, causing problems even for those

familiar with such tools. Instead, command line tools are foregone in favour of the cross-platform

support of the more user-friendly web interface.

4.2 Key Features

TrellisWeb provides a number of benefits to users of placeholder scheduling. Briefly, they are:

1. Placeholder management: Placeholders can be difficult to use, especially when they are re-

quired for a large overlay metacomputer. As a result, placeholder management is the primary

goal of TrellisWeb. All aspects of placeholder management are handled by TrellisWeb, in-

cluding creation and customization of placeholder scripts, uploading of placeholder scripts

to destination sites, starting and stopping placeholders, and monitoring the progress of the

executing placeholders. TrellisWeb tries to present this information as if the overlay meta-

computer were actually a single cohesive system, where possible.

2. Metaqueue interaction: Placeholder scheduling is based on the dynamic assignment of jobs

to placeholders. As discussed earlier, this information is provided to placeholders via the

command-line server. TrellisWeb provides a forms-based method for adding and removing

jobs to/from the command-line server database. New jobs may be added by the user in stages

or all at once, and can be selectively removed. Metaqueue interaction is provided by Trel-

lisWeb so that the user may avoid using potentially-complex SQL database queries to perform

similar actions.

3. Basic fault tolerance: As the number of sites participating in an overlay metacomputer in-

creases, so does the likelihood of a fault. Fault tolerance is itself a large research topic, and

36

so is addressed only in a basic form in TrellisWeb. TrellisWeb records when and where jobs

are assigned and is capable of restarting jobs should they become suspect of failure (i.e., they

have been in the executing state for an excessive amount of time). Because the fault toler-

ance is only basic, no attempt is made to ensure once and only once execution of all jobs

in a metaqueue when faults occur. Files may be corrupted due to the partial completion and

re-execution of jobs. The fault tolerance of TrellisWeb is only intended to catch the majority

of common errors so that simple failures can at least be corrected.

In addition to the above features, TrellisWeb records information such as the assignment of

jobs to placeholders, the time the placeholder began executing a job, and the time the placeholder

finished executing a job. Such information is invaluable for post-mortem analysis of job execution.

TrellisWeb stores all placeholder actions in a database for later analysis. The experimental results

presented in Section 5.3 use such logging features.

4.3 TrellisWeb Walkthrough

TrellisWeb provides a start-to-finish process to allow users to execute jobs. It is useful to examine

this process in detail, as certain design decisions have been made that affect both user interaction

and the generality of placeholder scheduling within TrellisWeb. The following sections discuss each

step of placeholder scheduling with TrellisWeb.

4.3.1 Application Upload

While it is certainly not the most exciting aspect of metacomputing, ensuring that executables are

placed at all required locations is extremely important. Some systems, such as Condor-G, incorpo-

rate automatic and transparent executable staging into the system itself. While this is convenient for

the user, it increases the complexity of the system because of the need for architecture identification

and appropriate executable selection.

Of course, TrellisWeb still provides some support for application upload (see Figure 4.1). Users

may select any Unix Tape Archive (TAR) file to upload to any location they have access to in the

TrellisWeb system. In this particular example, an application will be uploaded to the University of

Calgary MACI Alpha cluster site. TrellisWeb administrators must add new systems to TrellisWeb,

but users themselves may select which they wish to access and which account is to be used. Users

give a label to the upload and select whether or not make(1L) should be invoked on the contents

of the archive. The archive is then securely copied and extracted at the destination. Care is taken so

that archives uploaded to sites with different operating systems/architectures that share a common

filesystem do not interfere with each other.

Once this step has been completed, we can say that the project named by the label exists at

the destination. The name and location of the project will later affect the composition of the over-

37

Figure 4.1: TrellisWeb Application Upload

lay metacomputer. This step must be repeated for each site that will compose the desired overlay

metacomputer.

4.3.2 Placeholder Group Creation

Once the projects have been uploaded to the various locations, the next step toward placeholder

scheduling can be performed. The user must now specify the composition of the overlay metacom-

puter. In the previous step, projects were assigned a label. TrellisWeb considers identical labels to

be similar projects, and hence such projects are candidates for a group. For example, if a user were

to upload project “myprog” to the University of Calgary, and another, different, project “myprog”

to the University of Alberta, TrellisWeb would allow the user to placeholder schedule across both

sites using the respective “myprog”, even though the projects may be different. Therefore, users

must be mindful of the labels they provide when uploading files.

Users may now select a subset (proper or not) of the sites with a given project to form the overlay

metacomputer. An example group creation page for the “molpro” project is shown in Figure 4.2.

Although an overlay metacomputer (also known as a placeholder group in TrellisWeb) is application-

specific, multiple identical overlay metacomputers may be created, and overlay metacomputers may

be used for tasks other than those associated with a particular project. Additional parameters (both

site independent and site specific) may be specified on the following page (see Figure 4.3).

Upon specification of the additional parameters, placeholder scripts are created and distributed

38

Figure 4.2: Placeholder Group Creation (step one)

Figure 4.3: Placeholder Group Creation (step two)

39

1 #!/bin/sh
2
3 ## PBS placeholder template for aurora.nic.ualberta.ca.
4
5 ## PBS-specific options.
6 #PBS -S /bin/sh
7 <--name-->
8 <--queue-->
9 <--processors-->
10 <--maxtime-->
11 <--merge-->
12 <--emailaddr-->
13 <--mailopts-->
14
15 ## Environment variables:
16 ## CLS-MACHINE - points to the command-line server’s host.
17 ## CLS-DIR - remote directory in which the command-line server
18 ## is located.
19 ## Note the backquote, which executes the quoted command.
20 JOB=‘/usr/local/bin/ssh $CLS-MACHINE "$CLS-DIR/getcmdline action=nextcmd <--ident--> \
21 host=aurora.nic.ualberta.ca jobid=$PBS_JOBID"‘
22 if [$? -ne 0]; then
23 /usr/local/bin/ssh $CLS-MACHINE "$CLS-DIR/getcmdline action=dequeue <--ident--> \
24 host=aurora.nic.ualberta.ca jobid=$PBS_JOBID"
25 exit 111
26 fi
27
28 ## Execute the command from the command-line server.
29 eval $JOB
30
31 ## Resubmit the placeholder to "play nice" with the scheduler.
32 NEWID=‘qsub <--scriptname-->‘
33 /usr/local/bin/ssh $CLS-MACHINE "$CLS-DIR/getcmdline action=donejob <--ident--> \
34 host=aurora.nic.ualberta.ca jobid=$PBS_JOBID newid=$NEWID"

Figure 4.4: Placeholder Template for the University of Alberta MACI SGI Complex

to each of the sites. Placeholder scripts are created from generic templates, one of which is shown

in Figure 4.4. A template exists for each site and contains most of the placeholder logic, with the

exception of a few stubs (denoted by <-- ... -->). This allows administrators to specialize the

templates by providing host-specific file locations (e.g., /usr/local/bin/ssh) and other such

information. The stubs are replaced at placeholder customization time by parameters provided by

the user. In this way, placeholder templates are as reusable as possible.

Finally, placeholder scripts (customized templates) are securely copied to the destination sites

and are placed under the user’s remote account in a known location. Once the scripts have been

uploaded to their destinations, they are ready to be activated.

4.3.3 Loading the Command-line Server

Before placeholder scheduling is of any use, jobs must be entered into the command-line server

database. Although this can be performed using SQL queries, TrellisWeb provides a much easier

interface (Figure 4.5). Jobs are entered into the database individually, with the underlying database

system providing an ordering to them. Recall that the command-line server may remove jobs in any

order, so the underlying order imposed by the database system may or may not be important.

40

Figure 4.5: Loading the Command-line Server

4.3.4 Dispatching Placeholders

Once job information has been entered into the command-line server database, the placeholders

are ready to begin execution. Placeholders of a group are typically launched all at once so that the

overall task may be started as a whole. This adds to the illusion that the placeholder group represents

a single task on a single computer. However, the user must decide how many placeholders to submit

at each site, a decision that must be made with some prior knowledge of the site. If the site utilizes

a batch scheduling system that is capable of queuing additional jobs, any detrimental effects of

dispatching too many placeholders to a site is reduced.

Figure 4.6 shows the main step in dispatching placeholders. Previous information, provided

when the placeholder scripts were created, is again presented to the user to aid in recalling the

specifics of the site. It is then up to the user to specify the number of placeholders to dispatch at

each location. All placeholders dispatched to a given location are identical (provided they are part

of the same group). If this is not the desired effect, additional placeholders with different parameters

may be added to the same location via another TrellisWeb page.

4.3.5 Monitoring and Managing Placeholders

After the placeholders have been dispatched, all that remains is to monitor their progress. TrellisWeb

provides an integrated view of placeholder progress on a per-group basis. Each placeholder in a

group may be in one of two states at any given point in time. A placeholder displayed as being in the

41

Figure 4.6: Placeholder Dispatch

queued state is one that has been dispatched but has not yet contacted the command-line server for

work. Most likely, the placeholder has been queued by an underlying batch scheduler. Alternatively,

the placeholder may be in the executing state. A placeholder is considered to be in this state if it has

received work and has not yet reported back that the work is done.

The monitoring page of TrellisWeb is shown in Figure 4.7. The user is presented with group

information such as the name of the group and the number of jobs remaining in the command-line

server database. This information can be interpreted by the user to indicate the progress of the

overlay metacomputer. Also provided is per-placeholder information such as the state of the place-

holder (described previously), the local scheduler identifier (assigned by the underlying scheduling

system), and the time when the placeholder began executing. The user may elect to stop the entire

group of placeholders, or one placeholder at a time. Stopping a placeholder effectively kills it by

interacting with the underlying batch scheduler (in the case where one exists) or issuing a kill(1)

command (on zero-infrastructure systems).

Additional placeholders may be dispatched to augment currently running ones. These place-

holders may be pre-existing members of the group, or new ones added on-the-fly. Jobs may also

be added to the command-line server database at any point prior to, during, or after placeholder

dispatch to provide maximum flexibility for the user. The user may terminate some or all of the

placeholders should he/she decide to stop execution. In effect, the user may interact with the overlay

metacomputer as a whole or in pieces.

42

Figure 4.7: Placeholder Monitoring and Management

4.4 Additional Command-line Server Functionality

The simple functionality of the command-line server presented in Section 3.4 is adequate for manual

placeholder scheduling, but is insufficient to allow for all features of TrellisWeb. As a result, the

command-line server used with TrellisWeb is slightly more complex than the bare-bones version

previously described. This increased complexity, however, does not detract from the core behaviour

of the command-line server, which still adheres to the required design.

