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Abstract

Some datasets and computing environments are large and inherently distributed. For example, image

data may be gathered and stored at different locations for later processing. Although data parallelism

is a well-known computational model, there are few programming systems that are both easy to

program (for simple applications) and able to work across administrative domains.

We introduce Trellis-SDP, a simple data-parallel programming system that facilitates the rapid

development of data-intensive applications. Trellis-SDP is layered on top of the Trellis infrastruc-

ture, a software system for creating overlay metacomputers: user-level aggregations of computer

systems. Trellis-SDP is based on file-level data parallelism and provides a Master-Worker program-

ming framework in which the worker components can run self-contained, new or existing binary

applications. We describe the design and implementation of Trellis-SDP interfaces, including data-

parallel interfaces and collective-communication interfaces. We evaluate our programming system

with three simple data-parallel applications and one non-trivial seismic data processing application.
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Chapter 1

Introduction

Data parallelism is a well-known programming model [37]. However, with the development of dis-

tributed computing platforms (such as clusters, metacomputers over a wide-area network (WAN) [12],

and grids [14]), it can be difficult to write and deploy even a simple data-parallel application. This

is unfortunate because many problems are naturally data parallel. For example, many problems in

information retrieval, sorting, and searching have inherently data-parallel phases and regular com-

munication patterns, which are characteristics of simple data-parallel applications. Parallelizing an

existing application in these areas may require porting (e.g., using a message-passing system) and

access to source code. However, message passing can be complicated, and the applications may

be in binary-only form. With the prevalence of inherently data-parallel applications and distributed

computing platforms, there is a need for a simple data-parallel programming system for simple

data-parallel problems. Furthermore, as disks become larger and cheaper, scientific applications

are using this advantage to generate and consume more datasets. When the total amount of data

becomes overwhelming and grows beyond the transmission capacity of the underlying network in-

frastructure, certain data-handling mechanisms must be taken into consideration to accommodate

this change [23].

We introduce Trellis-SDP, a simple data-parallel programming system that facilitates the rapid

development of data-intensive applications. Trellis-SDP is layered on top of the Trellis infrastruc-

ture, a software system for creating overlay metacomputers: user-level aggregations of computer

systems. Trellis-SDP is based on file-level data parallelism (i.e., data parallelism within files instead

of in-memory data structures (Section 3.1)) and provides a Master-Worker programming framework

in which the worker components can run self-contained, unmodified, new or existing binary appli-

cations.

The main design goal of Trellis-SDP is to make the programming of data-parallel and data-

intensive applications over a metacomputer as simple as possible. Based on our experience, a large

number of meaningful scientific applications are well-suited to be parallelized. However, the effort

required to port these computations over the metacomputers may be daunting. For example, without

a proper data-parallel programming system, an application as simple as a distributed grep (a regular
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expression pattern matcher on distributed data) can be difficult to write. By using Trellis-SDP, we

are able to implement this distributed grep in less than 40 lines of code.

Figure 1.1 shows the complete code for the master component of the trellis grep program.

At line 12 and 16 , a grep operation and a metadata file, a physically-distributed but logically-

contiguous file (discussed in detail in Section 4.2) are provided. At line 20, a call to the trellis_

scan() function is made to invoke the grep operation on remote hosts. At line 25, the trellis_

scan_readall() function is called to read in the results. We will explain this code in more detail

in Section 4.3.1.

In this thesis, we describe the design and implementation of Trellis-SDP, including the back-

ground concepts and the application programming interface (API), e.g., the data-parallel interface

and the collective-communication interface. We evaluate our programming system with three rel-

atively simple data-parallel applications (i.e., trellis grep, Content-Based Image Retrieval

(CBIR) and Parallel Sorting by Regular Sampling (PSRS)) and one non-trivial seismic data process-

ing application with 6 GB of input data.

1 #include <string>
2 #include <stdio.h>
3 #include <trellis.h>
4 #include <trellis_sdp.h>
5
6 int main(int argc, char * argv[]){
7
8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv[1];
12 char * metafile = argv[2];
13 string op;
14 int items_read = 0;
15
16 op = "grep " + string(grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), &request)<0){
21 fprintf(stderr, "Scan Failed\n");
22 exit(-1);
23 }else{
24
25 items_read = trellis_scan_readall(&buffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27 }
28
29 trellis_finalize();
30 if(items_read > 0)
31 printf("%s\n", (char *)buffer);
32
33 return 0;
34 }

Figure 1.1: The complete code for the master component of the trellis grep program. The
worker components are Unix grep executables. Section 4.3.1 provides a more detailed explanation
of this code.

1.1 The Trellis Project

Trellis-SDP is designed to be a part of the whole Trellis metacomputing system. A Trellis meta-

2



computer is a virtual, batch-processing and capacity-oriented computer [7]. The current Trellis

metacomputer contains a batch-scheduler system based on placeholder scheduling for CPU alloca-

tion [29], a security infrastructure based on the Secure Shell (ssh) software system for authenti-

cation and authorization (i.e., Trellis Security Infrastructure [26]), and a distributed file system for

global file sharing (i.e., TrellisNFS [7]). Trellis-SDP is our effort to integrate a simple programming

system into Trellis.

1.2 Motivating Application Domain

Applications in many research areas involve processing of a large amount of data. A typical do-

main of application is information retrieval. As a concrete example, let us suppose that a company

is providing a service for content-based music retrieval (CBMR), which takes a clip of singing or

humming from a client and then searches through the music database to find the top 10 most-similar

songs. If the database is too large to fit on one system and/or is already distributed, it would be

impractical for the server to read in all the data and perform pitch/rhythm extraction [22] and com-

parison algorithms on a single site. Instead, one can choose to ship the music feature-extraction and

feature-comparison functions to the sites where data resides, and perform the operations there. This

function shipping and remote execution mechanism (Section 2.1.2) not only makes full use of the

computational power on each site, but also greatly reduces the traffic over the WAN.

Another similar example is the content-based image retrieval (CBIR) application, which takes

a sample image and returns the top N matching images from the image database. We discuss the

CBIR application further in Chapter 5.

It is for the purpose of function shipping and remote execution that we initiated the research on

Trellis-SDP, which is designed to support the easy and efficient programming of applications such

as CBMR and CBIR to handle large collections of distributed datasets.

