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Abstract

Java has multiple inheritance of interfaces, but only single inheritance of code.

This situation leads to code being duplicated in Java library classes and ap-

plications. We describe a generalization of a Java Virtual Machine (JVM) to

support multiple inheritance of code.

Our approach places code in interfaces, without requiring language syntax

changes or compiler modifications. In our extended JVM, we use interfaces to

represent either new types of interfaces with code or traditional interfaces in

Java. We define and implement a super call mechanism resembling the one in

C++, in which the programmer can specify an inheritance path to the desired

superinterface implementation. We introduce a simple notation for super calls

to interfaces. Furthermore, we develop scripts that allow a programmer to use

multiple code inheritance with existing Java compilers.

We have modified a JVM to support multiple code inheritance. Our imple-

mentation does not affect the running time or the semantics of standard single

inheritance Java programs and executes correctly programs that use multiple

inheritance.
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Chapter 1

Introduction

Object-oriented programming languages are tools intended to clearly express

the powerful features that define the object-oriented programming paradigm,

in an attempt to better model real-world phenomena. Among features such

as encapsulation, polymorphism, and inheritance, the latter distinguishes it-

self as one of the most important mechanisms for organizing, building and

reusing types in a programming environment. In the absence of inheritance,

types are independent and they are constructed without taking advantage of

possible commonalities; the programmer has to explicitly ensure eventual con-

sistency among similar types. Before introducing the concept of multiple code

inheritance, we explain the notions of type and inheritance.

In general, the term type is used to describe a set of possible values that

obey certain imposed rules (i.e., contain common features, such as a set of

operations). Therefore, a type consists of two notions: value (or state) that

varies across instances of the type and a set of common operations for the

type. When a variable of a given type is declared, the variable is expected to

behave in a certain manner according to the type it belongs to. For example,

the mathematical notion of integer assumes a specific set of operations for all

its values. The binary operation + sums two integers and returns an integer as

the result of the computation. The notion of string (series of characters) differs

from integer in both its set of operations and the nature of its stored data. The

binary operation + has the same syntax as the addition operation for integers,

but it has a different semantics (i.e., concatenation). Moreover, there are op-
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erations for one type which do not make sense for another type: the operation

which returns a character at a given position in a string, charAt(index), has

no analog in the integer type.

In order to understand inheritance [2], some of the underlying concepts of

object-oriented languages have to be defined: objects, classes, interfaces, and

messages. Their interactions help programmers to model various real-world

situations in software applications.

An object is a conglomerate of behavior (set of operations) and data (state).

The data of an object, represented by variables, can be modified through

behavior, represented by methods (each method can be further split into a

method signature and a method body). Objects interact with each other by

passing messages which, depending on the type of their receiver object (and

possibly on the type of arguments), can trigger specific method executions. A

class can be seen as a prototype of all objects with the same type of variables

and behavior. An interface is a contract containing only method signatures

and constant declarations. Each class implementing an interface has to meet

the requirements of the contract: it has to eventually implement (i.e., provide

method bodies for) all the methods declared in the interface it implements.

Unlike classes and interfaces, primitive types are non-object types. Since we

are interested in the mechanism of object inheritance, we will ignore the prim-

itive types in our discussion below.

We use the term property (or feature) of an object to refer to any com-

bination of method signatures, method bodies, or data for that object. Method

signatures (operations or prototypes) constitute all the messages that can be

sent to an object of a type, method bodies (code) are the methods that provide

an implementation for the signatures defined in that type, and data (instance

variables, state, or attributes) represent the information stored, not computed,

in the object. Java uses the interface and class language constructs to group

objects with this variety of properties. Interfaces are groups of method signa-

tures. Classes consist of method bodies and data.
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Data−type

ClassInterface

Type

Interface−type Code−type

Figure 1.1: Type distinction in Java.

1.0.1 A View of Object Types

In order to better individualize, separate, and exploit these three kinds of

properties, we introduce three new language constructs: interface-type de-

fines the operations for a group of objects, code-type associates code with each

operation of the interface-type that it implements, and data-type describes

the data representation (the data layout of objects that implement code-types

for an interface-type) and supports object creation.

It is desirable to design and implement software that explicitly differenti-

ates among these concepts. The motivation for and advantages of separate

language mechanisms for these concepts are described by Leontiev, Ozsu, and

Szafron [19] [20]. Unfortunately, most popular object-oriented programming

languages do not entirely separate these three concepts. For example, Java

has two language constructs, interface and class, that partially separate these

three concepts (as shown in Figure 1.1), whereas Smalltalk and C++ combine

all three concepts into a single class construct. Brad Cox deliberately did not

provide the Objective-C programming language with multiple inheritance be-

cause he believed that, while inheritance was an implementation tool, it alone

was of little help in specifying classes, both statically (how they fit into their

environment) and dynamically (what tasks they can actually perform). As

it was defined, inheritance did not alleviate “the lack of robust specification

tools for software” [6].

Our long-term goal is to provide separate language mechanisms for each of
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these concepts (Figure 1.1). Our short-term strategy is to explicitly model the

three separate concepts in existing popular programming languages to evaluate

the utility of concept separation and to increase the demand for separation in

future languages. This dissertation describes a successful attempt to explicitly

model these three concepts as separate language constructs in Java, using

existing language constructs.

1.0.2 A View of Inheritance

The term sub-type describes any specialization of a type and is represented

by an arrow in a class, interface, or primitive type (parent type or super-type)

diagram. Sub-types can modify properties of super-types and can also add

new ones. However, a sub-type cannot remove a property from a super-type.

When objects of different types (interface-type, code-type, or data-type)

have common features, inheritance [33] provides a mechanism to reuse some

features from a type in another type. It also organizes and builds new types

based on existing ones, reducing the number of declarations and the amount

of executable code that must be written.

With respect to the number of possible direct super-types of a type in an

inheritance diagram, two kinds of inheritance are distinguished: single inher-

itance and multiple inheritance. Single inheritance allows a type to have at

most one direct super-type. Multiple inheritance allows a type to have more

than one direct super-type, so that the child type represents a combination

of features from two or more parent types. In C++, “the original and fun-

damental reason for considering multiple inheritance was simply to allow two

classes to be combined into one in such a way that objects of the resulting

class would behave as objects of either base class”[31]. A classic example

of multiple inheritance is illustrated in Figure 1.2 and can be found in the

standard iostream library in C++. An object of class iostream is both an

istream and an ostream, because it provides functionality to perform input

and output operations with a stream. Moreover, except for the constructor

and destructor, iostream inherits all its operations from its parent classes

istream and ostream.
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istream ostream

iostream

Figure 1.2: Example of multiple inheritance in C++.

There are three distinct useful ways to perceive inheritance in object-

oriented programs: interface inheritance, code inheritance, and data

inheritance.

First, we use the term interface inheritance to denote the situation

when a sub-type inherits the operations of its super-types. The principle of

substitutability states that if a language expression contains a reference to an

object whose static type is A, then an object whose type is A or any sub-

type can be used instead. Interface inheritance relies only on substitutability

and does not imply that code or data are inherited. Java uses an interface

(Figure 1.1) to implement the concept we have called an interface-type. With

this terminology, Java currently supports multiple interface-type inheritance

or multiple interface inheritance.

Second, we use the term code inheritance when a code-type reuses the

binding between an operation and the associated code in its parent’s code-type.

Code inheritance can be used independently of data representation since there

are many operations that can be implemented by simply calling more basic

operations. Each object-oriented language implements code-types in its own

way. In Java, C++ and Smalltalk, a class is used as a code-type. However,

in all three languages, classes have two other responsibilities, namely data

representation and object creation. In C++ and Smalltalk, the class also

has the interface-type responsibilities that are done in Java interfaces. Java

and Smalltalk have only single code inheritance, but C++ has multiple code

inheritance through classes. In this dissertation, we show a novel way to

implement multiple code inheritance in Java. This is the essential step to meet
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our goal of modeling each of these three concepts separately in Java using

existing language constructs.

Third, we use the term data inheritance when a sub-type reuses data

(not code) from the super-type. Data inheritance allows a data-type to reuse

the object layout of a parent data-type. Of course, classes in Java, C++

and Smalltalk have both the data layout and object creation responsibilities.

Unfortunately, they also have other responsibilities that are better suited to

the other two language mechanisms that we have called interface-types and

code-types. Neither Java nor Smalltalk supports multiple data inheritance,

but C++ does.

Since popular programming languages combine code and data, they either

support both multiple code inheritance and multiple data inheritance (C++),

or single code inheritance and single data inheritance (Java and Smalltalk).

We use the term implementation inheritance to refer to combined code and

data inheritance. The term implementation-type is used for a construct

that combines a code-type and a data-type.

1.0.3 Types in Practice

In Chapter 2, we describe how existing programming languages without mul-

tiple code inheritance use different alternatives to share code from several

types. They all suffer from one or more of these problems: repeated code

that bloats the code-base, mistakes when copying similar code, an increased

delegation overhead by sending too many messages, and a requirement that

all source code must be available. The separation of inheritance concepts is

also compromised. For example, in certain situations both interface-type and

code-type access is necessary for the programmer to modify the code. Multiple

code inheritance, on the other hand, simplifies the work of the programmer,

supporting simple definitions of complicated models. Languages such as C++,

Clos, Cecil, and Dylan benefit from using this concept.

In the process of analyzing the separation of inheritance concepts as ap-

plied to Java, we explored several possibilities in order to achieve multiple

code inheritance. One option is to represent code-types by abstract classes.
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However, the example from Figure 1.2 illustrates that it is often necessary

to inherit code from multiple code-types. If code-types were represented as

abstract classes, we would need to modify Java so that an abstract class can

inherit from multiple superclasses.

On the other hand, if we use interfaces to represent code-types, we can take

advantage of Java’s current multiple-inheritance of interfaces. The problem is

simplified to modifying Java to support code in interfaces. We solved this

problem by making straightforward and localized changes to the Java Virtual

Machine (JVM).

Our approach accesses code in superinterfaces and superclasses using the

same inheritance mechanism. We do not support multiple data inheritance,

since data cannot be declared in interfaces. However, as will be shown in

the next Chapter, multiple data inheritance is the cause of many complica-

tions in the implementation of multiple-inheritance in C++. At first glance,

it may appear that the opportunities for multiple code inheritance without

multiple data inheritance are few. However, as the examples throughout this

dissertation show, that is not a concern: all references to data are replaced by

abstract accessor method invocations, that are implemented down the hierar-

chy in data-types (concrete classes).

Our implementation has several advantages: it facilitates code re-use, it

supports separation of inheritance concepts, and it improves expressiveness

and clarity of implementation.

1.1 Research Contributions

The research contributions of this dissertation include:

1. The first implementation of multiple code inheritance in Java is provided.

It is based on the novel concept of adding code to a new type of interface

called a code-type. Only straightforward and localized modifications are

made to the JVM to support code within the interfaces. All existing

programs continue to work as before and suffer no performance penal-

ties. No changes need to be made to the syntax of Java to use multiple
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code inheritance, so no compiler changes are necessary. However, syntax

changes that would simplify coding are proposed for the future.

2. We show how multiple code inheritance reduces the amount of identical

and similar code (such as in the standard libraries) to simplify program

construction and maintenance.

3. We have also defined and implemented a super call mechanism that

resembles the one in C++, in which programmers can specify an inher-

itance path to the desired super implementation. We have introduced

a simple notation for these super calls that does not require compiler

support and proposed a simple syntax for future compiler support.

1.2 Dissertation Organization

In Chapter 2, we review the current state of multiple inheritance. In Chapter

3, we describe the current implementation of those parts of the JVM that are

involved in method dispatch. In Chapter 4, we describe how we modified the

JVM to support code in interfaces and how this code is dispatched. This idea

is the key to our implementation of multiple code inheritance. In Chapter 5,

we describe the changes necessary to support a generalization of the super

operation for multiple inheritance. In Chapter 6, we describe the experiments

we conducted to validate our approach. In Chapter 7, we discuss the mecha-

nism that the programmer uses to apply multiple code inheritance and propose

future syntax changes to simplify this mechanism. Finally, in Chapter 8 we

present future work and provide a summary.
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Chapter 2

The State of Multiple
Inheritance

This Chapter describes the state of multiple inheritance from four different

perspectives. First, it presents some of the problems associated with multiple

implementation inheritance which have resulted in its absence from many pro-

gramming languages. Second, two modalities are described as substitutes for

multiple inheritance. Third, the advantages of using multiple inheritance are

listed. Finally, a summary of how various programming languages that provide

multiple inheritance cope with the issues introduced by multiple inheritance

is presented at the end of this Chapter.

2.1 Problems with Multiple Implementation

Inheritance

When migrating from single to multiple implementation inheritance, new is-

sues arise due to the existence of several potentially unrelated parents (super-

types) from which a child (sub-type) inherits. It may be difficult to determine

which particular version of an intended common feature will be propagated

from a super-type to a sub-type, if the sub-type does not provide a correspond-

ing feature of its own. Access to each feature from super-types is checked for

ambiguity – a situation in which an expression used to access a property from

the super-type may not properly differentiate the contributing parent. Five

major problems in ambiguity due to multiple implementation (code and data)

9



TypeA TypeB

TypeC

alpha()alpha()

(a) Simple ambiguity.

TypeD
alpha()

TypeC

TypeBTypeA

(b) Diamond ambigu-
ity.

TypeD
alpha()

TypeC

TypeBTypeA
alpha()

(c) Special case ambi-
guity.

Figure 2.1: Operation ambiguities.

inheritance are analyzed separately, followed by our solution to each of them.

The problems are illustrated using examples from C++ [12], a language that

supports multiple implementation inheritance.

2.1.1 Problem 1: Operation Code Ambiguity

Figure 2.1(a) illustrates the case in which different code for the method alpha()

is provided in both super-types TypeA and TypeB.

If more than one super-type contains operations with identical names, there

has to be a way to determine whether such situations lead to code selection am-

biguities and, if so, eliminate them. An ambiguity occurs when re-definitions of

a code implementation for operations from a super-type occur on several paths

through the inheritance hierarchy. Different programming languages that sup-

port multiple code inheritance use different approaches to solve this problem.

Some languages choose a particular super-type and qualify the ambiguous

name with that super-type name. Other languages use renaming techniques.

Figure 2.1(a) illustrates the case in which different code for the method

alpha() is provided in both super-types TypeA and TypeB.

Since TypeC does not have an alpha() of its own (denoted by “–”), when

alpha() is called on an object of dynamic type TypeC, a dilemma is encoun-

tered as to which implementation of alpha() should be inherited. In C++,

the use of an ambiguous function generates a compiler error. To eliminate the

10



error, a programmer must provide code for the ambiguous method alpha() in

TypeC. If the code in one of the super-types is wanted, the implementation of

alpha() in TypeC can make a call to the appropriate super-type using a scope

resolution operator (such as the :: in the C++ approach), but a method that

contains this call must be provided by the programmer.

Figure 2.1(b) shows a more complicated situation. An invocation of alpha()

on an object whose dynamic type is TypeC may also be considered ambiguous

since it could be argued that TypeC inherits code for alpha() indirectly from

TypeD through two different paths, via TypeA and via TypeB. However, since

the code is the same, there is no real ambiguity. C++ uses a modified multiple

sub-objects approach for inheritance; multiple copies of a parent object can oc-

cur in the child object if, for example, the child inherits the parent indirectly

on two different paths, as shown in Figure 2.1(b). Multiple sub-objects is the

default, but in certain cases the programmer can specify that only one copy

should be used. In C++, for the default inheritance case, this situation is

considered an ambiguity.

Figure 2.1(c) shows an even more complicated situation. An invocation of

alpha() on an object whose dynamic type is TypeC may also be considered

ambiguous since it can be argued that TypeC inherits code for alpha() directly

from TypeA and different code for alpha() indirectly from TypeD through

TypeB. In C++, the compiler reports this as an ambiguity (for the default

inheritance) and the programmer must define code for alpha() in TypeC.

In Pang et al. [24] it is argued that, since the code for alpha() in TypeD

is masked along at least one path by the code for alpha() in TypeA, there

is not an ambiguity and the code from TypeA is inherited in TypeC. This

less conservative definition of ambiguity is especially important if a language

supports multi-dispatch [8] [9].

Our solution: For the situation in Figure 2.1(a), we mimic the C++ so-

lution. For the situations in Figure 2.1(b) and 2.1(c), we can implement either

the C++ solution or the less conservative version. Currently, we are using the

less conservative definition of ambiguity, since we are also interested in Java

multi-dispatch [4]. Because we do not yet have adequate compiler support for

11



TypeC

TypeA TypeB
int a int a

(a) Data with the same type.