The major change to the command-line server is the ability to record when placeholders start

and finish executing jobs. The current state of placeholder execution is recorded in the database,

and requires that the placeholder invoke the command-line server upon job completion. This ad-

ditional invocation requires approximately double the overhead of a simple command-line server

implementation, but opens the door to a number of additional benefits such as fault tolerance and

better placeholder management by the user. Without the state information, a user (and indeed the

fault tolerance system) would be unable to determine what progress has been made. Although this

is sufficient for a number of applications, the additional information provided by the TrellisWeb

command-line server is invaluable because of the potential benefits it provides.

The TrellisWeb command-line server can also log information about completed jobs. Users may

wish to review the completed jobs and the times when they were run, as well as how much time was

consumed. Administrators may wish to review usage trends for accounting or other administrative

purposes. The increased complexity for logging is transparent to the placeholders, and only requires

43

additional database accesses by the command-line server.

4.5 Simple Fault Tolerance

Due to the potential size of an overlay metacomputer, faults can become a problem. As the overlay

metacomputer becomes larger and larger, so too does the potential for placeholder failures. Al-

though some applications may be inherently fault tolerant, most are not. The level of fault tolerance

provided by TrellisWeb is minimal, but is enough to prevent the need for manual identification and

resubmission of failed jobs.

Placeholder scheduling has many advantages with respect to fault tolerance. Because place-

holders work as a team to complete a set of jobs, the failure of one or a few placeholders is not a

catastrophic event. The performance of placeholder scheduling in such a situation gracefully de-

clines as placeholders are lost to failure. This ability comes purely from the fact that placeholders

work on a pull model and are often used simultaneously in groups to load balance work across

multiple sites.

The basic idea behind fault tolerance in TrellisWeb, beyond that inherent in placeholder schedul-

ing, is three-fold. The first opportunity for failure recovery comes when placeholders attempt to use

certain utilities (such as SSH) that may fail due to transient conditions. To compensate for such

failures, placeholders in TrellisWeb retry such utilities up to five times with a waiting period in be-

tween. The second opportunity comes when connections to the command-line server time out due

to an error at the command-line server machine. In such an event, the command-line server script

used with TrellisWeb fails after a timeout. Furthermore, it fails in such a way that the placeholder

behaves as if the connection failed entirely. Finally, the third opportunity comes when a placeholder

is identified as failed, and is rescheduled by the TrellisWeb fault tolerance script. Each of these

three levels, in addition to the inherent fault tolerance of placeholder scheduling, make placeholder

scheduling tolerant to many different types of common failures.

The logging features of TrellisWeb record information such as when a placeholder was submitted

and when a placeholder begins executing a job. With this information, it can be determined when a

job is suspect of failure. The simple fault tolerance provided by TrellisWeb imposes an upper limit

on time spent by a placeholder in the queued and executing states. Should a placeholder exceed the

limit, the fault tolerance script will identify the placeholder as failed and restart it. Pseudocode of

the fault tolerance script is shown in Figure 4.8.

Two possible types of failures are accounted for by the fault tolerance script. First, the set of

currently executing jobs is examined. Should any of the currently executing jobs be executing for

too long (defined by EXEC-FAILURE), the job is considered to have failed (line 5). Because the

potential exists for certain jobs to contain faulty information that causes failures, a threshold of

retries is maintained (MAX-RETRIES). Jobs are retried up to MAX-RETRIES and then abandoned

as failed (lines 7-11). Finally, the corresponding placeholder must be restarted (lines 12-15), as this

44

1 EXEC-FAILURE := 12 hours
2 QUEUE-FAILURE := 24 hours
3 MAX-RETRIES := 3
4
5 failed := set of executing placeholders with start time > EXEC_FAILURE ago
6 for each placeholder in failed do
7 if placeholder.job.retries <= MAX_RETRIES then
8 placeholder.job.retries := placeholder.job.retries + 1
9 reinsert the job into the list of waiting jobs
10 else
11 insert the job into the failed list
12 delete the placeholder via the underlying scheduling system (or kill it if ZINF)
13 remove the old placeholder from the database
14 resubmit the placeholder to the underlying scheduling system
15 enter the placeholder into the database as queued
16 done
17
18 failed := set of queued placeholders with queue time > QUEUE_FAILURE ago
19 for each placeholder in failed do
20 delete the placeholder via the underlying scheduling system (or kill it if ZINF)
21 remove the old placeholder from the database
22 resubmit the placeholder to the underlying scheduling system
23 enter the information into the database as queued
24 done

Figure 4.8: Pseudocode TrellisWeb Fault Tolerance Script

is potentially the only placeholder in the group that is executing. A similar process is carried out for

queued placeholders (lines 18-24).

In addition to the central fault tolerance implemented on the database side, placeholders them-

selves provide a small amount of fault tolerance. Because of the possibility of transient network

faults, SSH connections may fail on occasion. If such a failure were to happen whilst a placeholder

was attempting to contact the command-line server, it may result in the loss or corruption of job

information, or possibly cause the placeholder to believe that no more work is available. To prevent

this, all SSH connections made by placeholders are retried five times upon failure. A configurable

period of ten minutes between tries is imposed to allow connections to be re-established and correct

operations to resume. This gives the placeholder a 50 minute buffer for any failures that would cause

SSH to report an error (both network and non-network related).

Of course, TrellisWeb fault tolerance does not preclude the use of other fault tolerant systems or

practices. In fact, fault tolerance at the application level is encouraged as the simple fault tolerance

introduced here is incapable of detecting all possible errors. TrellisWeb fault tolerance is intended

to provide minimal functionality to those applications that have little or none.

4.6 Concluding Remarks

The primary goal of TrellisWeb is to make placeholder scheduling a more useful and practical tool

for metacomputing. Placeholder scheduling is flexible with respect to implementation. Some users

may take advantage of this flexibility by implementing placeholder scheduling themselves. On

the other hand, most users want something that is easy to use while still providing the benefits of

metacomputing.

45

TrellisWeb trades some of the complexity and flexibility of placeholder scheduling for ease-of-

use. The web-based interface restricts users to the most common functions of placeholder schedul-

ing, both to reduce the difficulty of using placeholders and to prevent users from misusing place-

holder scheduling. However, TrellisWeb is still flexible enough to perform placeholder scheduling

for most intended applications. In the future, the command-line server may be selectable so that the

scheduling policy may be modified (e.g., dependency-based scheduling).

The inclusion of fault tolerance in TrellisWeb augments existing application-level fault tolerance,

if such fault tolerance exists. At the same time, TrellisWeb provides a minimal level of fault tolerance

to users who are unwilling or unable to add fault tolerance to their applications. Because of the

larger scope of metacomputers beyond that of single-site computers, faults must be expected and

hence must be addressed at least in some basic way.

46

Chapter 5

Empirical Evaluation

Placeholder scheduling was designed as a mechanism for scheduling jobs across multiple compu-

tational resources that may or may not be shared with other users. Placeholder scheduling can be

verified by the use of live execution runs, simulation-based analysis, or trace data. Live execu-

tion runs were chosen because they deal with a realistic instead of artificial load (as in simulation

data), and no collection mechanism is required to collect trace data a priori. Recall that placeholder

scheduling is largely a mechanistic approach to metacomputing and that the current policy used by

placeholder scheduling (FCFS) is relatively simple, so the results presented in this chapter are not

particularly interesting from a policy standpoint.

Placeholder scheduling is primarily interested in providing low makespans for a set of jobs based

on good load balancing. Along with low makespans, utilization of the participating sites is increased

with respect to the number of placeholders present because no placeholder idles while capable of

performing work. Any metacomputing system that allows a user to perform computations at more

than one site is beneficial, but performance should increase in relation to the size of the metacom-

puter. Improved performance is perhaps the single greatest reason for using a metacomputer in the

first place. As a result, the performance of placeholder scheduling will be the metric of its usefulness.

5.1 Experiment #1: Proof-of-Concept

The basic ideas behind placeholders and placeholder scheduling are fairly straightforward: central-

ize the jobs of the workload into a metaqueue (i.e., the command-line server), use placeholders to

pull the job to the next available local queue, and use late binding to give the system maximum

flexibility in job placement and load balancing. Such a system is built using only widely-available

and deployed infrastructure, such as SSH, and existing batch scheduling systems, such as PBS. The

goal of the proof-of-concept experiment is to validate that such a system can be built.

Empirical evidence derived from this experiment shows that placeholder scheduling can load

balance across multiple multiprogrammed systems with independent queues. The experimental plat-

form consists of machines within the same administrative domain; a more controlled and uniform

47

Makespan Time When System Becomes Idle
Total (Real-Time (number of jobs completed)
Number See Load [units of work completed]
of Jobs Scheduler Fig. Imbalance) A B C

(a) 50 User script,
Multiprogrammed

5.2,
5.3

13,981
(72%)

3,928
(17 jobs)
[1,000
units]

13,981
(16 jobs)
[1,025
units]

3,939
(17 jobs)
[1,075
units]

(b) 50 Placeholder,
Multiprogrammed

5.4,
5.5

5,793
(14%)

5,204
(24 jobs)
[1,325
units]

5,793
(6 jobs)
[425
units]

4,984
(20 jobs)
[1,350
units]

(c) 200 Placeholder,
Multiprogrammed

5.6,
5.7

17,801
(1.9%)

17,460
(81 jobs)
[4,450
units]

17,801
(24 jobs)
[1,300
units]

17,560
(95 jobs)
[5,250
units]

(d) 200 Placeholder,
Uniprogrammed

5.8,
5.9

17,053
(2.1%)

16,858
(78 jobs)
[4,300
units]

17,053
(26 jobs)
[1,250
units]

16,692
(96 jobs)
[5,450
units]

Table 5.1: Summary of Proof-of-Concept Results

Makespan is generally defined as the total real time required to complete the workload, from the arrival of all
the jobs at time zero until completion of the last job. Real-Time Load Imbalance is defined here as the time
difference between when the last system becomes idle and when the first system becomes idle, then normalized
by the makespan. (i.e., Real-Time Load Imbalance �

� ���������	�
����
�������������
������������������	�����

������������
��
!��"����$#���% , in which&('�)�*,+.-/'�0 �21�3 &(*5476989)�:�69'<;>= 3 0 3 +�?@*�;BA 1
3 &C*D476,8E)�:�6,'�;>+ 1 '<8 1 *�; .) The goal is to minimize makespan and
real-time load imbalance for a given workload.

Recall that individual jobs vary in the required units of work. In (a), System B completes fewer jobs than
System A, but those jobs require more units of work. In (b), System A completes more jobs than System C, but
both systems complete nearly the same units of work. All systems finish within 809 seconds (i.e., 14% of the
makespan) of each other when using placeholder scheduling. The more jobs in the workload, the greater the
opportunity to load balance so as to minimize the makespan and real-time load imbalance. In (c), all systems
finish within 341 seconds (i.e., 1.9% of the makespan) of each other. In (d), all systems finish within 361
seconds (i.e., 2.1% of the makespan) of each other.

environment is required to show that placeholder scheduling works. The subsequent experiments

examine placeholder scheduling in the context of multiple administrative domains.