1.3 Contributions

There are a number of existing parallel programming frameworks and each of them targets different

applications and platforms. The contributions of our programming framework are the following:

1. Trellis-SDP provides a simple Master-Worker programming framework (Section 3.3) that fa-

cilitates the rapid development of data-intensive and naturally data-parallel applications on a

wide-area network.

2. Trellis-SDP introduces the metadata file that represents the naturally-distributed data. This fa-

cilitates the writing of a non-trivial data-parallel application with data-parallel and collective-

communication phases.
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3. For many data-parallel codes, Trellis-SDP allows the loosely-coupled workers to run exist-

ing, sequential and unmodified binaries; the master and worker binaries can be separate. In

contrast, many parallel programming systems require the application to be recompiled into

a single, tightly-coupled binary (e.g., typical OpenMP and MPI (Message Passing Interface)

applications).

1.4 Concluding Remarks

In this chapter, we discussed our motivation for building Trellis-SDP and gave an example of how

Trellis-SDP can be used. We also presented the complete sample code of a distributed grep appli-

cation (Figure 1.1) to show that it can be simple to implement a non-trivial data-parallel application

using Trellis-SDP. In the next chapter, we discuss the background knowledge on which our pro-

gramming system is based and review some of the related work in this field.
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Chapter 2

Background and Related Work

In the previous chapter, we introduced the Trellis project and discussed the motivation for developing

the Trellis simple data-parallel programming framework, Trellis-SDP. In this chapter, we present

some related background concepts that influenced the design and implementation of our work. We

also outline several previous projects that are relevant to our field of interest.

2.1 Background Concepts

2.1.1 Data Parallelism vs. Task Parallelism

To achieve good performance on distributed-memory multicomputers, two parallel programming

paradigms are most-commonly used: task parallelism and data parallelism. In the task-parallel

programming paradigm, a program consists of a set of dissimilar (or similar) parallel functions

that interact with each other via explicit communications and synchronizations. In the data-parallel

programming paradigm, a program consists of a series of operations that are applied identically to

all elements of a large data set, which can be decomposed and distributed among multiple machines.

Figure 2.1 shows examples of a task-parallel workflow and a data-parallel workflow.

The major advantages of task parallelism are its generality and flexibility. Task parallelism em-

phasizes the communication between, and coordination of different tasks, making it more applicable

for exploring applications that use irregular data structures. The disadvantage is that extra effort may

be required for the programmer to explicitly create parallel tasks and manage all the communica-

tions and synchronizations. Changing the communication pattern of a program may entail significant

modifications to the program source code.

The major advantages of data parallelism are its simplicity and scalability. Since operations are

applied identically to data items in parallel, the amount of parallelism is primarily determined by the

data size of the problem. Higher amounts of parallelism may be exploited by simply expanding the

size of the problems. In practice, many scientific applications are naturally data-parallel at different

levels of the storage hierarchy, from instruction-level data parallelism to file-level data parallelism.

We will discuss file-level data parallelism in more detail in Section 3.1. The major disadvantage
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Figure 2.1: Task Parallelism vs. Data Parallelism. (a) Task parallelism workflow; (b) Data paral-
lelism workflow.

of data parallelism is that it is not as general as task parallelism. For applications with different

operations on different data, it is probably easier to utilize task-parallel languages.

As task parallelism and data parallelism each have strengths and weaknesses, it can be inter-

esting to integrate these two when solving a complicated application. For example, in large-scale

simulations, there may be multiple models simulated simultaneously via task parallelism. Within

each simulated model, the computation could involve significant data parallelism.

The major differences between task parallelism and data parallelism are summarized in Ta-

ble 2.1. Note that some of the comparisons are generalizations. For example, data-parallel ap-

plications, in general, operate on regular data structures; however, there are also data-parallel appli-

cations with irregular data structures, such as sparse-matrix multiplications. Similarly, there could

be task-parallel applications with very large data sizes.

In this thesis, we explore primarily single program, multiple data (SPMD) programs with very

large data-parallel phases.

2.1.2 Data Locality and Function Shipping

One critical issue related to data parallelism and task parallelism is the location and size of the data

to be processed. It is quite common in a metacomputing environment that the executable and the

corresponding data are not located at the same computing site. In this situation, one can choose to

move the data to where the executable is located, or vice versa, in order to maximize performance.

In a case where the data size is large and the processing is relatively simple, it is wise to move
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Task Parallelism Data Parallelism

Definition Each processor performs a
different task

Each processor works on a
different part of the same
data

Data Structure Irregular or regular Regular or irregular

Common Data Size Relatively small Large

Advantages Flexible and general Simple and scalable

Disadvantages Extra effort to manage
communications and syn-
chronizations

Less general;
limited applicability

Typical Examples Traveling Salesman Prob-
lem;
Game Tree Search

Database Search;
Matrix Multiplication

Table 2.1: A comparison between Task Parallelism and Data Parallelism.

the executable to where the data is located. In this way, not only can the computing power on

individual hosts be fully utilized, the traffic over the wide-area network is also significantly reduced.

This technique is called function shipping and remote execution (Figure 2.2), and is actually being

implemented at different levels of the storage hierarchies. A typical example of function shipping is

Active Disks [30], which implements this idea at the disk level. Active Disks is a storage system that

consists of significant processing power and on-disk memory capacity (Figure 2.3). Application-

level processing can be performed on the Active Disks, which can potentially reduce the traffic

over the system bus, especially under I/O-bound workloads. Common applications are database

operations (such as select, join and aggregation) or any filtering-type operations. There are several

existing programming models proposed for Active Disks [1].

2.1.3 Master-Worker Programming Model in a Metacomputing Environment

Master-Worker computing is a widely-used form of a parallel application programming model. It is

conceptually simple, and involves dividing a problem into a number of smaller independent worker

units, which can be distributed to remote worker processes for computation in parallel. In this thesis,

we use the Master-Worker programming model to implement data parallelism with function ship-

ping and remote execution. Before the computation is started, we assume that the data is already

distributed across the computing sites, and that the same executable codes are shipped to these sites.

The master then triggers the executable in remote computing hosts, where I/O-intensive operations

are performed locally, and only a small amount of data is transferred back to the master for subse-

quent processing.
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Figure 2.2: Function Shipping and Remote Execution on the WAN: executables are moved to the
host where the data resides.

2.2 Related Work

The need to reduce the complexity of data-parallel programming has led to a large amount of work

in the area of application-specific toolkits. These include application-specific or domain-specific

languages and libraries, programming frameworks, and problem-solving environments [23]. Most

of these toolkits have been adapted from traditional parallel and distributed computing systems; only

a few are designed for grid computing or metacomputing [11]. Existing programming tools include

message-passing libraries, object-oriented tools, and middleware systems. We highlight several

major advantages and disadvantages of these work in Table 2.2.