TypeC

TypeA TypeB
int a char a

(b) Data with different types.

Figure 2.2: Data naming ambiguities: Case 1.

multiple code inheritance in Java, instead of signaling ambiguities at compile-

time, we detect them at load-time (when the data structures associated with

the sub-type are built) and, at that point, we throw an exception. If no am-

biguities are detected, we proceed by executing the unambiguous method; the

mechanism of choosing the method to invoke will be detailed in subsequent

Chapters.

2.1.2 Problem 2: Data Naming Ambiguity

In languages with multiple inheritance, in addition to potential operation name

clashes, data name clashes can also occur. Some languages maintain separate

copies of data inherited from different super-types, while other languages merge

like-named data together in the sub-type. If super-types contain common data,

it has to be decided which copy of a data item coming from more than one

path to use in a sub-type. For example, in Figure 2.2(a), if TypeC should

only inherit one copy of the variable a, it does not matter if the copy “comes

from TypeA” or “comes from TypeB”, since they are both declared as ints.

However, in Figure 2.2(b) it matters, since the variable a is an int in TypeA

and it is a char in TypeB.

In C++, two uses of multiple data inheritance are distinguished with re-

spect to the dependence relationship among super-types. First, if there are

no dependencies among the super-types, then the object of the final sub-type

must contain sub-objects for each super-type. Consider how inherited data

item a is accessed in TypeC of Figure 2.2. Since there are sub-objects for each
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}
// ambiguity: which d?

TypeD TypeD
int d int d

alpha() {
d = 0;TypeC

TypeA TypeB

(a) Several copies in the sub-type from the
common super-type.

alpha () {

}

TypeD
int d

TypeA TypeB

d = 0;TypeC
// no ambiguity

(b) One copy in the sub-type from the
common super-type.

Figure 2.3: Data naming ambiguities: Case 2.

super-type, two copies of variable a are required in TypeC. Since there are two

copies of a, when a is accessed in TypeC, an ambiguity occurs. As illustrated in

Figure 2.2(b), data items may have identical names regardless of their types.

C++ resolves both cases by using the scope resolution operator :: (TypeA::a

represents the int a in the TypeA part of the TypeC object and TypeB::a

represents the char a in the TypeB part of the TypeC object).

Second, if there are dependencies among the super-types (two or more

inherited types share a common type), the programmer has a choice. This

kind of inheritance is also called repeated inheritance. By default, even if

there is a common super-type (TypeD in Figure 2.3(a)) in the hierarchy, the

sub-type (TypeC) will also contain several (two, in this example) sub-objects

of that common super-type. Consider the case in which TypeD contains a

data int d. TypeA, TypeB, and TypeD are normal C++ classes with the

usual inheritance relationship, and consequently there are two copies of int

d in TypeC, one inherited from TypeD via TypeA and the other inherited from

TypeD via TypeB. If a method alpha() in TypeC accesses TypeD’s data item d,

(for example, alpha(){d=0;}), then an ambiguity arises; it is not clear which

of the two copies of int d in TypeC to use, the one inherited via TypeA or the

one inherited via TypeB. C++ uses the scope resolution operator :: to pick
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Figure 2.4: Code layout ambiguity.

one.

Alternately, the C++ programmer can specify that only one object of the

common super-type resides in the final sub-type, the same object being shared

in all sub-types. The C++ solution to resolving ambiguities is the following:

if the derived class, TypeC in Figure 2.3(b), has to inherit only one copy of the

data from the common class, TypeD, then the intermediate classes, TypeA and

TypeB, need to declare the inheritance as virtual. Hence, there is just one copy

of int d in TypeC, so accessing variable d does not generate an ambiguity.

Our solution: This problem does not exist in our implementation because

we do not support multiple data inheritance.

The next two problems relate to multiple implementation (code and data)

inheritance interaction. They are purely compiler issues regarding the layout

of code and data, so they are not visible to the user. However, these problems

must be resolved.

2.1.3 Problem 3: Code Layout Ambiguity

In the example from Figure 2.4, a problem arises from the different layout

of the code in the sub-type (TypeC), with respect to the layout of the same

code in the super-types (TypeA and TypeB). In the single inheritance situation,

the same offset (i.e., 0) can be used to access the code for an operation in a

sub-type and in its (direct or indirect) super-type. This is not the case with

multiple code inheritance. When a sub-type inherits operations from several

super-types, there is a problem in trying to set an order on the operations in

the sub-type. In the example from Figure 2.4, should alpha() be placed before
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beta() in TypeC’s data structures or after beta()? Regardless of our choice,

we still have different offsets for one of the operations (beta() in Figure 2.4)

in the super-type (offset 0 in TypeB) as compared to the sub-type (offset 1 in

TypeC). This makes the single inheritance constant-index approach impossible

for multiple inheritance.

Whenever we access methods of either TypeA, TypeB, or TypeC, the com-

piler must compute the offset of each method in the type’s method table (vir-

tual function table in C++). At run-time, this offset is used to access the

appropriate method in the method table of the dynamic type of the receiver,

even though the dynamic type of the receiver is not known at compile-time.

For example, assume the method table in TypeC has the methods from TypeA,

followed by the methods from TypeB, followed by any methods declared in

TypeC as shown in Figure 2.4. The compiler can insert an offset of 0 into the

code at a call-site for alpha(). At run-time, this offset can be used to access

the code for alpha() in TypeA or TypeC depending on the dynamic type of the

receiver. However, at a call-site for beta(), the compiler must select an offset

of 0 to match the method table in TypeB or an offset of 1 to match the method

table in TypeC. The solution in C++ is to use the offset of the super-type, but

add a constant delta to the method table origin before adding the offset. The

delta must be computed at run-time (delta = 0 for TypeB and delta = 1 for

TypeC), since its value depends on the layout of the super-type and sub-type.

Our solution: Our approach is based on interface method tables that

already exist in Java. In subsequent Chapters, we provide details about the

interaction of data structures used to resolve multiple code inheritance in Java.

2.1.4 Problem 4: Data Layout Ambiguity

In the single inheritance case, data declared in a sub-type are concatenated

with the duplicated data from the super-type in the sub-object image; there-

fore, a data item is located at the same offset in all objects of the super-type

or sub-types. Since in the multiple inheritance case there is more than one

super-type, a potential problem arises in establishing the layout of data in

sub-type objects.
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(a) Data layout ambiguity.
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(b) The layout of a TypeC object.

Figure 2.5: Data layout issues.

The previous problem (Problem 3, Section 2.1.3) showed that method code

could not be located at a fixed offset (table-index). A similar situation can

occur for data. The offset of the data in the object image can change due

to the same data being inherited from several possibly unrelated common

parents. More importantly, in the case of multiple inheritance, the copies

of the inherited data in the sub-object now have different offsets than the

offsets that were known when the code which used them was compiled in

the super-type. The situation in Figure 2.5(a) illustrates the case in which

the super-types are not related. In C++, an object of TypeA contains an

entry for each instance variable (data item). In our example, the only entry

would be for the int a. Objects of sub-types (such as TypeC) are formed

by concatenating the data of the super-type with their own data. In this

case, a TypeC object would have two slots, one for a and one for b. It can

be assumed that variable b follows variable a in TypeC’s object layout. For

example, if we have a method alpha(){b=0;} in TypeB, when we compile it,

we obtain the offset 0 for aTypeB.b (the offset of b in TypeB). When we invoke

aTypeC.alpha(), the offset of aTypeC.b is 1 (the offset of b in TypeC), so it

would be wrong to just use the compiled code for alpha() that uses the offset

0 even though TypeC is a sub-type of TypeB. This problem is more serious than

the code layout ambiguity since each method compiled in a type (TypeB) that

references instance variables can have the wrong data offsets, if it is applied

to a sub-type (TypeC) object that inherits this code. The solution provided
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alpha () {

}
return super.alpha ();

Figure 2.6: Super call ambiguity.

by C++ is the following: the this pointer (Figure 2.5(b)) which points to the

start of the object layout is moved before the code is executed. For example, if

the receiver object has TypeC as its dynamic type, the this pointer is moved to

point to the start of the TypeB object when the method is called. An offset of

0 to access b now accesses the same b in a TypeC object, since the this pointer

has been incremented by one word.

Our solution: Our approach to multiple code inheritance in Java does

not support multiple data inheritance, so this problem is not applicable in

our implementation of multiple code inheritance. Multiple data inheritance

is a large source of problems and is not as useful as the code inheritance

counterpart. Inheritance is beneficial when re-using code (more than it is for

data), because the effort of programmers is mainly focused on implementing

method bodies.

2.1.5 Problem 5: Super Call Ambiguity

The method code in a sub-type often refines the code of its super-types by

adding some statements. In many object-oriented programming languages,

this is accomplished by sending a message to the super object. Whenever

a message is sent to super, the method lookup for that message starts in the

super-type of the type that the method currently executing belongs to, instead

of in the type of the receiver object. There are other approaches used to refine

methods from the super-types, and some of them are shown in Table 2.1 of

Chapter 2. However, super is the most popular refinement technique. When

multiple inheritance is used, ambiguity problems with super calls may appear
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due to the presence of multiple super-types. Figure 2.6 shows a refinement

of alpha() in TypeC that contains an ambiguous super call. It is not clear

whether the alpha() method in TypeA or TypeB should be called. Note that an

ambiguous super call can exist even when no ambiguity occurs for the method

that contains the super.

In C++, the super method call is qualified with the :: scope resolution

operator. The lookup starts from the qualifying class.

Our solution: We extend the capability of the Java super keyword by

specifying the superinterface from which the lookup for the given method

starts. If code is found in the specified interface, then that code is executed.

Otherwise, the superinterfaces are searched recursively. In the presence of

ambiguities we throw an exception at load-time. If the lookup fails, we also

throw an exception. We propose the syntax super(InterfaceA).alpha() for

the future, which specifies the interface from which the lookup for method

alpha() begins. Since our current implementation makes no language syntax

changes, for now, we use a special marker in the source code just before the

super call as described in Chapter 5.

2.2 Alternatives to Multiple Inheritance

Since Java does not provide multiple code inheritance, two idioms are com-

monly used to model complex applications that normally require this mecha-

nism. Java libraries constitute a good source of examples in which these idioms

are used in order to compensate for the lack of multiple code inheritance in

Java. Figure 2.7 illustrates the hierarchical relationships among a few classes

and interfaces from the java.io library.

2.2.1 Code Repetition

The simplest way to substitute for multiple inheritance is to repeat the code

from the desired types into a sub-type, instead of simply inheriting it. The

obvious drawback of this approach is an increase in code size. The hidden

drawback is code deviation in which changes to a method are only made in
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DataInputStream RandomAccessFile DataOutputStream

InputStream DataInput OutputStreamDataOutput

Figure 2.7: Some classes from the java.io library.

// java.io.DataInputStream and java.io.RandomAccessFile

public final float readFloat() throws IOException {
return Float.intBitsToFloat(this.readInt());

}

Figure 2.8: Duplicate code in java.io library.

one copy, so that subtle bugs are introduced. Another disadvantage is that the

source code must be available to the user for copying. Finally, the separation of

inheritance concepts that we aim for is deteriorated, since both the interface-

type and code-type levels are necessary for the user to be able to perform the

required modifications.

The java.io library classes contain several examples of repeated code. One

of them is the following: the classes DataInputStream and DataOutputStream

implement the interfaces DataInput and DataOutput respectively. The class

RandomAccessFile implements both DataInput and DataOutput, as illus-

trated in Figure 2.7. Much of the code that is in RandomAccessFile is identi-

cal or similar to the code in DataInputStream and DataOutputStream. As a

specific example of identical code, consider the method readFloat() shown in

Figure 2.8, which appears both in DataInputStream and RandomAccessFile.

The methods readFully(byte b[]) and readDouble() are also identical.

There are also many other similar methods, such as readByte(), shown

in Figure 2.9, which differ only in the type of the receiver of some common

methods such as read(). Other similar methods are the following:

readUnsignedByte(), readFully(byte b[], int off, int len),

readShort(), readUnsignedShort(), readChar(), and readInt(). A num-
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// java.io.DataInputStream and java.io.RandomAccessFile

public final byte readByte() throws IOException {
int ch = this.in.read(); // int ch = this.read();

if (ch < 0)

throw new EOFException();

return (byte)(ch);

}

Figure 2.9: Similar code in java.io library.

TypeA TypeB

TypeC

alpha() beta()

(a)

TypeA TypeB
alpha() beta()

TypeC
beta()

(b)

TypeA TypeB
alpha() beta()

TypeC
beta()  (TypeB)

(c)

Figure 2.10: Delegation example.

ber of analogous identical methods can also be identified in the output stream

classes DataOutputStream and RandomAccessFile, along with some similar

methods that differ in the type of the receiver of some common methods such

as write(int).

2.2.2 Delegation

Delegation [35] allows an object to pass a received message to another object

that is able to perform the task. This technique can be used in place of multiple

code inheritance.

For example, the multiple-code inheritance in Figure 2.10(a) can be re-

placed by the single-code inheritance in Figure 2.10(b). In this case, each

object of TypeC in Figure 2.10(b) has an instance variable that is bound to

an object from TypeB. The method beta() is not inherited in TypeC. Instead,

it has a one-statement implementation that invokes the beta() method in its

sub-object of TypeB. We say that TypeC delegates beta() to TypeB. In general,

the object that is delegated to may be stored as an instance variable or it may

be passed as an extra method argument, as shown in Figure 2.10(c).
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// class java.io.DataInputStream

...

public final int readInt() throws IOException {
InputStream in = this.in;

int ch1 = in.read();

int ch2 = in.read();

int ch3 = in.read();

int ch4 = in.read();

if ((ch1 | ch2 | ch3 | ch4) < 0)

throw new EOFException();

return ((ch1 << 24) + (ch2 << 16) + (ch3 << 8) +

(ch4 << 0));

}
...

Figure 2.11: Example of delegation in java.io.DataInputStream class.

Unfortunately, this approach has the drawback of writing extra delegating

methods and the overhead of sending more messages. In C++, it has been

discovered that users found difficulties when designing based on delegation [31].

Overall, the burden is placed on the programmer to write extra code, preserve

the return type and parameters list of the forwarding methods, and throws

clauses whenever necessary. This supplementary work (writing methods that

only delegate responsibility) is essentially done automatically when multiple

inheritance is used.

The java.io library contains many examples of delegation. Figure 2.11

shows how class DataInputStream uses a reference (the instance variable in)

to an InputStream to read characters that are assembled into an int. This

is a simple example of delegation that is not used to replace multiple code

inheritance.

A second example illustrates the way the java.io library copes with the

absence of multiple code inheritance by using delegation. The class File

(Figure 2.12) cannot simultaneously inherit from classes ObjectInputStream

and ObjectOutputStream, since there is no multiple code inheritance in Java.

However, in the implementation of readObject() and writeObject(), it

needs the code of some methods from both classes ObjectInputStream and

21



// class java.io.File

...

private synchronized void

writeObject(java.io.ObjectOutputStream s)

throws IOException

{
s.defaultWriteObject();

// Add the separator character

s.writeChar(this.separatorChar);

}
...

private synchronized void

readObject(java.io.ObjectInputStream s)

throws IOException, ClassNotFoundException

{
s.defaultReadObject();

// read the previous separator char

char sep = s.readChar();

if (sep != separatorChar)

this.path = this.path.replace(sep, separatorChar);

this.path = fs.normalize(this.path);

this.prefixLength = fs.prefixLength(this.path);

}
...

Figure 2.12: Example of delegation in java.io.File class.

ObjectOutputStream. For this reason, an instance of one of these classes is

passed as an argument to the method that uses their code and the read and

write tasks are delegated to this argument.

An alternate approach to multiple inheritance, which ultimately results

in delegation, is the use of inner classes inside interfaces [23]. However, this

approach differentiates between using code from superclasses and superinter-

faces, by using inheritance along the superclass chain and a form of delegation

along the interface chains. For a class ClassA to use code from an interface

InterfaceA, the programmer must explicitly declare a sub-object in ClassA

and bind it to an instance of an inner class ClassB that extends an inner class

ClassC declared in InterfaceA.
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2.3 Advantages of Multiple Code Inheritance

Our implementation of multiple code inheritance has the following advan-

tages: facilitates code re-use, supports separation of inheritance concepts,

and improves expressiveness and clarity of implementation.