5.1.1 User Scripts

To illustrate the pitfalls of the user script approach, in which a user statically assigns jobs to com-

puters, a synthetic workload of 50 jobs was created(Table 5.1(a)) executing on three different work-

stations: one four-way multiprocessor and two uniprocessors with differing computational power

(Table 5.2). Each job is a simple sort program that executes in parallel on the multiprocessor and

sequentially on the uniprocessors. The binary executables are built specifically for the machine

architecture, the operating system, and the algorithm used (i.e., parallel or sequential), but the over-

48

System Description Sorting Algorithm

A
(caslan)

SGI Origin 2100, 4 � 350 MHz R12000,
1 GB RAM, Irix 6.5

Parallel

B
(lacrete)

Single Pentium II, 400 MHz, 128 MB RAM,
Linux 2.2.16

Sequential

C
(st-brides)

Single AMD Athlon XP 1900+, 1.6 GHz,
256 MB RAM, Linux 2.4.9

Sequential

Table 5.2: Experimental Platform: Three Independent Systems and PBS Execution Queues

0

20

40

60

80

100

120

140

� �� ��
� 14 17

50 job workload

19

� �� ��
�� �� �
� �� �
30

135

200 job workload

35

Workload

Number of jobs

� �� � � �
Class 1: 20 units of work Class 2: 50 units of work Class 3: 100 units of work

Figure 5.1: Synthetic Workloads: Service-Time Distribution of Jobs

all application is the same over the entire overlay metacomputer (and has the same name on all

machines).

Jobs vary in the amount of computation required for the sort. All jobs sort approximately four

million keys, but a variable command-line argument controls how many times the sort is repeated for

each job (i.e., number of iterations). One iteration is defined as one unit of work for this experiment.

Overall, there are 14 jobs with 25 units of work, 17 jobs with 50 units of work, and 19 jobs with 100

units of work (Figure 5.1). Jobs from each class are randomly interleaved in the workload.

Makespan is generally defined as the total real time required to complete the workload, from

the arrival of all the jobs at time zero until completion of the last job. Real-time load imbal-

ance is defined here as the time difference between when the last system becomes idle and when

the first system becomes idle, then normalized by the makespan (i.e., real-time load imbalance
�������	�
���
�	�������������������������������������
�	������������� ��������!�#"��$�&%
�(' , in which)+*-,/.10324*65 �87�9):.<;>=1?@,BA�=C*-DFE 9 5 9 01GH.1DJI
7�9):.K;>=1?@,BA�=C*-DL0 7 *M? 7 .�D). The goal is to minimize makespan and real-time load imbalance for a

given workload.

49

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

W
or

k
U

ni
ts

 /
Se

co
nd

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

R
at

e

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds from start)

0

500

1000

1500

U
ni

ts
 E

xe
cu

te
d

System A

System B

System C

Total

System A

System B

System C

All systems

End of makespan

Long tail on workload

Background process start-stop

System A goes idle

System C goes idle

Figure 5.2: Throughput with User Scripts, Multiprogrammed, 50 Jobs
(Also see Table 5.1(a). Poor load balancing due to slowness of System B results in a long tail on the makespan

of the workload.)

50

0

2

4

6

8

0

2

4

6

8

L
oa

d
A

ve
ra

ge

0

2

4

6

8

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds from start)

0

2

4

6

8

C
um

ul
at

iv
e

L
oa

d

System A

System B

System C

All systems

Long tail on workload

End of makespan
Background process start-stop

System A goes idle

System C goes idle

Figure 5.3: System Load with User Scripts, Multiprogrammed, 50 Jobs

51

A trace of the start and finish times for each job is kept during the makespan of the workload.

The load on each of the three systems is also monitored using the Unix uptime command. After

post-processing the traces, the throughput of the three systems (Figure 5.2) and how throughput

varies with the observed load (Figure 5.3) was examined. The figures represent a single execution of

the workload. Of course, different executions of the workload will have small variations, but all of

the major factors (e.g., other users, other compute-intensive processes) are controlled and the traces

presented are representative of the workload.

For static load balancing using the user scripts, Systems A and C are given 17 jobs each, and

System B is given 16 jobs. Both Systems A and C finish their jobs within 4,000 seconds of start-

ing (Table 5.1(a)). Figure 5.2 shows the measured throughput for one particular execution of the

workload. The upper three graphs show the normalized job throughput on Systems A, B, and C, re-

spectively. The fourth graph is the cumulative throughput of Systems A, B, and C. The bottom-most

graph shows the total units of work completed by each system for each 2,000 second interval in the

makespan.

Figure 5.3 shows the observed load on each of the systems (top three graphs) and the cumulative

load on all the systems (bottom-most graph) for the makespan. There are natural fluctuations present

in the system load due to the nature of the uptime command and the presence of operating system

daemons on the systems. Each of the systems execute one job at a time, with System A executing a

parallel version of the sorting program that uses all four processors.

For this experiment, Systems A and B are not shared with other jobs or processes. The entire

load on Systems A and B is due to our workload (Figure 5.3). However, a background process

is artificially introduced on System C from time 830 seconds (approximately) to 2600 seconds.

The background process competes for the CPU and approximates the impact of other users in a

multiprogrammed environment.

The four processors of System A provide throughput slightly below that of the much faster

single processor of System C (i.e., 0.25 units of work/second versus 0.325 units of work/second)

(Figure 5.2). System B has the slowest processor and a throughput of approximately 0.07 units

of work/second. When the background process on System C competes for the CPU, System C’s

throughput drops to 0.2 units of work/second. The impact of the background process on System C

can also be seen in Figure 5.3: the load increases from 1.0 to 2.0.

Although System C has to compete with another process for part of the workload, its greater

computational power allows it to complete its jobs in 3,939 seconds versus 3,928 seconds for System

A. However, System B is substantially slower than the other systems and it requires 13,981 seconds

to finish all of its assigned jobs. Therefore, System B represents a slow system in this experiment

and the makespan of the workload is 13,981 seconds with a real-time load imbalance is a 72%. Of

course, these empirical results will change as the specific workload and the experimental platform

are varied.

52

To solve the problem of poor load balancing and long makespans with user scripts, the user could

make some changes. For example, if the user knows in advance that System B is the slowest, the

user scripts can be modified so that Systems A and C are initially given more jobs. Also, the user

could monitor the three systems so that when Systems A and C go idle, they may take on some of

the remaining jobs for System B.

Ideally, a scheduler should automatically adapt to slow systems and queues by load balancing.

After all, if an overlay metacomputer has dozens of sites, it is not realistic to expect the user to deal

with slow systems. Furthermore, other jobs and users may dynamically cause one system or queue

to be slower, which further complicates load balancing given a user script strategy.

Unfortunately, if the system administrators do not or cannot provide another form of metaqueue

or computational grid, the user (currently) has no choice other than to manually place and load

balance their jobs across sites. Fortunately, placeholder scheduling can be implemented directly by

the user, without support from system administrators. It is secure, and achieves the same benefits as

other forms of metaqueues.

5.1.2 Placeholders: Example with 50 Jobs

As seen in the previous example with user scripts, load balancing is a serious problem when dealing

with heterogeneous hardware platforms and in the presence of other users and jobs. When place-

holder scheduling is used for the same 50 job workload as was used in Section 5.1.1, a makespan of

5,793 seconds and a real-time load imbalance of 14% are obtained. (Table 5.1(b), Figure 5.4, and

Figure 5.5). The bottom bar graph of Figure 5.4 shows the per-system and total amount of work

performed for each 2,000 second interval.

Once again, each system contributes to the throughput according to its individual computational

power, and a competing background process is present on System C for part of the makespan. Again,

System C finishes first (at 4,984 seconds) when there are no more jobs. However, no system goes

idle if there is still a piece of work that has not already been allocated to a system. Of course, it is

difficult for all three systems to finish at exactly the same time, because the amount of computation

required for the job on each system can vary. Nonetheless, the three systems finish within 809

seconds (i.e., 14% of the makespan) of each other.

It is not a new result to be able to dynamically load balance a workload across multiple systems.

Load balancing and the optimization of throughput shown for placeholders and overlay metacom-

puters can also be achieved using other forms of metaqueues and computational grids. What is new

is how placeholders can also provide this important functionality and how they can be implemented

in situations in which other metaqueues and computational grids do not yet exist.

53

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

W
or

k
U

ni
ts

 /
Se

co
nd

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

R
at

e

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds from start)

0

500

1000

1500

U
ni

ts
 E

xe
cu

te
d

System A

System B

System C

Total

System A

System B

System C

All systems

End of makespan

Background process start-stop

Figure 5.4: Throughput with Placeholder Scheduling, Multiprogrammed, 50 Jobs
(Also see Table 5.1(b). Better load balancing with placeholders results in a smaller makespan, despite the

competition from a background process on System C.)

54

0

2

4

6

8

0

2

4

6

8

L
oa

d
A

ve
ra

ge

0

2

4

6

8

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds from start)

0

2

4

6

8

C
um

ul
at

iv
e

L
oa

d

System A

System B

System C

All systems

End of makespan

Background process start-stop

Figure 5.5: System Load with Placeholder Scheduling, Multiprogrammed, 50 Jobs

55

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

W
or

k
U

ni
ts

 /
Se

co
nd

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

R
at

e

0 5000 10000 15000 20000
Time (seconds from start)

0

1000

2000

3000

4000

U
ni

ts
 C

om
pu

te
d

System A

System B

System C

Total

System A

System B

System C

All systems

End of makespanBackground process start-stop

Figure 5.6: Throughput with Placeholder Scheduling, Multiprogrammed, 200 Jobs
(Also see Table 5.1(c). Load balancing with placeholders results all systems going idle at nearly the same

time. Real-time load imbalance is 1.9% of the makespan.)

56

0

2

4

6

8

0

2

4

6

8

L
oa

d
A

ve
ra

ge

0

2

4

6

8

0 5000 10000 15000 20000
Time (seconds from start)

0

2

4

6

8

C
um

ul
at

iv
e

L
oa

d

System A

System B

System C

All systems

Background process start-stop
End of makespan

Figure 5.7: System Load with Placeholder Scheduling, Multiprogrammed, 200 Jobs

57

5.1.3 Placeholders: Example with 200 Jobs

An experiment similar to that of Section 5.1.2 was performed with placeholder scheduling using a

total workload of 200 jobs, instead of only 50. Within the workload there were 30 jobs with 25

units of work, 135 jobs with 50 units of work, and 35 jobs with 100 units of work (Figure 5.1). The

initial 100 jobs of the workload contained a random mix of 25, 50, and 100 units of work, and the

final 100 jobs contained 50 units of work each. For this workload, a makespan of 17,801 seconds

was obtained. (Table 5.1(c), Figure 5.6, and Figure 5.7). The bottom bar graph of Figure 5.6 shows

the per-system and total amount of work performed for each 5,000 second interval. Once again, a

competing background process is artificially introduced on System C during the makespan.

