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Abstract

The performance mismatch between storage subsystems and microprocessors in computer

systems forms a bottleneck in high-performance computing. The causes for the mismatch

are the lower bandwidth and higher latency of hard disk drives as compared to main mem-

ory. Three techniques – prefetching, write-behind, and parallelism – are utilized to solve

this problem.

In this thesis, we design and implement a user-level Parallel Disk Input-Output Library

(PDIOL). The goal of PDIOL is to improve the performance of sequential applications

through the parallelization of I/O operations across all workstations in a cluster. Prefetching

and write-behind are used in PDIOL as well. We evaluate the performance of PDIOL with

a suite of application benchmarks, which include grep, sort and bzip2. From the results, we

find that I/O-intensive applications benefit most while computation-intensive applications

benefit least, which is consistent with our intuition.
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Chapter 1

Introduction

In this chapter, we will first discuss the development trends in microprocessors, hard disks,

and networks. The techniques used to make up for the increasing mismatch between disk

I/O systems and microprocessors will then be presented. Finally, we will introduce a user-

level Library for Parallel Disk Input-Output (PDIOL), that provides a UNIX I/O Application

Programmers Interface (API) for accessing files striped across a workstation cluster.

1.1 Motivation

The mismatch between the storage subsystem and CPU in computers forms a bottleneck,

especially in disk I/O-intensive applications, such as text retrieval systems. This mismatch

has been increasing ever since the first appearance of computers. Much of the effort in

storage design has been devoted to finding ways of masking this enormous discrepancy in

bandwidth and access latency. The demand for large storage capacity and high performance

in more and more data-intensive applications exacerbates the problem. The introduction

of the high-speed switched local network creates challenges and opportunities for storage

systems. In the following paragraphs, the development of main hardware components of

the computer system are described.

1. Microprocessors

The improvements in microprocessors conform to Moore’s Law, i.e., the transistor

density roughly doubles every 18 months. Table 1.1 shows the number of transistors

in one microprocessor, and the processing power of various types since the 1970s.

Moore’s Law has been maintained and still holds true today. It is expected to continue

to be valid at least through the end of this decade.
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CPU Year of Number of Millions of
Model Introduction transistors Instructions per Second

4004 1971 2,300 0.06
8008 1972 3,500 0.06
8080 1974 4,500 0.64
8086 1978 29,000 0.33
286 1982 134,000 0.90
386 1985 275,000 5.00
486 1989 1,200,000 20.00

Pentium 1993 3,100,000 60.00
Pentium Pro 1995 5,500,000 200.00
Pentium II 1997 7,500,000 300.00
Pentium III 1999 28,100,000 733.00
Pentium 4 2000 42,000,000 155.00
Itanium 2 2002 291,000,000 6000.00

Table 1.1: The trend in the number of transistors and processing power of Intel micro-
processors. The table is adapted from [3].

2. Disk storage systems

With the developments in hard disk drives and hard disk drive connections, the perfor-

mance of disk storage systems in terms of capacity has improved continually over the

last few decades. From the 10MB hard disks installed in IBM/XTs in the early 1980s

to the current 120GB hard disks, the capacity has expanded 12,000 times – a factor

which is even greater than the proportional improvement in microprocessors over the

same period. However, the bandwidth and (especially) the data access latency, which

are limited by mechanical components – notably spindle speed and read/write head

movement – has not improved much. Table 1.2 shows the most common PC spindle

speeds and the average rotational latency in early 2000 [5]. From 3,600 RPM in the

early 1980s to the currently most popular 7,200 RPM, the spindle speed has only

doubled. Even for the high-end SCSI disks with 15,500 RPM, the improvement is

only 5 times, compared with early 3,600 RPM hard disks. The average rotational

latency of a 15,550 RPM disk is: 60 seconds / 15500 / 2 = 1.93 milli seconds. Com-

pared with the access latency of main memory, which is tens of nanoseconds [29],

the mismatch is huge, without even taking into account the speed of microprocessors.

Furthermore, disk head movement latency brings more overhead. The bad news is

that the performance of read/write heads has not improved a great deal either.

The mechanically-related overhead causes disk performance to lag far behind micro-

2



Spindle Speed Average Latency Seek Time Typical
(RPM) Half Rotational (ms) Applications

Time(ms)

5,400 5.6 12.0 Low-end IDE/ATA
7,200 4.2 9.0 High-end IDE/ATA, Low-end SCSI

10,000 3.0 5.2 High-end SCSI
12,000 2.5 5.0 High-end SCSI
15,000 2.0 3.6 Top-of-the-line SCSI

Table 1.2: The performance of contemporary hard disks [5].

processors – a situation which is expected to continue in the current situation.

3. Network systems

Switched local area networks, such as Myrinet [8], provide high bandwidth in the

hundreds of megabytes/second range [29] – a rate which can scale further with the

number of machines in a network systems. Furthermore, new network protocols

with less computational overhead and lower latency (less than a few microseconds),

enable machines to cooperate to perform finer granularity work than previously. For

example, 178 Myrinet clusters were listed in the June 2003 TOP500 List [23].

Such innovations bring about new challenges for storage systems. For example, only

a few workstations processing multimedia data can overflow a central file system.

4. Demand from disk I/O-intensive applications

I/O-intensive applications, such as satellite data processing, medical image databases,

high-performance relational databases, data mining, and detailed scientific modeling

of complex phenomena, not only require a huge capacity to store data, but also have

a need for high-access speed. Disk I/O systems must be designed to accommodate

such requirements.

1.2 Techniques

Amdahl’s Law tells us that without tracking computing performance, disk I/O systems will

limit the improvements to high-performance I/O-intensive computation. There are several

techniques available to address this problem:

1. Prefetching and Write-behind
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Prefetching is a technique to delegate a proxy, such as an operating system, to load

data prior to processing it and write-behind is a technique to delegate a proxy to

store data after processing it. Through prefetching and write-behind, applications

can overlap computation time with I/O waiting time, and pipeline I/O operations.

2. Caching and Buffering

Data buffered in caches can be reused without accessing disks. However, this ap-

proach depends on the locality of data access. For applications with poor locality,

buffering brings little or no benefit because few data are reused. However, when

combined with prefetching, caches can be used to buffer the data that will be used

and thus play an important role, even in applications with poor locality. The prefetch-

ing and cache approaches need to be be considered together.

3. Parallelism through Disk Striping

Through disk striping, a body of data is divided into blocks and the data blocks are

spread across several partitions on several hard disks. Disk I/O bandwidth can be

improved by utilizing the aggregate bandwidth of multiple disks. At the same time,

the decreasing price of disks makes it cost effective to utilize parallel disk systems.

However, parallel disk systems are more complex than single disk systems.

1.3 Parallel Disk Input-Output Library

With the development of commodity computer hardware and open-source systems, it has

become cost-effective to utilize workstation cluster systems to implement a parallel disk

system [14, 10]. In this thesis, we implement a user-level library for parallel disk input-

output (PDIOL) on a workstation cluster.

The contributions of the thesis include:

1. Implement a user-level library based on the UNIX API for parallel disk input-output;

2. Use a windows-based prefetching algorithm and write-behind technique in the li-

brary;

3. Experiment with benchmarking the performance of network and disk drives, and

benchmarking and tuning the performance of PDIOL.

The contents of this thesis are as follows: The background knowledge and related re-

search will be discussed in Chapter 2. The design and implementation of the PDIOL will be
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described in Chapter 3. In Chapter 4, the microbenchmark for PDIOL and several bench-

marks of real applications will be described. Chapter 5 serves as the conclusion and will

discuss possible directions of future research. The usage of the PDIOL library and APIs

will be described in Appendix A and Appendix B. During the development of the library,

an auxiliary tool called Thread Log Viewer (TLV) was developed to aid with tuning perfor-

mance. It will be described in Appendix C.

5



Chapter 2

Background and Related Work

The gap between the performance of microprocessors and disk I/O systems continues to

widen [12]. Improvements in microprocessors will result in marginal performance improve-

ments in overall system performance if there are no accompanying improvements in disk

I/O systems. One of the most important solutions to these problems is that of distributing

data, for example, striping, across parallel disks.

In order to improve parallel disk storage system performance, much research has been

done in the following areas.

1. Increasing aggregate bandwidth from disks through parallel disk systems;

2. Exploring I/O concurrency through prefetching, combined with cache management

and effective scheduling of data-access techniques;

3. Exploiting the parallelism of parallel storage systems with parallel file systems.

In this chapter, some background material will be presented and some related research

will be discussed.

2.1 Parallel Disk Systems

Like multi-processors, multiple disks can improve capacity, performance, and availability

in storage systems. There are two main kinds of disk parallelism: Redundant Array of

Independent (or Inexpensive) Disks (RAID) and network storage.

2.1.1 Redundant Array of Independent Disks (RAID)

RAID [31] began as a research project at the University of California, Berkeley in the

1980s. It utilizes parallelism between multiple disks to improve aggregate I/O performance.
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By striping data across parallel disks, RAID increases the bandwidth of disk systems. At

the same time, RAID improves reliability and availability through redundancy. RAID uses

device virtualization to represent internal disks as a larger virtual drive, and the server and

application view the RAID system as a single disk system. There are seven configurations

of RAID, ranging from RAID 0 to RAID 6, which differ in interleaving granularity, their

algorithm for redundancy, and their placement of redundant data. The 7 RAID levels are

shown in Figure 2.1.

Although the different RAID levels are optimal for different applications, RAID 5 is one

of the most common implementations of RAID in the market. By computing a parity block

and striping data across an array of disks, RAID 5 improves the bandwidth and reliability

of storage systems.

However, RAID systems improve performance primarily by increasing throughput via

multiple read-write operations. For applications with a throughput bottleneck, RAID im-

proves performance. Except for RAID level 0, which utilizes only the striping technique,

the other RAID levels may increase the latency of writing due to the need for more writing

operations for redundancy, and the computation overhead for parity data generation.

Another shortcoming of RAID is that the file server which manages a RAID system

may form a bottleneck. If the speed-up of the disk array exceeds the processing power of

the server, the high performance of RAID cannot be delivered to the client side. It can be

said that RAID is moderately scalable. For RAID systems, the striping unit, which is the

maximum amount of consecutive data assigned to a single disk, is an important character-

istic. Much research [16, 36, 15] has been done on how to select appropriate striping units,

according to the workload.

By striping data across workstation clusters, PDIOL implements a kind of RAID 0

library and utilizes the aggregate bandwidth of multiple disks. Note that PDIOL does not

currently support redundancy.

2.1.2 Network Storage

The demand for high-performance storage and the introduction of high-speed switched lo-

cal area networks bring about the use of network storage. By comparing the network speed

and direct-attached disk speed, we can draw the conclusion that by distributing data across

a bundle of storage servers connected on a network, storage system performance can be

improved. At the same time, scalability and reliability can also be enhanced.

The architecture of the network storage is shown in Figure 2.2.
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Q Algo.P Algo.

RAID Level 6 − P+Q Redundancy Parity with 4 data disks and 2 parity disks
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Figure 2.1: RAID level 0 - RAID level 6 data distribution.

8



Storage Storage Storage Storage Storage

...

...

Network

Networked Networked Networked Networked Networked

Figure 2.2: Architecture for the network storage.

The Storage Area Network (SAN) and Network Attached Storage (NAS) [20, 19, 21]

are two approaches to network storage. SAN is a network of disks that interact with a file

server via SCSI operations across a network and NAS is a set of disk servers that interact

with other services via file system operation over a network. The difference between them is

that NAS systems offer file system functionality while SAN systems do not. SAN systems

are more like traditional attached disks, while NAS systems resemble a traditional local file

system. Usually, NAS systems are built upon SAN systems; however, it is worth noting that

there is considerable cross-development between SAN and NAS.