2.2.1 Message Passing Models

MPICH-G2 [27] is a “grid-enabled implementation of the Message Passing Interface (MPI) that

allows the programmer to run MPI programs across administrative domains using almost the same

commands that would be used on a cluster of workstations” [24]. More specifically, MPICH-G2

is a complete implementation of the MPI-1 standard that uses services provided by the Globus

Toolkit [25] to extend the MPICH implementation of MPI for Grid execution. The significant ad-

vantage of MPICH-G2 is that the programmer can reuse existing MPI code without having to learn

the specific details of each site. A pragmatic disadvantage is that MPICH-G2 requires the Globus
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Figure 2.3: Active Disks architecture: applications can be downloaded to the disks, where significant
processing power and on-disk memory is available.

toolkit to be installed in all the administrative domains, to address the issues of security, remote pro-

cess creation, process monitoring, process control, redirection of standard input and output, remote

file accesses and cross-domain communications (e.g., Grid Security Infrastructure (GSI), Grid Re-

source Allocation and Management Protocol (GRAM), Monitoring and Discovery Service (MDS)

and Global Access to Secondary Storage (GASS) [25]).

The popularity of MPI has spawned a number of variants that address grid-related issues, such

as dynamic process management and more efficient collective operations. The MagPIe library, for

example, implements MPI’s collective operations – such as broadcast, barrier, and reduction oper-

ations – with optimizations for wide-area systems as grids [20]. Existing parallel MPI applications

can be run on grid platforms using MagPIe, by relinking with the MagPIe library. MagPIe contains

a simple API through which the underlying grid computing platform provides information about the

number of clusters in use, as well as which process is located in which cluster.

2.2.2 Framework Models

DataCutter [17] proposes a filter-stream programming model (originally designed for Active Disks [1,

30]) in a grid environment. In this programming model, an application is decomposed into a set of

filters among which the communication is carried out via streams. As with Trellis-SDP, DataCutter

pushes the computation to the data, instead of migrating the data to the computation [17]. DataCut-
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ter does not include the concept of a metadata file. Before running any applications on DataCutter,

a dird program must be started to maintain a list of nodes that DataCutter applications may be

distributed across, and any node wishing to be utilized by DataCutter must run an appd program

to control the DataCutter applications running on the nodes. All filter placements must be spec-

ified in the program. Furthermore, the filter does not support unmodified binaries, meaning that

programmers will probably have to rewrite their data-intensive components according to the filter

specifications.

MapReduce [10] is a programming model developed at Google to process large data sets. It

provides a simple and powerful interface that enables automatic parallelization and distribution of

large-scale computations. Built upon the Google file system, MapReduce carries out a number of

practical design decisions and fine-tunings to achieve maximum performance.

MapReduce is relevant to Trellis-SDP in that both systems are designed to make it simple for ap-

plication programmers to implement simple data-parallel applications. The abstraction of MapRe-

duce is based on the map and reduce primitives present in many functional languages. The map

function processes a key/value pair to generate a set of intermediate key/value pairs, and the reduce

function merges all intermediate values associated with the same intermediate key. The program-

mer needs only to implement the map and reduce functions, and the data distribution and resource

allocation are taken care of by the programming framework. Trellis-SDP, however, is more similar

to imperative programming, where the number of processors is known before the computation, and

the data is already distributed.

MapReduce has been demonstrated to be applicable to a wide range of real problems specific to

Google, such as machine learning, clustering, web crawling and graph computation.

MW [15] is a software framework that allows users to parallelize scientific applications on a

computational grid, using the Master-Worker programming model. This framework is designed to

facilitate Master-Worker applications requiring a reliable delivery of large amounts of computational

capacity. MW provides two sets of programming interfaces: an Infrastructure Programming Inter-

face that ports the MW framework to a grid software toolkit such as Condor [8] or Globus, and an

Application Programming Interface that enables the Master-Worker paradigm. In both cases, the

user needs to re-implement a number of virtual functions to address low-level details – such as re-

source request and detection, remote execution and communication. In addition, the programmer

needs to re-implement the workers using MW-specific classes – MWTask and MWWorker.

AppLeS Master Worker Application Template (AMWAT) [34] is a middleware approach

to Master-Worker application development that aims to achieve three design goals: performance,

portability and reasonable effort. This programming framework can be separated into three distinct

groups: the base group that provides interfaces to perform the initialization of the basic computa-

tional activities of the application; the transfer group that provides interfaces to perform the data

transfers; and finally, the control group that provides interfaces to perform the scheduling functions.
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AMWAT uses the AppLeS Portable Services components for communications. These services con-

tain common communication approaches, such as MPI, PVM (Parallel Virtual Machine), Unix Sock-

ets and System V IPC (interprocess communication), plus some less-common approaches, such as

Globus Input/Output. As with MW, application programmers need to fill in the application templates

with source codes, making it difficult to reuse existing application binaries.

Unlike DataCutter and Trellis-SDP, both MW and AMWAT assume that data could/should be

moved during the computation; for example, data is not distributed before the computation is started.

Also, AMWAT allows dynamic selection of master and worker processes to maximize performance.

This is very practical for computationally-intensive applications, but not for data-intensive applica-

tions.

2.2.3 RPC Models

Grid Remote Procedure Call (RPC) [16] is an RPC model and API for grids. It offers a rel-

atively simple programming paradigm for programming on the grid. Besides providing standard

RPC semantics with asynchronous, coarse-grained, task-parallel execution, it provides a high-level

abstraction whereby many details of interacting with a grid environment can be hidden. However,

the Grid RPC programming model is not suited for applications with data-intensive or I/O-intensive

phases. Also, since the result of the computation is transferred back to the client side, there would

be a problem if the data size is large and the network bandwidth is low.

Java Remote Method Invocation (RMI) enables a programmer to create distributed Java-based

applications, in which the methods of remote Java objects can be invoked from other Java virtual ma-

chines, possibly on different hosts. The main advantages of RMI are that it is truly object-oriented,

that it supports all the data types of a Java program, and that it is garbage collected. These features

allow for a clear separation between the caller and callee, and the development and maintenance of

distributed systems are thus made easier.