Given the larger workload, placeholder scheduling is able to better load balance across the three

systems such that they go idle at nearly the same time (i.e., 1.9% of the makespan). The fact that

the last 100 jobs in the metaqueue have a uniform 50 units of work helps in the load balancing, but

there is a mix of jobs, with different service times, for the first 100 jobs.

5.1.4 Placeholders: Example with 200 Jobs, Uniprogrammed

For a final experiment, the same 200 jobs as before (Section 5.1.3) are used. This time, Systems A,

B, and C are dedicated to the workload; there are no competing users or processes. Consequently,

a lower makespan of 17,053 seconds was obtained (Table 5.1(d), Figure 5.8, and Figure 5.9). The

bottom bar graph of Figure 5.8 shows the per-system and total amount of work performed for each

5,000 second interval. The only difference between this experiment and the one in Section 5.1.3 is

the absence of a competing process on System C during the workload.

Not surprisingly, the makespan in the uniprogrammed case is lower than in the multiprogrammed

case, given that the entire computational power of all three systems is devoted to the workload.

However, the relative difference in makespans is small (i.e., 4.3%, 17,053 seconds versus 17,801

seconds) because placeholder scheduling is effective in balancing the load in the multiprogrammed

case that CPU cycles lost to a competing process are compensated for by the remaining two systems.

5.1.5 Summary of Proof-of-Concept Experiments

Based on the experiments and synthetic workloads, we can see:

1. User scripts and static load balancing are problematic on the heterogeneous and shared com-

puter systems likely to be found in a grid or metacomputer environment. (Section 5.1.1 and

Table 5.1(a).)

2. Placeholder scheduling effectively implements dynamic scheduling and load balancing in sit-

uations in which another form of metaqueue or grid is not, or cannot, be implemented. The

improvement in makespan and real-time load imbalance, as compared to user scripts, is sub-

stantial. (Sections 5.1.2 and 5.1.3 and Table 5.1(b),(c).)

58

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

W
or

k
U

ni
ts

 /
Se

co
nd

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

R
at

e

0 5000 10000 15000 20000
Time (seconds from start)

0

1000

2000

3000

4000

U
ni

ts
 C

om
pu

te
d

System A

System B

System C

Total

System A

System B

System C

All systems

Figure 5.8: Throughput with Placeholder Scheduling, Uniprogrammed, 200 Jobs
(Also see Table 5.1(d). Real-time load imbalance is 2.1% of the makespan.)

59

0

2

4

6

8

0

2

4

6

8

L
oa

d
A

ve
ra

ge

0

2

4

6

8

0 5000 10000 15000 20000
Time (seconds from start)

0

2

4

6

8

C
um

ul
at

iv
e

L
oa

d

System A

System B

System C

All systems

Figure 5.9: System Load with Placeholder Scheduling, Uniprogrammed, 200 Jobs

60

System Description Interconnect Scheduler Method

A
(aurora)

SGI Origin 2000, 46 �
195 MHz R10000, 12 GB
RAM, Irix 6.5.14f

Shared
Memory
NUMA

PBS Parallel
Shared
Memory

B
(lacrete)

Single Pentium II, 400
MHz, 128 MB RAM,
Linux 2.2.16

None Sun Grid
Engine

Sequential

C
(maci-cluster)

Alpha Cluster, mixture of
Compaq XP1000, ES40,
ES45, and PWS 500au,
206 processors in 122
nodes, each node has from
256 MB to 8 GB RAM,
Tru64 UNIX V4.0F

Gigabit
Ethernet

PBS Parallel
Distributed
Memory
(i.e., MPI)

Table 5.3: Experimental Platform for the Parallel Sorting Application

3. Placeholder scheduling is also effective in dealing with multiprogrammed environments. When

other users and processes compete for computing resources, placeholder scheduling is still

able to keep any real-time load imbalance low (i.e., 2.1%). (Compare Sections 5.1.3 and 5.1.4

and Table 5.1(c),(d).)

Of course, different workloads and different hardware platforms will produce different results.

However, the potential of placeholder scheduling as indicated by these initial experiments is en-

couraging. In fact, the apparent trends in grid and overlay metacomputers play to the strengths of

placeholder scheduling. It is likely that many grids or overlay metacomputers will have more than

just three systems, many will have a high degree of heterogeneity, and most will be shared among

users and jobs. In these situations, dynamic load balancing capabilities will be crucial.

5.2 Experiment #2: Multiple Administrative Domains

The proof-of-concept experiment shows that placeholder scheduling does indeed provide perfor-

mance benefits to users of an overlay metacomputer while at the same time requiring minimal in-

stalled infrastructure. However, the proof-of-concept experiment only demonstrates placeholder

scheduling within a single administrative domain. Most overlay metacomputers will cross one or

more administrative boundaries, so placeholder scheduling must be validated in a multi-domain

environment.

The experiments presented in this section are set up to show placeholder scheduling’s ability to

handle multiple orthogonal forms of heterogeneity with respect to the sites composing an overlay

metacomputer. Once again a sorting application is used because it exhibits well defined behaviour,

and is easy to implement and port.

The goals of the sorting experiment are to show the performance of placeholders in four orthog-

61

onal dimensions of heterogeneity: (1) parallel vs. sequential computer; (2) machine architecture; (3)

distributed vs. shared memory; and (4) administrative domain and local scheduling system. A sum-

mary of the systems with respect to these dimensions is shown in Table 5.3. Two placeholders are

started on each of System A and System C, and a single placeholder is started on System B. System

A and System C use specialized placeholders that are able to dynamically increase or decrease the

number of placeholders in the queue depending on measured queue waiting times (as discussed in

Section 3.5.4).

An on-line experiment was performed with three different computers, in three different admin-

istrative domains, and with three different local schedulers. Each job sorted approximately four

million integer keys using four processors on System A, one processor on System B, and eight pro-

cessors on System C. The workload was identical to that of Section 5.1.3. During the experiment,

there were other users running applications at two of the sites (Systems A and C). Although the

specific quantitative results from this experiment are not reproducible, the qualitative results are rep-

resentative. Also, note that System A is administered by the high-performance computing centre of

the University of Alberta; System B is in the Department of Computing Science at the University

of Alberta, and is effectively under our administrative control; and System C is administered by the

University of Calgary.

The throughput, as evidenced by the rate of execution, is shown in Figure 5.10. The cumulative

number of work units performed by each system is shown, and the rate of execution is determined

by the slopes of the lines. System A exhibits a good initial execution rate, but then suddenly stops

executing placeholders. System B, the dedicated sequential machine, exhibits a steady rate of ex-

ecution. System C is somewhere in between, exhibiting a more or less constant rate of execution,

although slower than that of the others. The bottom-most (bar) graph in Figure 5.10 shows the

number of work units completed per 5000 second time period.

An interesting point illustrated in Figure 5.10 is the abrupt halt of execution of System A. Upon

examination of the PBS logs, it appears as though the placeholders used up the user account’s quota

of CPU time. As a result, System A becomes unable to execute additional work after roughly 7000

seconds, and this can be perceived as a failure of System A. However, because of the placeholders,

the other two systems (Systems B and C) are able to compensate for the loss of System A. After

7000 seconds, only Systems B and C complete work units and are responsible for finishing off the

remainder of the workload. Should the loss have occurred without a scheduling system such as

placeholder scheduling, users would likely have to discover and correct for this loss on their own

(i.e., manual fault tolerance).

Figures 5.11 and 5.12 show the queue lengths and placeholders per queue, respectively. As

Figure 5.11 shows, System A is significantly more loaded than System C. However, System A is

also more powerful than System C, and therefore execution rates are higher. System A is also

able to sustain more placeholders in the queue for the first 7000 seconds, and both queues exhibit

62

0

500

1000

1500

2000

Execution Totals

0

500

1000

1500

2000

T
ot

al
 U

ni
ts

 C
om

pl
et

ed

0

500

1000

1500

2000

0 5000 10000 15000 20000
Time (Seconds from Start)

0

500

1000

1500

2000

U
ni

ts
 C

om
pl

et
ed System A

System B
System C
Total

Queue stops executing jobs
System A

System B

System C

Figure 5.10: Throughput for the Sorting Application

63

0

5

10

15

20

Queue Length

0 5000 10000 15000 20000
Time (Seconds from Start)

0

5

10

15

20

Q
ue

ue
 L

en
gt

h
(J

ob
s)

System A

System C

Due to placeholders

Figure 5.11: Queue Lengths of the Parallel Machines

0

1

2

3

4

5

Placeholders in Queue

0 5000 10000 15000 20000
Time (Seconds from Start)

0

1

2

3

4

5

Pl
ac

eh
ol

de
rs

System A

Queue stops executing jobs

System C

Figure 5.12: Number of Placeholders in Parallel Machine Queues

64

increases and decreases in placeholder counts due to changing queue conditions (Figure 5.12). It

must be emphasized that these results are obtained from computers working on other applications in

addition to our own. No attempt has been made to control the queues on Systems A or C.

5.2.1 Summary of Multiple Administrative Domains Experiment

The experiment with multiple administrative domains shows:

1. Placeholder scheduling is capable of scheduling jobs across multiple administrative domains

(Table 5.3) while still providing performance benefits (Figure 5.10).

2. Placeholder scheduling is able to dynamically adjust the number of self-regulating placehold-

ers present in a batch scheduled queue according to the observed queuing time (Figure 5.11

and Figure 5.12).

3. Placeholder scheduling is able to compensate for the dynamic failure of a site by avoiding the

failed placeholder (System A in Figure 5.10) and concentrating the remainder of the jobs on

other, working placeholders (Systems B and C in Figure 5.10).

Placeholder scheduling does not require any special permissions at participating sites to make

use of them. By simply using existing infrastructure (SSH), placeholder scheduling is still able to

obtain performance benefits for user applications. By incrementally increasing or decreasing the

number of placeholders present in local queues, placeholder scheduling can self-adjust to current

queue conditions. The loss of System A in this experiment was unintended, but illustrates the truly

dynamic nature of a metacomputing environment. Instead of failing the remainder of the workload,

placeholder scheduling simply avoided System A and allocated the remainder of the jobs to the other

two systems.

5.3 Experiment #3: The CISS Project

The previous experiments show that placeholder scheduling is able to create a metacomputing en-

vironment that provides performance benefits to applications across administrative domains. How-

ever, the experiments are relatively small (three administrative domains at most). This experiment

is meant to show:

1. The scalability of placeholder scheduling with respect to the number of placeholders.

2. The scalability of placeholder scheduling with respect to the number of administrative do-

mains.