Compared with direct-attached storage (DAS) systems, where disks are attached to a

single server not via a network, network storage has the following advantages:

1. Scalability. All the storage servers in a network storage system are connected through

a Local Area Network (LAN). In theory, there is no limit on the number of storage

servers. A traditional DAS system, however, has a limit on the number of devices

that can be attached to a typical server (i.e., limited number of SCSI ports).

2. Availability. The availability in a network storage system is inherent. With redundant

storage servers, network storage can maintain high availability, since a failed server

does not prevent other servers from accessing the same disk across a network.

The main disadvantage of network storage systems is their complexity. In addition to

the complexity of the data network, network storage systems have to address problems such

as, data integrity after faults and data consistency among storage servers. Much research

9



has been done on network storage systems in terms of performance improvement.

Gibson et al. [20] proposed a Network-Attached Secure Disk (NASD) storage architec-

ture to shorten the data transfer path. The idea of utilizing the aggregate processing power

of networked disks was proposed [34]. With on-drive processing and software download-

ability, the disks can execute application-level processing and reduce data traffic. This

technique is especially useful for some basic data processing tasks. A kernel-based net-

work memory system was also developed [6]. It manages the memory of cluster nodes as a

shared distributed page cache in the kernel, and improves data-intensive applications by re-

placing disk I/O operations with memory-to-memory transfer across a high-speed network.

Implementing a storage network on a workstation cluster is also possible. A worksta-

tion cluster-based storage network has several advantages: maximizing the utilization of

the disks in a workstation cluster; using the main memory in the workstations as caches

and replacing disk I/O operations with memory copy; and improving the utilization of idle

workstations in the cluster. The increasing network bandwidth and new protocols [8] make

this approach feasible.

2.2 Prefetch and Cache Management

Through prefetching, the latency of disk data access time can be overlapped with com-

putation. Especially for sequential applications, it is difficult to utilize the parallelism of

parallel disks without prefetching, since there is always only one I/O operation in progress.

Since prefetched data must be stored in caches, these two techniques should be considered

together. With parallel disk systems, cache management becomes more complex [24].

In theory, prefetching can be done on three levels:

1. The application level. With asynchronous I/O commands, applications can prefetch

data. The advantage of this approach is that only the data needed will be prefetched.

However, this approach creates burdens for the application developer.

2. The file system level. Almost all file systems provide some kind of prefetching algo-

rithm. However, without accurate access-patterns information, it is rather difficult to

prefetch data precisely. How to provide an interface to pass application access-pattern

information to file systems and how to utilize such information remain important re-

search topics.

3. The storage system level. The disks have no knowledge of the data distribution. One
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case is that adjacent blocks on the storage system do not necessarily belong to the

same file or object. Thus, the storage system cannot prefetch data for sequential

access, let alone for a more complex access pattern.

It is critical for file systems to know the access patterns of applications in order to

prefetch data precisely. In the following section, we will review some research on how

file systems utilize access patterns to prefetch data, and how applications pass such access-

pattern information to the file system below.

There are three ways for file systems to obtain access patterns:

1. Prediction from past access patterns.

All file systems have some mechanism for deducing access patterns from past data

accesses, and for predicting future accesses. This approach is completely transparent

to application developers. However, most of them focus only on sequential prefetch-

ing. For example, if block N and N+1 of a file have been referenced, block N+2 will

be prefetched. Although file systems which predict more complex access patterns

exist [26, 22], without hints from applications, these system may not prefetch data

correctly and may reduce performance.

2. Application-provided access patterns.

Application developers may know the prefetch access patterns of their programs in

detail. Through hints, such information can be passed to file systems. With the ad-

vance knowledge of future reference, Cao et al. [13] proposed a two-level cache

management strategy. In the kernel, an algorithm called LRU-SP (Least-Recently-

Used with Swapping and Placeholder) is used to manage the cache among multi-

ple processes. With a policy named controlled aggressive policy, each process uses

application-specific information to manage its own caching and prefetching. A proto-

type file system, Application Controlled File System (ACFS), utilizing this algorithm

was implemented. However, this algorithm does not address the issue of unbalanced

disk workload.

In Informed Prefetching [33], a cost-benefit analysis model is used to allocate buffers

among three competing demands: prefetching hinted blocks, caching hinted blocks

for reuse, and caching recently-used data for unhinted accesses. Differences between

Informed Prefetching and ACFS include: (1) Different levels of abstractions. The

hints in ACFS specify the to-be-prefetched blocks and files, while hints in Informed
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Prefetching specify the access pattern of files. (2) Informed Prefetching addresses

the problem of how far ahead a prefetch should be done, with respect to a certain

disk workload, while ACFS focuses on prefetching and caching according to the data

block assess sequence.

Collaboration among researchers [13, 33, 24] has brought about more advanced al-

gorithms. In Kimbrel et al. [24], four algorithms are compared under the multiple

disk environment, in which a single process is running with full advance knowledge

of references. The first three algorithms presented are: fixed horizon [13], aggressive

prefetching, and reverse aggressive prefetching [13]. The reverse aggressive prefetch-

ing algorithm works best under different situations but needs to know the complete

access sequence in advance. Forestall, a new algorithm which combines the above

three algorithms is then proposed. The idea behind forestall is that, through esti-

mating the point to prefetch, the shortcomings of aggressive prefetching and fixed

horizon are overcome.

3. Compiler-found access patterns

Mowry et al. [28] used compiler technology to statically derive the file access pattern

especially for loops and issue prefetching commands, accordingly. The compiler,

OS, and a run-time library cooperate to make prefetching work. A. Brown et al.

[11] improved the earlier work [28] by letting applications release pages pro-actively,

which is better cache management.

Yang et al. [39] propose a method to dynamically prefetch through a prefetching thread.

Their method converts original source code into a computation thread, which executes all

the instructions of the original program, and a prefetch thread, which executes only the disk

access-related instructions. At run-time, the prefetch thread runs far ahead of the compu-

tation thread, and prefetches all data blocks into the cache before the computation thread.

Although limitations exist because of the complexity of data-dependency analysis, the idea

is distinct from that of prefetching with knowledge of access patterns.

2.3 Parallel File Systems

In terms of level of abstraction, PDIOL is most comparable to other parallel file system, so

we make more explicit comparisons between PDIOL and the related work in this section.

Through parallel file systems, the parallelism of network storage can be exposed and
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utilized. From the simplest file sharing system, Network File System (NFS), to more com-

plex systems, such as VaxClusters [25], there are many kinds of parallel file systems. With

respect to granularity, VaxClusters allows block-level striping in a cluster environment,

while the mount unit of NFS is a directory and files cannot span over multiple workstations.

Although much research [14, 10, 7] on parallel file systems is in progress, there are no stan-

dard, widely available parallel file systems on Linux operating systems. Here, we discuss

several typical parallel file systems.

2.3.1 Network File System (NFS)

The NFS file system is the most common distributed file system in the UNIX world. NFS

uses a basic client-server approach, and has the following limitations for high-performance

computation.

1. Coarse granularity. Although NFS distributes a file system across many servers by

partitioning directory trees, a file is always at one server, therefore a hot spot can

develop for a single file.

2. Weak cache consistency. In NFS, the client is responsible for caching data. No

consistency is guaranteed as NFS does not define strict semantics for the cache con-

sistency among clients.

Unlike NFS, PDIOL always spans a single logical file across multiple cluster nodes.

2.3.2 Serverless Network File System (xFS)

xFS [7], a serverless network file systems has been proposed. Without a centralized server,

xFS tries to break the bottleneck of traditional centralized file servers. The techniques used

in xFS include: distribution of the control of file system metadata control over systems;

implementation of a software RAID across storage servers; and utilization of cooperative

caching to form a global file cache.

The difference between xFS and PDIOL is that while xFS provides a complete file sys-

tem, PDIOL provides a simple user-level library to utilize parallel disks over a workstation

cluster.

2.3.3 Parallel Virtual File System (PVFS)

PVFS [14] is a parallel file system for Linux clusters, implemented by Argonne National

Laboratory. Its goal is to provide high-speed file data access for parallel applications and a
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NFS xFS PVFS GPFS PDIOL

Interface OS OS OS OS User-level API
Deployment Inside OS Inside OS Inside OS Inside OS User-level library
Striping File N Y Y Y Y
Meta Data N/A Distributed Centralized Distributed N/A

Support concu- Y Y Y Y N
rrent process
Shared Disk N N N Y N

Table 2.1: Comparison of NFS, xFS, PVFS, GPFS, and PDIOL.

cluster-wide consistent name space. It is designed as a client-server system with multiple

servers. The client interacts with a PVFS server through the PVFS library. In this respect,

PDIOL is similar to PVFS. However, the goal of PVFS is to improve the access speed for

parallel applications through a concurrent read/write interface, while PDIOL is designed to

improve the performance for sequential applications. In PVFS, a single manager is respon-

sible for the PVFS file metadata, which describe the characteristics of a file, such as the

physical distribution of the file data. The distribution and stripe size are specific to certain

PVFS files, providing more flexibility than PDIOL.

2.3.4 General Parallel File System (GPFS)

GPFS [35] for Linux is a shared-disk file system (i.e. SAN), which has been run on IBM

RS/6000 SP and provides an interface as close as possible to the standard UNIX I/O file

interface. It uses a data-striping technique to distribute data across multiple disks and mul-

tiple nodes, and to improve I/O performance through prefetching and write-behind. With

distributed locks and centralized management for consistency of file data and metadata con-

sistency, it achieves data consistency among multiple nodes. The difference between GPFS

and PDIOL is that the nodes in the GPFS file system share common disk pools connected

through a SAN, and every node has equal access to every disk, whereas every node of

PDIOL has its own local file system and cannot access disks of other nodes directly.

2.3.5 Concluding Remarks

The differences between the above file systems and the PDIOL library are shown in Figure

2.3 and Table 2.1

Although PDIOL is implemented at user-level and lacks some flexibility and function-

alities, the user-level property makes the implementation and use of PDIOL simple, as it
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Figure 2.3: Comparison of architectures of GPFS, PVFS, xFS, and PDIOL.

does not require kernel modification.
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Chapter 3

Design and Implementation

3.1 Overview

PDIOL is a user-level library in C for improving the I/O performance of sequential ap-

plications. It improves I/O performance in two ways: improving effective bandwidth by

striping data sets across a workstation cluster, and reducing disk I/O operations by utilizing

the buffers of multiple computers. With prefetch and write-behind, PDIOL delivers high

performance to applications.

The main design goals for PDIOL are to:

1. Improve disk I/O bandwidth by striping data across parallel disks in a workstation

cluster;

2. Decrease disk I/O latency with prefetching, caching, and write-behind;

3. Provide good usability with a UNIX I/O API wrapper. (Appendix B).

3.2 Architecture

PDIOL consists of two parts – a PDIOL library and PDIOL agents (local and remote) –

which are shown in Figure 3.1. The PDIOL library implements routines for PDIOL cache

management and communication. PDIOL applications need to be compiled and linked with

the PDIOL library in order to utilize the prefetch ability of PDIOL. The data paths between

remote disks and PDIOL applications are shown in Figure 3.2.

The PDIOL cache is a large partition of memory allocated in user-space, and stores

data read from remote agents. The size of the PDIOL cache is currently configured to be

256M bytes, which is one half of the physical memory in one node of our test platform. The
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Figure 3.1: The architecture of PDIOL.
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Figure 3.2: The PDIOL data path.

PDIOL cache is divided into fixed-size cache pages, each with a size of 64KB, which are

managed via a cache page table. We will discuss the cache pages in Section 3.4.2. Only files

located on remote disks are cached in the PDIOL cache. Data of the files on the local disk

are managed by the local operating system’s file system. When accessing files on remote

disks, PDIOL applications call PDIOL library functions which, in turn, send requests to

remote agents. Upon arrival, fetched data are stored in the PDIOL cache. When accessing

files on the local disk, PDIOL applications bypass the PDIOL cache by calling the standard

I/O APIs directly.