2.3 Concluding Remarks

In this chapter, we began by comparing two typical parallel programming paradigms: task paral-

lelism and data parallelism. We discussed their advantages and disadvantages under various cir-

cumstances. Naturally, for both types of applications, under data-intensive workloads, the location

and size of the data will have a large impact on the application performance; this is why we intro-

duced the concept of function shipping and remote execution. We implemented this concept using

the common Master-Worker programming model, which is simple and easy to manage.

We also reviewed some previous projects from the field of programming models on a wide-

area network. Each model has different design goals and is suited to certain types of workloads.

This is also true for our system; our target applications are mainly data parallel with I/O-intensive

workloads.
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Related Work Advantages Disadvantages

MPICH-G2 [27] Allows reuse of existing MPI
code;
Works across administrative
domains.

Requires the installation of the
Globus toolkit in all adminis-
trative domains;
Low-level and complicated;
Does not support unmodified
binaries.

DataCutter [17] Simple stream-based Master-
Worker programming model;
Supports function shipping
and remote execution.

Current version does not work
across administrative domains;
No global naming of files;
Does not support unmodified
binaries.

MapReducei [10] Simple and powerful Master-
Worker programming model;
Based on functional program-
ming, the programmer does
not need to take care of data
distribution and processor allo-
cation;
Provides fault tolerance when
worker or master fails.

Does not work across adminis-
trative domains;
Does not support unmodified
binaries.

MW [15] Master-Worker programming
framework;
Suitable for computational in-
tensive applications;
Works across administrative
domains.

Does not support unmodified
binaries;
Need to install grid software
toolkit such as Condor and
Globus.

AMWAT [34] Master-Worker programming
framework;
Suitable for computational in-
tensive applications;
Provides basic performance
predictions;
Allows dynamic selections of
master and worker processes.

Current version does not work
across administrative domains;
Complicated porting of source
codes to templates.

GridRPC [16] RPC programming extended to
grids;
Suitable for coarse-grained
task-parallel applications;
Works across administrative
domains.

Low level;
Not suitable for data-intensive
or I/O-intensive applications;
Requires complicated porting.

Table 2.2: A comparison of related work.
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Chapter 3

Trellis-SDP: File-Level Data
Parallelism

In the previous chapter, we introduced the background knowledge and concepts related to our re-

search. We also reviewed several well-known programming systems. In this chapter, we focus on

the concepts, as well as some practical problems that have not been addressed by previous systems.

We start by extending the concept of data parallelism to file-level data parallelism. We then

present several important design issues in the development of our programming system. These

include security, global naming, resource specification and design philosophy. We also illustrate the

Trellis-SDP execution environment and briefly discuss the programming interfaces we provide.

3.1 File-Level Data Parallelism

We extend the traditional concept of data parallelism (e.g., the traditional data-parallel languages

such as Fortran90 and High Performance Fortran(HPF)) to file-level data parallelism. That is, our

programming framework is targeted at data parallelism and collective communications within files

in a metacomputing environment, instead of in-memory data structures, as illustrated in Figure 3.1.

Based on our experience in the programming in a metacomputing environment, we claim that

there are several advantages to exploring data parallelism and collective communications at the file

level:

1. Using unmodified binaries: Working at the file level makes it easy to use sequential, unmod-

ified binaries, or make as few changes as possible to the existing sequential/shared-memory

applications, when porting these applications to a wide-area network. As long as the sequen-

tial executable guarantees that it takes the input from a file or the standard input, and generates

the output to a file or the standard output, it can be integrated into the whole computation eas-

ily and smoothly.

2. Master-Worker and batch-pipelined execution model: Working at the file level makes it

easy to implement parallel applications using Master-Worker and batch-pipelined (multiple
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Figure 3.1: Data Parallelism at different storage hierarchies: (a) Data parallelism at the file level
: data-parallel operations on global files across multiple hosts; (b) Data parallelism at the memory
level: data-parallel operations on a global array in main memory.

phases) execution model. That is, the output of one computational phase is the input of the

next computational phase.

3. File-level collective communication: When performing collective communications at the file

level, we impose less-strict requirements on the synchronization of processes than are imposed

by memory-level collective communications. This is because intermediate computing results

can be stored on disks until all collective-communication processes are ready to read and

exchange them. Prior to that time, it is possible for the scheduler to schedule jobs on the idle

hosts that have already produced the intermediate results.

The concepts of file-level data parallelism, function shipping and remote execution, and Master-

Worker programming paradigm provide the foundation for our programming system.
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3.2 Design Issues

The design and implementation of Trellis-SDP addresses several important issues in metacomputing

programming [11]. We have successfully run Trellis-SDP applications on a wide-area network (Sec-

tion 5.2 provides some preliminary results). However, for reasons of controllability and reliability,

most of our benchmarks are performed on clusters of workstations. We will discuss this further in

Chapter 5.

3.2.1 Security: The Trellis Security Infrastructure

Our programming system takes advantage of the underlying Trellis Security Infrastructure (TSI)

[26], which is layered on top of the ssh software system [9, 3], for authentication and secure

communications across different administrative domains. TSI allows single sign-on (a form of au-

thentication that enables a user to authenticate once and gain access to multiple systems) capability

by configuring and launching ssh-agent processes on all participating hosts. Unlike the Globus

Security Infrastructure (GSI) [19], which places most of the configuration and authentication work

onto the system administrator, TSI manages these tasks at the user level. The system administrator

needs only to give each user an account, and install ssh – which has already been widely deployed

on most platforms. Figure 3.2 illustrates the process of launching an ssh overlay by a user: the user

runs a launchAgents tool (not shown in the figure), which invokes ssh-agent-remote and

ssh-add-remote for all participating hosts, and loads the remote ssh-agent processes with

a common key. The user then types in only one passphrase and the ssh overlay is established. This

means that any of these participating hosts can access one another without a password or passphrase.

3.2.2 Global Naming: Secure Copy Locator

We use Secure Copy Locators (SCL) [35] as the filenames in the global namespace. By using

SCL, the Trellis file system can access the remote data by first copying it onto a local disk and then

accessing the local cached copy of the remote file. Our programming system extends this concept by

function shipping the computation to the remote host (as discussed in Section 2.1.2). For example,

a file named

scp:ading@cleardale.cs.ualberta.ca:˜/worker.exe

can be uniquely identified as the file worker.exe in the home directory of account ading at host

cleardale.cs.ualberta.ca.