3. A real application being computed by placeholder scheduling (as opposed to the trivial sorting

application used in Section 5.1 and Section 5.2).

65

No. Site Description Scheduler PH

1 athlon-cluster.nic.ualberta.ca x86 Linux Cluster PBS 32
2 aurora.nic.ualberta.ca SGI IRIX PBS 236
3 brule.cs.ualberta.ca x86 Linux Cluster SGE 26
4 bugaboo.hpc.sfu.ca x86 Linux Cluster Zero-Infrastructure 192
5 chromosome1.ocgc.ca SGI Irix PBS 96
6 deeppurple.sharcnet.ca Alpha Linux Cluster Zero-Infrastructure 22
7 driftwood.iam.ubc.ca x68 Linux Cluster PBS 16
8 gnome.usask.ca x86 Linux Cluster Zero-Infrastructure 32
9 hammerhead.sharcnet.ca Alpha Linux Cluster Zero-Infrastructure 22
10 herzberg.physics.mun.ca SGI Irix Zero-Infrastructure 20
11 maci-cluster.ucalgary.ca Tru64 Alpha Cluster PBS 176
12 mercury.sao.nrc.ca x86 Linux Cluster PBS 48
13 minerva.uvic.ca IBM AIX SP IBM LoadLeveler 128
14 monolith.uwaterloo.ca IBM AIX P-Series Zero-Infrastructure 16
15 myri.ccs.usherbrooke.ca x86 Linux Cluster Zero-Infrastructure 8
16 p4-cluster.nic.ualberta.ca x86 Linux Cluster PBS 26
17 stokes.clumeq.mcgill.ca x86 Linux Cluster PBS 248
18 symphony.unb.ca IBM AIX SP IBM LoadLeveler 2
19 white.cs.umanitoba.ca x86 Linux Cluster Zero-Infrastructure 22
20 zodiac.chem.ubc.ca x86 Linux Cluster PBS 8

Total 1376

Table 5.4: CISS Sites

The goal of the Canadian Internetworked Scientific Supercomputer (CISS) project [31] is to

perform scientific computations on a scale larger than that which can be provided at any single

site in Canada. Because of the expansion of the computational aspects of many sciences (physics,

biology, chemistry, etc.), the need for additional and more powerful computational resources easily

outstrips supply. Also, because of the distribution of computational resources over a wide geographic

area, no centralized supercomputing centre currently exists in Canada that can service the largest

computational problems.

Thus, there is a need for a metacomputing system to combine some of these distributed resources

into a single entity that can be used for computational research. However, because of the large

number of administrative domains present across Canada, no metacomputing system currently exists

that encompasses a large proportion of the sites. CISS is primarily interested in providing capacity

computing, in which maximum throughput is obtained for user applications. This contrasts with the

goal of capability computing, in which a user may use the metacomputer for solving larger and more

complicated problems (such as parallel applications). A capacity computing-based system such as

CISS provides an excellent situation in which placeholder scheduling can display its benefits.

66

Figure 5.13: Potential Energy Calculations

5.3.1 The CISS-1 Experiment

On November 4, 2002, the CISS-1 experiment combined resources from 20 different high-per-

formance computing systems (16 different institutions, 18 different administrative domains) across

Canada to cooperatively execute a computational chemistry parameter space study (Table 5.4). The

application calculates the potential energy surface between one of two hydrogen peroxide enan-

tiomers (one of a pair of mirror-image structures for a molecule) and another, fixed molecule (1,2-

propyleneimine) (Figure 5.13). Of particular interest are the differences between energy surfaces

calculated for the two enantiomers. Dr. Wolfgang Jäger and his group at the University of Alberta

[7] planned the experiment and are interpreting the results. From the point of view of placeholder

scheduling, the chemistry results are largely uninteresting and so the performance data will instead

be examined.

To calculate the potential energy surfaces, a three-dimensional grid was created with the fixed

molecule at the centre. Calculations of potential energy between an enantiomer and the fixed

molecule were performed at each point of the grid to yield the entire energy surface. Because of

the nature of the calculation, the grid may be arbitrarily dense resulting in a potentially infinite num-

ber of points. However, the grid was chosen so as to provide adequate granularity for interpreting

the potential energy surface while still being computationally feasible (even with a large number of

placeholders participating in computing results).

The specific application used in the CISS-1 Experiment is the MOLPRO quantum chemistry

package [22]. For this particular experiment, a single MOLPRO invocation requires a site-specific

amount of main memory and between 0.5 and 1 GB of temporary disk space. On an average con-

67

No. Site Jobs Total Time Mean �

1 athlon-cluster.nic.ualberta.ca 307.75 751:12:52 2:26:27 0:46:20
2 aurora.nic.ualberta.ca 437.17 4530:30:47 10:21:46 4:34:15
3 brule.cs.ualberta.ca 433.31 958:13:50 2:12:41 0:33:10
4 bugaboo.hpc.sfu.ca 1575.22 3984:29:37 2:31:46 0:36:55
5 chromosome1.ocgc.ca 136.79 1310:10:33 9:34:41 3:40:41
8 gnome.usask.ca 159.13 729:58:24 4:35:14 1:29:49
10 herzberg.physics.mun.ca 107.37 441:04:44 4:06:29 1:15:01
11 maci-cluster.ucalgary.ca 1064.61 2919:52:07 2:44:34 1:03:15
12 mercury.sao.nrc.ca 397.61 941:16:43 2:22:02 0:43:51
14 monolith.uwaterloo.ca 356.09 383:37:03 1:04:38 0:09:06
15 myri.ccs.usherbrooke.ca 73.02 161:45:13 2:12:54 0:38:28
16 p4-cluster.nic.ualberta.ca 96.56 579:38:53 6:00:10 2:47:13
17 stokes.clumeq.mcgill.ca 2162.47 5625:23:44 2:36:05 0:47:12
19 white.cs.umanitoba.ca 57.46 479:57:20 8:21:10 2:37:03

other 228.36 1941:46:53 8:30:11 7:38:53

Overall 7592.94 25738:58:40 3:23:23 2:40:54

Table 5.5: CISS-1 Throughput
All times are reported as H:MM:SS.

temporary processor (such as an AMD Athlon CPU running at 1.3 GHz with 256 KB cache available

in the Department of Chemistry at the University of Alberta), MOLPRO takes approximately four

hours to compute one data point (provided that the temporary disk space requirement is met).

The CISS-1 experiment was performed as a 24-hour throughput (i.e., capacity computing) test

using the MOLPRO application described above. TrellisWeb was used to manage placeholder

scheduling because of the convenient user interface it provides. Starting on November 4, 2002

at 12:00 midnight, and ending on November 5, 2002 at 12:00 midnight, placeholders were executed

on the systems shown in Table 5.4. The two days prior to November 4, 2002 were used as a ramp-up

period to bring all sites up to full capacity, but only the computations performed during the 24-hour

period will be discussed here.

The information gathered during the CISS-1 experiment is shown in Table 5.5. A total of 7593

work units (jobs) were completed by CISS-1 in the 24-hour period. The throughput capacity of sites

varied greatly, and this is reflected in the number of individual work units each site completed as

well as the mean time each site took to complete each one. Most sites exhibit a large amount of

variability (as evidenced by �) due to the fact that MOLPRO requires a variable amount of time

depending on the particular input parameters that are being calculated.

Overall, CISS-1 consumed approximately 2.94 years (25738:58:40) of computing time across

all sites. The mean time required to compute a work unit was approximately 3.39 hours (3:23:23).

However, if we instead assume that a work unit takes approximately four hours to compute on a

contemporary x86 cluster processor located in the Department of Chemistry at the University of

Alberta, the total computation comes out to about 3.46 years (7292.94 work units at four hours per

68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
Overall

Figure 5.14: Overall Hourly Throughput

work unit).

Performance varies from site to site because of differing numbers of processors, placeholders

launched at each site, the availability of local disks, and because of differing capabilities of the vari-

ous processors (see Table 5.4). The most powerful site in CISS-1, stokes.clumeq.mcgill.ca,

computed a total of 2162.47 work units with the use of 248 concurrent placeholders. With a mean

time of 2:36:05, stokes.clumeq.mcgill.ca had a relatively fast processing capability. This

stands in contrast to aurora.nic.ualberta.ca, which only computed a total of 437.17 work

units (20% of stokes.clumeq.mcgill.ca) while using 236 concurrent placeholders (95% of

stokes.clumeq.mcgill.ca). However, work units took a mean time of 10:21:46 to compute

at aurora.nic.ualberta.ca, resulting in less work being completed there. Differences in

computational ability arise from different architectures, different operating systems, and (perhaps

most importantly for MOLPRO) different disk access capabilities. MOLPRO performs a great deal

of I/O to temporary storage, and so requires quick service times for best performance.

Figure 5.14 and Table 5.6 present the throughput of CISS-1 on an hour-by-hour basis in terms of

completed jobs (e.g., a job that finishes at 1:20 p.m. is recorded in hour 13). Partial jobs (jobs that

began before and ended after 12:00 midnight on November 4 or jobs that began before and ended

after 12:00 midnight on November 5) are included in the figure (grey bars) as proportions of a whole

job. CISS-1 reached a maximum throughput at 3 a.m. with 424 jobs completed and is followed

closely by 403 jobs completed at 5 p.m. The first two hours represent the continued ramp-up period

69

Hour Complete Partial Total

1 0 36.19 36.19
2 16 83.47 99.47
3 327 96.77 423.77
4 123 9.51 132.51
5 227 31.62 258.62
6 151 54.58 205.58
7 232 68.62 300.62
8 261 13.39 274.39
9 199 49.52 248.52
10 374 0.71 374.71
11 198 9.38 207.38
12 358 0.00 358.00
13 285 0.00 285.00
14 270 0.00 270.00
15 357 0.00 357.00
16 267 0.00 267.00
17 403 0.00 403.00
18 371 0.00 371.00
19 372 0.00 372.00
20 340 1.65 341.65
21 303 2.49 305.49
22 388 3.35 391.35
23 304 4.29 308.29
24 390 1.73 391.73

�
24 0 609.67 609.67

Table 5.6: Overall Hourly Throughput

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
athlon-cluster.nic.ualberta.ca

Figure 5.15: athlon-cluster.nic.ualberta.caHourly Throughput

from the two days prior to the 24-hour period. A drop off of throughput occurs at 4 a.m. due to

a disk failure at maci-cluster.ucalgary.ca. Other sites experienced failures as well, the

effects of which are not as noticeable. Subsequently, another ramp-up period brings CISS-1 back up

to full speed.