In the following discussion, we will use a sample PDIOL logical file mydir/mypdiolfile

with PDIOL applications operating on it.
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Figure 3.3: PDIOL data distribution and naming scheme.

3.3 PDIOL File Structure

A PDIOL logical file is distributed (i.e., striped), therefore a PDIOL logical file consists

of multiple local files, as shown in Figure 3.3. The partitioning of a logical file into many

physical files is analogous to RAID 0 systems. The number of sub-files is determined by

the PDIOL configuration file $HOME/PDIOLconf. The data distribution, naming scheme,

and PDIOL logical file property are discussed below. We assume that the computing node

is brule-m-f and the data nodes are brule-m-a, brule-m-b, brule-m-c, and brule-m-d.

3.3.1 Data Distribution

The data in a PDIOL logical file are distributed cyclically to multiple sub-files residing on

different disks, as shown in Figure 3.3. With this distribution scheme, sequential access,

which occurs in most cases, can obtain maximal concurrency. The reason for this is that the

sequential access pattern can prefetch and pipeline the data access to multiple disks, when

data are distributed over disks in this way. The block size of distribution affects concur-

rency: a bigger block size results in less concurrency but also incurs less per-block cache
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management overhead. In one extreme case, if the block size is the same as the size of

a file, sequential access will get no concurrency. In our implementation, we used 64KB

as the block size – a value which is the default socket send/receive buffer size – and had

reasonable performance results. The PDIOL cache page size is the same as the distribution

block size, which makes mapping the PDIOL cache pages to disks easy to do.

3.3.2 Naming Scheme

In order to simplify the implementation, all the sub-files of one PDIOL logical file reside

in the same local-file-system paths, with the same name as the PDIOL logical file. In the

example shown in Figure 3.3, the name of the PDIOL logical file is mypdiolfile in the

directory mydir/. The data nodes consists of brule-m-a, brule-m-b, brule-m-c and brule-

m-d. The sub-files are named mypdiolfile.abcd0, mypdiolfile.abcd1, mypdiolfile.abcd2 and

mypdiolfile.abcd3, and reside in mydir/ of brule-m-a to brule-m-d, respectively. Since the

names of sub-files encode information about the PDIOL logical file, remote disks, and

distribution sequence, there will be no name conflict for different PDIOL logical files and

distributions. Thus, this naming scheme makes it convenient to debug the PDIOL library on

a single computer. To open the file on brule-m-f, the application would call, for example,

pdiol open(”mydir/mypdiolfile”, O RDONLY)

3.3.3 PDIOL Logical File Property

In PDIOL, there is no explicit metadata associated with each PDIOL logical file, which

makes PDIOL easy to implement. The PDIOL logical file has the same property – such as

ownership and access time – as the first sub-file. The size of a PDIOL logical file is the sum

of the sizes of all sub-files.

3.4 In-Memory Data Structure and Cache Management

In this section, several data structures, with which PDIOL files and PDIOL cache are man-

aged, will be shown in detail. The algorithm for cache management is given as well.

3.4.1 In-Memory Data Structure

The main in-memory data structures of the PDIOL library are (as shown in Figure 3.4):

1. The PDIOL logical file table. The table stores PDIOL logical file properties, such as

file path, size, and file position.
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Path: mydir/mypdiolfile
Mode: "r"
inode: 573471 
access_pattern: SEQUENTIAL
hint: PREFETCH
fpos:0
fsize: 1234567bytes
cache_head: 
cache_tail:
in_cache_pages: 2
prefetch_start:0
window_size: 64 pages

Path: mydir/mypdiolfile2
Mode: "w"
inode: 573473 
access_pattern: SEQUENTIAL
hint: POSTWRITE
fpos:0
fsize: 0 bytes
cache_head: null
cache_tail:null;
in_cache_pages: 0
prefetch_start:0
window_size: 64 pages

inode: 573471
page:0
fip_index: 0
flag:USED
offset:0
hash_prev:...
hash_next:...
prev:NULL
next:
rw_prev:...
rw_next...

inode: 573471
page:1
fip_index: 0
flag:USED
offset:0
hash_prev:...
hash_next:...
prev:
next:NULL
rw_prev:...
rw_next...

Page pointer0

Page pointer1

Page pointer2

Page pointer3

...

Suppose hash(57371, 1) == 1, then
the page pointer of hash cell 0 
points to page 1.
The size of hash table can be less
or equal to the size of cache page table.

...

PDIOL logical file table
Cache page table

...

Hash table

Figure 3.4: PDIOL logical file table, cache page table, and hash table data structure.

2. The cache page table. The page table for the PDIOL cache pages.

3. The hash table. The hash table provides a fast way to find pages through file de-

scriptor and page index. The cell of the hash table stores the page pointer pointing

to a page whose hash value is the index of the hash table cell. The hash conflicts are

handled by chaining.

Since remote agents only read/write according to the requests from the computing node

and do not have a PDIOL cache management mechanism, the cache page table and hash

table exist only on the computing node, and the Linux buffer cache performs the cache

management on the remote nodes [9]. The PDIOL logical file table exists on all remote I/O

nodes and the computing node.

3.4.2 Cache Management

Prefetching and caching should be considered together because prefetching must cache

prefetched data. Several page replacement algorithms exist: First-In, First-Out (FIFO),

Second Chance, Clock Page, and Least Recently Used (LRU) page replacement algorithm

[37].

In PDIOL, we selected the Second Chance algorithm because of its small overhead and

easy implementation. Since our experiments with PDIOL emphasizes flexibility and diver-

sity with respect to prefetching, instead of cache management, our experiment uses only

the Second Chance Replacement algorithm, with which we achieve satisfactory results. If
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Figure 3.5: PDIOL cache page state transition.

multiple files are opened, the Second Chance algorithm will be applied globally across all

open files.

The cache management structure is described below. Figure 3.5 shows the state transi-

tion of the PDIOL cache pages. Each of the five states of Figure 3.5 corresponds to a linked

list.

Four kinds of lists – the free page list, the read list, the write list, and the file-page lists

– are used to group the PDIOL cache pages. The Free pages belong to the free page list.

The Pending Read pages belong to both the read list and file-page lists. Pending Write

pages belong to the write list and file-page lists. Clean and Dirty pages belong to file-page

lists only.

1. The free page list (A), which contains all pages that do not belong to any opened file.

After the initialization of the PDIOL environment, all PDIOL pages are on this list.

When a file is closed, all its pages will be put on this list by the function FileClose.

When one page of a file is accessed for the first time, the page will be allocated from

this list by the function GetPage, when the data is not buffered in the free pages, or

reclaimed by the function Reclaim, when the data is buffered in the free pages.

2. The read list (B), which contains all the pages which are in Pending-Read state and
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to be prefetched. The to-be-prefetched page is put on the prefetch list by the function

Prefetch. After being Read, the page will changed to Clean state. The page on the

read list may be moved to the free page list by the function RefillFree when the free

page list is empty and higher priority request (e.g. demand-read request) arrives.

3. The write list (C), which contains all the pages which are in Pending-Write state and

to be written out to remote nodes. A to-be-written-behind page is put on the write list

by the function WriteBehind. After Synchronous Writing, the state of the page on

write list will be changed to Clean.

4. The file-page list (D), which contains all the pages of an opened file. It includes

Pending-Read page, Pending-Write page, Clean page, and Dirty pages. Every

PDIOL file has its own file-page list.

The relationships between them are as follows:

1.
���������
	��������

. This means that pages in the free page list do not belong to

any open file;

2.
����	

= empty. No pages can be written out and read in at the same time;

3.
�����
��	����

. Only pages belonging to an opened file can be read or written out.

3.5 Communication Mechanisms

As shown in Figure 3.6, PDIOL applications communicate with remote agents through

sockets. Each remote agent has two sockets connected to the PDIOL application. One

socket, the control socket, serves as a channel to transfer file management commands or

other system commands. Another socket, the data socket, serves as a channel through

which data pages of PDIOL logical files are transferred. If there are N remote agents, there

are 2*N sockets on the PDIOL application side, and two sockets on every remote agent

side. Command messages have high priority and are often small messages; they should not

be blocked by long data messages.

In PDIOL, we selected the TCP-based connection-oriented socket, instead of a UDP-

based connection-less communication mechanism. The reason is that with Myrinet, a high-

performance network, bandwidth and latency over the network is no longer as much a

bottleneck as it is with disk I/O operations. Although TCP has a little higher overhead, it

is still suitable for PDIOL implementation. Furthermore, if we use UDP, PDIOL has to
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Figure 3.6: Sockets between the PDIOL application and remote agents.

reimplement some of the buffering functions (e.g. retransmit) of TCP in order to make sure

the data will be sent reliably, making PDIOL more complex to implement.

The messages between PDIOL applications and remote agents can be divided into three

groups which are transferred through different sockets:

1. System control/status messages, which carry system initialization/termination com-

mands and system status information, are transferred through control sockets;

2. File control/status messages, which pass information about file I/O commands and

file status information, are transferred through control sockets;

3. Data messages, which carry file data, go through data sockets.

3.6 Prefetching and the Local Read Agent

Prefetching is the most important technique in PDIOL. This section will detail the window-

based prefetching algorithm. The local agent, which prefetches pages according to the

algorithm, will be discussed as well.

3.6.1 Prefetching

PDIOL provides an API for enabling sequential prefetching, through which PDIOL ap-

plications enable prefetching for certain files. For sequentially-accessed files, the default

prefetching algorithm is a window-based prefetching algorithm. The algorithm works in
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the following way: Suppose the window size is W pages and the reference sequence is
��� � ��� ������� �	� � ����
�� ������� �� ��� If �	� is the currently accessed page, the pages from page ����
�� to

page ����
������ will be prefetched. When selecting the window size, several factors need to

be considered:

1. The number of disks.

If there are N disks, the window size should not be less than N in order to obtain

maximal concurrency. For example, if page 1 is currently accessed and the window

size is N-1, page N will not be prefetched and disk N is idle.

2. Latency of message passing.

The window size should be big enough in order to hide the latency of message pass-

ing, especially since the latency of messages passing between two user-level pro-

cesses on different workstations is so high. Thus, even I/O-intensive applications

which do not benefit from overlapping computation with communication, can still

benefit from a large window size, via pipelining and parallelizing disk accesses. This

can be demonstrated by the micro-benchmark results in Chapter 4.

3. Free buffer size.

If the number of free pages in the system is small, a larger window size may deteri-

orate performance by evicting pages before they are used, due to page replacement.

Therefore, there are factors that force a lower and an upper bound on the window

size. In practice, one has to find the optimal window size.

3.6.2 Application-side Read Agent

The application-side read agent is responsible for reading data from data sockets. Prefetch-

ing is done in the following steps, as shown in Figure 3.7.

1. The PDIOL application sends a prefetch message to a remote agent through a data

socket;

2. The read agent on a data node reads the page from the local physical file and writes

to data sockets;

3. If a PDIOL application is waiting on the page, it will be signaled via a wakeup

message. If no PDIOL application is waiting for it, the read agent will leave the

prefetched data in the PDIOL cache.
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Figure 3.7: Flowchart of prefetching and write-behind.

The PDIOL application sends many prefetch messages (depending on the window size

and the user prefetching command) at one time. The prefetching operations of the read

agent can overlap with the PDIOL application’s computation. Even if there is no overlap

between computation and communication, the prefetching can still greatly decrease the

latency by pipelining and parallelizing disk accesses.