2.3.1 Facilitates Code Re-use

Code re-use is manifested through code decrease due to increased code shar-

ing. Multiple code inheritance can re-establish a certain degree of normality

in the implementation of several Java applications. Commonality in the de-

scription of classes (method signatures) exists in Java and we can promote

those features to common parent interfaces. Since Java has multiple inheri-

tance of interfaces, it does not suffer from modeling problems. For example,

the Java class RandomAccessFile implements the interfaces DataInput and

DataOutput, as shown in Figure 2.7. Every instance of RandomAccessFile

can be considered as both a DataInput and a DataOutput. This provides

substitutability [14] so that any reference that is declared as a DataInput or

DataOutput can be bound to a RandomAccessFile.

However, Java’s lack of multiple code inheritance causes problems with im-

plementation and maintenance. For example, even though RandomAccessFile

implements DataInput and DataOutput, it cannot inherit code from these in-

terfaces. Therefore, identical code appears in more than one class. For ex-

ample, exact copies of the implementation of readFloat (Figure 2.8) appear

in both RandomAccessFile and DataInputStream. This makes the program

larger and harder to understand.

In addition, sometimes the code is incorrectly copied and often when

changes are made to one copy, they are not made to all copies. In this example,

because multiple code inheritance was not available, the Java library design-

ers tried to simulate it by repeating and modifying the code where necessary

in DataInputStream, RandomAccessFile, and DataOutputStream, increas-

ing the overall code, instead of simply moving it up into the corresponding

common super-types and subclassing accordingly. Thus, multiple code inher-
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itance would result in a higher degree of code re-use; the programmer of a

subclass no longer needs to be familiar with the specific implementation of the

common operations.

Moreover, the re-use of code increases reliability, since it is common to find

errors in repeated code when similar code is not consistent. An immediate

consequence of code re-use is a decrease of maintenance costs.

Consider again Figure 2.9. To replace these methods by a common method,

the line that differentiates them can be replaced by the common code: int ch

= this.source().read(),

where source() is a new accessor method that for DataInputStream returns

this.in and for RandomAccessFile returns this. The same abstraction can

be used to share other similar methods, as shown in Section 2.2.1.

Although it would be possible to re-factor this hierarchy to make the class

RandomAccessFile a subclass of either DataInputStream or DataOutputStream,

it is not possible to make it a subclass of both, since Java does not support

multiple-inheritance for classes. A re-factoring must accompany this abstrac-

tion, since the return type of the source() method must be specified as a single

type that implements the operation, read(). The receiver of the source()

method call in DataInputStream is referenced by the instance variable in that

has static type InputStream (indirect superclass of DataInputStream). The

receiver of the source() method call in RandomAccessFile is referenced by

the pseudo-variable this, which has static type RandomAccessFile.

Unfortunately, in the current class/interface hierarchy, there is no common

superinterface or superclass of RandomAccessFile and InputStream to use as

the return type for the source() method. An interface must be added to the

hierarchy that is a superinterface of InputStream and RandomAccessFile and

declares the read() method.

However, after all of these common methods have been found, code inheri-

tance has to be used to share them. Therefore, we need a common ancestor of

DataInputStream and RandomAccessFile to store the similar read methods

and a common ancestor class of DataOutputStream and RandomAccessFile

to store the similar write methods. Since we are sharing code, this ancestor
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should be a code-type.

The common code is ultimately factored into two code-types. A code-type

implements the code for an interface and now a class implements the data for

a code-type. Since there is no concept of code-type in Java, we must use either

an interface or a class to represent our code-types.

2.3.2 Supports Separation of Inheritance Concepts

In addition to the increased degree of abstraction imposed by the clear separa-

tion among the three inheritance types, multiple code inheritance constitutes

a necessary feature from a software engineering perspective “on the grounds

that specification tools and implementation tools belong in a true software en-

gineers toolkit.” [30]. Programs can always benefit from having multiple views

(designer, programmer, system administrator, user) of their design. Multiple

code inheritance exploits code sharing to develop elegant and useful software

components.

The separation of concepts emphasizes the role of interface-types, providing

them with enhanced capabilities and control. Our multiple code inheritance

approach does not allow code inheritance without interface inheritance. In this

context, an aspect of major significance is the consistency of interface-types.

In conjunction with polymorphism – a mechanism that supports inheritance,

triggering several behaviors using the same interface – inheritance permits a

super-type to define an interface-type for which several implementations are

provided in the sub-types by means of code-types. When we lack information

about sub-types, but we know the interface-type of the super-type, we can

pass a reference to an object of the sub-type wherever a super-type is used.

This way we can ensure that only behavior specified in the interface-type is

called, the implementing types being hidden from the user.

2.3.3 Improves Expressiveness and Clarity of Implemen-
tation

Multiple inheritance supports a better organization of types, for the simple

reason that it is congruent with real-world applications which make extensive
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use of multiple features from unrelated concepts.

Since “class hierarchies can be used to organize and reason about soft-

ware entities” [6] and since it is primarily an inheritance mechanism, multiple

inheritance also extracts knowledge from the multiple type declarations and

enriches types by providing them with more features.

Multiple code inheritance has the capability of enhancing expressiveness

when implementing new systems, by thinking of a type as a sub-type of sev-

eral other types. Since in our implementation we would like the code to be

inherited from the interface methods, we would also like to have a subclass-

ing relationship (code-type) which alone does not guarantee sub-typing. The

blending of these two aspects leads to multiple specialization (“is-a” relation-

ship [17] that we can find in the java.io library: RandomAccessFile is a

specialization of both DataInput and DataOutput).

As multiple inheritance makes applications easier to design (via multiple in-

terface inheritance) and implement (via multiple code inheritance), and equally

easier to understand, it supports rapid prototyping and exploratory program-

ming. Multiple inheritance reduces the time necessary to build and maintain

applications. Applications are more comprehensible because the amount of

new information is reduced. New types can be built taking advantage of ex-

isting ones, allowing for quick software development. The goal is to design

software that is easy to use and modify – reusable software. We need to have

the tools that help us build reusable software, and multiple code inheritance

is a powerful tool.

2.4 Existing Multiple Code Inheritance Lan-

guages

We have investigated the mechanisms of multiple code inheritance in several

programming languages in order to find out how common problems that oc-

curred due to multiple code inheritance were solved. One of the issues of

interest is ambiguous name resolution. When a class inherits the same oper-

ations/data (i.e., method signatures/instance variables) from multiple super-
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types, we have a potential naming conflict. Another issue is the use of super

calls when multiple code inheritance is present, because there are many super-

types to choose from. The procedure for the resolution of such ambiguous

situations varies in each of the presented languages.

2.4.1 Ambiguous Name Resolution

There are several modalities to cope with inheritance conflicts and they can

be grouped into explicit (disallowing conflicts, requiring the user to select a

feature, or disambiguating with a resolution operator, such as :: in C++)

and implicit (choosing one feature by algorithmically resolving the conflict)

resolution.

One category of programming languages demands the user to explicitly

disambiguate name conflicts in the code. Eiffel [11] takes this approach. It

has a rename clause that is used to solve name clashes. For implementation

inheritance clashes, Eiffel combines its rename and select clauses to resolve

ambiguities. C++ delays this process until the ambiguous feature is first

used.

In Sather [29] (originally based on Eiffel) the compiler enforces renaming

of name conflicts. This is done explicitly by the user. The multiple inheritance

is called “multiple inclusion”.

In Cecil [3] all access to instance variables are through accessor methods.

An object maintains space for each inherited copy-down variable, regardless of

the names (distinct variables with the same name are not merged automati-

cally). The problem reduces to resolving ambiguities among like-named acces-

sor methods. Moreover, ambiguous variables could be accessed by a method

in the child with the same name as an accessor method by means of directed

re-send messages. Also, Cecil does not support repeated inheritance.

Another category of programming languages uses an implicit approach of

resolving ambiguities.

Python [28] and Perl [25] follow a rule of pre-order traversal of the in-

heritance tree for both operation and data inheritance. The resolution rule

employed is depth-first, left-to-right. Thus, if a feature is not found in a class,
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its superclass tree is searched recursively upward depth-first. This approach,

instead of the more intuitive breadth-first (searching all the immediate super-

classes first and then their superclasses), helps decide if potential ambiguities

occur. It accepts direct and inherited features of the first superclass before es-

tablishing if there are conflicts with the same features of a second superclass.

CLOS [5] performs a left-to-right linearization of its inheritance graph to

a flat list. It further extends this approach to accommodate multi-dispatch by

totally ordering multi-methods using argument positions, also ordering them

from left to right.

Dylan [10] uses an implicitly performed linearization of the inheritance

graph but it differs from CLOS because it does not take advantage of the

argument positions when determining the method to execute.

Other programming languages that support multiple code inheritance sim-

ply discard any kind of naming conflicts. There have even been some cases

where researchers have tried to add multiple inheritance to existing languages.

For example, [1] attempts to add multiple inheritance to Modula-3 using mix-

ins.

In our implementation, whenever a naming conflict is detected, a run-

time exception is thrown when the class is loaded. With the proper future

compiler modification, we can recognize these conflicts at compile-time instead

of waiting until load-time.

2.4.2 Ambiguous Super Call Resolution

Sometimes, when using inheritance, we would like to be able to use in a type

a corresponding method in one of its super-types, in order to enhance the

functionality of the current method.

In C++ (and E [18], designed as an extension to version 1.2 of C++) the

user has to explicitly qualify names (class name followed by the scope resolution

operator :: and then the name of the method) to access methods from parent

classes in the corresponding methods from the child classes. This technique

starts the lookup in the specified class, rather than in the superclass of the

current executing method.
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In Perl the super mechanism performs a search through the object’s inher-

itance tree, proceeding left-most, depth-first. This is triggered by the qualifi-

cation of a method with the SUPER pseudo-class (a package is used as a class in

Perl). However, the access SUPER:: is only possible from inside the overridden

method call.

Eiffel: Although it does not support the super call mechanism, it can

create two versions of the routine (i.e., method in Eiffel) by inheriting the

superclass twice, in one inheritance clause it uses rename, in the other it

redefines the routine using rename and select.

Python: It combines the “call-next-method” pattern with the method reso-

lution order (MRO given by the mro class attribute). A super call in Python

has the following form: super(className, self).alpha(). The first argu-

ment to super is always the class in which the super occurs; the second argu-

ment is always self. The super expression searches self. class . mro

(the MRO of the class that was used to create the instance in self) for the

occurrence of className, and then starts looking for an implementation of

method alpha() from that point on.

CLOS – Implicit linearization of the inheritance graph determines class

precedence, which triggers method precedence. The inherited methods are

linearized and the method to be executed is chosen using call-next-method

from the current method in order to retrieve the next method in the chain.

Furthermore, method qualifiers before, after, and around are used to com-

municate between the overriding method and the method in the superclass

(the inner keyword plays an important role in this mechanism).

In Sather [32], the use of super calls is confusing in certain cases. The

ambiguity arises when code that makes a super call is itself inherited. It is

not clear if the inherited super call refers to the superclass of the original

defining class A (A defines a beta() which contains super.alpha()) or of the

inheriting class B (B extends A, so inherits beta(), but does not override it).

Therefore, Sather replaces the super mechanism by implicitly renaming in the

include clauses which define code inheritance. The include clause can be

used to include and rename a single feature from another class or an entire
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class. Renaming affects only the definition, not the calls of a specified feature.

Cecil: Explicit qualification. In Cecil, which has multiple dispatch, the

qualification is based on multiple arguments.

Dylan: Implicit linearization of the inheritance graph determines class

precedence, which triggers method precedence. The overriding method con-

tains call-next-method in order to choose the right method from the list of

method precedence implicitly built.

In our implementation for super calls, we have devised a qualification

manner of lookup-start combined with a self-directed algorithm: the user has

to provide the name of the type where the lookup will commence. From

there up, if no code is found, the lookup is further controlled by an algorithm

that unambiguously determines a super-type with code (if any) for the given

method. We propose a syntax for the future, super(Start).alpha(), where

the lookup starts in the interface type Start.

2.5 Concluding Remarks

In this Chapter, we continued to motivate the need for multiple inheritance

started in Chapter 1. Therefore, we analyzed the state of multiple inheritance,

beginning with the major problems associated with it, and we described our

solution to each of them.

Then, we saw that the alternatives to multiple code inheritance had several

drawbacks, including increasing the code size, introducing errors in programs

when copying or modifying code, deteriorating the separation of inheritance

concepts, writing extra delegating methods, and introducing the overhead of

extra message sends.

Fortunately, we can avoid these problems by using multiple code inheri-

tance, which has the advantage of facilitating code re-use, supporting separa-

tion of inheritance concepts, and improving the expressiveness and clarity of

implementation.

We investigated the mechanisms of multiple code inheritance in several pro-

gramming languages in order to find out how common problems that occurred
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due to multiple code inheritance were solved.

Since Java has multiple inheritance of interfaces, but only single inheri-

tance of code, our solution to the problems generated by this situation is to

generalize a JVM to support multiple inheritance of code, by inserting code

into interfaces. We support multiple code inheritance, not multiple data in-

heritance, because the latter is not as useful as code inheritance. Re-using

code is more important, since the effort of programmers is mainly focused on

implementing method bodies.

In later Chapters, we describe our JVM modifications to support multiple

code inheritance in Java and propose future syntax for super calls to interfaces.
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Language Operations Data Naming Code Layout Data Layout Super Calls

C++, E Explicit; sig-
nals ambigu-
ities at first

use.

Explicit; signals
ambiguities at
first use.

Multiple vtbls
offsets adjust
this pointer.

Also moving
this pointer.

Explicit;
qualification
with starting
lookup class.

Eiffel Explicit; re-

name clause.
Explicit; re-

name and select

clauses.

Explicit; re-

name clause.
Explicit; re-

name and
select clauses.

No explicit su-
per call mecha-
nism.

Python Implicit;
pre-order
traversal
inheritance
tree.

Implicit; pre-
order traversal
inheritance
tree.

Implicit; pre-
order traversal
inheritance
tree.

Implicit; pre-
order traversal
inheritance
tree.

Method reso-

lution order

combined
with call-next-

method.
Perl Implicit;

pre-order
traversal
inheritance
tree.

No data inheri-
tance.

No data inher-
itance.

Implicit; pre-
order traversal
inheritance
tree.

Depth-first,
left-to-right
resolution.
Methods
qualified
with SUPER
pseudo-class.

CLOS Implicit;
inheritance
graph lin-
earization.

Implicit; inher-
itance graph
linearization.
Merges mem-
bers with the
same name into
a single slot.

Implicit; inher-
itance graph
lineariza-
tion, taking
into account
arguments’
positions.

Implicit; inher-
itance graph
linearization.

Implicit; inher-
itance graph
linearization.
Methods com-
municate by
keywords:
before, after,

around, inner.
Sather Explicit;

compiler
enforced
conflict
renaming.

Explicit; com-
piler enforced
conflict renam-
ing.

Explicit; com-
piler enforced
conflict renam-
ing.

Explicit; com-
piler enforced
conflict renam-
ing.

Implicit; re-
names features
in include

clauses.

Cecil Explicit;
qualification
based on
multiple ar-
guments due
to multiple
dispatch.

Problem re-
duced to
resolving like-
named field
accessor ambi-
guities.

Explicit; quali-
fication based
on multiple
arguments due
to multiple
dispatch.

Problem re-
duced to
resolving
like-named
field accessor
ambiguities.

Explicit quali-
fication based
on multiple ar-
guments.

Dylan Implicit;
inheritance
graph lin-
earization.

Implicit; inheri-
tance graph lin-
earization.

Implicit; inher-
itance graph
linearization.

Implicit; inher-
itance graph
linearization.

Implicit; graph
lineariza-
tion. Methods
chosen with
call-next-

method.

Table 2.1: Programming languages that support multiple code inheritance.
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Chapter 3

Method Dispatch in the JVM

Before describing the changes made to the Sun’s JVM for JDK 1.2.2 imple-

mentation, we look at some key data structures for storing information and

performing method dispatch in the original JVM [22]. Later on, we will discuss

how the method dispatch in the JVM is modified.

3.1 Overview

The term Java is broadly used to indicate four technologies: the Java pro-

gramming language [13], the Java .class file format, the Java Application

Programming Interface (API), and the Java Virtual Machine (JVM). The Java

API and the JVM form the Java Platform on which every Java program can

run, regardless of the underlying hardware or operating system of the plat-

form. The philosophy of Java programs is “write once, run everywhere”. The

JVM implementation described in this dissertation is Sun JVM for JDK 1.2.2

[26] for Linux.

A Java program is compiled into a sequence of bytecodes and the JVM,

an abstract computer able to run Java programs, interprets the bytecodes.

Each class or interface is compiled (with javac or another compiler producing

bytecodes) into a binary format .class file. When the JVM loads a .class

file, it parses the information about the class or interface from the binary data

and places it into run-time data structures within the method area. Then, it

executes the bytecodes from the .class file. Along with the program’s .class

file, the class loader also loads the necessary classes from Java API. The JVM
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Data
Class Loader

.class files
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Runtime

Areas

Figure 3.1: Simplified JVM internal architecture.