3.2.3 Resource Specification: XML-based Metadata Schema

We represent the program resource (i.e., program data) by a metafile. A metafile is a file that is

logically contiguous, but (perhaps) physically distributed across a network (Figure 3.1 (a)). An Ex-

15



Figure 3.2: Launching the ssh overlay involves two steps: (1) Launching the ssh agent and adding
identities at remote hosts. (2) Setting ssh environment variables and authenticating without human
interventions.
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tensible Markup Language (XML)-based metadata file is used by Trellis-SDP to describe a metafile

(Figure 4.1), which includes the location (expressed as an SCL) and the size of the distributed blocks.

3.2.4 Using Existing, Sequential, Unmodified Binaries

One key design philosophy of Trellis-SDP is to make it as simple as possible to write a data-intensive

parallel application, which is why Trellis-SDP allows the use of existing, sequential, and unmodified

binaries. As discussed in Section 1.2, this functionality may be useful if the programmer has existing

binaries or binaries from a third party. By using or reusing existing binaries, the whole application

development cycle could be dramatically simplified.

Figure 3.3: The interposition of an unmodified binary using the Ptrace program.

In order to use existing binaries, we must ensure that the binaries can access remote files. This

is done by the system call tracing in Trellis-SDP. As illustrated in Figure 3.3, we write a program

called Ptrace (which uses the ptrace() system call) to intercept the file system calls in the

application, modify the system call parameters, execute some scripts, and resume the system call.

For example, here is the sequence when the application opens a file:

1. Ptrace intercepts the entry to the system call open() (c and d in Figure 3.3).

2. Ptrace retrieves the first parameter of the open() system call (e in Figure 3.3). If it is a

local file, go to 5 (dashed line in Figure 3.3). If it is a remote filename expressed as an SCL,

go to 3.

3. Ptrace executes a script which uses the Trellis file system library to cache the remote file to

local disk (f in Figure 3.3).
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4. Ptrace modifies the first parameter of the open() system call to be the filename of the

local cached file (g in Figure 3.3).

5. Ptrace resumes the stopped system call (h in Figure 3.3).

Following these steps, the application will access the local cached file. If the file is modified,

the Ptrace program will intercept the close() system call and write the local file back to the

remote host.

We use the Ptrace program in the implementation of Parallel Sorting by Regular Sampling

application described in Section 5.4, where remote file access is required. Appendix C lists the

source code for this application.

Besides system call tracing, there are other ways for an application to access a remote file. For

example, by installing an NFS-to-Trellis gateway, NFS (Network File System) clients can mount a

volume exported by the gateway, so each access to a remote file can be translated by the gateway

into a remote data access via the Secure Copy ([7]).

3.3 Trellis-SDP Execution Environment

Figure 3.4: The execution environment of the Trellis-SDP programming system.

Having introduced related concepts and design issues, we now present the high-level overview of

the Trellis-SDP execution environment. As mentioned earlier, the main design goal of Trellis-SDP
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is to facilitate the programming of data-intensive applications with coarse-grained communication

patterns on a wide-area network. For more fine-grained and complicated message patterns, we also

support certain types of group communication. Of course, the overall performance depends on the

amount and type of communication in the application.

Trellis-SDP is well-suited to applications where it is either easy to decompose the application

into master and worker components, or where the worker component already exists (e.g., as a se-

quential, binary executable). In both cases, it is the worker component that performs the data-

intensive operations near the data, and it is the master component that synchronizes the computation

and collects the results. For most data-parallel applications, the amount of data transferred between

the master and worker should be minimal.

The programmer is responsible for identifying which part of the application can be parallelized

and which part cannot, and if necessary, extracting the I/O-intensive cores in the application into one

or multiple stand-alone phases, so that the additional communication introduced by the decomposi-

tion does not penalize the overall task completion time.

Figure 3.4 illustrates the execution environment of our programming system. Currently, we

support the following functions:

1. Data-Parallel Functions – trellis_scan(): Inside a Trellis-SDP program, a worker

process is invoked by a call to the trellis_scan() library function. This function takes a

metadata file and an operation string as input parameters, and takes a handle to the scan object

as the output parameter, which will store the result of the trellis_scan() operation.

The worker processes on remote hosts perform the specified operations and either generate

the results on their local disks or return the results back to the master process via streams.

In the former case, intermediate files generated by different worker processes can also be

described using a metadata file. This intermediate metadata file can be used in a different

trellis_scan() phase, or it can be saved to disk. This is useful in a batch-pipelined

workload [13], where the output of one worker process may be the input of a succeeding

worker process. Figure 3.5 illustrates a batch-pipelined workload with three phases and four

metadata files.

2. Collective-Communication Functions – trellis_reduce() and trellis_gather():

Note in Figure 3.4 that, if necessary, group communication can be performed among worker

processes. Two group-communication functions are implemented: trellis_gather()

which performs an all-to-all communication, and trellis_reduce() which performs a

global reduction operation, such as global sum and global minimum/maximum. These oper-

ations are at the file level instead of the memory level because they take metadata files as the

input parameter.

3. Initialization and Finalization Functions: Two basic run-time functions are provided: trellis_
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Figure 3.5: Metadata files in a batch-pipelined workload.

init() and trellis_finalize(). All Trellis functions should be called between

trellis_init() and trellis_finalize(). If profiling capability is turned on,

trellis_finalize()will generate basic performance data.

4. Profiling Functions: Since Trellis-SDP requires that an application be decomposed into mul-

tiple phases, it is relatively easy to collect some basic run-time performance data. For example,

we can record the execution time of each phase of an application during multiple runs. This

information can be useful for predicting the execution time of the application in future runs.

We discuss our preliminary study of the application profiling in Appendix A.

We summarize all Trellis-SDP functions in Table 3.1. As a comparison, we also list the related

MPI functions, together with Trellis-SDP functions. Note in the table that MPI does not provide

data-parallel functions and the capability to use user-defined binary operations.

3.4 Concluding Remarks

In this chapter, we introduced the concept of file-level data parallelism and collective communica-

tion. We explained the motivation behind file-level data parallelism and demonstrated how our pro-

gramming system can benefit from this idea in various ways, such as unmodified binaries, batched-

pipelined execution model and simple application profiling.