Some of the sites, such as athlon-cluster.nic.ualberta.ca (Figure 5.15), brule.

cs.ualberta.ca (Figure 5.16), and bugaboo.hpc.sfu.ca (Figure 5.17), have relatively

steady and predictable rates of execution. Although computational ability varies among the sites (the

heights of the bars differ), the overall rate within these sites stays fairly consistent. This is largely

due to the fact that these sites employed the use of local scratch disks present at each node (all three

are clusters). In contrast, sites such as aurora.nic.ualberta.ca (Figure 5.18) and, to some

extent, maci-cluster.ucalgary.ca (Figure 5.19) exhibit spikes in work completion due to

the use of a parallel file system (as with aurora.nic.ualberta.ca), or some cluster nodes

sharing the same scratch disk (as with maci-cluster.ucalgary.ca). Because of the tempo-

rary storage requirements of MOLPRO, and because such storage is heavily used, MOLPRO jobs

may contend with one another in a shared filesystem situation. aurora.nic.ualberta.ca

experienced a severe I/O bottleneck at the parallel filesystem that resulted in high contention and

high mean execution time.

Other sites, such as p4-cluster.nic.ualberta.ca (Figure 5.20) and stokes.clu-

meq.mcgill.ca (Figure 5.21), exhibit spikes in completion, but not due to filesystem contention.

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
brule.cs.ualberta.ca

Figure 5.16: brule.cs.ualberta.caHourly Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
bugaboo.hpc.sfu.ca

Figure 5.17: bugaboo.hpc.sfu.caHourly Throughput

72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
aurora.nic.ualberta.ca

Figure 5.18: aurora.nic.ualberta.caHourly Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
maci-cluster.ucalgary.ca

Figure 5.19: maci-cluster.ucalgary.caHourly Throughput

73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
p4-cluster.nic.ualberta.ca

Figure 5.20: p4-cluster.nic.ualberta.caHourly Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
stokes.clumeq.mcgill.ca

Figure 5.21: stokes.clumeq.mcgill.caHourly Throughput

74

Rather, jobs at these sites appear to have clustered around a few key completion times that produce

spikes when they overlap. This periodicity of job completion may change over time as the actual

run times of MOLPRO jobs can have considerable variance.

The resulting potential energy surface for for
� � �

Å is shown in Figure 5.22. The difference

between the two enantiomers is subtle, given the minima and maxima occur at similar ��� values.

However, the active sites (smaller deviations from zero) are noticeably different between the two.

Although it is not possible to physically separate the two H � O � enantiomers, the figure does show

that the interaction energy (and therefore stability of the complex) does depend on which enantiomer

is involved [14].

5.3.2 Summary of the CISS-1 Experiment

The CISS-1 experiment demonstrates placeholder scheduling’s abilities with respect to:

1. Scalability: A total of 20 systems contributed to the overall computation. Systems varied in

their throughput capacity (Table 5.5), with each system pulling jobs commensurate with their

capacity. Placeholder scheduling was able to handle over 1300 placeholders, concurrently

executing on 20 different computer systems, for 24 hours.

2. Administrative Domains: Although shown on a smaller scale in Section 5.2, placeholder

scheduling was capable of handling multiple administrative domains. In this experiment, 18

administrative domains existed, each with specific local policies including the choice of batch

scheduler (Table 5.4). Placeholder scheduling was able to make use of all of these systems.

3. Real Application: Placeholder scheduling executed the MOLPRO quantum chemistry ap-

plication to produce results of interest to computational chemistry. By using placeholder

scheduling, the experiment was able to make use of 2.94 years of CPU time across Canada in

a 24-hour period.

5.4 Discussion of Results

The above experiments show placeholder scheduling can be effective in combining the aggregate

power of multiple resources for use in a single meaningful computation. This is a significant state-

ment, as many proposed systems never reach the stage of performing significant computations. For

example, Condor-G used over 2500 processors at ten sites to compute 540 billion Linear Assign-

ment Problems [11]. Although the number of processors involved in the Condor-G experiment

(2500) is larger than that of CISS-1 (1376), more administrative domains (18) and institutions (16)

are involved in CISS-1, making it more representative of a diverse metacomputer.

In a controlled environment, such as that of Section 5.1, the performance benefits of placeholder

scheduling can easily be observed. Because of the late binding of job to placeholder, placeholder

75

Figure 5.22: Potential Energy Surface for
� ���

Å

76

scheduling is good at dynamically balancing a load across multiple systems. This is evidenced by

the differing capabilities of the systems listed in Table 5.2. Each of the systems are capable of

executing a sorting application at a different rate, and placeholder scheduling is able to take this into

account when scheduling jobs. Furthermore, the capabilities of the systems may change over time

due to the load imposed by other users and applications (Figures 5.2, 5.4, and 5.6) and because of

failures (Figure 5.10). Any metacomputing system that is incapable of handling such situations will

suffer performance losses when conditions change unexpectedly.

Batch scheduling systems are capable of providing good performance within a single adminis-

trative domain. Such schedulers are privy to global knowledge, which makes the task of scheduling

that much easier. In general, metacomputers do not have access to the same global information be-

cause of the various administrative domains involved and must make do with any information that

may be gleaned from the individual systems.

Crossing administrative boundaries causes more problems than just imperfect scheduling in-

formation. Infrastructure must be in place that allows jobs to execute on remote machines. Such

infrastructure has already been developed (e.g., Globus [8, 9] and Legion [4, 13]), but sometimes

requires a single (possibly privileged) account or the use of common software across all sites of a

metacomputer. Placeholder scheduling uses existing infrastructure to provide a metacomputer that

crosses administrative domains (Section 5.2). Moreover, the performance is not degraded in any

way from the situation in which all sites are within the same administrative domain (Section 5.1).

Placeholder scheduling scales from both a relatively small and trivial sorting application (Sec-

tion 5.1 and Section 5.2) to a Canada-wide scientific experiment (Section 5.3). Because placeholder

scheduling relies upon existing commonly-available infrastructure (such as SSH) that has been in

place and in use for a number of years, scalability is less of a concern. This comes from the fact that

such infrastructure has been extensively tested and refined to discover and correct for deficiencies

such as poor scalability.

77

Chapter 6

Concluding Remarks

Placeholder scheduling within TrellisWeb is effective at achieving the goals set out in Chapter 1.

The mechanism of placeholder scheduling is deceptively simple in concept, yet highly flexible in

practice, and this makes it an excellent light-weight (in terms of required infrastructure) metacom-

puting system. Although the scheduling policy currently implemented by placeholder scheduling

is simple (FCFS), the potential exists for much more complex and interesting policies (such as

dependency-based scheduling). Placeholder scheduling currently concentrates on the mechanism of

global metacomputer scheduling.

Placeholder scheduling exists at a higher level of abstraction than other forms of batch schedul-

ing. Most batch scheduling systems exist primarily to control access to computational resources

within a single site. Some modern batch scheduling systems (e.g., LSF) are able to control multi-

ple sites simultaneously, but all such sites must be using the same software. As experiments such

as CISS-1 show, assuming a homogeneous scheduling environment is generally not possible. As

a result, placeholder scheduling layers on top of existing scheduling systems by making use of the

ubiquitous notion of a job script. Such scripts exist for many systems, and placeholders are simply

implemented in the form required for the particular system (as for PBS in Figure 3.4, for example).

By layering on top of existing scheduling systems, placeholder scheduling allows local policies to

be enforced and allows local users to use the system without placeholder scheduling.

Computing sites may be very diverse due to certain parameters selected by local administra-

tion. This results in a great deal of heterogeneity present in a multi-site metacomputer, the most

important aspect of which is the mix of different administrative domains. Different administrative

domains may address similar problems in different ways, and negotiating agreements among them

can be difficult and time-consuming. Placeholder scheduling avoids such normalization of admin-

istrative domains by minimizing the amount of infrastructure required at the sites and adhering to

local policies within the placeholder scripts. For placeholder scheduling to make use of a site, all

that is required is a normal user account and SSH access to it. This is the same requirement for

interactive remote access, and so it not significantly different than that required by a normal remote

user. Likewise, placeholder scripts can be written in such a way that they adhere to local policies

78

such as the local batch scheduler. Because placeholder scheduling assumes such little infrastructure,

users do not need special permission to use it at sites of their choosing.

Placeholder scheduling must be able to provide users with noticeable and meaningful perfor-

mance benefits to be considered useful. The goal of the user in using the additional resources

provided by a metacomputing environment is to decrease the time it takes for them to complete their

work, and so this metric is used to evaluate the performance of placeholder scheduling. To minimize

the amount of time required to complete a set of jobs, placeholder scheduling load balances the

jobs across all available placeholders. Because of the pull model and late binding, each placeholder

pulls work at a rate equal to that of its computational ability. Without the assistance of placeholder

scheduling, forecasting the computational ability a priori may lead to poor decisions of where to

place jobs due to the dynamic nature of sites involved in an overlay metacomputer (Section 5.1.1,

for example). The dynamic binding of placeholder to job is able to account for fluctuations in place-

holder performance, resulting in much better load balancing and reduced makespans for the user.

The primary focus of the CISS project (using placeholder scheduling and TrellisWeb) is on sci-

entific computation. The application used in Section 5.3.1 is embarrassingly parallel, and is of little

interest in the area of parallel computing. However, embarrassingly parallel applications (such as

MOLPRO, as used with the CISS-1 experiment) represent an important aspect of computational sci-

ence, and are therefore highly relevant to high-performance computing in general. It should be noted

that although placeholder scheduling is not expressly restricted to executing embarrassingly parallel

applications, it does not provide the ability to concurrently schedule a single job across multiple

administrative domains. This is because most parallel applications (other than embarrassingly par-

allel ones) involve a great deal of communication between processes, communication which would

be relatively slow across wide area links between some of the subprocesses. Instead, placeholder

scheduling allows for the placement of a parallel job at a single site so that communication is as

efficient as possible. To put this another way, placeholder scheduling is interested in capacity com-

puting rather than capability computing. Placeholder scheduling tries to get as much done within as

little time as possible rather than trying to provide maximum functionality to the user.

Placeholder scheduling, in one form or another, has appeared in the past. Systems such as

SETI@Home [28] employ clients that are essentially special-purpose placeholders. Work is re-

trieved from a server on demand (pull model) and computed offline while the computer is idle. The

contribution of this work is that placeholders are general entities capable of computing any requested

job and they are layered on top of existing batch schedulers and security infrastructure. The concept

of placeholders and how they work is of primary importance, with implementations being developed

and described so that experiments can be performed and results obtained. Although placeholders are

dependent on batch schedulers for the most part (except for zero-infrastructure placeholders), batch

schedulers are unlikely to change significantly in the near future because of their roles as resource ar-

bitrators at high-performance computing sites. Therefore, it is hoped that the legacy of this work will

79

be the concept of placeholder scheduling and its simplicity of use for metacomputing applications.