To make sure that remote agents start prefetching as early as possible, it is necessary

to send prefetch messages without any delay on the part of the buffer of the socket. The

TCP NO NODELAY option is applied to the sockets to pass prefetching messages.

3.7 Write-behind and the Application-side Write Agent

The data can be written to disk two different ways – synchronous write or asynchronous

write. A synchronous write function blocks until the writing is completed while an asyn-

chronous write function delegates the writing to a proxy and returns immediately. The

latency of synchronous writes data to disk is very high. Traditional file systems address this

problem with asynchronous writes or write-behind. With write-behind, applications write

data to buffers in main memory, and continue running. The data in the buffer will be written

to disk later on by the local/remote file systems. The latency of writing is thus hidden from

applications.

PDIOL needs to address the latency of writing as well, especially because the latency

of writing to remote disks is higher than that of writing to local disks. Figure 3.7 shows the

flowchart of write-behind implemented in PDIOL.

In PDIOL, write-behind is implemented in two ways:

1. The data to be written out to a remote agent will be put on the write list and the
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PDIOL application can continue computing. The local write agent will send the data

to the remote agent later.

2. The local write agent will delay sending data of a temporary file to remote agents

until the cache pages of the temporary file are evicted. If the temporary file is created,

accessed, and then deleted, the data of a temporary file may not have to written out

to remote disks at all, and the amount of data to be transferred decreases.

Once created, the local write agent keeps checking the write list. If the write list is

not empty, it sends the pages on the write list to the remote agents. The PDIOL application

communicates with the local write agent through Pthread [38] signals. When the write list is

empty, the local write agent enters a waiting state until signaled by the PDIOL application.

3.8 Remote Agents

Remote agents reside on remote workstations and process requests from PDIOL applica-

tions. They do not have their own cache management mechanisms and rely on local file

systems to provide prefetching and write-behind abilities. Remote agents process three

kinds of requests:

1. File data reading/prefetching/writing;

2. File level operations such as opening file, closing file, unlinking file, and other file

operations;

3. PDIOL system-level operations, including initialization and finalizing.

In order to give higher priority to the last two kinds of requests, and to provide a clear

interface, every remote agent spawns a read/write daemon which only reads-from / writes-

to a data socket. The main thread of a remote agent is responsible for file level operations

and other PDIOL system-level operations. In this way, the bulk data transfer of files will

not block the processing of higher-level operations.

Processing commands from the PDIOL application consists of the steps shown in Figure

3.8.

1. When a read/write daemon receives a prefetching message, it puts it into the prefetch-

ing list;
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Figure 3.8: The message processing of a remote agent.

2. When a read/write daemon receives a demand-read message, it will check whether it

is in the prefetch list or not. If it is, it will remove the page from the prefetch list. It

then reads data from local sub-files and writes data to the data socket;

3. When a read/write daemon receives a write message, it will read data from a data

socket and write data to local sub-files;

4. When no incoming message arrives and the prefetching list is not empty, a read/write

daemon will obtain one page from the prefetch list, read it from local sub-files, and

write it to the data socket.

Only when there is no demand-read/write message, will an agent read/write daemon

process a prefetching message, as demand read/write requests have higher priority

than a prefetching request.

The main thread synchronizes with the read/write daemon through Pthread signals.
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3.9 Concluding Remarks

In this chapter, we discussed the architecture of PDIOL, which includes the PDIOL li-

brary, local agents, and remote agents. The data structure and cache management in the

PDIOL library were examined in detail. The communication mechanism, implementation

of prefetch, write-behind, and remote agents were analyzed as well. With the cooperation

between PDIOL applications and remote agents, the aggregate bandwidth of parallel disks

over a workstation cluster can be utilized. In the next chapter, we will evaluate PDIOL with

microbenchmarks and real applications.
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Chapter 4

Performance Evaluation

In this chapter, we will evaluate the ideas of prefetching and disk parallelism as imple-

mented in PDIOL. As the goal of PDIOL is to overcome the I/O bottleneck by increasing

the bandwidth and decreasing the latency of disk systems with disk parallelism, we plan to

conduct experiments in the following way:

1. We test the bandwidth and latency of the network and the disks in the testbed to show

the feasibility of PDIOL;

2. We use modified version of cat and grep, which are I/O intensive applications, and

sort and bzip2, which are compute-intensive applications, to evaluate and analyze the

performance of PDIOL.

With PDIOL, cat and grep eliminate much of the I/O waiting time and obtain a speedup

of 2.6 with 4 remote disks, while sort and bzip2 gain a marginal speedup because of their

already-low I/O waiting times. From the results, we can see that I/O-intensive applications

gain more benefit, while compute-intensive applications benefit less – a result which is

consistent with our intuition.

In order to give a clear view of the experiments, Table 4.1 summarizes the purpose and

the results.

4.1 Experimental Testbed

Our testbed is a workstation cluster which consists of 8 nodes connected by a Myrinet net-

work. Each node has dual 800MHz Pentium III processors, 512 MB (ECC) main memory,

and a 18 GB SCSI disk (Seagate 18.4GB Barracuda USCSI ST318416W). Note that the

PDIOL uses multiple threads for agents, but the applications are single-threaded. The de-
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Exp. Benchmark Result Note

1 The bandwidth and
latency of disk ac-
cess

Figure 4.3 and 4.4 Network bandwidth and latency
should be better than disks to sup-
port the use of PDIOL.

2 The bandwidth and
latency of the net-
work

Figure 4.5, 4.6 and
4.9

Since the network is faster than
disks, PDIOL can be useful.

3 mycat and PDIOL
mycat

Figure 4.12 and 4.15,
Table 4.3 and 4.4

PDIOL improves performance by
reducing waiting time through disk
parallelism and prefetching.

4 Effect of prefetch
window size

Figure 4.16 and Table
4.5

Performance cannot improve be-
yond a certain size of the prefetch
window. As the number of disks
varies, the minimum and maxi-
mum window size for improved
performance also changes.

5 grep, sort and bzip2
on the local disk

Figure 4.17, 4.18,
and 4.19, 4.20 and
Table 4.6

When is PDIOL useful? It is use-
ful when the application is bottle-
necked on I/O waiting time (i.e.,
grep), but not when it is bottle-
necked on computation (i.e. sort
and bzip2).

6 PDIOL grep Figure 4.24 and 4.25,
Table 4.7 and 4.8

PDIOL improves the the perfor-
mance of grep by a factor of 2.6
with 4 disks.

7 PDIOL sort Figure 4.27, 4.28,
4.29, 4.32, and 4.33,
Table 4.9 and 4.10

sort gets marginal speedup with
more than 1 disk.

8 PDIOL bzip2 Figure 4.36 and 4.37,
Table 4.11 and 4.12

bzip2 gets little speedup with more
than 1 disk, similar to Experiment
7.

Table 4.1: Description of experiments.
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Vendor id Intel
Model name Pentium III (Coppermine)
CPU MHz 799.665
Cache size 256 KB

Table 4.2: Details concerning the CPUs of the computers in the testbed.

Kernel 2.4.5

Redhat 7.1

UDP TCP

IP

Ethernet

Application

Myrinet
gm_1.4.1 pre10

Figure 4.1: The software structure of the testbed.

tails are shown in Table 4.2. The operating system is Linux with the kernel version 2.4.5

SMP. The low-level message-passing system for the Myrinet is GM version 1.4.1 pre10.

The topology of the cluster is shown in Figure 3.3 and the software layers are shown in

Figure 4.1:

To justify PDIOL, the following two conditions must be considered:

1. The total bandwidth of the network for one computer must be higher than that of local

disks. Otherwise, the network will form a new bottleneck and make it impossible to

obtain performance improvement through disk parallelism;

2. The latency of the network should not be too high. If the latency of the network

is much higher than that of the disk access, a PDIOL cache miss will cause I/O

operations to wait a longer time than that of local disks.

In the following sections, we benchmark the disk and network systems in the testbed.
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Figure 4.2: A sample output of Bonnie.

4.1.1 Disk System

There are many disk I/O benchmark tools [1, 30, 32, 27, 17]. Bonnie [1] benchmarks

sequential output, sequential input, and random seeks of file systems with access units

ranging from one character to blocks of different sizes. One sample output of Bonnie is

shown in Figure 4.2

We select Bonnie as our benchmarking tool for the following reasons:

1. Bonnie is a simple program and it is easy to configure its code to benchmark certain

access patterns;

2. The sequential access pattern of PDIOL is similar to one of Bonnie’s test cases.

However, Bonnie has some shortcomings. If the file size is less than available physical

RAM, all operations will be done on physical RAM instead of on disks. This is shown in

Figures 4.3 and 4.4.

Because the size of a PDIOL page is 64KB, the chunk size in Bonnie is updated from the

default value of 16KB to 64KB in order to compare the result with the PDIOL benchmarks.

From Figures 4.3 and 4.4, it can be seen that when the file size is less than 256MB,

the Linux operating system itself caches all file data reside in the physical memory, and

there is almost no disk access. When the file size is greater than 256MB, disk accesses are

required to fetch data from disk to the physical memory. The larger the file size, the more

representative the result is of the actual hard disk performance. In the following discussion,

we will use the benchmark results for the 2GB file.

Because the I/O waiting time cannot be obtained from the output of Bonnie directly,

we calculate the I/O waiting time in the following way, with the assumption that CPU

utilization is zero when applications are waiting for I/O operations:

1. Obtain the CPU utilization ratio
������� ��� �
	 of disk operations through the Bonnie

benchmark;

2. Obtain the total access time � ������ 	 ;
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3. Calculate waiting time per page:

��� � � � ����� � ���	� � ��
 � � ��� = � ��� ��� 	� ����� � ��� � � � � 	 ����� � � ������
 ��� � � �����

� � � � � ����� � ����� � ��
 � � ��� is shown by the Y-axis in Figure 4.4.
����� � � � � 	 is obtained from

the output of Bonnie.

4.1.2 Network

Netperf [18] is a benchmark tool which measures the performance of many different types

of networks, such as: TCP and UDP via BSD Sockets, DLPI, UNIX Domain Sockets,

Fore ATM API, and HP HiPPI Link Level Access. Netperf can test both unidirectional

throughput and end-to-end latency.

We select Netperf as our benchmarking tool for the following reasons:

1. Netperf is a popular and standard tool for benchmarking networks;

2. Netperf provides all the measurements, such as bandwidth and latency that we need

in our experiments.

The version of Netperf used in our experiments is 2.1 [4]

Two experiments have been carried out. The first is for one-to-one connections, and

tests the bandwidth and latency for a single connection. The second experiment is for one-

to-many connections, in order to test the scalability of the network.

One-to-one Connection

The experiments have been performed on brule-m-a, which serves as a server, and brule-

m-f, which serves as a client. See Figure 3.3 for the topology of the testbed. The bandwidth

and latency of the network are shown in Figures 4.5 and 4.6, respectively. The confidence

interval for +/-2.5% is 99% for all results. The result in Figure 4.5 is obtained through

an updated version of the tcp stream script in Netperf, which tests the performance

of TCP/IP stream over Myrinet. The tcp stream script measures bulk-data transfer

performance, i.e., ”unidirectional stream” performance. Each test lasts 60 seconds.