20



Trellis-SDP MPI Comments
Data Types
Trellis Datatype MPI Datatype

Trellis Op MPI Op
Trellis Request MPI Request Communication opaque object
Trellis Status MPI Status

Message Datatypes (Equivalent C Types)

Trellis CHAR MPI CHAR signed char
Trellis INT MPI INT signed int

Trellis FLOAT MPI FLOAT float
Trellis DOUBLE MPI DOUBLE double

Trellis LONG MPI LONG signed long int

Predefined Reduction Operations
Trellis ADD MPI SUM Global sum
Trellis MAX MPI MAX Finding Maximum
Trellis MIN MPI MIN Finding Minimum

Basic Functions
trellis init() MPI Init()
trellis finalize() MPI Finalize()

Data-Parallel Functions
trellis scan() Remote execution in parallel

(non-blocking)
trellis scan read() Read in trellis scan() re-

sult
trellis scan readidx()
trellis scan readall()

parseMetafile() Helper function
single file scan() Helper function
multi file scan() Helper function

Synchronization Functions
trellis scan wait() MPI Wait()

Collective-Communication Functions
trellis gather() MPI Alltoall()

trellis reduce() MPI Reduce() Predefined reduction operations
trellis reduce1() User defined reduction opera-

tions (in binary form)

Profiling Functions
registerPhaseStart() Discussed in Appendix A
registerPhaseEnd()

Table 3.1: An overview of the Trellis-SDP functions with the analogous MPI functions.
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We dealt with several practical design issues during the implementation of our programming

system – such as security, global naming and resource specification. These design decisions were

made to ensure that the system is simple and reliable to use.

We illustrated the execution environment of the Trellis-SDP programming system and summa-

rized all core Trellis-SDP functions, comparing these functions with related MPI functions. Details

of the Trellis-SDP functions will be explained in the next chapter.

We also performed some preliminary studies on the profiling and performance prediction of

applications written in Trellis-SDP. These are discussed briefly in Appendix A. We hope to integrate

this work into our future scheduler.
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Chapter 4

Implementation Details

In the previous chapter, we discussed the idea of file-level data parallelism and the execution envi-

ronment of the Trellis-SDP system. In this chapter, we discuss the implementation details of our

system, especially how the design issues presented in the previous chapter are put into practice.

4.1 Assumptions

For the current implementation of Trellis-SDP, we have several requirements for the whole compu-

tation setup. Before the computation is started, Trellis-SDP assumes that:

1. The data needed by the computation is already distributed across the metacomputer. This is

a common case for wide-area data-intensive applications such as operations on a federated

database [18] or information retrieval applications (e.g., CBIR application) on a distributed

database. If the data is not distributed, tools are provided for scattering and gathering the data.

2. The metadata file, identifying the distributed data, already exists (Section 4.2). In our current

implementation, the metadata file contains the location and size of the data on each participat-

ing host. If the computation contains multiple phases, then the input (or output) metadata file

for all phases should all be made ready before the computation.

3. The executable code for the worker components is already distributed across the metacom-

puter. At this time, we require the worker components to be available at each participat-

ing host. The programmer must stage the executables to each host, if they are not there.

In the future, we may support automatic staging of executables. For example, a potential

strategy would be to append the address of the executable (in SCL format, as discussed in

Section 3.2.2) to the corresponding file/data to be processed in the metadata file. Or, if the

executable is a script, we could directly embed the script into the metadata file.
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<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp:ading@jasper-00:/usr/scratch/data.1</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@jasper-01:/usr/scratch/data.2</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@jasper-02:/usr/scratch/data.3</Locator>
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.1: An example of a metadata file that describes a file that is logically contiguous but
physically distributed across 3 nodes over a local-area network.

4.2 The Metadata File

As discussed earlier, a metafile is a file that is logically contiguous, but (perhaps) physically dis-

tributed across a network. As with other index-based file-allocation schemes, a Trellis-SDP metadata

file specifies the name and location of the distributed blocks of a logical file. The master component

can either access the file as if it was a single, logical file, or use the trellis_scan() function

to perform a data-parallel operation on the physically-distributed blocks. Although it is assumed

that the logical file is already distributed, a separate tool is provided to distribute (i.e., scatter) the

data and create a corresponding metadata file. Another tool can take a metadata file and gather the

distributed blocks into a single file on a local file system.

To make the representation of the program data human readable and extensible [11], the metafile

is written in XML, as illustrated in Figure 4.1. In the metafile, each block is specified with a

DataBlock node that contains a Locator (a string in SCL format) node and a Size (an in-

teger specifying the size of each block, in bytes) node.

In practice, the programming system will create an in-memory metadata object corresponding to

a metadata file. This is analogous to an in-memory version (i.e., metadata object) of a Unix i-node

(i.e., metadata file). Upon object creation, all of the information in the metadata file is parsed and

cached in the object (Section 4.3 provides further details on the metadata object). It is also possible

to export a metadata object to disk, in XML format.

4.3 Main Trellis-SDP APIs

In this section, we explain in detail the implementation of the main Trellis-SDP APIs. In addition to

the explanation, we give several examples.
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Figure 4.2: The control flow inside trellis scan().

4.3.1 Trellis Scan

trellis_scan() is the main data-parallel API we introduced and implemented in Trellis-SDP.

The declaration of trellis_scan() is:

int trellis_scan(const char * metafile, string op, Trellis_Request *
request);

trellis_scan() is (typically) called in the master process, and takes two input parameters

and one output parameter. For input, there is a metadata filename (or a regular SCL) and an oper-

ation string. For output, trellis_scan() will create an opaque communication object (called

Trellis_Request, similar to the MPI_Request object in MPI) and return a handle to it via

the last parameter.

The control flow inside trellis_scan() is shown in Figure 4.2. Upon calling of the func-

tion, the input file is parsed. Then, depending on the type of the input file, two helper functions

(visible only to Trellis-SDP, not to the programmers) are called:

int multi_file_scan(MetaHandler * meta, string op, Trellis_Request
* request);

FILE * single_file_scan(string path, string op, int rank);

If the type of the input file is SCP, it means that there is only one worker process that needs to
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be initiated, so the single_file_scan() function is called. This function starts up the worker

process and builds a data stream between the master and worker process.

If the type of the input file is a metadata file, the information of the metadata file is analyzed and

cached in an in-memory metadata object, which is passed as one of the parameters to the multi_

file_scan() function. This function will then call the single_file_scan() function for

each data block in the metadata file.