VMTMT

Method Area

IMT

RCP

Figure 3.2: Method Area within the Runtime Data Areas: Method Table
(MT), Virtual Method Table (VMT), Interface Method Table (IMT), and
Runtime Constant Pool (RCP).

accomplishes these two tasks through the class loader [34] and the execution

engine (Figure 3.1).

A .class file stores all of its symbolic references to other types needed by

the current class in its constant pool (CP), which is a sequence of constant

items with a unique index. These items can be literals (strings, integers, float-

ing point constants) or symbolic references to types (classes and interfaces),

fields, and methods that have to be determined at run-time. In addition to the

constant pool, which represents the information referenced from the current

class, a .class file also contains information about the fields and methods

declared in that type: a field information structure (for each field’s name and

type) and a method information structure (for each method’s name and de-

scriptor, bytecodes and other information). Conceptually, the CP is similar to

the symbol table of other programming languages and systems.

Once loaded by the JVM, a type has an internal version of its constant

pool in the form of a runtime constant pool (RCP) that is stored in the

method area as shown in Figure 3.2. All of its symbolic references now reside

in the type’s runtime constant pool. Instructions refer to CP indexes where
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FileInputStream aFile = new FileInputStream("aFile.txt");

FilterInputStream stream;

stream = new DataInputStream(aFile);

stream.close();

Figure 3.3: Java sample source file.

the symbolic references reside. During the running of a program, if a symbolic

reference has to be used, it must be resolved (i.e., replaced with a direct refer-

ence). Dynamic linking is the process of locating types (classes and interfaces),

fields, and methods referred to by symbolic references stored in the constant

pool and replacing them with direct references to data. The constant pool

has a central role in the dynamic linking of Java programs. Direct references

to types (class/interfaces), class variables, class methods are represented by

pointers to data in the method area. Direct references to instance variables

and instance methods are represented by offsets. Instance variables are offsets

from the start of the object’s image to the location of the instance variable, and

instance methods are offsets into the virtual method table (array of pointers

to methods data in the method area).

Consider the call-site stream.close() from Figure 3.3. In the method

information section in the .class file for this call-site, the bytecodes which

use the constant pool indexes are illustrated in Figure 3.4. In the first part of

this Figure there are the raw bytecodes (in hexadecimal format) followed by

a comment with their “translation” into JVM instructions mnemonics. The

second part of the same Figure contains only the instructions automatically

generated with the javap .class file disassembler tool. We will trace this

example in the next Section, which presents the way the JVM uses the .class

file information. The information from the constant pool used by this call-site

is represented in Figure 3.5. Recall that the CP is an array.

Entries in the constant pool begin with a tag which indicates the kind of

constant stored. For example, if the entry is a class (entry 5, for example),

then its tag is CONSTANT Class; if the entry is a method (entry 11), its tag is

CONSTANT Methodref (respectively CONSTANT InterfaceMethodref for inter-
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// Snippet from the .class file (output in hexadecimal format)

// for the stream.close() call-site.

2c //aload 2

b6 //invokevirtual

000b // #11 java.io.FileInputStream/close

// Snippet from javap output for the same call site.

19 aload 2

20 invokevirtual #11 <Method void close()>

Figure 3.4: Snippet of the .class file.

...

5 Class #31

...

11 Methodref #5 #15

...

15 NameAndType #28 #16

16 Utf8 "()V"

...

28 Utf8 "close"

...

31 Utf8 "java.io.FileInputStream"

...

Figure 3.5: Snippet of the constant pool.

face methods). For brevity, we do not use CONSTANT in front of CP tags in our

examples.

In order to actively use a type, the following steps are taken:

1. Loading: responsible for importing a binary form for a type into the

JVM (generating a stream of binary data representing the type out of

the fully qualified type name, parsing this stream into internal data struc-

tures in the method area, and creating the type as an instance of class

java.lang.Class on the heap). All of the type’s super-types (classes

and interfaces) have to be loaded before loading the actual type.

2. Linking: responsible for the integration of the binary data into the run-

time structures of the JVM
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(a) Verification: validates the loaded type.

(b) Preparation: allocates memory for the class variables and sets them

to default initial values determined by their types. It also allocates

memory for data structures such as the method tables (MT),

the virtual method tables (VMT), and the interface method

tables (IMT).

(c) Resolution (optional step): replaces symbolic references into the

constant pool with direct references to data. This step is delayed

until each symbolic reference is first used by the program.

3. Initialization: responsible for providing the class variables with their

proper initial values. For classes, the class’s direct superclasses have to

be initialized first if they have not already been initialized. If there is

a class initialization method (<clinit>), it will be executed. This is a

special method created by the Java compiler and contains all the class

variable initializers and static initializers of a type; it can be invoked

only by the JVM. Final static variables are not stored as class variables

in the method area but as constants into the constant pool.

3.2 Method Invocation Mechanism

In Java, there are two categories of methods that can be invoked: instance

methods – the JVM selects the method to invoke based on the actual class of

the receiver object (run-time, dynamic binding) and class (static) methods

– there is no receiver object so the method is actually a function defined in a

class (compile-time, static binding).

There are four invoke instructions in the Java .class files: invokevirtual,

invokeinterface, invokespecial, and invokestatic.

The instruction executed at a call-site (for example stream.close()) de-

pends on the static type of the receiver (stream). This call-site is translated

into a JVM instruction whose opcode is invokevirtual if the static type of

stream is a class and invokeinterface if the static type of stream is an inter-
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face. In both situations, the opcode is followed by a method reference (an index

into the constant pool) as an operand of the instruction. The method reference

stores the static type of stream (class or interface) and the method signature

of close() (name and descriptor – the return type and arguments). In Figure

3.4 and Figure 3.5, the index is 11 and it indicates a Methodref tag into the

CP. The entry Methodref has two fields which point to other structures in the

constant pool: class and descriptor. In our example, the Methodref tag points

to entries 5 (Class tag) and 15 (NameAndType tag) in the CP. The Class tag

indicates that at entry 31 the string with the fully qualified class name (where

the method is defined) can be found. The NameAndType tag indicates the CP

entries where the name of the method (28) and the signature (16) are found.

Therefore, given an invoke instruction and an index into the CP, the name and

type of the method, as well as its static class are retrieved. In this particular

example, given the call-site, the index following the invoke instruction pro-

vides all the information necessary for the method signature to be statically

determined. The receiver object, though, is necessary to uniquely determine

the method to be executed.

References to methods are initially symbolic: they refer to constant pool

entries that contain symbolic references. When the JVM encounters an invoke

instruction, it resolves it (if not yet resolved) as part of its execution. To re-

solve a symbolic reference to a method, the JVM locates the method being

referred to symbolically (method lookup) and replaces the symbolic reference

with a direct reference (pointer or offset). The class and name (including the

signature) of the method are resolved before the method is actually invoked

and an index into the virtual method table of the static type of the object is

generated. Therefore, in future invocations, the JVM will be able to execute

methods more quickly, as we will see in the next Chapters.

When invoking a Java non-native method, the JVM creates a new stack

frame for each Java method it invokes and pushes the stack frame onto the

Java stack. The new stack frame contains local variables of the method, the

operand stack, as well as other implementation-dependent information. For

every instance method invocation, the JVM expects a reference to the object
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Figure 3.6: High-level object representation in Sun’s JVM.

(we will refer to it as objectref, i.e., the implicit this pointer that is passed to any

instance method, representing the receiver object), as well as the arguments (if

any) required by the method to be on the operand stack of the calling method’s

stack frame (class methods require only the arguments). They must be pushed

onto the calling method’s operand stack by the instructions that precede the

invoke instruction. The JVM places them as locals on the new stack frame.

The JVM makes the new stack frame current and sets the program counter to

point to the first instruction in the new method.

3.3 Object Representation

In Sun’s JVM, each object reference (objectref) is a pointer to a structure

which contains a pointer to methodtable (VMT) and a pointer to the object’s

instance data (Figure 3.6). The VMT has a pointer to the full class data and

an array of pointers to method data containing the actual information for each

instance method that can be invoked on objects of that class. The method

data (structure named methodblock in SUN’s JVM) pointed to from a slot

(entry) of the virtual method table (or of the interface method table via the

VMT) contains the compiled code for that method, i.e., complete information

about the method. A methodblock includes the size of the operand stack

and local variable sections of the method’s stack, a pointer to the method’s
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Figure 3.7: DataInputOutput example: The MT, VMT, and IMT for some
classes and interfaces from the java.io package.
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bytecodes, the method signature, and an exception table. The methodblocks

are organized into an array in the method table (MT). The virtual method

table (VMT) includes pointers to data for methods declared explicitly in the

object’s class or inherited from superclasses. For interfaces, the code pointer

is currently null, but we change this as described in Chapter 4. Having only

a reference to an object (objectref), we will see in subsequent Chapters how

we can retrieve information about that object’s class. The methodblock to

be executed depends on the runtime type of the receiver object, therefore first

the objectref is located by popping all the arguments from the stack. Then

the object handle is retrieved. The handle is used to locate the VMT of the

actual class of the object and, given the index (Figure 3.6) into VMT that was

generated (as the index is identical in all the VMT of classes which implement

that method), the desired methodblock is fetched.

We exploit the existing structure of the original JVM. There are three

data structures that contain method information: the method table (MT),

the virtual method table (VMT), and the interface method table (IMT).

Every class and interface has an MT. Every class has a VMT, but interfaces

do not have VMTs, because interfaces are never instantiated. Every interface

and every class that implements an interface (directly or indirectly) has an

IMT.

3.4 The Method Table

An MT is an array of methodblocks, one for every method that is declared

(not inherited) in a class or interface. Therefore, the method table con-

tains methodblocks for all overriding methods. In Sun’s JVM, an MT is a

data structure called methods. Each methodblock contains all of the infor-

mation about the method, including its signature and a pointer to its byte-

codes. In the case of interfaces, the methods are abstract, so the code pointer

is not used (but we will modify the JVM to use it, as described in Chap-

ter 4). Figure 3.7 shows the classes FilterInputStream, DataInputStream,

RandomAccessFile, and the interfaces DataInput and DataOutput from the
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Declared Methods:
RandomAccessFile(String, String);
readFloat();
readInt();
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Class RandomAccessFile
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(b) MT for Interfaces.

Figure 3.8: Method tables.

java.io package. Many methods have been excluded for the sake of simplicity.

Each of the classes has one methodblock in its MT for each declared

method in the class. For example, DataInputStream has a methodblock for

read(byte[]) since it overrides this method that it inherits from the class

FilterInputStream, but has no methodblock for close() since this method

is not overriden. The interface DataInput has methodblocks for its methods

readFloat() and readInt(), even though they contain no code.

Method dispatch finds a methodblock for a call-site and invokes the code

for the methodblock. The operand of the call-site bytecodes is an index into a

run-time constant pool that stores the signature of the method being invoked.

Method dispatch is a two-step process. The first part of method dispatch,

called resolution, finds a methodblock that contains the code. The resolution

mechanism depends on whether the static type of the receiver object is a class

or an interface. The compiler records the required resolution mechanism in the

.class file by generating an invokevirtual bytecode if the static type of the

receiver object is a class and an invokeinterface bytecode if the static type

is an interface. Resolution of invokeinterface is complex and is discussed

later in this Chapter. Resolution for invokevirtual is simple.

To resolve an invokevirtual instruction, the JVM uses the method ref-

erence to obtain the static class and a method signature. It then searches the

MT of this class for a methodblock with a matching signature. If no match is

found, it searches the MTs along the superclass chain. The compiler guaran-

tees that a match is found. Consider Figure 3.9: the call-site stream.close()

has bytecodes that contain an index into the run-time constant pool that stores
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the method signature, close(). The dynamic class of the receiver object may

be DataInputStream or FilterInputStream. If it is the former, the MT table

of DataInputStream is searched for a methodblock with signature close(),

but no match is found. The MT of the superclass, FilteredInputStream, is

searched, and a methodblock with a matching signature is found.

However, it is possible that the resolution methodblock is not the cor-

rect execution methodblock. For example, consider the classes in Figure

3.7, a variable declaration, FilterInputStream input, and the following call-

site: input.read(aByteArray), where input is bound to an instance of the

class DataInputStream. Resolution produces the resolution methodblock for

read(byte[]) in class FilterInputStream. The execution methodblock,

however, should be read(byte[]) in DataInputStream. If the index of a

methodblock in its MT were invariant along the superclass chain, the resolved

methodblock read(byte[]) in FilterInputStream could store this invariant

index, and it could be used as an index into the MT of the dynamic class of

the receiver object (DataInputStream in this example). Unfortunately, MT

indexes are not invariant. Fortunately, this problem is solved using virtual

method tables as described later in this Chapter. In essence, each method

block contains a unique VMT index that is invariant along the superclass

chain.

Resolution is quite slow, so Sun’s JVM records the resolution result at

each call-site for use in future dispatch at that same call-site. Bytecode quicking

(described in more detail later in this Chapter), modifies the bytecodes at each

invokevirtual call-site to contain information that can be used to quickly

compute an index into a VMT that contains a pointer to the appropriate

methodblock. More specifically, the bytecodes will contain a reference to the

resolved methodblock instead of the original symbolic method reference.

3.5 The Virtual Method Table

The VMT enables the JVM to quickly locate an instance method invoked on

an object. In Sun’s JVM, this data structure is called methodtable (not to
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...

FilterInputStream stream;

DataInput input;

RandomAccessFile file;

...

if (condition)

stream = new FilterInputStream(inStream);

else

stream = new DataInputStream(inStream);

...

stream.read(anArray);

value = input.readint();

...

stream.close();

file.writeInt(43);

Figure 3.9: Code example.

be confused with the MT). The virtual method table is a data structure

used to store invariant indexes for all methods along a subclass chain. Each

VMT entry (slot) holds a reference to an instance method (i.e., a method that

may be invoked on a class instance) implementation that has been declared

or inherited by the current class. Each reference is actually a pointer to a

methodblock in either the local MT or an MT of a superclass. The first entry

in VMT (at index 0) is not used in this JVM implementation.

The MT and VMT for a class are constructed when the class is loaded, and

each methodblock in the MT stores its VMT index as it is built at load-time.

A VMT is similar to a virtual function table used in C++ implementations,

except that in C++ the compiler inserts a virtual function table index at the

call-site of each virtual function call. In Java, the compiler inserts a symbolic

reference to the method at each call-site, and the first execution of the call-site

resolves this symbolic reference and modifies the bytecodes at the call-site so

that future executions use an index into the VMT. The VMTs contain only

non-private instance methods. Private methods and instance initialization

methods do not appear in VMTs because they are statically (i.e., compile-

time) bound. The same is true of static methods.

Consider the classes FilterInputStream and DataInputStream in Figure
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Figure 3.10: Virtual Method Tables.

3.7. The VMT of a class has indexes for all the methods it inherits from

class java.lang.Object (indexes 1-11 in all VMTs in Figure 3.7) and then

indexes for all of its other ancestor classes, ending with its immediate su-

perclass (indexes 12 and 13 in the DataInputStream VMT). If a child class

overrides an inherited method, it actually overwrites the VMT entry of the

inherited method to refer to an entry in the local MT table rather than the

MT table of an ancestor class. For example, the VMT entry for the overrid-

ing read(byte[]) method in DataInputStream points to the local MT table.

Finally, the VMT has indexes for all new methods that it declares (indexes

14 and 15 in DataInputStream VMT), even if these new methods implement

methods from an interface.

Even though a child class overwrites a VMT entry to point to a methodblock

in a different MT, a methodblock’s VMT index does not vary along a super-

class chain. This is because when a VMT is constructed, it first copies its su-

perclasses’ VMT and then extends it. For example, the indexes of all methods

inherited from java.lang.Object are the same in all VMTs and the indexes of
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executeMB = receiver.dynamicClass.VMT[resolvedMB.vmtIndex]

Figure 3.11: Computing the execution methodblock for invokevirtual.

the close() and read(byte[]) methods are the same in FilterInputStream

and DataInputStream. This property is essential to support substitutability

[14] for fast method dispatch, after bytecode quicking. For example, consider

the code in Figure 3.9. At the call-site, stream.read(anArray), the bytecodes

initially contain a reference to a constant pool entry for read(bytes[]). If

the dynamic type of stream is FilterInputStream when the call-site is en-

countered the first time, method resolution will generate the VMT index 12

and bytecodes will be quicked to use this index the next time the call-site is

executed. If the stream variable is bound to a DataInputStream, the second

time the call-site for stream.read(byte[]) is executed, the same index, 12,

will be used to access the same methodblock, but this time via the VMT

for class DataInputStream. After resolution, the execution methodblock is

computed from the resolution methodblock, resolvedMb, using the formula

in Figure 3.11.