Except for the buffer sizes for sending and receiving, all other TCP settings are at their

default settings. Figure 4.7 shows the settings of the sockets. With respect to Figure 4.6,

network request/response performance is expressed as the rate of the transaction, which is

the exchange of a request and a response of certain sizes. Given the transaction rate obtained
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SO_BROADCAST: default = off
SO_DEBUG: default = off
SO_DONTROUTE: default = off
SO_ERROR: default = 0
SO_KEEPALIVE: default = off
SO_LINGER: default = l_onoff = 0, l_linger = 0
SO_OOBINLINE: default = off
SO_RCVBUF: default = 131070
SO_SNDBUF: default = 131070
SO_RCVLOWAT: default = 1
SO_SNDLOWAT: default = 1
SO_RCVTIMEO: default = 0 sec, 0 usec
SO_SNDTIMEO: default = 0 sec, 0 usec
SO_REUSEADDR: default = off
SO_REUSEPORT: (undefined)
SO_TYPE (tcp,udp): default = 1
IP_TOS: default = 0
IP_TTL: default = 64
TCP_MAXSEG: default = 8948
TCP_NODELAY: default = on

Figure 4.7: Socket settings.

from the tcp rr script, the latency (Figure 4.6) of the network can be calculated with

the following method:

� 
 � � ��� � � 
 � � � � ��� �����	�
��� ���� � ��� ���

� � � � � � ��� � � ��� �����	�
��� ���� � ��� �������

In this experiment, we set the request size at 128 bytes, which is about the size of the

reading, prefetching, and writing messages of PDIOL; we set the response size at 64KB

bytes, which is the page size of PDIOL.

From the above experiment and those in Section 4.1.1, it can be seen that the network

has much better one-to-one bandwidth than that of disks (e.g., Figure 4.3).

One-to-many Connections

In order to evaluate the scalability of the Myrinet for one-to-many connections, which is

the scenario if we use disk parallelism (Chapter 3.2), the following experiment is done on

brule-m-f, which serves as a client, and brule-m-a, brule-m-b, brule-m-c, brule-m-d, the

four of which serve as servers (Figure 4.11).

Because it is difficult to get the aggregate bandwidth for multi-connections with net-

perf, a benchmark tool – pdiol nettest – is developed. pdiol nettest consists of two parts –

pdiol nettest client and pdiol nettest server. The algorithms of netperf and pdiol nettest are
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shown in Figure 4.8. The experiments are done on brule-m-f, on which pdiol nettest client

is run, and brule-m-a, brule-m-b, brule-m-c and brule-m-d, on which pdiol nettest server

is run.

Figure 4.9 shows that the bandwidth for 4 nodes is not higher than 2 nodes. We specu-

late that 2 streams of data are enough to saturate the bandwidth of the PCI bus of the server,

brule-m-f. However, as we will see, it will take more than 2 disks to generate that much

data traffic.

Careful readers will notice that the results of pdiol nettest and Netperf for one-to-one

connection are a little different. This is because when sending and receiving data, Netperf

and pdiol nettest uses different buffer management mechanisms. Netperf uses different

circular lists of buffers while pdiol nettest keeps using the same circular list of buffers. As

the purpose of pdiol nettest is to measure the raw performance of PDIOL, it is designed to

work in the same way as PDIOL.

Since it is more complex to update Netperf to simulate the PDIOL behavior, we leave

it unchanged. As there is not too much difference between Netperf and pdiol nettest, we

speculate that the results are still useful.

From the results shown in Figures 4.5, 4.6, and 4.9, it can be seen that the aggregate

bandwidth reaches the maximal value when the connection number is 2. We can expect

that when the aggregate bandwidth of all disks outnumbers the aggregate bandwidth of the

network, no further improvement can be obtained by adding more disks.
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4.1.3 Justification of PDIOL

From the results shown in Figures 4.3, 4.4, 4.5, 4.6, and 4.9, we can see that when reading

a 64KB page from remote agents, the bandwidth can reach nearly 100MB, and the latency

is only 300 � s. However, when reading one page from the local disk, the bandwidth is only

about 20MB and the waiting time is almost 2,500 � s. Therefore, we can expect that PDIOL,

with the proper policies and a reasonable implementation, can bring about a performance

improvement. As discussed later (Chapter 4.2), it will likely require more than 2 disks to

saturate the network.

4.2 Microbenchmarks

In this section, we test the reading time of PDIOL logical files and compare the performance

with that of files on local disks.

The scalability of PDIOL is an important metric, and we test it with different numbers

of disks and file sizes. The core technique of PDIOL is prefetch. By varying the size of the

prefetch window, we evaluate the effect of the size of the prefetch window in PDIOL.

From the experiments, we can see that PDIOL decreases the I/O waiting time when

the number of disks increases. In the following experiments, every benchmark application

is run 5 times – the result is shown in both a table, which shows the average, maximal,

minimal value and variance, and a figure which shows the performance variation.
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Figure 4.12: The execution time for reading files on the local disk (1 disk). The program
mycat uses a buffer of the same size as those of the PDIOL mycat, i.e., 64KB.

File size Avg Max Min �
�

8MB 0.35 0.36 0.34 0.000
32MB 1.32 1.54 1.26 0.015
128MB 5.17 5.31 5.06 0.009
512MB 22.04 22.28 21.77 0.050

Table 4.3: The execution time for reading data on the local disk (1 disk). The program
mycat uses a buffer of the same size as those of the PDIOL mycat, i.e., 64KB bytes.

4.2.1 mycat On The Local Disk

We use a simple program mycat to measure the reading time of files on the local disk. The

key differences between mycat and standard cat are that mycat has a tunable buffer size.

Then by replacing the file I/O functions, it is easy to transform mycat to a PDIOL version,

and compare the performance.

Figure 4.12 and Table 4.3 show the reading time of files with different file sizes. mycat

uses a buffer of size 64KB, the same size as PDIOL mycat, in order to make the comparison

between PDIOL mycat and mycat fair.
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Figure 4.13: The benchmark of mycat on the local disk and PDIOL mycat on 1, 2, and
4 disks. The file size is 128MB. The prefetch window size is 128 pages.

4.2.2 mycat vs. PDIOL mycat

By replacing the I/O operations in mycat, we get the PDIOL mycat. We test the performance

PDIOL mycat with different numbers of disks. The file size is fixed at 128MB and the

prefetch window size is 128 pages. The experiments are done in the following steps (Figure

4.14):

1. A file of 128MB is created;

2. The PDIOL utility program fs2pfs is used to transform it to a PDIOL logical file,

which is striped across the remote disks;

3. The file buffers of all nodes are flushed;

4. PDIOL mycat is used to read PDIOL logical files and redirect the output to /dev/null

on the local node.

From Figure 4.13, it can be seen that: using parallel disks is effective in reducing I/O-

waiting time and mycat gains a speedup of 2.53 with 4 disks. However, the user time

increases because of the communication overhead and cache management overhead.

In the following section, we will explore the the effects of other parameters – different

file sizes and prefetch window sizes.
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Figure 4.14: The PDIOL logical file and standard file transformation diagram by fs2pfs
and PDIOL mycat with 4 remote disks.

1 disk 2 disks 4 disks

File Size Avg Max Min �
�

Avg Max Min �
�

Avg Max Min �
�

8MB 0.42 0.43 0.41 0.000 0.45 0.93 0.28 0.080 0.26 0.28 0.23 0.000
32MB 1.44 1.58 1.37 0.009 0.94 1.45 0.78 0.083 0.63 0.65 0.62 0.000

128MB 5.31 5.49 5.14 0.016 2.90 3.17 2.82 0.023 2.25 2.57 2.11 0.040
512MB 22.12 22.46 21.83 0.056 12.57 13.39 11.05 0.985 9.08 9.73 8.84 0.141

Table 4.4: The execution time of PDIOL mycat with different file sizes on 1 (left), 2
(middle), and 4 (right) disks. The size of prefetch window is 128 pages.

4.2.3 PDIOL mycat Performance with Different File Sizes

In this section, we test the effect of file sizes on the performance of PDIOL with different

numbers of disks and file sizes . The file sizes are 8MB, 32MB, 128MB, and 512MB. The

reason we select these numbers is that the PDIOL cache size is 256MB, and we want to

examine the performance for files whose sizes are larger and smaller than cache size.

The size of the prefetch window is set at 128 pages. In reality, as the next experiment

shows, the size of the prefetch window does not improve the performance beyond a certain

point, for I/O-intensive applications. Figure 4.15 and Table 4.4 show the scalability of

PDIOL.

Comparing the results of the above two experiments, we can see that the waiting time

decreases with the increase in the number of disks. For the 512M file, the waiting time is

15.16s for 1 disk, 7.1s for 2 disks, and 1.35s for 4 disks. The waiting time decreases faster

than the increase in the number of disks. We speculate that the reason for the rapid decrease

is that with the increase of the number of disks, there is more caching at the hard disk’s host

workstation, and more I/O waiting time is overlapped with the increased user and system
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Figure 4.15: The benchmark of PDIOL mycat with different file sizes on 1 (left), 2 (mid-
dle), and 4 (right) disks. The prefetch window size is 128 pages.

1 disk 2 disks 4 disks
Window Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

1 7.82 8.13 7.60 0.052 8.04 8.68 7.26 0.377 7.99 8.10 7.88 0.007
4 5.32 5.64 5.13 0.048 3.24 3.41 3.14 0.014 3.75 4.61 3.43 0.240

16 5.32 5.74 5.10 0.073 2.97 3.52 2.82 0.095 2.42 2.76 2.13 0.093
64 5.39 5.59 5.23 0.022 2.83 2.89 2.80 0.001 2.51 3.95 2.13 0.645
256 5.40 5.58 5.29 0.017 3.34 5.10 2.83 0.977 2.26 2.47 2.12 0.031

Table 4.5: The execution time of PDIOL mycat with an 128MB PDIOL logical file with
different prefetch window size on 1 (left), 2 (middle), and 4 (right) disks. The experiment
is done on a 128MB PDIOL logical file.

time. As shown by the breakdown of execution time, system time increases with the number

of remote nodes, while user time is largely unaffected. This shows that the overhead of the

PDIOL library remains reasonable, regardless of the increase in the number of disks.

4.2.4 PDIOL mycat Performance With Different Prefetch Window Sizes

The purpose of the experiments is to show the effect of prefetch windows on the perfor-

mance of PDIOL. In this experiment, the file size is fixed at 128MB. The performance of

PDIOL mycat is shown in Figure 4.16 and Table 4.5.

From these graphs, it can be seen that:

1. Because there is no computation that can be overlapped with reading in mycat, the

performance cannot improve after the size of the prefetch window increases to a cer-
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Figure 4.16: The execution time of PDIOL mycat with different prefetch window sizes
on 1 (left), 2 (middle), and 4 (right) disks. The experiment is done on a 128MB PDIOL
logical file.

tain point, as all disks are kept busy already. For 4 disks, after the size of the prefetch

window increases to 16, no significant improvement can be obtained from increasing

the size of the prefetch window – and for 1 disk the threshold is 4. The reason is that

with 4 pages prefetched for each disk, the latency is overlapped completely. For my-

cat, the number of disks has a greater impact on performance than does the prefetch

window. A larger size of the prefetch window, without an increase in the number of

disks, does not result in greater improvement.

2. The waiting time decreases proportionally with the increase in the number of disks,

as expected. But the user time and, especially, the system time increase with the

number of disks. The user time is spent on data copying in user space and cache

management. The system time is spent transferring data between computers and

copying data across kernel-space and user-space.

Careful readers may notice that when the size of prefetch window is 4 pages, the per-

formance of 4 disks is lower than 2 disks. We speculate that the reason for this is that, with

a prefetch window of only 4 pages, the benefit of more bandwidth is too little and is offset

by increased communication overhead.
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Figure 4.17: The execution time breakdown of grep on the local disk (1 disk).

grep sort bzip2
File Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

8MB 0.41 0.44 0.40 0.000 2.38 2.42 2.32 0.001 2.10 2.29 2.07 0.004
32MB 1.33 1.47 1.26 0.003 9.03 9.07 8.99 0.001 8.06 8.27 8.00 0.006

128MB 5.18 5.65 5.08 0.031 83.18 87.35 66.03 37.859 32.13 32.22 32.00 0.007
512MB 22.1 22.9 21.7 0.115 696.8 703.3 685.3 34.06 129.8 130.2 129.4 0.058

Table 4.6: The execution time of grep (left), sort (middle), and bzip2 (right) on the local
disk (1 disk).