The results of the multi_file_scan() or single_file_scan() function calls are

stored in the Trellis_Request object. Trellis_Request provides two types of member

functions:

1. Read Functions:

int trellis_scan_read(void * buffer, Trellis_Datatype datatype,
int nmemb, Trellis_Request request);

int trellis_scan_readidx(void * buffer, Trellis_Datatype datatype,
int nmemb, int index, Trellis_Request request);

int trellis_scan_readall(void ** buffer, Trellis_Datatype datatype,
Trellis_Request request);

These functions allow the master process to read and store the data returned from worker

processes. The programmer can either choose to read a specified number of bytes from all

worker processes (trellis_scan_read()) or from a single worker process (trellis_

scan_readidx()), or choose to read all the data that is available from all worker pro-

cesses (trellis_scan_readall()). The type of the data to be read is determined by

the Trellis_Datatype.

2. Synchronization Function:

int trellis_scan_wait(Trellis_Request request, Trellis_Status status);

This function ensures that all communications between master and worker processes are fin-

ished and the data streams opened by trellis_scan() are closed. If there are multiple

phases in the program (which means multiple trellis_scan()s will be called in the mas-

ter process), trellis_scan_wait() can serve as a barrier function between phases.

As an example, Figure 4.3 implements a data-parallel trellis grep, which is a grep op-

eration on the distributed data (described as a metadata file, as shown in Figure 4.4). The code

shown is the complete code for the master component, illustrating how simple a program can be if

the problem is simple. For the worker component, we use the unmodified Unix grep program. The

trellis_scan() takes in a metadata file and starts up the worker processes in each remote host

to perform grep on its local data (line 20). The master process then reads in the results through the
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1 #include <string>
2 #include <stdio.h>
3 #include <trellis.h>
4 #include <trellis_sdp.h>
5
6 int main(int argc, char * argv[]){
7
8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv[1];
12 char * metafile = argv[2];
13 string op;
14 int items_read = 0;
15
16 op = "grep " + string(grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), &request)<0){
21 fprintf(stderr, "Scan Failed\n");
22 exit(-1);
23 }else{
24
25 items_read = trellis_scan_readall(&buffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27 }
28
29 trellis_finalize();
30 if(items_read > 0)
31 printf("%s\n", (char *)buffer);
32
33 return 0;
34 }

Figure 4.3: The sample code for the trellis grep program (the master component). The worker
components are Unix grep executables. The location and distribution of the data is abstracted by
the metadata file shown in Figure 4.4.

communication object by calling the trellis_scan_readall() function (line 25). Note that

the trellis grep program performs most of its data-intensive operations on the remote hosts

and transfers only a small amount of data (with type Trellis_CHAR) back to the master process.

At the end of the program, the master calls trellis_scan_wait() (line 26) to close all open

data streams.

Another sample code of a data-parallel application written in Trellis-SDP can be found in Ap-

pendix B. Section 5.3 provides more details of the description and evaluation of this application.

4.3.2 Trellis Gather

As discussed, trellis_scan() establishes communication channels between the master and

worker processes. This interface is sufficient for embarrassingly data-parallel applications with no

communications among worker processes. However, some complex parallel and distributed ap-

plications do require group communications. Thus, we also propose and implement two group-

communication interfaces, one of which is called trellis_gather(). This interface is similar

to the MPI collective-communication interface MPI_Alltoall() and MPI_Alltoallv() [28].

There are several papers on collective communications on a wide-area network, including the

issues of performance and fault tolerance [2, 4, 20]; however, our efforts focus mainly on the API

27



issues at this time. We also touch upon a bit of the performance issue and will discuss this in

Chapter 5.

trellis_gather() is called in the master process and has the following declaration:

int trellis_gather(const char * metafile_source, const char * metafile_dest,
int ** index_table, Trellis_Datatype datatype);

The function takes a source metadata file, a destination metadata file, an index table specifying

how data should be exchanged, and the datatype. The semantics of this function is the all-to-all

communication among worker processes, where each worker process sends distinct data to all other

worker processes.

As an example, Figure 4.5 illustrates an all-to-all data exchange among three worker hosts,

according to the index table (index table in Figure 4.5) provided by the programmer. Each row in

the index table specifies which data within one worker host needs to be sent to other worker hosts.

For instance, worker host 1 indicates that data 3, 4 should be sent to worker host 2, and that data 5,

6 should be sent to worker host 3. Based on the index table, Trellis-SDP will generate a new index

table (index table2 in Figure 4.5) to determine the locations within each worker host where the data

received from other worker hosts should be stored. For instance, after the data exchange, data 7

from worker host 2 will be stored at index 2 in the receiving file in worker host 1, and data 13, 14

and 15 from worker host 3 will be stored at index 3, 4 and 5 in the receiving file in worker host 1.

Figure 4.6 shows the control flow inside trellis_gather(). First, both the source metadata

file and the destination metadata file are checked to make sure they have the correct file types. Then,

as explained before, indices are calculated (i.e., from index table to index table2) to determine where

the exchanged data should be stored. Finally, a simple helper program sendfile is initiated to

perform the partial file transfer between worker hosts (i.e., to retrieve a portion of a remote file using

scp for data transport).

As discussed earlier, the semantics of trellis_gather() are similar to those of MPI_

<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp:ading@nexus.westgrid.ca:˜/data.1<</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@lattice.westgrid.ca:˜/data.2</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@blackhole.westgrid.ca:˜/data.3</Locator>
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.4: The metadata file used by the trellis grep program shown in Figure 4.3. The
data is distributed on three hosts across three administrative domains: the University of Alberta, the
University of Calgary and Simon Fraser University.
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Figure 4.5: The illustration of the all-to-all communication.

Alltoall(). The major difference is that in MPI_Alltoall(), both the sending data and the

receiving data reside in the memory, regardless of whether it is in a remote host or a local host, while

in trellis_gather(), both the sending and receiving ends are files stored on disks, and are

specified by metadata files. Therefore, the numbers in the index table represent the offsets relative

to files instead of displacements relative to memory buffers.

Figure 4.7 shows the sample code of Phase Three of the Parallel Sorting by Regular Sampling

(PSRS) application (discussed in detail in Section 5.4). This is an example of how trellis_

gather() is used. Appendix C lists the complete code for the PSRS application.

4.3.3 Trellis Reduce

The other collective-communication API we introduced and implemented is called trellis_

reduce(). The inclusion of the function is again based on our hands-on experience with real

scientific applications, and we found this API necessary when designing a parallel seismic data pro-

cessing application (Section 5.5). trellis_reduce() is similar to MPI’s MPI_Reduce() and

performs global reduction operations across all worker processes. The reduction operation can be

either: one of a predefined list of operations (such as global sum, maximum or minimum) or a pro-

gram/executable provided by the user. Again, the difference between trellis_reduce() and

MPI_Reduce() is that the former works at the file-level while the latter works at the memory-

level.
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Figure 4.6: The control flow inside trellis gather().