6.1 Future Work

As was stated previously, placeholder scheduling focusses primarily on the mechanisms for global

metacomputer scheduling and largely ignores complex policies. Most modern scheduling environ-

ments (such as PBS) are capable of using far more sophisticated scheduling policies than simple

FCFS. Features such as run time prediction, backfilling, and preemption may be used to generate

schedules far superior to that of a simple FCFS schedule. Because most of the scheduling logic exists

within the command-line server, modifications to the command-line server can affect the scheduling

policy. Situations such as when one user has (static or dynamic) priority over another user can be

implemented in the logic of the command-line server, and represent a more complex policy than

FCFS. Likewise, a command-line server could conceivably build a history of job executions and

corresponding waiting and executing times so that an estimate could be generated for future runs.

At any rate, policies more diverse and interesting than FCFS are within the realm of possibilities for

placeholder scheduling.

The experiments of Chapter 5 show that placeholder scheduling is able to successfully schedule

a scientifically-significant application across a number of sites and administrative domains. What

remains to be shown is the ability for placeholder scheduling to perform this feat for multiple con-

current applications. In the future, under the banner of the CISS project, multiple such applications

similar to that of Section 5.3.1 may be executed concurrently with placeholder scheduling and Trel-

lisWeb. Such an experiment would serve to show that placeholder scheduling is scalable with respect

to the number of applications, in addition to being scalable with respect to sites and administrative

domains.

Placeholder scheduling is easy to deploy and use because it does not require sophisticated un-

derlying infrastructure beyond what already exists at most sites. However, this does not mean that

placeholder scheduling is fundamentally unable to take advantage of such infrastructure. Some col-

lection of sites may have agreed to form a Globus grid, and placeholder scheduling should be able

to take advantage of such a grid. All that would be required is for placeholders and TrellisWeb to in-

teract with Globus software instead of batch scheduling software. By creating a meta-metacomputer

out of underlying computational grids, placeholder scheduling could provide the variety of Every-

Ware [34] while still adhering to the metaqueue model of scheduling. Conversely, a Globus GRAM

[5] could be developed to use placeholder scheduling. Either way, placeholder scheduling could

work with or without grid software in place.

80

Bibliography

[1] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Grid? In Proceedings of the 14th International Parallel and
Distributed Processing Symposium, pages 520–528, Cancun, Mexico, May 2000.

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A Tool for Performing Parametised
Simulations using Distributed Workstations. In Proceedings of the 4th IEEE Symposium on
High Performance Distributed Computing, August 1995.

[3] D. J. Barrett and R. E. Silverman. SSH, the Secure Shell: The Definitive Guide. O’Reilly and
Associates, Sebastopol, CA, 2001.

[4] S. J. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw. Resource Management in Le-
gion. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel Pro-
cessing, volume 1659 of Lecture Notes in Computer Science, pages 162–178. Springer Verlag,
1999.

[5] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecture for Metacomputing Systems. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 62–82. Springer Verlag, 1998.

[6] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. Theory and
Practice in Parallel Job Scheduling. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pages
1–34. Springer Verlag, 1997.

[7] Laboratory for the Study of Intermolecular Interactions. http://www.chem.ualberta.ca/˜jaeger/.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputing Applications, 11(2):115–128, 1997.

[9] I. Foster and C. Kesselman. The Globus Project: A Status Report. In Proceedings of the 1998
IPPS/SPDP Heterogeneous Computing Workshop, pages 4–18, 1998.

[10] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Computational
Grids. In Proceedings of the 5th ACM Conference on Computer and Communications Security,
pages 83–92, 1998.

[11] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A Computation Man-
agement Agent for Multi-Institutional Grids. In Proceedings of the 10th IEEE Symposium on
High Performance Distributed Computing, August 2001.

[12] M. Goldenberg. A System For Structured DAG Scheduling. Master’s thesis, Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada, in preparation.

[13] A. S. Grimshaw and W. A. Wulf. Legion – A View From 50,000 Feet. In Proceedings of the 5th
IEEE International Symposium on High Performance Distributed Computing, Los Alamitos,
California, U.S.A., August 1996. IEEE Computer Society Press.

[14] W. Jäger and A. Huckauf. Private Email Correspondence.

[15] N. H. Kapadia and J. A. B. Fortes. PUNCH: An Architecture for Web-Enabled Wide-Area
Network Computing. Cluster Computing, 2:153–164, 1999.

81

[16] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi. On the Versatility of Parallel
Sorting by Regular Sampling. Parallel Computing, 19(10):1079–1103, October 1993.

[17] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor – A Hunter of Idle Workstations. In
Proceedings of the 1988 IEEE Eighth International Conference on Distributed Computing
Systems, 1988.

[18] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for High Throughput Com-
puting. SPEEDUP Journal, 11(1), June 1997.

[19] Load Sharing Facility (LSF). http://www.platform.com/.

[20] G. Ma and P. Lu. PBSWeb: A Web-based Interface to the Portable Batch System. In Proceed-
ings of the 12th IASTED International Conference on Parallel and Distributed Computing and
Systems, pages 24–30, Las Vegas, Nevada, U.S.A., November 2000.

[21] G. Ma, V. Salamon, and P. Lu. Security and History Management Improvements to PBSWeb.
In Proceedings of the 15th International Symposium on High Performance Computing Systems
and Applications, Windsor, Ontario, Canada, June 2001.

[22] MOLPRO Quantum Chemistry Package. http://www.molpro.net/.

[23] A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, and A. S. Grimshaw. The Legion Grid
Portal. Available at http://legion.virginia.edu/papers.html.

[24] C. Pinchak, P. Lu, and M. Goldenberg. Practical Heterogeneous Placeholder Schedul-
ing in Overlay Metacomputers: Early Experiences. In D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing, volume 2537
of Lecture Notes in Computer Science, pages 202–225. Springer Verlag, 2002.

[25] Portable Batch System (PBS). http://www.openpbs.org/.

[26] J. Pruyne and M. Livny. Interfacing Condor and PVM to Harness the Cycles of Workstation
Clusters. Future Generation Computer Systems, 12(1):67–85, May 1996.

[27] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A Simple Load Balancing Scheme for Task
Allocation In Parallel Machines. In Proceedings of the 3rd Annual ACM Symposium on Par-
allel Algorithms and Architectures, pages 237–245, Hilton Head, South Carolina, U.S.A., July
1991. ACM Press.

[28] SETI@Home. http://setiathome.ssl.berkeley.edu/.

[29] J. Siegel and P. Lu. User-Level Remote Data Access in Overlay Metacomputers. In Proceed-
ings of the 4th IEEE International Conference on Cluster Computing, pages 480–483, Chicago,
Illinois, U.S.A., September 2002.

[30] Sun Grid Engine (SGE). http://www.sun.com/software/gridware/sge.html.

[31] The Canadian Internetworked Scientific Supercomputer Project.
http://www.cs.ualberta.ca/˜ciss/.

[32] The Trellis Project. http://www.cs.ualberta.ca/˜paullu/Trellis/.

[33] M. Thomas, S. Mock, M. Dahan, K. Mueller, D. Sutton, and J. R. Boisseau. The GridPort
Toolkit: a System for Building Grid Portals. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing, August 2001.

[34] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su. Running EveryWare on
the Computational Grid. In Proceedings of Supercomputing ’99, Portland, Oregon, U.S.A.,
November 1999.

82

Appendix A

Individual CISS-1 Site Results

The results for individual sites of the CISS-1 experiment, described in Section 5.3.1, are included

here. Some have been omitted at the request of site administration, and so appear in the combined

“Other” category (Figure A.15 and Table A.15). Some figures are repeated here for the sake of

completeness.

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
athlon-cluster.nic.ualberta.ca

Figure A.1: athlon-cluster.nic.ualberta.caHourly Throughput

Hour Complete Partial Total

1 0 2.42 2.42
2 0 4.25 4.25
3 23 0.96 23.96
4 0 0.00 0.00
5 11 0.00 11.00
6 21 0.00 21.00
7 1 0.00 1.00
8 27 0.00 27.00
9 4 0.00 4.00
10 17 0.00 17.00
11 13 0.00 13.00
12 5 0.00 5.00
13 18 0.00 18.00
14 10 0.00 10.00
15 11 0.00 11.00
16 20 0.00 20.00
17 6 0.00 6.00
18 21 0.00 21.00
19 8 0.00 8.00
20 13 0.00 13.00
21 17 0.00 17.00
22 9 0.00 9.00
23 18 0.00 18.00
24 8 0.00 8.00

�
24 0 19.12 19.12

Table A.1: athlon-cluster.nic.ualberta.caHourly Throughput

84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
aurora.nic.ualberta.ca

Figure A.2: aurora.nic.ualberta.caHourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.00 0.00
3 0 0.00 0.00
4 0 0.53 0.53
5 0 0.00 0.00
6 0 47.21 47.21
7 0 30.33 30.33
8 0 0.64 0.64
9 1 44.37 45.37
10 0 0.00 0.00
11 0 0.00 0.00
12 0 0.00 0.00
13 0 0.00 0.00
14 0 0.00 0.00
15 0 0.00 0.00
16 0 0.00 0.00
17 18 0.00 18.00
18 99 0.00 99.00
19 5 0.00 5.00
20 4 0.00 4.00
21 1 0.00 1.00
22 4 0.00 4.00
23 7 0.00 7.00
24 5 0.00 5.00

�
24 0 170.11 170.11

Table A.2: aurora.nic.ualberta.caHourly Throughput

85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
brule.cs.ualberta.ca

Figure A.3: brule.cs.ualberta.caHourly Throughput

Hour Complete Partial Total

1 0 6.94 6.94
2 0 16.62 16.62
3 13 0.00 13.00
4 7 0.00 7.00
5 20 0.00 20.00
6 20 0.00 20.00
7 20 0.00 20.00
8 20 0.00 20.00
9 20 0.00 20.00
10 20 0.00 20.00
11 19 0.00 19.00
12 20 0.00 20.00
13 20 0.00 20.00
14 2 0.00 2.00
15 19 0.00 19.00
16 20 0.00 20.00
17 20 0.00 20.00
18 19 0.00 19.00
19 21 0.00 21.00
20 18 0.00 18.00
21 21 0.00 21.00
22 19 0.00 19.00
23 21 0.00 21.00
24 14 0.00 14.00

�
24 0 16.75 16.75

Table A.3: brule.cs.ualberta.caHourly Throughput

86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
bugaboo.hpc.sfu.ca

Figure A.4: bugaboo.hpc.sfu.ca Hourly Throughput

Hour Complete Partial Total

1 0 0.84 0.84
2 0 35.88 35.88
3 82 0.92 82.92
4 37 0.00 37.00
5 66 0.00 66.00
6 65 0.00 65.00
7 72 0.00 72.00
8 66 0.00 66.00
9 65 0.00 65.00
10 32 0.00 32.00
11 82 0.00 82.00
12 61 0.00 61.00
13 61 0.00 61.00
14 59 0.00 59.00
15 46 0.00 46.00
16 86 0.00 86.00
17 62 0.00 62.00
18 58 0.00 58.00
19 93 0.00 93.00
20 51 0.00 51.00
21 80 0.00 80.00
22 74 0.00 74.00
23 68 0.00 68.00
24 85 0.00 85.00