4.3 Application Benchmarks: grep, sort and bzip2

In this section, we evaluate the performance of PDIOL with three common applications.

grep is a program to retrieve text from text files. Sort is used to sort text files. bzip2 can

compress data files.

grep is an I/O-intensive application, while sort and bzip2 are compute-intensive appli-

cations. As PDIOL can reduce I/O waiting time through disk parallelism, we expect grep

to benefit most from PDIOL.

4.3.1 grep, sort and bzip2 On The Local Disk

In order to evaluate the performance of PDIOL, it is necessary to know how much time is

spent waiting on I/O. The performance of grep, sort, and bzip2 is tested, and the results are

shown in the following table and figures.
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Figure 4.18: The execution time breakdown of sort on the local disk (1 disk).
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Figure 4.19: The execution time breakdown of bzip2 on the local disk (1 disk).
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Figure 4.20: The normalized execution time of grep (left), sort (middle), and bzip2
(right) on the local disk (1 disk).

From the results shown in Figures 4.17, 4.18, 4.19, and 4.20, and Table 4.6, we can see

that grep spends most of its time waiting, while sort and bzip2 spend most of their time

computing. With PDIOL, grep should be able to reduce I/O waiting time greatly and obtain

the most improvement.

4.3.2 grep, sort and bzip2 vs. PDIOL grep, PDIOL sort and PDIOL bzip2

By replacing the I/O functions with the corresponding PDIOL I/O functions in grep and

compiling with the PDIOL library, we generate a PDIOL version of grep. With the same

method, we create PDIOL versions of sort and bzip2.

Figure 4.21, 4.22, and 4.23 show the experiment results of PDIOL grep, PDIOL sort

and PDIOL bzip2. The file size is fixed at 128MB and the prefetch window size is 128

pages. From Figure 4.21 it can be seen that PDPIOL improves the performance of grep

as the I/O-waiting time is reduced greatly. Figure 4.22, unfortunately, shows that PDIOL

brings marginal improvement for sort. As the I/O-waiting time is a small part in the total

execution time of sort, there is not too much I/O-waiting time to be overlapped. This result

is consistent with our intuition. Figure 4.23 compares the performance of bzip2 and PDIOL

bzip2. As little I/O-waiting time can be overlapped, bzip2 gains marginal performance

improvement as well.

In the following sections, we experiment with parameters – file sizes, prefetch window
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Figure 4.21: The benchmark of grep on the local disk and PDIOL grep on 1, 2, and 4
disks. The file size is 128MB. The prefetch window size is 128 pages.
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Figure 4.22: The benchmark of sort on the local disk and PDIOL sort on 1, 2, and 4
remote disks. The file size is 128MB. The prefetch window size is 128 pages.
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Figure 4.23: The benchmark of bzip2 on the local disk and PDIOL bzip2 on 1, 2, and 4
remote disks. The file size is 128MB. The prefetch window size is 128 pages.

1 disk 2 disks 4 disks
File Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

8MB 0.52 0.55 0.51 0.000 0.38 0.39 0.36 0.000 0.36 0.37 0.34 0.000
32MB 1.51 1.64 1.46 0.005 0.91 1.02 0.84 0.004 0.73 0.74 0.73 0.000

128MB 5.44 5.59 5.24 0.030 2.99 3.17 2.93 0.010 2.31 2.58 2.22 0.023
512MB 22.21 22.49 21.97 0.044 11.34 11.91 11.06 0.119 8.44 8.87 8.27 0.064

Table 4.7: The execution time of PDIOL grep with different file sizes on 1 (left), 2 (mid-
dle), and 4 (right) disks. The prefetch window size is 128 pages.

sizes, and the number of disk for each of the three applications to explore the effects of

these parameters.

4.3.3 PDIOL grep

By varying the file size and the number of disks, we obtain the following results, as shown

in Figures 4.24 and 4.25, and Tables 4.7 and 4.8. From the results, it can be seen that PDIOL

improves the performance of grep by reducing I/O waiting time through disk parallelism.

Figure 4.25 and Table 4.8 show the execution time of PDIOL grep with different prefetch

window sizes on 1, 2, and 4 disks. Again, we see that the window size needs to increase

with the number of disks, but that there is an effective upper bound on the window size.

As expected, the performance of grep improves with an increase in the number of disks.

Since there is little computation in grep, the overhead is almost the same as that of PDIOL
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Figure 4.24: The execution time of PDIOL grep with different file sizes on 1 (left), 2
(middle), and 4 (right) disks. The prefetch window size is 128 pages.
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1 disk 2 disks 4 disks
Window Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

1 9.46 9.59 9.40 0.006 8.65 9.32 7.99 0.250 8.74 9.02 8.59 0.027
4 5.42 5.86 5.25 0.065 3.37 3.55 3.28 0.015 3.88 4.21 3.62 0.064

16 5.43 5.85 5.23 0.063 3.19 3.45 2.94 0.040 2.65 4.18 2.26 0.730
64 5.40 5.82 5.23 0.057 3.01 3.18 2.93 0.012 2.25 2.28 2.22 0.001
256 5.49 5.76 5.27 0.044 3.06 3.29 2.93 0.028 2.24 2.30 2.20 0.002

Table 4.8: The execution time of PDIOL grep with different prefetch window sizes on 1,
2, and 4 disks. The file size is fixed at 128MB.
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Figure 4.26: Sort Algorithm.

mycat, as described in the last section.

4.3.4 PDIOL sort

This experiment is done to test the performance of PDIOL for compute-intensive applica-

tions. The buffer size is set at 8MB, the same size that of 128 PDIOL cache pages.

The sort algorithm contains two phases – block sort phase and merge phase (Figure

4.26):

1. Block sort phase – Read a block of data into a buffer, sort it, and store the result into

a temporary file until all data in the file are sorted;

2. Merge phase – Merge the data in all temporary files into one result file.

With PDIOL, the performance improvement can be obtained through hiding access la-
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Figure 4.27: The execution time of PDIOL sort with different file sizes on 1 (left), 2
(middle), and 4 (right) disks. The prefetch window size is fixed at 128 pages.

1 disk 2 disks 4 disks
File Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

8MB 2.00 2.02 1.97 0.001 1.84 1.85 1.84 0.000 1.84 1.86 1.81 0.000
32MB 9.91 9.94 9.86 0.001 9.60 9.77 9.54 0.010 9.55 9.59 9.51 0.001

128MB 78.76 79.48 78.35 0.179 76.63 77.27 76.38 0.133 76.49 76.56 76.45 0.002
512MB 700.5 700.8 700.1 0.067 671.2 672.5 670.3 0.745 666.4 667.2 665.7 0.358

Table 4.9: The execution time of PDIOL sort with different file sizes on 1 (left), 2 (mid-
dle), and 4 (right) disks. The prefetch window size is fixed at 128 pages.

tency by sending more than one read request, and overlapping computation with access

latency. At the same time, unlike mycat and grep, PDIOL sort writes temporary sorted

data and the final results to I/O nodes with PDIOL functions, thus PDIOL sort should also

benefit from the parallel writing ability of PDIOL. However, because the writing can be

overlapped efficiently by OS, no significant improvement can be obtained through PDIOL,

for this application. The results are shown in Figures 4.27, 4.28, and 4.29, and Table 4.9.

From the results shown in Figure 4.27 and Table 4.9, it can be seen that with more

disks, the performance of PDIOL sort improves. The improvement of 2 disks over 1 disk is

greater than that of 4 disks over 2 disks.

To analyze the effect of PDIOL in different phases of sort, the execution time break-
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Figure 4.28: The execution time of block sort phase in PDIOL sort with different file
sizes on 1 (left), 2 (middle), and 4 (right) disks. The prefetch window size is fixed at 128
pages.

down is shown in Figures 4.28 and 4.29

Figures 4.18, 4.30, and 4.31 show the performance of sort without PDIOL. From Fig-

ures 4.30 and 4.28, it can be seen that the I/O waiting time of the block sort phase decreases

greatly. Especially for the 512MB file, the size of the file plus the size of the sorted tem-

porary file exceeds the available physical memory, and most pages that are flushed to disk

cause the I/O waiting time to increase greatly. For the PDIOL version, because the physical

memory on the compute node and remote agent node can be utilized, fewer pages will be

flushed to disk and the I/O waiting time decreases. A comparison of Figures 4.29 and 4.31

shows that the I/O waiting time of the merge phase also decreases.

Figures 4.32, 4.33, and 4.34, and Table 4.10 show the effect of the size of the prefetch

window on the execution time of sort. From Figure 4.32 and Table 4.10, the following can

be seen:

1. When the size of the prefetch window is one page, limited improvement can be ob-

tained as there is little overlap.

2. When the size of the prefetch window is 64 pages, most of the reading latency is

overlapped with computation, and no significant benefit can be obtained by increasing

the number of remote disks from 2 to 4.
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Figure 4.29: The execution time of merge phase in PDIOL sort with different file sizes
on 1 (left), 2 (middle), and 4 (right) disks. The prefetch window size is fixed at 128 pages.
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Figure 4.30: The execution time of block sort phase in sort algorithm on the local disk
(1 disk).
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Figure 4.31: The execution time of merge phase in sort algorithm on the local disk (1
disk).
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Figure 4.32: The execution time of PDIOL sort with different prefetch window sizes on 1
(left), 2 (middle), and 4 (right) disks. The file size is fixed at 128MB.
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1 disk 2 disks 4 disks
Window Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

1 88.14 89.00 87.85 0.238 84.50 85.85 82.49 1.874 83.90 84.24 83.52 0.089
4 83.94 84.02 83.82 0.006 78.94 79.17 78.60 0.066 78.34 78.47 78.20 0.014

16 83.63 83.93 83.42 0.054 77.93 78.40 77.78 0.068 76.94 77.15 76.76 0.023
64 81.75 81.87 81.64 0.012 77.13 77.39 76.89 0.049 76.52 76.62 76.43 0.005
256 78.57 78.72 78.35 0.023 76.49 76.74 76.33 0.024 76.40 76.50 76.30 0.005

Table 4.10: The execution time of PDIOL sort with different prefetch window size on 1
(left), 2 (middle), and 4 (right) disks. The file size is fixed at 128MB.
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Figure 4.33: The execution time for block sort phase in PDIOL sort with different sizes
of prefetch windows on 1 (left), 2 (middle), and 4 (right) disks. The file size is fixed at
128MB.
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Figure 4.34: The execution time for merge phase in PDIOL sort with different prefetch
window sizes on 1, 2 and 4 disks. The file size is fixed at 128MB.

4.3.5 PDIOL bzip2

bzip2 is a freely-available, high-quality data compressor. It compresses data using the algo-

rithm shown in Figure 4.35. The version we used is 1.0.2 [2]. After replacing the standard

I/O file functions with PDIOL logical file functions, we generated the PDIOL version of

bzip2. In order to make a fair comparison between the PDIOL version and the non-PDIOL

version, the segment sizes for each compression were both set to 512KB. In the following

experiments, we will evaluate the performance of the PDIOL version of bzip2.