Unfortunately, this dispatch mechanism does not work for interfaces due

to multiple inheritance. Figure 3.7 illustrates the problem, showing that a

method readInt() declared in an interface DataInput that is implemented

by two classes, DataInputStream and RandomAccessFile, can have different

indexes (15 and 13) in the VMTs of the two classes. This can occur be-

cause each of the classes may inherit methods from different superclasses or

implement different interfaces. Therefore, we need another data structure,

interface method table (IMT), which facilitates interface method dispatch

(i.e., invokeinterface).

3.6 The Interface Method Table

An IMT is used for interface method dispatch (invokeinterface). The cor-

responding data structure in Sun’s JVM is imethodtable. If a variable has a

static type that is an interface and if it appears as the receiver of a method
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Figure 3.12: Interface Method Tables.

invocation, the call-site will contain an invokeinterface bytecode instead

of an invokevirtual bytecode. We shall see how the IMT provides an extra

level of indirection that solves the problem of inconsistent indexing of interface

methods among classes.

Each slot in an IMT stores all of the information for an interface. Every

class has an IMT that references all of the interfaces it implements or inherits.

For example, in Figure 3.12, the class RandomAccessFile has two entries in its

IMT, one for the interface DataInput and one for the interface DataOutput.

Each interface also has an IMT with slots for all the interfaces it extends,

including itself.

During method dispatch, the MTs of all of the interfaces that are imple-

mented by the receiver object’s class can be accessed through the IMT for

that class. The IMT is an array of entries which contain two types of infor-

mation. Each entry is a pointer to the interface that the class implements

(directly or indirectly). Each entry also contains an array of indexes into the

class’s VMT; the number of elements in each array is the same as the num-

ber of methods that are in the interface referenced by the interface pointer of

that entry. Each index is an offset into the VMT entry for the corresponding
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method. For example, consider the IMT for the class RandomAccessFile in

Figure 3.12. The first entry contains a pointer to DataInput and an array

containing indexes (12 and 13) into the VMT for the two methods declared in

DataInput, called readFloat() and readInt(). The second entry contains a

pointer to DataOutput and an array containing an index (14) into the VMT

for the method declared in DataOutput, called writeInt(int).

Resolution of an invokeinterface bytecode is similar to resolution for

an invokevirtual bytecode, except that the method reference includes an

interface instead of a class. Resolution starts at the interface method table

(IMT) of this interface. Recall that an IMT has one entry for each interface

that is extended or implemented (directly or indirectly) by its class or interface.

During resolution, the JVM starts with the entry zero of the interface’s IMT,

which is the interface itself. The MT of this interface is searched for a matching

method. If one is not found, the MTs of subsequent interfaces in the IMT are

searched. The compiler guarantees that a signature match will be found.

Also, recall that the resolution methodblock may not be the execution

methodblock. In the invokevirtual case, the resolved methodblock contains

an invariant index into the VMT of the receiver object’s dynamic class. In the

invokeinterface case, the resolution methodblock contains a local MT off-

set. To complete the dispatch, an index must also be computed. The index is

for the IMT of the dynamic receiver’s class, where the interface of the resolved

methodblock is located. The JVM first searches the IMT of the receiver’s dy-

namic class for a match to the interface of the resolved methodblock. The loca-

tion of the match is an index, called a guess (for reasons that will be explained

later). The IMT entry indexed by the guess contains an array of VMT indexes.

The offset in the resolved methodblock is used as an offset into this array to

obtain the correct VMT index. Figure 3.13 gives the formula for computing

the execution methodblock from the resolved methodblock and the guess.

To see why the offset and the index are sufficient, consider a variable input

that is declared to be a DataInput and a call-site input.readInt(). The re-

solved methodblock is readInt() in DataInput. The resolved methodblock

has an interface DataInput and a method table offset 1. First, assume that
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itable = receiver.dynamicClass.IMT[guess];

vmtIndex = itable.vmtIndexArray[resolvedMB.mtoffset];

executeMB = receiver.dynamicClass.VMT[vmtIndex];

Figure 3.13: Computing the execution methodblock for invokeinterface.
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Figure 3.14: Data structures for java.io.DataInputStream.

the receiver object’s dynamic class is RandomAccessFile. From Figure 3.12

we can see that a search through the IMT of RandomAccessFile for the in-

terface DataInput produces a guess of 0. The 1st offset of the entry 0 of this

IMT is 13 and the VMT entry at index 13 is the right code for readInt().

Alternately, if the receiver object is an instance of DataInputStream, then a

search through the IMT of DataInputStream for the interface DataInput also

produces a guess of 0, as shown in Figure 3.14. In this case, the 1st offset of the

entry 0 of its IMT is 15 and the VMT entry at index 15 is the right code for

readInt(). Although the VMT index is not constant across classes (e.g. 13

then 15), the IMT index, together with the array offset, can be used to find the

correct code. The IMT provides an extra level of indirection that solves the

problem of inconsistent indexing of interface methods between classes. This

extra level of indirection is analogous to the way C++ implements multiple-
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inheritance using multiple virtual function tables. Bytecode quicking modifies

the bytecodes at each invokeinterface call-site.

The guess is stored in the quicked bytecodes in addition to a reference to

the resolved methodblock, so the search does not normally need to be re-done.

However, it is possible that the guess at a call-site could be incorrect. To see

how the guess can be wrong, consider Figure 3.12, except assume that the

IMT in class RandomAccessFile has the DataInput and DataOutput entries

in the reverse order. This can happen since classes can implement multiple

interfaces, so that the order of interfaces across different IMTs can be different.

Re-consider the two successive executions of the call-site input.readInt()

described previously. In this case, the first call-site execution (with dynamic

class RandomAccessFile) will generate a guess of 1 and an offset of 1.

However, when the second execution of this call-site uses the guess of 1,

it would be out of bounds in the IMT of DataInputStream. To solve this

problem, the interface at the IMT entry with index guess is always compared

to the interface of the resolved methodblock that is stored in the quicked

bytecodes and, if they are different, a new search of the IMT is conducted

and the new guess is cached in the quicked bytecodes. This approach is

analogous to the inline-caching method-dispatch technique [7] and can suffer

from the same thrashing problems if the class of the receiver object of the

polymorphic call-site alternates between two classes whose interfaces are stored

in different orders. Nevertheless, it is still faster than doing a full resolution

from a symbolic method signature for each execution of the call-site.

The details of our modifications are provided later, but in order to sup-

port code in interfaces, we change the JVM code that constructs the IMT

table in the class loader. To understand our modifications, it is necessary to

understand how the class loader currently constructs the IMT table. Figure

3.16 contains the original algorithm for constructing the IMT. We will use the

class RandomAccessFile from Figure 3.12 to illustrate the algorithm. The

class loader creates a new IMT table (line 1) and then copies the IMT en-

tries of the superclass of the class being loaded to the new IMT table being

constructed (line 2). In this example, the superclass of RandomAccessFile is
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Figure 3.15: Invokevirtual.

java.lang.Object, which has no IMT since it does not implement any inter-

faces, so no entries are copied. The class loader then loops over each interface

that is explicitly implemented by the class (line 3). The first interface imple-

mented by RandomAccessFile is DataInput. The loader fetches the IMT for

this interface, which contains entries for DataInput and all of the interfaces

it inherits (no others in this example). All of the IMT entries that are not

already in the new IMT are copied to the new IMT for RandomAccessFile,

producing a single entry containing (a pointer to) DataInput. An associated

array that has two slots for indexes (for readFloat() and readInt()) (line

4) is created. The indexes in this array are not copied since the array does

not exist in interfaces. Since RandomAccessFile implements a second inter-

face DataOutput, the entries in its IMT are also copied down (line 4). Again

this is a single entry, but its associated index array has only one entry (for

writeInt(int)). It is important that each interface is only copied once. For

example, if the interfaces DataInput and DataOutput had a common super-

interface Data, then, when the IMT entries from DataInput were copied, an

entry for the inherited Data interface would have been included. When the

IMT entries for DataOutput were copied, the non-unique Data interface from

DataOutput’s IMT would not be copied to the new IMT.
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Algorithm ConstructIMT(class)

1. class.imt = new IMT();

2. copy entries from class.superclass.imt to class.imt;

3. for each direct interface in class

4. copy unique entries of interface.imt to class.imt;

5. end for

6. for each imtIndex in class.imt

7. interface = class.imt[imtIndex].interface;

8. for each mtIndex in interface.MT

9. imb = interface.MT[mtIndex];

10. signature = imb.signature();

11. vmtIndex = class.vmt.findSignature(signature);

12. class.imt[imtIndex].array[mtIndex] = vmtIndex;

13. // line reserved for JVM modifications later

14. end for

15. end for

end algorithm;

Figure 3.16: The existing IMT construction algorithm.

Declared Methods:
Interface DataInput

readFloat();

readInt();

Interface DataOutput
Declared Methods:
writeInt(); nullDataOutput

IMT
null

IMT
DataInput

MT
readFloat()
readInt()

MT
writeInt() 0

1
0

Class
Declared Methods:

RandomAccessFile

RandomAccessFile(String, String);

readFloat();
readInt();
writeInt();

MT

12
13
14

init (String, String)

readFloat()
readInt()
writeInt()

0

12
13
14

0 −
clone()1

wait()

. . .

11
readFloat()
readInt()

writeInt()

VMT

DataOutput
DataInput

IMT
12 13
14

Figure 3.17: Example emphasizing the tables involved in the loading mecha-
nism.

52



After the class loader is done looping through all implemented interfaces

and the IMT has all of its entries, the class loader loops through each slot in the

IMT (line 6), to fill in the index arrays. For each slot, the interface pointer is

de-referenced to obtain the interface (line 7) and the MT table in that interface

is iterated (line 8). For example, the MT table of DataInput is iterated first,

as shown in Figure 3.17. The entry 0 in the MT is the methodblock for

readFloat() (line 9) and its signature (line 10) is looked up (line 11) in the

VMT of the class RandomAccessFile. Since a match is found at index 12, this

index is copied into the entry 0 of the array in the IMT table for the DataInput

slot (line 12). The entry 1 in the MT is readInt() and when it is looked up in

the VMT (line 11), the index found is 13. The index 13 is copied into the IMT

array at the DataInput slot’s array index 1 (line 12). The process continues

until all arrays at all IMT slots are full.

The Sun JVM makes a simple optimization to the code shown in Figure

3.16. The loop in step 6 of the optimized code does not iterate over all IMT

indexes. Instead, it starts at the first index after the entries that were copied

from the superclass’s IMT. This is possible since the array indexes in the

entries of the superclass will not change in the class being loaded, so these

entries are simply copied instead of being calculated. However, we iterate over

all indexes of the IMT to support the changes described in Chapter 4. Since

this code is run only at class load time, the performance loss is insignificant.

3.7 Quick Bytecodes

An analysis of the dispatch process for both bytecodes, invokevirtual and

invokeinterface, shows that the interpretation of the bytecodes used to in-

voke methods can be improved. Opcodes that refer to CP entries can be

replaced by quick opcodes after the CP references are resolved. Replacing

the normal opcodes with quick counterparts in the bytecode stream can sub-

stantially speed up their interpretation. When the JVM encounters a quick

instruction, it knows that the entry has already been resolved, so it can exe-

cute the instruction faster. In some cases, the operands are overwritten with
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data representing a direct reference. The details of quicking invokevirtual

and invokeinterface are different.

Invokevirtual has a single operand, which is a two-byte integer index into

the run-time constant pool, where the method signature is stored. Invokevirtual

has three quick opcodes: invokevirtual quick, invokevirtualobject quick,

and invokevirtual quick w.

1. For invokevirtual quick, the original two-byte operand is replaced by

a one-byte offset into the VMT and one byte that stores the number

of arguments, nargs, as illustrated in Figure 3.18. This second byte is

needed to find the receiver object on the stack. The number of arguments

was previously computed after obtaining the method signature from the

constant pool. The JVM uses the number of arguments to reach the re-

ceiver and follow its pointer to the VMT. To use invokevirtual quick,

the index into VMT must be 255 or less and the dynamic class of the

receiver object cannot be an instance of class java.lang.Object.

2. Invokevirtualobject quick has the same operands as the previous

bytecode, invokevirtual quick. It is used for invoking instance meth-

ods of class java.lang.Object and it is introduced specifically for ar-

rays. The objectref on the operand stack is a reference to an object or

to an array. The offset retrieved from the operand stack is an index

into the VMT of java.lang.Object and ultimately indicates the right

methodblock.

3. Invokevirtual quick w is followed by the same two-byte index into the

constant pool as the unquicked invokevirtual bytecode. With the w

variation, the constant pool entry is changed, instead of the bytecode

operands. This quick opcode is used when the index in VMT is greater

than 255. Method resolution simply replaces the method signature in the

run-time constant pool with an entry containing a two-byte index into

the VMT and one byte that represents the number of method arguments,

nargs.

54



Handle

ptr to obj class

−

1 ptr to m1  code

VMT

MT

object data

0

obj class info

ptr to VMT

ptr to obj dataObjectref

argN
...

arg1

ptr to mN codeN

...

ptr to m   code

m1    methodblock

m      methodblock

opcode = invokevirtual_quick

opcode

index

nargs

Figure 3.18: Invokevirtual quick.

Invokeinterface has only one quick counterpart used for the invocation

of interface methods: invokeinterface quick. This bytecode is similar to

invokevirtual quick w in that the original operand index into the run-time

constant pool is retained. However, the run-time constant pool entry that it

points to is changed to point to the methodblock that was resolved when the

call-site was first executed. In addition, two other operands are added to the

bytecodes, a guess and the number of method arguments, nargs. The guess is

an index into the IMT that specifies one of the implemented interfaces. There

is an array at that IMT slot for indexes into the VMT of all methods declared

in an interface, as described earlier in this Chapter. To obtain the appropriate

index into that array, the first operand is used to obtain the methodblock

from the run-time constant pool and the methodblock contains the required

index into the array. However, the guess operand is called a guess for an

important reason. It is possible that it indexes the wrong interface in the

IMT. Before the index is retrieved from the methodblock, the interface of the

methodblock (stored as a pointer field in the methodblock) is compared to

the interface pointer contained at the guess index of the IMT. If they are the

same, the index from the methodblock is used. If they are different, then the

guess is wrong and the correct interface must be found. In this case, the IMT
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is searched for the interface pointer that matches the interface pointer stored

in the methodblock. Once one is found, the guess operand is changed to the

new index in the IMT and the dispatch continues.

3.8 Concluding Remarks

In this Chapter, we described the current implementation of the original JVM’s

data structures involved in method dispatch.

The two steps of method dispatch, resolution and execution, were detailed

for the invokevirtual and invokeinterface bytecodes. Since resolution is

quite slow, we described bytecode quicking which modifies the bytecodes at

each resolved call-site to run faster on subsequent execution times of the call-

site.

In the next Chapters, we will discuss how the method dispatch in the JVM

is modified.
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Data structure

name

Data structure title Description Summary

methodblock Method block (mb or imb) Stores the complete in-
formation (including code)
about a method. It in-
cludes the size of the
operand stack and local
variable sections of the
method’s stack, a pointer
to the method’s bytecodes,
the method signature, and
an exception table.

methods Method Table (MT) Array of methodblocks.
Both classes and interfaces
have MTs. It has an entry
for every method declared
(not inherited) in the class
or interface. Therefore, it
contains methodblocks for
all overriding methods.

methodtable Virtual Method Table
(VMT)

Array of pointers to
methodblocks. Only
classes have VMTs. Each
slot (entry) holds a refer-
ence to an instance method
implementation that has
been declared or inherited

by the current class.

imethodtable Interface Method Table
(IMT)

Array of structures which
contain information about
interfaces. Both classes and
interfaces have IMTs. Ev-
ery class has an IMT that
references all of the inter-
faces it implements or in-
herits; every interface also
has an IMT with slots for
all the interfaces it extends,
including itself. The IMT
provides an extra level of
indirection that solves the
problem of inconsistent in-
dexing of interface methods
among classes.

Table 3.1: Major data structures involved in method dispatch.

57



Chapter 4

Implementation

This Chapter presents the details of the JVM modifications to accommodate

code within interfaces and describes the simple test cases that are used to

verify the implementation of multiple code inheritance. Neither the syntax

of the Java programming language nor the javac compiler are changed. A

scripting process was developed instead of using syntax changes. The details

of the scripting process are presented in Chapter 7.