�
24 0 86.58 86.58

Table A.4: bugaboo.hpc.sfu.caHourly Throughput

87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
chromosome1.ocgc.ca

Figure A.5: chromosome1.ocgc.ca Hourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.00 0.00
3 0 0.00 0.00
4 0 0.47 0.47
5 0 0.00 0.00
6 0 7.37 7.37
7 0 28.38 28.38
8 0 8.30 8.30
9 2 2.03 4.03
10 4 0.71 4.71
11 1 9.38 10.38
12 12 0.00 12.00
13 7 0.00 7.00
14 0 0.00 0.00
15 2 0.00 2.00
16 9 0.00 9.00
17 5 0.00 5.00
18 4 0.00 4.00
19 0 0.00 0.00
20 4 0.00 4.00
21 2 0.00 2.00
22 2 0.00 2.00
23 2 0.00 2.00
24 3 0.00 3.00

�
24 0 21.15 21.15

Table A.5: chromosome1.ocgc.caHourly Throughput

88

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
gnome.usask.ca

Figure A.6: gnome.usask.ca Hourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.00 0.00
3 0 0.00 0.00
4 0 0.00 0.00
5 0 31.62 31.62
6 0 0.00 0.00
7 0 0.00 0.00
8 0 0.00 0.00
9 0 0.00 0.00
10 30 0.00 30.00
11 0 0.00 0.00
12 0 0.00 0.00
13 1 0.00 1.00
14 29 0.00 29.00
15 0 0.00 0.00
16 0 0.00 0.00
17 0 0.00 0.00
18 1 0.00 1.00
19 29 0.00 29.00
20 0 0.00 0.00
21 0 0.00 0.00
22 1 0.00 1.00
23 26 0.00 26.00
24 3 0.00 3.00

�
24 0 7.51 7.51

Table A.6: gnome.usask.ca Hourly Throughput

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
herzberg.physics.mun.ca

Figure A.7: herzberg.physics.mun.caHourly Throughput

Hour Complete Partial Total

1 0 0.52 0.52
2 0 3.34 3.34
3 0 0.00 0.00
4 0 0.00 0.00
5 8 0.00 8.00
6 11 0.00 11.00
7 1 0.00 1.00
8 0 0.00 0.00
9 8 0.00 8.00
10 10 0.00 10.00
11 2 0.00 2.00
12 0 0.00 0.00
13 8 0.00 8.00
14 5 0.00 5.00
15 6 0.00 6.00
16 1 0.00 1.00
17 8 0.00 8.00
18 5 0.00 5.00
19 6 0.00 6.00
20 0 0.00 0.00
21 9 0.00 9.00
22 4 0.00 4.00
23 7 0.00 7.00
24 0 0.00 0.00

�
24 0 4.50 4.50

Table A.7: herzberg.physics.mun.caHourly Throughput

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
maci-cluster.ucalgary.ca

Figure A.8: maci-cluster.ucalgary.caHourly Throughput

Hour Complete Partial Total

1 0 11.76 11.76
2 1 18.24 19.24
3 15 44.17 59.17
4 23 6.28 29.28
5 1 0.00 1.00
6 0 0.00 0.00
7 0 0.00 0.00
8 31 0.00 31.00
9 12 0.00 12.00
10 34 0.00 34.00
11 19 0.00 19.00
12 22 0.00 22.00
13 73 0.00 73.00
14 44 0.00 44.00
15 74 0.00 74.00
16 69 0.00 69.00
17 29 0.00 29.00
18 87 0.00 87.00
19 57 0.00 57.00
20 69 0.00 69.00
21 43 0.00 43.00
22 58 0.00 58.00
23 100 0.00 100.00
24 36 0.00 36.00

�
24 0 88.16 88.16

Table A.8: maci-cluster.ucalgary.caHourly Throughput

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
mercury.sao.nrc.ca

Figure A.9: mercury.sao.nrc.ca Hourly Throughput

Hour Complete Partial Total

1 0 0.66 0.66
2 0 0.00 0.00
3 14 19.84 33.84
4 0 0.00 0.00
5 34 0.00 34.00
6 0 0.00 0.00
7 21 0.00 21.00
8 13 0.00 13.00
9 0 0.00 0.00
10 37 0.00 37.00
11 3 0.00 3.00
12 30 0.00 30.00
13 9 0.00 9.00
14 13 0.00 13.00
15 26 0.00 26.00
16 2 0.00 2.00
17 36 0.00 36.00
18 2 0.00 2.00
19 31 0.00 31.00
20 9 0.00 9.00
21 15 0.00 15.00
22 29 0.00 29.00
23 2 0.00 2.00
24 42 0.00 42.00

�
24 0 9.12 9.12

Table A.9: mercury.sao.nrc.caHourly Throughput

92

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
monolith.uwaterloo.ca

Figure A.10: monolith.uwaterloo.caHourly Throughput

Hour Complete Partial Total

1 0 11.52 11.52
2 15 0.00 15.00
3 14 0.00 14.00
4 8 0.00 8.00
5 12 0.00 12.00
6 16 0.00 16.00
7 16 0.00 16.00
8 16 0.00 16.00
9 16 0.00 16.00
10 16 0.00 16.00
11 16 0.00 16.00
12 16 0.00 16.00
13 16 0.00 16.00
14 11 0.00 11.00
15 16 0.00 16.00
16 15 0.00 15.00
17 13 0.00 13.00
18 11 0.00 11.00
19 14 0.00 14.00
20 16 0.00 16.00
21 16 0.00 16.00
22 16 0.00 16.00
23 16 0.00 16.00
24 16 0.00 16.00

�
24 0 7.57 7.57

Table A.10: monolith.uwaterloo.caHourly Throughput

93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
myri.ccs.usherbrooke.ca

Figure A.11: myri.ccs.usherbrooke.caHourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.00 0.00
3 0 0.00 0.00
4 0 0.00 0.00
5 0 0.00 0.00
6 0 0.00 0.00
7 6 0.00 6.00
8 0 0.00 0.00
9 6 0.00 6.00
10 0 0.00 0.00
11 6 0.00 6.00
12 0 0.00 0.00
13 6 0.00 6.00
14 0 0.00 0.00
15 3 0.00 3.00
16 3 0.00 3.00
17 0 0.00 0.00
18 6 0.00 6.00
19 0 0.00 0.00
20 6 0.00 6.00
21 0 0.00 0.00
22 6 0.00 6.00
23 0 0.00 0.00
24 6 0.00 6.00

�
24 0 1.02 1.02

Table A.11: myri.ccs.usherbrooke.caHourly Throughput

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
p4-cluster.nic.ualberta.ca

Figure A.12: p4-cluster.nic.ualberta.caHourly Throughput

Hour Complete Partial Total

1 0 0.23 0.23
2 0 4.57 4.57
3 0 0.35 0.35
4 0 0.00 0.00
5 1 0.00 1.00
6 2 0.00 2.00
7 5 0.00 5.00
8 10 0.00 10.00
9 2 0.00 2.00
10 0 0.00 0.00
11 1 0.00 1.00
12 4 0.00 4.00
13 3 0.00 3.00
14 3 0.00 3.00
15 13 0.00 13.00
16 3 0.00 3.00
17 1 0.00 1.00
18 3 0.00 3.00
19 3 0.00 3.00
20 2 0.00 2.00
21 7 0.00 7.00
22 10 0.00 10.00
23 1 0.00 1.00
24 2 0.00 2.00

�
24 0 15.42 15.42

Table A.12: p4-cluster.nic.ualberta.caHourly Throughput

95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
stokes.clumeq.mcgill.ca

Figure A.13: stokes.clumeq.mcgill.caHourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.56 0.56
3 166 30.54 196.54
4 48 0.00 48.00
5 58 0.00 58.00
6 13 0.00 13.00
7 89 0.00 89.00
8 76 0.00 76.00
9 42 0.00 42.00
10 170 0.00 170.00
11 22 0.00 22.00
12 186 0.00 186.00
13 38 0.00 38.00
14 92 0.00 92.00
15 137 0.00 137.00
16 22 0.00 22.00
17 187 0.00 187.00
18 44 0.00 44.00
19 100 0.00 100.00
20 139 0.00 139.00
21 76 0.00 76.00
22 145 0.00 145.00
23 26 0.00 26.00
24 155 0.00 155.00

�
24 0 100.37 100.37

Table A.13: stokes.clumeq.mcgill.caHourly Throughput

96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
white.cs.umanitoba.ca

Figure A.14: white.cs.umanitoba.caHourly Throughput

Hour Complete Partial Total

1 0 0.00 0.00
2 0 0.00 0.00
3 0 0.00 0.00
4 0 2.24 2.24
5 0 0.00 0.00
6 0 0.00 0.00
7 0 9.92 9.92
8 0 1.45 1.45
9 2 0.00 2.00
10 2 0.00 2.00
11 0 0.00 0.00
12 0 0.00 0.00
13 0 0.00 0.00
14 0 0.00 0.00
15 2 0.00 2.00
16 14 0.00 14.00
17 3 0.00 3.00
18 0 0.00 0.00
19 1 0.00 1.00
20 0 0.00 0.00
21 2 0.00 2.00
22 0 0.00 0.00
23 2 0.00 2.00
24 0 0.00 0.00

�
24 0 15.85 15.85

Table A.14: white.cs.umanitoba.caHourly Throughput

97

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24>24
Hour

0

50

100

150

200

250

300

350

400

450

500

550

600

W
or

k
U

ni
ts

Complete
Partial

Work Completion
Other

Figure A.15: Other Hourly Throughput

Hour Complete Partial Total

1 0 1.31 1.31
2 0 0.00 0.00
3 0 0.00 0.00
4 0 0.00 0.00
5 16 0.00 16.00
6 1 0.00 1.00
7 1 0.00 1.00
8 2 2.99 4.99
9 17 3.11 20.11
10 2 0.00 2.00
11 12 0.00 12.00
12 2 0.00 2.00
13 23 0.00 23.00
14 3 0.00 3.00
15 0 0.00 0.00
16 3 0.00 3.00
17 13 0.00 13.00
18 11 0.00 11.00
19 4 0.00 4.00
20 7 1.65 8.65
21 14 2.49 16.49
22 9 3.35 12.35
23 8 4.29 12.29
24 13 1.73 14.73

�
24 0 46.44 46.44

Table A.15: Other Hourly Throughput

98