By varying the number of disks and the size of files to be compressed, we obtain the

following results as shown in Figure 4.36 and Table 4.11. In this experiment, we set the

size of prefetch windows at 128 pages. From Figure 4.36, we can see that since bzip2 is a

compute-intensive application, I/O waiting time is only a small part of the total execution

time. Even with more disks, the execution time does not decrease. It is worth noting that

in Figure 4.19 there is more I/O waiting time than there is for the 1-disk case in Figure

4.36. The reason is that for the PDIOL version, the local/remote agents and the PDIOL

application work concurrently on two nodes. Before the PDIOL application asks for data

to be processed, the data has already been prefetched by the read agent. But for the version

without PDIOL, the OS does not prefetch quickly enough, even though bzip2 is a compute-

intensive application.
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Figure 4.35: bzip2 algorithm.
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Figure 4.36: The execution time of PDIOL bzip2 with different file sizes on 1 (left), 2
(middle), and 4 (right) disks. The size of the prefetch window is 128 pages.
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1 disk 2 disks 4 disks
File Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

8MB 2.04 2.07 2.03 0.000 2.02 2.03 2.00 0.000 2.06 2.07 2.04 0.000
32MB 7.16 7.17 7.15 0.000 7.19 7.21 7.18 0.000 7.25 7.27 7.20 0.001

128MB 27.92 27.96 27.88 0.001 28.08 28.15 28.03 0.002 28.33 28.36 28.28 0.001
512MB 110.9 111.2 110.7 0.044 111.6 111.8 111.4 0.033 112.5 112.7 112.4 0.013

Table 4.11: The execution time of PDIOL bzip2 with different file sizes on 1 (left), 2
(middle), and 4 (right) disks. The size of the prefetch window is 128 pages.
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Figure 4.37: The execution time of PDIOL bzip2 with different prefetch window sizes on
1 (left), 2 (middle), and 4 (right) disks. The file size is fixed at 128MB.

By varying the sizes of prefetch windows, we evaluate the PDIOL version of bzip2

using a 128MB data file. Figure 4.37 and Table 4.12 show the execution time of bzip2 with

different prefetch window sizes.

From the results, we can see that when the size of the prefetch window is one, the

performance is much worse; in fact, it is even slower than that of the non-PDIOL version.

The reason is that out of every 512KB of data compressed, only 64KB (1 page) of data is

prefetched. Furthermore, for every page which is not prefetched, the latency is the sum of

the network latency and the disk latency. When the size of the prefetch window increases

to 16, the prefetched data size is 16*64KB = 1,024KB. Except for the first segment, other

segments can be prefetched before being compressed. Thus, almost all the waiting time for

disk I/O is overlapped by the computation. Even with a larger size of the prefetch window,

the performance cannot be improved.
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1 disk 2 disks 4 disks
Window Size Avg Max Min �

�
Avg Max Min �

�
Avg Max Min �

�

1 35.36 35.43 35.22 0.007 36.90 37.83 36.38 0.300 42.50 42.70 42.28 0.031
4 30.16 30.19 30.12 0.001 29.79 29.91 29.68 0.009 30.46 30.76 30.28 0.036

16 27.88 27.92 27.86 0.001 28.18 28.56 28.05 0.047 28.34 28.39 28.32 0.001
64 27.86 27.89 27.84 0.000 28.07 28.09 28.04 0.001 28.29 28.32 28.24 0.001
256 27.88 27.92 27.84 0.001 28.12 28.15 28.07 0.001 28.31 28.38 28.27 0.002

Table 4.12: The execution time of PDIOL bzip2 with different prefetch window sizes on
1 (left), 2 (middle), and 4 (right) disks. The file size is fixed at 128MB.

4.4 Concluding Remarks

In this chapter, we evaluated the performance of PDIOL with a suite of experiments. First

the baseline performance of the network and disk systems were quantified with Netperf and

Bonnie. The higher bandwidth and lower latency of the network, compared with those of

disks, support our idea of overcoming the I/O bottleneck with disk parallelism.

The microbenchmarks written using PDIOL evaluate the effect of the number of disks

and the size of the prefetch window. The results show that the number of disks and the size

of prefetch window should be considered together. Neither of them can bring improvements

without the correct configuration of the other factor.

With PDIOL, grep reduces much of the I/O waiting time and obtains a speedup of 2.6

with up to 4 remote disks, while sort and bzip2 overlap little I/O waiting time, and gain a

marginal speedup. From the results, we can see that I/O-intensive applications provide more

benefit, while compute-intensive applications provide less – a result which is consistent with

our intuition.

In summary, with PDIOL, multiple disks can be utilized to improve the I/O performance

of applications. However, only I/O-intensive applications are able to derive the maximum

benefit.
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Chapter 5

Concluding Remarks

As new I/O-intensive applications emerge, the need for high-performance I/O increases.

One promising approach is through parallel disk systems. In this thesis, the Parallel Disk

Input-Output Library (PDIOL) is implemented to utilize parallel disks over a workstation

cluster.

The contributions of this thesis include:

1. Design and implementation of PDIOL with a UNIX-like API and the techniques –

windows-based prefetching and write-behind (Chapter 3 and Appendices A, B);

2. Evaluation of PDIOL using microbenchmarks and applications (Chapter 4);

3. Evaluation of the impact of parameters, such as the number of disks, the prefetch

window sizes, and application characteristics (Chapter 4).

The value of PDIOL can be summarized by the following:

1. PDIOL is implemented completely at the user-level, which makes it unnecessary to

recompile the operating system kernel;

2. It is simple to transform an application with normal file access to a PDIOL version

with UNIX-like APIs;

3. PDIOL is effective at decreasing I/O waiting time through disk parallelism, prefetch

and write-behind which is confirmed by microbenchmarks and application bench-

marks.

From the experiments, we draw the following conclusions: PDIOL is especially useful

for I/O-intensive applications. For example, PDIOL grep gains a speedup of 2.6 with four

disks while PDIOL sort and bzip2 gain virtually no speedup. In most cases, larger prefetch
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windows and a larger number of disks are good for performance. The two factors are corre-

lated, i.e., changing only one factor without changing another, cannot improve performance

in certain cases.

5.1 Future Work

Because PDIOL is a user-level library, performance is limited by the overhead of context

switches between user-level and kernel-level. The data path of PDIOL shown in Figure

3.2 should be shortened to decrease the contention of memory bus. By implementing the

read/write agents at the kernel-level, pinning down memory blocks and transferring data

directly to/from user-level area, the overhead of context switch can be decreased. These

techniques are well described by Mukherjee et al. [29].

In addition to this, the current version of PDIOL supports only sequential applications,

which limits its value greatly. It would be ideal to upgrade PDIOL to support parallel

applications. However, when different threads can write to the same unit of data, efficiently

keeping the data consistent, especially if there are many cache copies, is a challenging

problem.
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Appendix A

PDIOL Usage

In this appendix, we demonstrate how to use the PDIOL library. First, the header files and
library files of PDIOL will be described. Second, a sample configuration file of PDIOL
nodes is given. Third, we will detail the options of PDIOL applications. Finally a sample
program which transfers a PDIOL logical file striping over PDIOL nodes to a normal file is
given.

A.1 Header Files and Library Files

To use PDIOL, an application needs to include the header file of PDIOL and be linked with
the PDIOL library. The header file is pdiol.h and the library is libpdiol.a. In addition to
these two files, tlv.h and utility.h contain prototypes of some convenient routines for tuning
PDIOL programs.

A.2 PDIOL Nodes Configuration File

The configuration file of PDIOL nodes is located in $HOME/bin/conf, which contains all
the computer names in the cluster. The configuration file for our experiments is shown in
Figure A.2.

A.3 Command-line Options

PDIOL provides some options for controlling the behavior of its routines. In order to dif-
ferentiate between the PDIOL options and the options of an application, the symbol ”–”
separator is used in the command line of PDIOL applications. The arguments before ”–”
will be regarded as the options for PDIOL, and the rest are regarded as the arguments of the
application.

The command line to run a PDIOL application has the following form:

brule-m-a
brule-m-b
brule-m-c
brule-m-d

Figure A.1: Configuration file of PDIOL nodes.

66



long option short argument meaning default environment variable

prefetch p 0/1 Prefetch enabled 1 PREFETCH
write-behind w 0/1 Write-behind enabled 0 WRITEBEHIND
disk number d unsigned int Disk number 1 DISKNUMBER

window W unsigned int Prefetch window size 1 WINDOW SIZE
ssock s unsigned int send socket buffer size 65,536 SND BUFF
rsock r unsigned int receive socket buffer size 65,536 RCV BUFF
LOG l 0/1 Logging enabled 1 LOG
log L char* Log file name log.txt LOG FILE

Help h Help 0

Table A.1: PDIOL options.

pdiol-applicaiton [PDIOL options] – application argument

The PDIOL options are detailed in Table A.1. For example, the following command is
used to transfer a pdiol file sort.txt striped over 4 disks to a traditional file sorttxt.bak with
prefetch enabled and write-behind disabled:

pfs2fs -disk number 4 -prefetch 1 -w 0 – sort.txt sorttxt.bak

A.4 Sample Program

A sample program named pfs2fs.c is shown in Figure A.4. The purpose of this program is
to transfer a PDIOL logical file striped across a workstation cluster into a normal file.
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1 /* pfs2fs.c - To transfer a PDPL file to a normal file
2 */
3
4 #include <sys/time.h>
5 #include <sys/resource.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <assert.h>
9 #include <string.h>

10 #include <sys/time.h>
11 #include <unistd.h>
12 #include "pdiol.h"
13
14 #define BUFFERSIZE 655360
15 int main(int argc, char** argv)
16 {
17 PFS_FILE* pf;
18 FILE *outf;
19 int size, count, w_count = 0;
20 char pbuffer[BUFFERSIZE+1], *input, *output;
21
22 initialize_pdiol (&argc, &argv); // initialize pdiol
23
24 if(argc < 2 || argc > 3){
25 fprintf(stderr, "\n%s file [pdiol_file]\n", argv[0]);
26 exit(1);
27 }
28
29 input = argv[1];
30
31 if(argc ==3) output = argv[2];
32 else output = NULL;
33
34 pf = pdiol_fopen(input, "r"); //open pdiol file
35 pdiol_hint(pf, AP_SEQUENTIAL, 0); // hint
36
37 if(output != NULL) outf = fopen(output, "w");
38 else outf = fdopen(1, "w");
39
40 w_count = 0;
41
42 while(!pdiol_feof(pf)) {
43 count = pdiol_fread(pbuffer, 1, BUFFERSIZE, pf);
44 w_count += fwrite(pbuffer, 1, count, outf);
45 }
46
47 fclose(outf);
48 pdiol_fclose(pf); //close pdiol file
49
50 finalize_pdiol(); //finalize pdiol
51 }

Figure A.2: PDIOL sample program – pfs2fs.c.

68



Appendix B

PDIOL API Reference

PDIOL provides the following APIs, which are presented in the same format as UNIX man
pages.

B.1 initialize pdiol;

Initialize the PDIOL environment

Synopsis

#include <pdiol.h>
int initialize_pdiol(int* pargc, char*** pargv);

Description

The initialize pdiol function initializes the PDIOL environment. This function
should be called before any other statements. pargc is the pointer of the argc argument
of the main entry function. pargv is the pointer of the argv argument of the main entry func-
tion. It sets the PDIOL library option in the following sequence: command line arguments;
environment variable; hard coded default value;

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.2 finalize pdiol

Finalize PDIOL environment

Synopsis

#include <pdiol.h>
int finalize_pdiol();
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Description

The function finalize pdiol finalizes the PDIOL environment. This function should
be called after any statements related to PDIOL. It closes the connections between PDIOL
applications and remote agents, and releases PDIOL resources.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.3 pdiol fopen;

pdiol fopen – PDIOL logical file open function

Synopsis

#include <pdiol.h>
PFS_FILE* *pdiol_fopen (const char * const path,

const char * const mode);

Description

The pdiol fopen function opens the PDIOL logical file whose name is the string pointed
to by path. The argument mode is the pointer of a string which is one of the following
sequences: ”r”, ”r+”, ”w”, ”w+”, ”a”, ”a+”. The meaning of these strings is the same as the
mode in standard fopen. See fopen for detailed description.