4.1 Our Approach

Our implementation of multiple code inheritance in Java is based on the novel

concept of adding code to selected interfaces. We show that only straightfor-

ward and localized modifications are made to the JVM to support code within

the interfaces.

If code is put into interfaces and an existing Java compiler is used, compila-

tion errors can occur. For example, if the code for readInt() in Figure 3.14 is

moved from the class DataInputStream to the interface DataInput, an unmod-

ified compiler would not compile the code in DataInput and would complain

that there is no method declaration for readInt() in the DataInputStream

class, therefore the class must be declared as abstract. Since it requires con-

siderable engineering effort, we have not modified a Java compiler to recognize

code in interfaces. Instead, we have created a scripting process that allows a

programmer to insert method code into interfaces and work around a standard

compiler. Details about the process and the tools that support our approach
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13A.if (imb.code <> null) // code in interface

13B. currentmb = class.vmt[vmtIndex];

13C. if (currentmb.code == null) // no code in MT

13D. class.vmt[vmtIndex] = imb; // point VMT to imb

13E. else // potential code ambiguity

13F. if ((! currentmb.class.imt.contains(imb)) &&

13G. (!imb.class.imt.contains(currentmb)))

13H. throw ambiguous method exception

13I. end if

13J. end if

13K.end if

Figure 4.1: Code added to Figure 3.16 to support interface code.

can be found in Chapter 7. In this Chapter we assume that this process is used

to put code into interfaces and the compiler does not generate any compila-

tion errors due to missing method declarations. We have taken this approach

because we want to quickly test the utility of code in interfaces to support mul-

tiple code inheritance, without the full-fledged engineering effort of modifying

a compiler.

4.2 JVM Modifications

To support code in interfaces, we modified the JVM code that constructs

the IMT table in the class loader [21] (Figure 3.16), as shown in Figure 4.1.

After a VMT index is inserted into the array of an entry in the IMT table,

the corresponding VMT table entry is checked. If the VMT table points to

a methodblock in an MT that has no code, then the VMT table entry is

changed to point to a methodblock in the MT of the interface that contains

the code as shown in Figure 4.1. However, it is possible that the method code

is ambiguous, as we will discuss further in this Chapter, Section 4.4.

We use the class RandomAccessFile as an illustrative example. Assume

we are loading this class. Also assume that the code for readInt() is moved

to the DataInput interface instead of being in the RandomAccessFile class, as

shown in Figure 4.2. Assume the array element at index 1 of the DataInput

entry is set to 13 (line 12 in Figure 3.16). Therefore, the imb is bound to
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Class
Declared Methods:

RandomAccessFile

RandomAccessFile(String, String);
no declaration for readFloat()
no declaration for readInt()
no declaration for writeInt()

MT
0init (String, String)

DataOutput

DataInput 13
14

IMT

Declared Methods:
Interface DataInput

readFloat();

readInt();

MT
readFloat()
readInt() 1

0

Declared Methods:

writeInt();

Interface DataOutput

MT
writeInt() 0

12

12
13
14

0 −
clone()1
. . .

11
readFloat()
readInt()

writeInt()

VMT

wait()

Figure 4.2: The code from java.io.RandomAccessFile is moved up in two of
its direct superinterfaces.
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the readInt() methodblock in DataInput and this methodblock has code

(step 13A in Figure 4.1). Our modified class loader accesses the VMT en-

try of RandomAccessFile at index 13 to obtain the current methodblock for

readInt() from the MT of RandomAccessFile (step 13B). Since there is no

code in the current methodblock, the code pointer is null (step 13C). There-

fore, we change the VMT entry at index 13 to point to the methodblock

in DataInput instead. Note that the IMT offset into VMT stays the same,

it is only the slot in VMT that is modified. The resolution and dispatch

of invokevirtual proceeds in exactly the same way as with the unmodified

JVM, but the change in the class loader code allows the code in the interface

to be found and executed.

We also needed to modify the dispatch in the situation where a call-site

such as this.alpha() appears inside an interface method. In this case, the

call-site is turned from an invokevirtual to an invokeinterface, because

the static type of this is an interface. With the design choices we made, no

other changes were required to support code in interfaces (and hence multiple-

inheritance) and this is due to the Miranda Methods concept incorporated in

SUN JVM.

4.3 Exploiting Miranda Methods

If there is a declaration for readInt() in DataInput, this method must be

understood by any of the classes which implement DataInput. Therefore, the

VMT of each of these classes must have a slot for readInt(). The slots can

be obtained by either of the following two methods.

The javac compiler generates methods in each abstract class for all in-

terface methods that are contained in all interfaces that are implemented by

the class, but which do not have an implementation in the class. Such gener-

ated methods are called Miranda methods, because if the class does not have

a corresponding interface method, one is provided by default. For example,

the entry in the VMT of RandomAccessFile for method readInt() of Figure

4.2 is a Miranda method since there is no code (no explicit declaration) for
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readInt() in RandomAccessFile. These methods are added because early

VMs did not look for methods along the interface path, performing the lookup

only along the superclass chain.

However, if a compiler does not generate Miranda methods, one additional

action is required at class load time in our implementation. For each interface

from a class’s IMT, loop through their methods and look for corresponding

methods in that class’s VMT. If one is not found, then extend that class’s

VMT with this method and make it point to the code in the current interface

method. In both cases, the newly created slot in the VMT is present in all

the sub-classes of that class, therefore if code is found in one superinterface,

it will be propagated to all the classes implementing that interface.

4.4 Inheritance Scenarios - Potential Ambigu-

ities

We have analyzed situations that use code in interfaces to ensure that the

algorithm in Figure 4.1 works as necessary. The four scenarios in Figure 4.3

represent the common situations. They test all paths of the algorithm we

devised. The first scenario shows a non-ambiguous case. The second scenario

illustrates a simple method overriding case with no ambiguities. The third

scenario generates an ambiguity, since a type inherits implementations for a

method from two direct unrelated parents; note that the type itself does not

provide an implementation for that method. Finally, the fourth scenario is

a case of complex method overriding which does not generate an ambiguity

under a weaker definition of inheritance conflicts.

Scenario 1. The simplest scenario occurs when ClassA has no code for

method alpha() and no superclass has code for method alpha(). In addition,

a direct superinterface, InterfaceA, has code for method alpha(). This is

also the scenario described previously, where the class RandomAccessFile im-

plements the interface DataInput which contained code for readInt(). When

a message alpha() is sent to an instance of ClassA, the code from InterfaceA

is executed.
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ClassA

InterfaceA
alpha()

ClassB

InterfaceA

InterfaceB

alpha()

alpha()

ClassB

InterfaceA InterfaceB
alpha() alpha()

ClassAInterfaceB

InterfaceA

alpha()

alpha()

ClassB

Scenario 1 Scenario 3

Scenario 2 Scenario 4

interface

class

implementation

 subclass

extended by

Figure 4.3: Inheritance scenarios - Potential ambiguities.

Scenario 2. A more complex case occurs when ClassB has no code for

alpha(), but both InterfaceA and InterfaceB on the same superinterface

chain have code for alpha(). In this case, step 13C of Figure 4.1 is first

executed with currentmb bound to a methodblock in ClassB (with no code)

and imb bound to a methodblock in InterfaceB with code. This means

that step 13D is executed to re-bind the VMT entry to the methodblock

in InterfaceB. The second time that step 13C is executed, currentmb is

bound to a methodblock in InterfaceB (with code) and imb is bound to a

methodblock in InterfaceA (with code). Step 13F is entered since there is

chance for method ambiguity. However, since InterfaceA is a superinterface

of InterfaceB, the condition in step 13F evaluates to false and an ambiguous

method exception is not thrown. Therefore, when a message alpha() is sent

to an instance of ClassB, the code for alpha() provided by InterfaceB is

executed. This constitutes a simple method overriding situation, similar to

the case where we have classes instead of interfaces.
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Scenario 3. This scenario illustrates a situation where an ambiguous

method exception should be thrown. Since either the code in InterfaceA

and InterfaceB could be inherited, the programmer is required to declare

a method in ClassB to resolve the inheritance conflict [14]. A trace of the

code in Figure 4.1 shows that an ambiguous method exception does occur

since the IMT for InterfaceA does not contain InterfaceB and the IMT for

InterfaceB does not contain InterfaceA.

Scenario 4. This scenario illustrates an interesting situation where one

might conclude that an ambiguous method exception should be thrown for an

alpha() in ClassB. However, since the code for alpha() in InterfaceA is

reachable from ClassB by going through InterfaceB, a weaker definition of

inheritance conflict would dispatch the version of alpha() from InterfaceB

[24]. A trace of the code in Figure 4.1 shows that an ambiguous method

exception does not occur since the condition in step 13G is false. In this

case, currentmb is bound to a methodblock in InterfaceA and imb is bound

to a methodblock in InterfaceB, since interfaces of superclasses are added

to the IMT of ClassB before other interfaces are added, as described in the

code in Figure 3.16. Therefore, in this situation, the code from InterfaceB

is executed when a message alpha() is sent to an instance of ClassB. Each

scenario illustrates one of the unique paths through the code in Figure 4.1,

including the need for both conditions (step 13F and 13G).

4.5 Dispatch of Code from Interface Methods

When the user provides interfaces with code, a call-site that often appears in

an interface method is this.alpha(). In a method implemented in a class, the

this keyword represents a reference to the object on which the method was

invoked and an invokevirtual bytecode is generated. When this call-site is

found in an interface, an invokeinterface should be generated instead since

the static type of this is now an interface. To account for such situations,

we modify the bytecode generated for each this.alpha() call-site found in

an interface from invokevirtual to an invokeinterface. Thus, the lookup
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// java.io.DataInputStream and java.io.RandomAccessFile

...

public final byte readByte() throws IOException {
int ch = this.in.read(); // int ch = this.read();

if (ch < 0)

throw new EOFException();

return (byte)(ch);

}
...

Figure 4.4: Similar code in java.io library.

for the method starts in the current interface (the interface that contains the

call-site) and continues up its superinterface chain searching the method table

of each interface for a method signature match.

We present an example of such a method dispatch that we have encountered

in the validation process of our JVM modifications. Figure 4.4 is a reproduc-

tion of Figure 2.9 that illustrated similar code in the readByte() methods of the

java.io library from the classes DataInputStream and RandomAccessFile.

If this code can be made identical, it can be moved to the common super-

interface of DataInputStream and RandomAccessFile, called DataInput that

is shown in Figure 2.7. The code can be made identical by replacing the second

line of the readByte() method by:

int ch = this.source();

where the source() method in class DataInputStream returns this.in and

the source() method in class RandomAccessFile returns this. This change

is described in more detail in Chapter 6. What is important to notice now is

that this kind of abstraction results in a method such as readByte() in the

interface DataInput which contains a message with this as the receiver. In

this case, the scripting process replaces the invokevirtual bytecode with an

invokeinterface bytecode.

The operands required by invokevirtual and invokeinterface are dif-

ferent. The invokevirtual bytecode takes only two operands which form an

index into the constant pool, whereas invokeinterface takes four operands:

the first two operands form an index into the constant pool, the third operand
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indicates the number of arguments that the method takes and the fourth is

set aside for execution speed (the guess) after quicking. Therefore, when re-

placing these bytecodes in the .class file, the number of arguments should

be added (if the last operand is not provided, it is automatically set to 0). A

new .class file containing these changes is generated as described in Chapter

7. The number of arguments provided in the script is not important, because

as we will see later we do not use it. Instead, the correct number of argu-

ments for the method is taken from the resolved methodblock when the JVM

encounters an invokeinterface. The right number of arguments is essential,

because when the method that we would like to execute is in an interface, the

receiver object has to be retrieved by going up the operand stack a number

of arguments found in the resolution methodblock, and not in the bytecodes

(which do not reflect the actual situation in the resolved methodblock).

4.6 Concluding Remarks

Our implementation of multiple code inheritance in Java is based on the novel

concept of adding code to selected interfaces represented by code-types. In this

Chapter, we described our modifications to the JVM class loader that support

code within interfaces and we showed how the new code was dispatched. We

showed that our approach detects ambiguous situations due to code in multiple

super-types. We illustrated scenarios that tested the modified class loader in

the presence of code in interfaces, as well as in ambiguous situations.

We solved the special dispatch problem for this.alpha() call-sites within

interface code, by replacing the invokespecial bytecode, normally generated,

with invokeinterface.

We provided a comment notation for including code in interfaces. In Chap-

ter 7 we detail the process which inserts code within interfaces in the absence

of compiler support for multiple code inheritance.
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Chapter 5

Super Call Implementation

The implementation of an overridden method often invokes the same method as

implemented in the super-type, in order to refine existing code. Java achieves

this enhancement of functionality for the overridden method through its pow-

erful super call mechanism. However, when a type inherits code from multiple

super-types, the choice of which type to use for a super call becomes an issue.

In this Chapter we present a solution to the problem of super calls in the case

of multiple code inheritance. We also propose syntax changes for super calls

to interfaces that would simplify coding.

5.1 Super Call Mechanism

In Java, a method invokes the same method from its superclass using the

syntax super.alpha(). With multiple-inheritance, such a call could be am-

biguous. C++ solves this ambiguity problem by specifying a method in a

particular superclass at compile time. For example, if C is a direct subclass of

classes A and B that both declare method alpha(), then a super reference to

alpha() in a method in class C can specify either A::alpha() or B::alpha().

In fact, if no declaration of alpha() occurs in class A, but does occur in a

superclass of A, such as D, then the call A::alpha() would start a dynamic

lookup in A and then proceed to find the appropriate method in D.

This is the approach we use in multiple-inheritance Java. Chapter 7 de-

scribes the syntax used to implement this idea without changing the Java lan-

guage. In this Chapter we use the simple notation super(Start).alpha(),
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ClassE

InterfaceA InterfaceC
alpha()

InterfaceB
alpha()

alpha()

ClassD
alpha()

... alpha() {

...
super(?).alpha();

Figure 5.1: Classes and interfaces for super calls.

where Start refers to any superinterface. Since the argument interface does

not need to declare the method, this argument indicates the place where the

lookup starts. The modified JVM looks for code in the specified interface and

then continues searching along the superinterface chain. If a stricter form of

multi-super is required, the start interface could be restricted to be an imme-

diate superinterface of the class or interface that includes the super call. Some

would argue that this C++ model provides too much freedom in super calls.

5.2 Examples of Multi-Inheritance Super

Consider the classes and interfaces in Figure 5.1. The following method call

super(InterfaceA).alpha() in a method of ClassE invokes the alpha() in

InterfaceA. The call super(InterfaceC).alpha() invokes the alpha() in

InterfaceB. The call super.alpha() invokes the alpha() in ClassD, because

we do not change the meaning of the single-inheritance super call.

Now consider the interfaces and classes of Figure 5.2. The method call

super(InterfaceG).alpha() in a method of ClassM invokes the alpha() in

InterfaceF. The call super.alpha() would behave identically with the usual

super call. The traditional call super.alpha() would not find the alpha() in

InterfaceJ and in fact would result in a compile-time error since there is no

alpha() declared in the superclass chain of ClassM (i.e., there is no declaration

of alpha() in ClassL nor ClassK). If there was also an alpha() in ClassK,
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ClassM
alpha()

InterfaceG

InterfaceF alpha()

InterfaceH
alpha()

ClassL

InterfaceJ
alpha()

ClassK

... alpha() {

...
super(?).alpha();

Figure 5.2: More classes and interfaces for super calls.

then an inheritance conflict exception would have been thrown when ClassL

was loaded.

5.3 Implementation of Super

Our implementation of the multiple-inheritance super call, with the proposed

syntax super(Start).alpha(), generates an invokeinterface bytecode in-

stead of an invokespecial bytecode generated to implement a single-inheritance

super call, super.alpha().

The instruction stores the argument interface (in this case, Start) in the

constant pool and marks the method call-site by storing a special value in

an operand of invokeinterface bytecode. With compiler support, we would

prefer to create a different bytecode (invokemulti-super).

We will refer to this operation as an invokemulti-super, even when it is

represented by a marked invokeinterface. It appears that two JVM changes

are required to support invokemulti-super, one in resolution and one in

computing the execution methodblock. In fact, resolution does not require

changes. Regular invokeinterface resolution finds an appropriate resolu-

tion methodblock. However, execution methodblock computation is different
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for invokemulti-super and invokeinterface. An invokeinterface uses

a guess and the resolved methodblock stored in the quicked bytecodes to

find the execution methodblock using the formula given in Figure 3.13. For

invokemulti-super, we can just use the resolved methodblock directly as the

execution methodblock, as we show later in this Chapter.