Return Value

Upon successful completion, a PFS FILE pointer is returned. Otherwise, NULL is returned.

B.4 pdiol fclose;

pdiol fclose – close a PDIOL logical file

Synopsis

#include <pdiol.h>
int pdiol_fclose(PFS_FILE* pFile);

Description

The pdiol fclose function closes the PDIOL logical file pointed to by pFile. If the
PDIOL logical file was being used for output, any buffered data will be written out when
finalize io is called, or its buffer is reclaimed by the PDIOL library.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned
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B.5 pdiol fstat;

pdiol fstat – get the status of a PDIOL logical file.

Synopsis

#include <pdiol.h>
int int pdiol_fstat(struct pdiol_file* pf,

struct pdiol_state_struct* pstat);

Description

The pdiol fstat function obtains the status of a PDIOL logical file pointed to by pf and
stores the status information in a pdiol state struct structure pointed to by pstat.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.6 pdiol stat;

pdiol stat – get the status of a PDIOL logical file.

Synopsis

#include <pdiol.h>
int int pdiol_stat(char* const path,

struct pdiol_state_struct* pstat);

Description

The pdiol stat function obtains the status of a PDIOL logical file whose path is pointed
to by path and stores the status information in a pdiol state struct structure pointed to by
pstat.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.7 pdiol unlink;

pdiol unlink – unlink a PDIOL logical file.

Synopsis

#include <pdiol.h>
int pdiol_unlink(const char* const path);
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Description

The pdiol unlink function unlinks a PDIOL logical file whose path is pointed to by
path. Currently, every PDIOL logical file has only one link and does not support multiple
links.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.8 pdiol fflush;

pdiol fflush – flush a PDIOL logical file

Synopsis

#include <pdiol.h>
int pdiol_fflush(PFS_FILE *pf);

Description

The pdiol fflush function forces a write of all user-space buffered data for the given
output of a PDIOL logical file pointed to by pf. The open status of the PDIOL logical file
is unaffected.

Return Value

Upon successful completion, 0 is returned. Otherwise, -1 is returned

B.9 pdiol fread;

pdiol fread – read data from a PDIOL logical file

Synopsis

#include <pdiol.h>
size_t pdiol_fread(void * ptr, size_t size,

size_t nmemb, PFS_FILE * pf);

Description

The pdiol fread function reads nmemb elements of data, each size bytes long, from the
PDIOL logical file pointed to by pf, storing them at the location given by ptr.

Return Value

Returns the number of items successfully read. If an error occurs, -1 will be returned.
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B.10 pdiol fwrite;

pdiol fread – write data to a PDIOL logical file

Synopsis

#include <pdiol.h>
size_t pdiol_fwrite(void * ptr, size_t size,

size_t nmemb, PFS_FILE * pf);

Description

The pdiol fwrite function writes nmemb elements of data, each size bytes long, to the
PDIOL logical file pointed to by pf, obtaining them from the location given by ptr.

Return Value

Returns the number of items successfully written. If an error occurs, -1 will be returned.

B.11 pdiol fseek;

pdiol fseek – re-position a PDIOL logical file

Synopsis

#include <pdiol.h>
int pdiol_fseek(PFS_FILE * pf, long offset, int whence);

Description

The pdiol fseek function sets the file position of the PDIOL logical file pointed to by
pf. The new position, measured in bytes, is obtained by adding offset bytes to the position
specified by whence. The semantics of whence is the same as that of standard fseek.

Return Value

Returns 0 if successful, otherwise returns -1.

B.12 pdiol ftell;

pdiol ftell – get the file position.

Synopsis

#include <pdiol.h>
long pdiol_ftell( const PFS_FILE *const pf);
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Description

The pdiol ftell function obtains the current value of the file position indicator for the
PDIOL logical file pointed to by pf.

Return Value

Returns the current value of the file position

B.13 pdiol hint;

pdiol hint – set the access pattern of a PDIOL logical file.

Synopsis

#include <pdiol.h>
int pdiol_hint(PFS_FILE *pf, int access_pattern, int hint);

Description

The pdiol hint function sets the access pattern and hint of a PDIOL file pointed to by pf.
The access pattern is specified by access pattern. Currently, only AP SEQUENTIAL is sup-
ported. hint specifies special characteristics of file access. Currently the hint FINAL WRITE,
which means the file won’t be accessed in this application after being closed, is supported.

Return Value

Returns 0 upon successful completion, otherwise returns -1.
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Appendix C

Thread Log Viewer

C.1 Overview

Thread Log Viewer (TLV) is a tracing tool for debugging/tuning multiple threaded applica-
tions. The method is to record the activity of some or all of the threads in one process and
visualize the log file in a graphical interface. With TLV, the following information can be
obtained:

1. The start and end time of a called routine;

2. The total number, total execution time, and distribution of a certain routine;

3. The concurrency of routines between different threads in one process.

TLV includes a TLV library and a viewer. The TLV library was developed with C
language, while the viewer was developed with Java language.
In order to use TLV, four steps are necessary:

1. Include the header file of TLV and insert TLV API calls;

2. Compile the application;

3. Run the application and create log files;

4. Use TLV to show the log file and analyze the execution of the application.

C.2 TLV API

1. TLV Initialize – Initialize TLV and open TLV log file;

2. TLV Finalize – Finalize TLV and close TLV log file;

3. TLV AddState – Add the states to be recorded;

4. TLV AddThread – Let certain thread be logged;

5. TLV Record – Record the state of current thread.
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C.3 Sample Session

In this sample session, we will show how to use TLV to record and visualize the execution of
multiple threaded applications. Figure C.1 and C.2 include the source code for the sample
program, which uses a parallel random sampling sort algorithm to sort an array of integers.

Figures C.3, C.4, C.5, C.6, and C.7 are snapshots of of this sample session.
There are three modes of view:

1. Event duration view – Shows the duration of every recorded routine. See Figure C.3;

2. Event sequence view – Shows the sequence of every recorded routine. See Figure
C.4;

3. Event distribution view – Shows the execution time distribution of recorded routines.
See Figure C.5.

Figure C.6 shows the events and their color representations.
A summary view is provided to offer general information about an event. It is shown in

Figure C.7.
Three commands for analyzing the execution of a process include:

1. Total duration – Obtain the total execution of a certain routine;

2. Overlap – Obtain the overlap time between routines;

3. Single duration – Obtain the duration of single called routines.

Besides these commands, TLV also provides commands for zoom-in, zoom-out, and
move view, in order to provide a more clear view. TLV can open multiple log files of
different processes in different windows, thus making it easy to see the interaction between
processes.

Conclusion TLV is helpful in debugging/tuning multiple-threaded programs. With it,
some important bugs/bottlenecks in PDIOL were removed during development. However,
TLV has considerable room for improvement. One possibility would be to show the syn-
chronization between threads. Also, TLV cannot detect the context switch information
because TLV library is a user-level library. For example, TLV shows that two threads run
some routines concurrently, and the reality is that they perhaps use only one processor in-
terchangeably. Thus, the current version of TLV is only suitable for applications in which
there is no competion for processors.
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1 /* TLV state and the name of the state */
2 enum tlv_states {INIT, INIT_END, P1, P1_END,
3 P2, P2_END, P3, P3_END, P4, P4_END };
4
5 char* tlv_state_names[] = { "INIT", "INIT_END", "Phase1", "P1_END",
6 "PHASE2", "P2_END", "PHASE3", "P3_END", "PHASE4", "P4_END" };
7
8 main(int argc, char* argv[])
9 {

10 int length, *arg, index, start, end, count, my_seqid;
11 char* cs;
12
13 over_sampling = atof(argv[3]);
14 length = atoi(argv[1]);
15 thread_number = atoi(argv[2]);
16 my_seqid = 0;
17
18 //TLV initalize
19 TLV_Initialize("psrs");
20
21 TLV_AddState(INIT, tlv_state_names[INIT],
22 INIT_END, tlv_state_names[INIT_END], TLV_RED);
23 TLV_AddState(P1, tlv_state_names[P1],
24 P1_END, tlv_state_names[P1_END], TLV_GREEN);
25 TLV_AddState(P2, tlv_state_names[P2],
26 P2_END, tlv_state_names[P2_END], TLV_BLUE);
27 TLV_AddState(P3, tlv_state_names[P3],
28 P3_END, tlv_state_names[P3_END], TLV_YELLOW);
29 TLV_AddState(P4, tlv_state_names[P4],
30 P4_END, tlv_state_names[P4_END], TLV_CYAN);
31
32 TLV_Record(INIT);
33
34 my_array.RandomGenerate(length);
35 my_array.divide(args_for_thread);
36
37 TLV_Record(INIT_END);
38
39 for(int i=1;i<thread_number;i++){
40 arg = args_for_thread + 3*i;
41 *arg = i;
42 pthread_create(&(threads[i].thread_id),NULL,slave, (void*)arg);
43 }
44
45 arg = args_for_thread;
46 slave(arg);
47
48 for(int i=1;i<thread_number;i++) pthread_join(threads[i].thread_id, NULL);
49
50 index = 0;
51
52 for(int i=0;i<thread_number;i++){
53 memcpy(my_array.nArray+index,threads[i].local_array,
54 threads[i].local_array_len*sizeof(int));
55 index = index + threads[i].local_array_len;
56 }
57
58 TLV_Finalize(); // Finalize TLV
59 }

Figure C.1: Parallel Random Sampling Sort – main Program.
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1 void* slave(void* args)
2 {
3 int* my_arg = (int*)args;
4 int seq = *my_arg;
5 int start = *(my_arg+1);
6 int end = *(my_arg+2);
7 int index,i,count;
8
9 pthread_t my_tid = pthread_self();

10
11 // only the child thread need to add thread to record as
12 // the main thread has done in TLV_Intialize
13 if(args != args_for_thread) TLV_AddThread();
14
15 TLV_Record(PHASE1_START);
16
17 myarr.quicksort(start, end); /* sort */
18 myarr.GetSampling(my_arg); /* sampling */
19 barrier(thread_number, AFTER_PHASE1);
20
21 TLV_Record(PHASE1_END);
22
23 if(seq==0){
24 TLV_Record(PHASE2_START);
25 sampling();
26 TLV_Record(PHASE2_END);
27 }
28
29 barrier(thread_number, AFTER_PHASE2);
30
31 TLV_Record(PHASE3_START);
32
33 index = start;
34 for(i=0;i<thread_number;i++){
35 int pivot;
36 if(i<thread_number-1) pivot = myarr.nPivots[i];
37 else pivot = MAX_VALUE;
38
39 count = 0;
40 while(myarr.nArr[index+count]<=pivot&&index+count<=end) count++;
41
42 if(count>0){
43 if((thrds[i].parts[seq]=(int*)malloc(sizeof(int)*count))==NULL){
44 printf("failure to allocate memory\n");
45 exit(1);
46 }
47 thrds[i].parts_len[seq] = count;
48 memcpy(thrds[i].parts[seq], myarr.nArr+index, count*sizeof(int));
49 index = index+count;
50 }
51 }
52
53 /* partition & distribute parts */
54 barrier(thread_number, AFTER_PHASE3);
55
56 TLV_Record(PHASE3_END);
57 TLV_Record(PHASE4_START);
58 myarr.mergePartitions(seq);
59 TLV_Record(PHASE4_END);
60
61 return NULL;
62 }

Figure C.2: Parallel Random Sampling Sort – slave Program.
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Figure C.3: Snapshot of Thread Log Viewer – Event Duration View.

Figure C.4: Snapshot of Thread Log Viewer – Event Sequence View.
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Figure C.5: Snapshot of Thread Log Viewer – Event Distribution View.

Figure C.6: Snapshot of Thread Log Viewer – Event Legend.
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Figure C.7: Snapshot of Thread Log Viewer – Summary View.
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