We preserve the semantics of the traditional super calls without altering

their performance. If we use the normal super syntax (without any argument

for super), the classic super would be executed, therefore the code from the

superclass would be retrieved. The compiler emits an invokespecial bytecode

followed by one operand, which is an index into the constant pool of the current

class. The entry at this index is the method signature (in this case, alpha())

of the method being invoked, along with the first superclass that contains a

declaration of alpha(), when the super call was compiled.

If an existing program contains a super call, we expect the new JVM to

generate the same results. This is consistent with Figure 5.2 where a regular

super.alpha() call in ClassM generates a compiler error instead of executing

the code in InterfaceJ. If on the other hand we use the multi-super syntax

with an interface argument, then we expect the code from an interface to be

executed.

If the user wants the code from a specified superinterface to be executed,

then the name of the superinterface has to be supplied as an argument to the

multi-super. In this case, the scripting process applied to the interfaces and

classes involved recognizes the special marker (from the number-of-arguments

operand of invokeinterface) and replaces the static receiver of the method

with the specified interface name.

We have slightly modified the JVM code that executes the invokeinterface

bytecode in order to differentiate between the two cases when this bytecode

is generated: the traditional case (real invokeinterfaces) and this special

case (the multi-inheritance super call). In fact, we have modified the quick

counterpart of the invokeinterface, i.e., invokeinterface quick. In the

case the flag set in the operand is on, when an invokeinterface quick byte-

code is executed, our execution methodblock is retrieved, instead of the usual
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case opc invokeinterface quick:

imb = constant pool[GET INDEX(pc + 1)].mb;

interface = imb.class;

offset = imb.offset;

...

// We change the code so that nargs is retrieved from

// the resolved interface methodblock imb instead of

// from the nargs bytecode (pc[3]).

// args size = pc[3]; // REMOVED

args size = imb.args size; // ADDED

optop -= args size;

...

// We use the third operand (nargs) as a marker for the

// multi-super case.

if (pc[3] == 255) // ADDED

mb = interface.MT[offset]; // ADDED

goto callmethod; // ADDED

end if // ADDED

...

end case

Figure 5.3: The modifications made at the invokeinterface quick bytecode
execution.

methodblock. Details of our implementation are illustrated in Figure 5.3. This

does not affect the non-marked invokeinterface executions, because if the

flag is not set, then the next time an invokeinterface is encountered, the

usual (non-modified) execution process occurs and the proper methodblock is

executed. The execution of the traditional invokeinterface quick is more

complicated, since the resolution methodblock may be different from the ex-

ecution methodblock as described in Chapter 3, Section 3.7.

In our case, it turns out that the resolution methodblock is the actual exe-

cution methodblock. The reason for this convenient situation is that once we

specify the starting point of the lookup (the interface argument) the interface

method table (IMT) of the specified interface is searched, beginning with its

first entry, which is the interface itself, and continuing with all the direct and

indirect superinterfaces until a matching signature for the method is found in

the method table (MT) of some interface. The resolved method is the method
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that should be executed since in a super call the dynamic type of the receiver

is irrelevant.

If no code is found on the superinterface chain, the compiler would have

generated an error. Note that it is currently possible to use our scripts to put

code in a method alpha() in an interface IA and to declare alpha() to be

abstract in a sub-type interface IB. This should be a compile-time error since

it violates substitutability [14]. Because we currently do not have compiler

support for code in interfaces, we catch this error at load-time.

5.4 Concluding Remarks

In this Chapter, we presented the JVM changes necessary to support our

generalization of the super operation for multiple inheritance. We defined and

implemented a super call mechanism that resembles the one in C++. We

achieved this by making a change to the execution of the invokeinterface

bytecode.

We provided a simple notation for super calls to interfaces, which does not

require compiler support. In Chapter 7, we detail the scripting process used

to work around the standard Java compilers in the presence of multiple code

inheritance. We proposed syntax changes for super calls to interfaces that

would simplify coding.
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Chapter 6

Experimental Results

This Chapter provides an overview of experiments and tests conducted during

the process of verifying the implementation of our SUN JVM for JDK 1.2.2

modifications. The goal of our JVM validation is to show that our multiple

code inheritance implementation preserves semantics and performance of ex-

isting single inheritance code, without altering Java language syntax or Java

compilers. In addition, we show that both our basic multiple code inheritance

and the super call mechanism we implemented execute correctly in multiple

inheritance programs. We also provide some measurements of the software

engineering advantages of using multiple code inheritance.

6.1 Experimental Platform

The experiments were executed on an Intel PC, single Pentium III processor

700MHz, with 256 KB L2 cache size and 512 MB RAM. We compiled the Sun

Microsystems JDK 1.2.2 for the Linux v. 2.2.16-3 operating system with the

GCC compiler v. egcs-2.91.66 with optimization flags -O2 (default) in JVM

internal debug mode based on conditional compilation. This JVM version does

not have a jit compiler. We developed a scripting process using Perl v5.6.0

for Linux.
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6.2 Compatibility and Performance

We ran two large single-inheritance Java programs on the unmodified JVM

and on our modified JVM. We wanted to test that our modified JVM did not

introduce errors into single-inheritance programs.

The single inheritance test programs were javac and jasper. The jasper

application takes a .class file and turns it into a .j file containing a human

readable version for the binary code of a .class file. In the first experiment

we compiled all of the files in the java.io package. In the second experiment

we applied jasper to all of the .class files in the java.io package. Both

javac and jasper are written in Java, so they require a JVM to run.

In order to check if the results were consistent, we compared with the Unix

command diff the binary files produced by the javac compiler ran on the

classic JVM against the javac compiler ran on our modified JVM, and we

verified they are identical. We also verified that the outputs of jasper are

identical when ran on the two JVMs.

We repeated this experiment for javap (Chapter 3, Section 3.1 illustrates

an example of using this tool), a single inheritance application within the

JDK, which generates a description of any .class file that is provided as

an argument. We tested the .class file disassembler javap on the .class

files generated by javac in the java.io library. Again, the output using our

modified JVM is identical to the output using the classic JVM.

We also wanted to measure the performance overhead of using our modified

JVM on single inheritance programs.

In all three of these tests, there is no measurable change in the execution

times, the performance is the same within measurement errors. Table 6.1

shows the average times (seconds) obtained with the Unix command time,

after 20 runs of javac and jasper. The table shows also the corresponding

standard deviation with both JVM implementations. No times are included

for javap since it only runs on a single .class file and the time is too short

for meaningful comparisons.
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JVM javac jasper

Sun JVM

avg

10.25s 11.85s

Our JVM

avg

10.08s 11.56s

Sun JVM

stdev

0.02 0.54

Our JVM

stdev

0.15 0.05

Table 6.1: Time measurements for javac and jasper on java.io library files.

6.3 Correctness

We then ran programs whose inheritance structures are represented in Figure

4.3, to test the basic implementation of multiple-inheritance. This includes

code in interfaces and inheritance of this code. These situations test all paths

through our modified class loader code shown in Figure 4.1.

We also included tests for the special call-sites this.alpha() in an inter-

face method code. Also, we included tests for input.alpha() call-sites within

an interface with code, where input is declared to be that interface. These

call sites would normally be compiled into invokevirtual bytecodes as a re-

sult of applying our scripting process. We turn them into invokeinterface

bytecodes. In all cases, we obtained the expected results described in more

detail in Chapter 4.

To test our implementation of super calls, we ran programs with all of the

inheritance structures of Figure 5.1 and Figure 5.2. We tested the execution

of the traditional super calls when code is provided in superinterfaces and

the execution of multiple inheritance super calls. The results demonstrate

that the semantics of traditional super calls are preserved and that multiple

inheritance super calls are correctly dispatched, as compared to the expected

results discussed in Chapter 5.
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RandomAccessFile

DataOutputDataInputInputStream

DataOutputStreamDataInputStream

OutputStream

Source Sink

Figure 6.1: Re-factored hierarchy in java.io library.

// java.io.DataInputStream and java.io.RandomAccessFile

public final float readFloat() throws IOException {
return Float.intBitsToFloat(readInt());

}

Figure 6.2: Identical code in the input stream files.

6.4 Re-factoring the java.io Library

One of the common examples which motivates the use of multiple code inher-

itance is the java.io library. Identical code appears in several classes within

this library. Figure 6.1 shows the existing hierarchy of classes and interfaces,

along with two new interfaces, Source and Sink, that are used to help promote

code to superinterfaces.

6.4.1 Input Stream Classes

Classes RandomAccessFile and DataInputStream have either identical code

or code that requires a simple abstraction in order to be made identical. The

goal is to promote the common code into the DataInput interface where it

would be available for instances of both classes. For example, the method

readFloat() from Figure 6.2 has the same code in both classes. The method

readByte() from Figure 6.3 needs one abstraction. We accomplish that by

replacing references to data by abstract accessor method invocations (e.g.

source() and sink() as discussed below) placed in the interfaces and imple-
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// java.io.DataInputStream and java.io.RandomAccessFile

public final byte readByte() throws IOException {
int ch = this.in.read(); // int ch = this.read();

if (ch < 0)

throw new EOFException();

return (byte)(ch);

}

Figure 6.3: Similar code in the input stream files.

// java.io.DataInput

public final byte readByte() throws IOException {
int ch = this.source().read();

if (ch < 0)

throw new EOFException();

return (byte)(ch);

}

Figure 6.4: Abstraction of similar code in DataInput interface.

mented in the classes down the hierarchy. Figure 6.4 shows how we abstract

the code and promote it to the common superinterface DataInput.

Let us consider the code in the readByte() method from DataInputSteam

and RandomAccessFile shown in Figure 6.3. Both methods call the method

read(). The only difference between the code in the classes DataInputStream

and RandomAccessFile (which implement DataInput) is the receiver of the

read() method. To generalize the code for this method so that it can be

promoted to the interface DataInput, we have to declare a method source()

in the interface DataInput which returns the right receiver for the read()

method in each case. The implementations of the source() method for

classes DataInputStream and RandomAccessFile are shown in Figure 6.5.

Since the source() method in DataInputStream returns an instance of class

InputStream and the source() method in RandomAccessFile returns an in-

stance of class RandomAccessFile, we need a smallest common super-type of

InputStream and RandomAccessFile. Therefore we introduce a new inter-

face Source, as shown in Figure 6.1. In the same manner, we need a sink()

method declared in DataOutput and a Sink interface, as we will see in the
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// class java.io.DataInputStream

...

public Source source() {
return this.in;

}
...

// class java.io.RandomAccessFile

...

public Source source() {
return this;

}
...

Figure 6.5: Implementation of the source() method.

// package mi

public interface Source {
public int read() throws IOException;

}
public interface Sink {

public void write(int b) throws IOException;

}

Figure 6.6: The mi package.

next Section.

We have re-factored the java.io library by moving common code up into

interfaces. To support this process, we have built a package named mi (Figure

6.6) that is imported in every class or interface that implements or extends our

two new interfaces: Source and Sink. The Source interface has one abstract

method, read() and Sink interface has one abstract method, write(int) as

illustrated in Figure 6.6. These two interfaces represent the least common

superinterface of the types returned by the source() and sink() methods.

InputStream and RandomAccessFile both implement the new interface

Source, and at the same time OutputStream and RandomAccessFile both

implement the new interface Sink.
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// java.io.DataOutputStream and java.io.RandomAccessFile

public final void writeFloat(float v) throws IOException {
writeInt(Float.floatToIntBits(v));

}

Figure 6.7: Identical code in output stream classes.

// java.io.DataOutputStream

public final void writeInt(int v) throws IOException {
OutputStream out = this.out;

out.write((v >>> 24) & 0xFF);

out.write((v >>> 16) & 0xFF);

out.write((v >>> 8) & 0xFF);

out.write((v >>> 0) & 0xFF);

incCount(4);

}

Figure 6.8: Method writeInt() in DataOutputStream.

6.4.2 Output Stream Classes

Classes RandomAccessFile and DataOutputStream have some identical meth-

ods (for example, method writeFloat() in Figure 6.7).

In addition, there are several situations where the code in DataOutputStream

can be made identical to the code in RandomAccessFile (using an abstrac-

tion), except for some extra lines of code following the identical part. We can

promote all such code to the common superinterface and make a super call to

it from the type which contains the extra lines of code.

For example, Figure 6.8 and Figure 6.9 show the method writeInt() from

classes DataOutputStream and RandomAccessFile respectively. Figure 6.10

shows the common abstracted method that has been promoted to interface

DataOutput. There is no method for writeInt() in RandomAccessFile. How-

ever, Figure 6.11 shows the method that remains in DataOutputStream to

make the super call and perform the extra action. The super(DataOutput) is

not standard Java. It is the super call to a superinterface, discussed through-

out this dissertation. In fact, only the methods from DataOutputStream

have to provide both an abstraction and a super call. The methods from

RandomAccessFile only need to be abstracted. Therefore, they are completely
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// java.io.RandomAccessFile

public final void writeInt(int v) throws IOException {
this.write((v >>> 24) & 0xFF);

this.write((v >>> 16) & 0xFF);

this.write((v >>> 8) & 0xFF);

this.write((v >>> 0) & 0xFF);

}

Figure 6.9: Method writeInt() in RandomAccessFile.

// java.io.DataOutput

public final void writeInt(int v) throws IOException {
Sink out = this.sink();

out.write((v >>> 24) & 0xFF);

out.write((v >>> 16) & 0xFF);

out.write((v >>> 8) & 0xFF);

out.write((v >>> 0) & 0xFF);

}

Figure 6.10: Code abstracted in DataOutput interface.

promoted to DataOutput.

We ran test programs that used the re-designed java.io library partially

shown in Figure 6.1. In Table 6.2 and Table 6.3 we show how multiple code

inheritance reduces the amount of identical and similar code to simplify pro-

gram construction and maintenance. Table 6.2 shows the number of methods

that could be promoted in these stream classes of the java.io library, if Java

supported multiple code inheritance. Table 6.3 shows the number of lines of

executable code moved to the superinterfaces using the same multiple code

inheritance assumption. We counted only executable lines and declarations,

not comments or method signatures.

// java.io.DataOutputStream

public final void writeInt(int v) throws IOException {
super(DataOutput).writeInt(v); // Proposed syntax.

incCount(4);

}

Figure 6.11: Re-factored code in DataOutputStream with both abstraction
and super.
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Class Identical

methods

Abstract Abstract

and Super

Total

pro-

moted

Method

De-

crease

DataInputStream 4/19 8/19 0/19 12/19 63%

DataOutputStream 2/17 0/17 6∗/17 2+6∗/17 12%

RandomAccessFile 6/45 8/45 6/45 20/45 44%

Table 6.2: Method promotion in the Java stream classes using multiple code
inheritance.

Class Initial

Lines

Added Lines

Abstract

and Super

Net Lines

Abstract

and Super

Line

De-

crease

DataInputStream 127 1 84 34%

DataOutputStream 83 7 66 20%

RandomAccessFile 154 2 97 37%

Table 6.3: Lines of code promotion in the Java stream using multiple code
inheritance.

More important than the size of the reductions is the reduced cost of un-

derstanding and maintaining the abstracted code. Even though most of the

method bodies of six methods move up from DataOutputStream to DataOutput,

small methods remain that make super calls to these promoted methods. This

is the reason that the method decrease is smaller for DataOutputStream than

its code decrease. Reducing the number of lines of code reduces the main-

tainance cost for this code and enhances readability for users of this code.

These re-factored library classes exercise all of the multiple code inheritance

implementation changes that we made. The test programs ran without error

and with negligible time penalties for multiple-code inheritance.

Our test program (which uses the re-factored types) creates an instance of

DataOutputStream which is sent write messages (writeDouble(), writeInt(),

writeChar(), and writeChars()) in order to create an output text file and

write some values in it. Then a DataInputStream object is created which uses

the same file to read information for it (readDouble(), readInt(), readChar(),

and readLine()). Although DataInputStream does not override any of the

methods sent to a DataInputStream object (because these methods have been
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promoted to DataInput), the program generates the same results as the un-

modified java.io library.

6.5 Concluding Remarks

In this Chapter, we described several experiments we conducted to validate

our JVM changes, targeting both single and multiple inheritance programs.

The results of the tests and experiments show that our multiple code inheri-

tance implementation preserves semantics and performance of existing single

inheritance code, without altering Java language syntax or Java compilers.

The dispatch scenarios illustrated in Chapter 4 were implemented and ran

correctly.

In addition, we showed that both our basic multiple code inheritance and

the super call mechanism that we implemented execute correctly in multiple

inheritance programs. We also described how all the dispatch scenarios il-

lustrated in Chapter 5 were implemented and ran without error, generating

correct results.

Finally, we provided some measurements of the software engineering advan-

tages of using multiple code inheritance. In order to test multiple inheritance

programs, we used the re-factored java.io library, with code in interfaces

and super calls to interface code. By using multiple code inheritance, a con-

siderable amount of executable code was promoted to common super-types by

being removed from the base type or replaced with only a super call.
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Chapter 7

Syntax Support for Compilation

The ability to support multiple-inheritance of code introduces two specific

challenges to the compilation process. First, as discussed earlier, current Java

compilers do not support executable code inside interfaces. Second, a mecha-

nism is needed to handle generalized super calls. Future work will be to modify

the compiler to support both code in interfaces and the super call mechanism.

7.1 The Scripting Process

We have developed a translation process that uses an unmodified Java com-

piler and does not affect the existent language syntax. Our technique is based

on source-to-source and class-file-to-class-file transformations using custom

scripts, publicly available Java tools, and syntactic conventions in the user’s

Java code. All of our scripts have the prefix ”MI ” (multiple-inheritance) in

their names. Although there are several steps in the compilation process, the

process is automated and it is summarized in a flow chart in Figure 7.3.

At the programmer level, the process is the following:

1. The programmer includes code in the interface, but the code is within

comments with a special label MI CODE.

2. Our scripts transform the .java file for the interface into a .class file

that contains the code. We make use of the following tools: jasper [16]

and jasmin [15].
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...
public float readFloat() 

 {
return
Float.intBitsToFloat(readInt());

}

interface DataInput {
...

throws IOException;

public float readFloat() 

 
/*MI_CODE
{
return
Float.intBitsToFloat(readInt());

MI_CODE */
}

throws IOException

...
} }

...

abstract class DataInput_MI {

Figure 7.1: Syntax of interface code in java.io.DataInput interface and the
result of applying the script MI hybridInterface.

3. Multi-inheritance super calls are written as two standard Java instruc-

tions and our scripts translate them into the invokeinterface bytecodes

described in Chapter 5.

7.2 Code in Interfaces

Current Java compilers do not allow code to be included in interfaces so the

programmer delimits the code using special comment delimiters /* MI CODE

and MI CODE */. For example, consider the interface DataInput and the class

DataInputStream from Figure 3.14. The code for readFloat() in the interface

DataInput is shown in Figure 7.1.

The goal of our compilation process is to create a file DataInput.class

with Java bytecodes for the body of the method readFloat(), i.e., an interface

with code. This is accomplished by creating both an interface DataInput and

a class with the same name followed by MI (i.e., multiple inheritance), then

combining the .class files of both the interface and class into a single .class

file that is like an interface, except that it contains code from the specially

commented methods. Therefore step 2 of our process is divided into sub-steps

that use several translation tools and scripts.

• 2.1 The interface source file (DataInput.java of Figure 7.1) is compiled

using a standard javac compiler to create a binary file (DataInput.class)

for the interface that contains no code.
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• 2.2 The interface binary file (DataInput.class) is disassembled, using

the jasper [7] tool into an interface jasper file (DataInput.j). The

jasper file is a human-readable form of the binary file that begins with

a description indicating that the file was originally compiled from an

interface.

• 2.3 Script MI hybridInterface performs a source-to-source translation

from an interface source file (DataInput.java) into an abstract class

source file (DataInput MI.java) in which the special comment delimiters

are removed from the interface’s methods (readFloat()), making the

code visible to a compiler. The class DataInput MI is made abstract to

avoid irrelevant compiler error messages since some interface methods

may not contain code and a class that contains at least one method

without code (abstract method) should be declared abstract.

• 2.4 The abstract class source file (DataInput MI.java) is compiled by

javac into an abstract class binary file (DataInput MI.class) that con-

tains code for all of the methods in the original interface that had meth-

ods (readFloat()).

• 2.5 The abstract class binary file (DataInput MI.class) is disassembled

into an abstract class jasper file (DataInput MI.j) using the jasper

tool.

• 2.6 Script MI copyHeaderInterface first replaces all the invokevirtual

bytecodes whose static types have a suffix MI with invokeinterface

bytecodes. Due to the difference in the number of operands required

by invokevirtual (only two operands) and invokeinterface (four

operands), another bytecode which represents the number of arguments

taken by the method has to be added at the new invokeinterface lo-

cation. This number is actually ignored at run-time, since the actual

number of arguments is taken from the resolved methodblock. However,

some number must be placed in the operands in order to allow the gener-

ation of the modified .class file with jasmin. The fourth operand is set
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to zero by default, so we do not have to explicitly provide it. Recall that

this step is necessary, because of the situation when we have a call-site

this.alpha() within an interface method.

In this case, the script removes the MI suffixes of all references in

the abstract class jasper file (DataInput MI.j). Note that although

the static type of the receiver at an invokevirtual call-site is a class

(DataInput MI), after removing the MI suffix and replacing the opcode

with invokeinterface, the static type of the receiver at the same call-

site becomes an interface (DataInput) as expected for an invokeinterface

bytecode. The script combines this modified abstract class jasper file

(DataInput MI.j) with the interface jasper file (DataInput.j) to obtain

a hybrid jasper file that has the header (description of the type of the

.class file) of an interface (DataInput.j) and the code for the methods

(DataInput MI.j), except for the constructors. The hybrid jasper file

overwrites the interface jasper file (DataInput.j).

• 2.7 The hybrid jasper file (DataInput.j) is assembled into a hybrid

binary file (DataInput.class) using the jasmin [8] tool. Since jasmin

is not a full-fledged compiler, it does not explicitly check whether or not

interfaces have code so no errors are reported.

Although there are seven steps in this process, they are hidden from the pro-

grammer who uses the simple syntax of Figure 7.1. For now, all the steps of

the process are automated in a makefile, therefore the user only types the

make command. In the future, we would like the user to run a script instead of

a makefile in order to trigger the execution of this process. Currently, when

a program that has code in interfaces is executed by java, the verifier must be

turned off (-noverify flag). We plan to modify our JVM to remove only the

verification code for interfaces so the rest of verification can be maintained.
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// Multi-super: the lookup starts from the argument’s IMT,

// continuing along its superinterface hierarchy.

MI.supercall("InterfaceH");

super.alpha();

...

// Normal super: the lookup starts in the superclass MT,

// continuing along its superclass chain.

super.alpha();

Figure 7.2: Syntax of supercall for call-sites in ClassM.

7.3 Super Calls

In Chapter 5, we described multi-inheritance super calls and introduced the

syntax super(Start).alpha(), indicating the interface Start as the place

the lookup begins from. Our approach currently uses two standard Java state-

ments to represent this language extension. This allows us to still use the

standard Java compiler, javac, albeit as part of a multi-step, scripted compi-

lation process. To make a multi-inheritance super call, the programmer inserts

a special static method call that contains the start interface as an argument,

followed by a standard local method call. For example, Figure 7.2 shows the

current syntax for the super calls shown in Figure 5.2 that start searching in

InterfaceH (multi-inheritance super) and ClassL (normal super), respectiv-

elly. MI is a new library class specifically designed to provide syntax support

for multiple-inheritance. It can be discarded once compiler support is de-

veloped for multiple-inheritance using super(Start).alpha(). The MI class

contains a static method supercall that takes as an argument the interface

from which the lookup starts. This is a marker which indicates that the super

call immediately following it is a special super, i.e., a multi-inheritance super

call.

Since we do not alter the semantics of the existing super calls, we do not

provide an MI.supercall statement before a normal super to a class. Thus

we do not impose any overhead on existing super calls.

If the javac compiler tries to compile the code in Figure 7.2, based on

87



the inheritance hierarchy of Figure 5.2, it will produce a compilation error for

both super.alpha() call-sites. In each case, it will search the superclass chain

of ClassM, starting with ClassL and will not find a declaration for alpha().

To avoid spurious compilation errors, we can replace the super keyword with

this for all the call-sites immediately preceded by an MI.supercall before

compilation. This works since if the call-site super.alpha() is turned into

this.alpha(), the compiler finds the method in the virtual method table

(VMT) of the current class, therefore it does not report an error. However,

an invokevirtual bytecode is generated instead of an invokespecial. We

further need to replace this invokevirtual with an invokeinterface, so that

the lookup starts in the IMT of the specified interface, and not in the method

table (MT) of the superclass of the class which contains the super call-site.

Here is our multi-step compilation process that translates the syntax of

Figure 7.2, to the bytecodes described in Chapter 5. These steps are the sub-

steps of step 3 of the high-level compilation process presented at the beginning

of Chapter 5. In each step, the term current class refers to the class that

contains the super call. The example used is the code in Figure 7.2 with the

inheritance hierarchy of Figure 5.2.

• 3.1 Script MI preprocessClass transforms the current class source file

(ClassM.java) into an abstract class source file (ClassM MI.java) by

adding the abstract modifier to the class. At the same time, the super

keyword is replaced by the this keyword at all the call-sites immediately

preceded by MI.supercall. The abstract modifier is needed since the

current class may not actually declare the method invoked by the super

call. For example, consider the situation where the code in Figure 7.2, is

in a method called beta() and there is no code for alpha() in ClassM.

By making the current class (ClassM) abstract, no compiler error will

be generated by the this.alpha() call, because a slot for alpha() is

automatically created in the virtual method table (VMT) of ClassM,

representing a Miranda Method (detailed in Chapter 4).

• 3.2 The abstract class source file (ClassM MI.java) is compiled into an
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abstract class binary file (ClassM MI.class) using javac.

• 3.3 The abstract class binary file (ClassM MI.class) is disassembled into

an abstract class jasper file (ClassM MI.j) using jasper.

• 3.4 The script MI abstractToConcrete translates the abstract class

jasper file (ClassM MI.j) into a concrete class jasper file (ClassM.j).

The abstract class modifier is removed and the invokevirtual instruc-

tion after the MI.supercall(Start) method invocation is changed to

an invokeinterface instruction. The argument of the MI.supercall is

copied over the static type of the receiver in the invokeinterface imme-

diately following this statement. As in all cases where the invokevirtual

bytecode was replaced with an invokeinterface requiring two more

operands, the number of arguments is also supplied. Since the number

of arguments is ignored at run-time, being retrieved from the resolved

methodblock, we can use it as a marker for the multi-super case, set-

ting it to 255. Now the modified .j file can be correctly generated with

jasmin resulting in a valid .class file, since the invokeinterface has

been provided with the number of operands it requires.

• 3.5 The concrete class jasper file (ClassM.j) is assembled into a concrete

class binary file (ClassM.class) using jasmin.

The same process works on an interface source file that contains a super call.

Although there are five steps in this process, they are hidden from the pro-

grammer who uses the simple syntax of Figure 7.2.

7.4 Concluding Remarks

In this Chapter, we presented our scripting process that was developed to cope

with the absence of compiler support for multiple code inheritance.

We solved two specific challenges to the compilation process. First, as

discussed earlier, current Java compilers do not support executable code inside

interfaces. Second, a mechanism is needed to handle generalized super calls.
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The proper way to solve these problems is to modify a compiler to support

our changes and we plan to complete this task in the future. In the meantime,

we prototyped the compiler, through the scripting process described in this

Chapter. Our scripting process works with any existing java compiler.

Although there are several steps in this scripting process, they are auto-

mated and the user only executes a makefile to trigger their execution. In

the future, we would like to have a script with the same functionality as the

current makefile.
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DataInput.j
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DataInput.class DataInput_MI.java

Test.java
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javac
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DataInput_MI.jDataInput.j
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DataInputStream_MI.j

DataInputStream_MI.class
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DataInput code is executed

DataInputStream_MI.java

javac

jasper

our  java

Figure 7.3: The scripting process.
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Chapter 8

Conclusions and Future Work

In this dissertation we presented the design and implementation of an extended

JVM that supports multiple code inheritance. We conclude with a summary

of Chapters, future directions and research contributions.

8.1 Summary of Chapters

We started by motivating the need for multiple code inheritance in Java, em-

phasizing its advantages: facilitates code re-use, supports separation of inher-

itance concepts, and improves expressiveness and clarity of implementation.

Moreover, multiple code inheritance avoids duplicated code and supports re-

factoring.

We continued with a short review of the current state of multiple inher-

itance, investigating the mechanisms of multiple code inheritance in several

programming languages. We support multiple code inheritance, and not mul-

tiple data inheritance, since the latter is not as important as code inheritance.

Multiple data inheritance is not a popular feature among programming lan-

guages which support multiple inheritance, being the source of many compli-

cations. Re-using code is a powerful object-oriented feature which decreases

the effort of programmers, who are mainly focused on implementing method

bodies.

We described the current implementation of those parts of the JVM in-

volved in method dispatch. The steps of method dispatch, resolution and exe-

cution, are detailed for the invokevirtual and invokeinterface bytecodes.
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Since resolution is slow, bytecode quicking is introduced.

We proposed a mechanism to support multiple code inheritance in Java

through code in special interfaces that represent code-types. Then we de-

scribed how we modified the JVM loader to support these special types and

showed how the code was dispatched. We also described our solution to the

dispatch of this.alpha() call-sites within interface methods.

We presented the changes necessary to support a generalization of the

super operation for multiple inheritance. We defined and implemented a super

call mechanism that resembles the one in C++. We implemented this by

making a dispatch time change to the virtual machine. We provided a comment

notation for including code in interfaces and a simple notation for super calls

to interfaces that does not require compiler support. We proposed syntax

changes for super calls to interfaces that would simplify coding and would

require future compiler modification.

We conducted several experiments to validate our approach, targeting both

single and multiple inheritance programs. The dispatch scenarios illustrated

in Chapter 4 and Chapter 5 were implemented and ran correctly for both the

basic multiple code inheritance and our generalized super call implementations.

The multiple inheritance test programs used the re-factored java.io li-

brary hierarchy, in which interface code and our generalized super calls to

interfaces are correctly dispatched. The measurements of the software engi-

neering advantages of using multiple code inheritance show that a considerable

amount of executable code is promoted to common super-types, being either

removed from the base types or replaced with a super call.

Finally, we discussed the scripting process we used in order to insert code

into interfaces and to support super calls to interfaces, since the compiler is

not modified. We proposed syntax changes to simplify this mechanism in the

perspective of a modified compiler which accepts code within interfaces.
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8.2 Future Work

In this Section, we mention several ideas which, if expanded, can contribute

to the improvement of our JVM.

1. Even though the changes we have completed in order to support super

calls are small and localized, it is more appropriate to provide a new byte-

code for the multiple-inheritance super calls, namely invokemulti-super.

We would like to add this bytecode to our JVM and further evaluate its

performance. Alternately, we could mark the invokeinterface byte-

code using code attributes. Other researchers have successfully used

code attributes to mark bytecodes [27].

2. Currently, in order to compile code in interfaces, we execute a set of

scripts. We plan to change this in the future by modifying a compiler to

support the super(InterfaceA) syntax in Java, which would make our

scripting process unnecessary.

3. We also plan to modify our JVM to support the verification of code

in interfaces, at the same time maintaining the rest of the verification

stages.

4. We would like to validate the portability of our modifications to a dif-

ferent JVM which supports a JIT compiler.

5. In addition, we look for other opportunities to re-factor type hierarchies

by using our modified JVM, evaluate the decrease in code that we could

achieve and measure the performance differences.

8.3 Research Contributions

The research contributions of this dissertation include:

1. The first implementation of multiple code inheritance in Java is provided.

It is based on the novel concept of adding code to a new type of interface,

called a code-type. No changes need to be made to the syntax of Java
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to use multiple code inheritance, so no compiler changes are necessary.

However, syntax changes that would simplify coding are proposed for

the future.

2. We show how multiple code inheritance reduces the amount of identical

and similar code (such as in the standard libraries) to simplify program

construction and maintenance. We re-factor the java.io library and

show that programs using the classes in this library run correctly.

3. We define and implement a super call mechanism that resembles the

one in C++, in which programmers can specify an inheritance path to

the desired superinterface (code-type) implementation. We introduce

a simple notation for these super calls that does not require compiler

support and propose a simple syntax for future compiler support.

Our modifications are small and localized. The changes consist of:

1. The changes to algorithm ConstructIMT executed by the class loader as

shown in Chapter 4.

2. The changes to execution of the invokeinterface quick bytecode to

recognize a marked invokemulti-super that are shown in Chapter 5.

Our approach facilitates code re-use, reducing the amount of code that

the programmer has to write, supports separation of inheritance concepts,

and improves expressiveness and clarity of implementation. Existing Java

compilers, libraries and programs are not affected by our JVM modifications

and single-inheritance programs can achieve performance comparable to the

original JVM. Moreover, execution of multiple inheritance programs is correct,

for both our basic multiple code inheritance implementation and the super call

mechanism.
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Appendix A

Dissertation Highlights

This Appendix Section illustrates the most important parts of our implemen-

tation of multiple code inheritance in Java.
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