The declaration of trellis_reduce() is:

int trellis_reduce(const char * metafile_source, const char * metafile_dest,
int count, Trellis_Datatype datatype, Trellis_Op op);

int trellis_reduce1(const char * metafile_source, const char * metafile_dest,
const char * reduce_op);

There are two reduce functions: trellis_reduce() and trellis_reduce1(). Both

functions take a source metadata file and a receiving metadata file as input parameters. The differ-

ence is that trellis_reduce() performs the system-defined reduction operations Trellis_

Op, while trellis_reduce1() performs the user-defined reduction operations (in the form of

a stand-alone executable). In this section, we focus on the description of trellis_reduce1().

Figure 4.8 illustrates the control flow inside trellis_reduce1(). The basic steps are :

1. A local reduction operation is performed at worker processes to reduce all the data that is local

to the remote host.
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...

int phase3(const char * metafile_localsorted, const char * metafile_gather,
int ** index_table, Trellis_Datatype datatype)

{
int rval;
rval = trellis_gather(metafile_localsorted, metafile_gather, index_table, datatype);
return rval;

}

int main(int argc, char * argv[]){

int *sample_array;
int **index_table;

char metafile_in[] = "input.meta";
char metafile_localsorted[] = "localsorted.meta";
char metafile_gather[] = "sortgather.meta";
char metafile_globalsorted[] = "sorted.meta";

...

trellis_init(argc, argv);
sample_array = phase1(metafile_in, metafile_localsorted);
index_table = phase2(metafile_localsorted, sample_array);
rval = phase3(metafile_localsorted, metafile_gather, index_table, Trellis_INT);

...

trellis_finalize();
return 0;

}

Figure 4.7: The sample code of Phase Three of the Parallel Sorting by Regular Sampling (PSRS)
application showing how trellis gather() is used.

2. A global reduction operation is performed at the master process to reduce all intermediate

results from worker processes.

For step 1, we extend the definition of a metadata file so that the data block can also be a directory

instead of just a file. For example, Figure 4.9 shows the metadata file we use for the seismic data

processing application – trellis LSAVA (Section 5.5). Each block in the metadata file is a

directory containing all the local files to be reduced.

In addition, we write two helper programs called reduce daemon and reduce. The usage

of the two programs are:

reduce_daemon reduce_op directory

reduce sendfile1 ... sendfileN receivefile reduce_op

The reduce daemon program is initiated by the call to the trellis_scan() function

inside the trellis_reduce1() function. The program in turn calls the reduce program to

reduce all local data using the user-provided reduce op program. The intermediate results are

stored in files at remote hosts and the pathnames of these files are passed back to the master process

via the Trellis_Request object.

In step 2, the master process simply calls the reduce program again, and reduces all interme-

diate results into the destination metadata file, using the same reduce op program.
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Figure 4.8: The control flow inside trellis reduce().

The reason we use a stand-alone helper program, instead of a helper function, is that it is simple

and it is consistent with our ideas of using unmodified binaries in the programming system. In

addition, if we want to make changes to these helper programs (e.g., to optimize the reduce algorithm

in the reduce program), we do not need to rebuild the entire programming system.

Figure 4.10 shows several lines of codes taken from the trellis LSAVA program, which uses

trellis_reduce1(). This function takes an existing reduce program susum to merge multiple

source files into a single destination file. The complete code for the trellis LSAVA program is

listed in Appendix D.

The Trellis-SDP functions we have proposed and implemented so far are mainly modelled after

a subset of MPI functions targeted at data-parallel applications. We believe these functions should

be able to handle most of the common data-parallel applications. Of course, there are cases we have

not considered due to the limited number of benchmarking applications. We hope to extract more

interesting APIs when we explore more applications in the future.

4.4 Concluding Remarks

In this chapter, we discussed the implementation of three major Trellis-SDP APIs: trellis_

scan(), trellis_gather(), and trellis_reduce1(). These APIs are based on real

applications and we believe they are able to handle most of the common data-parallel applications.
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<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp:jasper-04:/usr/scratch/ading/SEISMIC/input/</Locator>
<Size>65536</Size>

</DataBlock>
<DataBlock>

<Locator>scp:jasper-07:/usr/scratch/ading/SEISMIC/input/</Locator>
<Size>65536</Size>

</DataBlock>
<SpaceBlock>

<Locator>scp:jasper-01:test/free/</Locator>
<Size>512</Size>

</SpaceBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.9: The metadata file used by the trellis LSAVA program shown in Appendix D. The
data block is a directory containing all the local files to be reduced.

...

int main(int argc, char * argv[]){

...

char * reduce_op = "susum";
char * metafile_input = argv[2];
char metafile_output[] = "LSAVA.data/LSAVA_OUTPUT.meta";

trellis_init(argc, argv);

...

if(trellis_reduce1(metafile_input, metafile_output, reduce_op) < 0)
{

fprintf(stderr, "Reduce Failed\n");
exit(-1);

}

trellis_finalize();
return 0;

}

Figure 4.10: The sample code of the seismic data processing application (trellis LSAVA) show-
ing how trellis reduce1() is used.
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To summarize the main features of the Trellis-SDP APIs:

1. Trellis-SDP works at the file-level; the sending data and receiving data are stored on disks and

represented by metadata files.

2. Trellis-SDP is able to use existing executables, not only for trellis_scan(), but also for

collective-communication interfaces (trellis_gather() and trellis_reduce1();

both use several helper programs instead of helper functions).
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Chapter 5

Applications and Empirical
Evaluations

In this chapter, we present the empirical evaluations of Trellis-SDP. We evaluate the performance of

four data-intensive applications written in Trellis-SDP, including execution times, speedups, and the

breakdown of the execution times. We also measure the overhead in the execution times incurred

by Trellis-SDP and show that, for naturally data-parallel applications with coarse granularity, our

programing system is easy to use and has reasonably good performance.

To measure the trellis_scan() performance only, we use the distributed trellis grep

(Section 4.3.1) and the content-based image retrieval (CBIR) application. To measure the perfor-

mance of trellis_scan() and trellis_gather(), we use the Parallel Sorting by Regular

Sampling (PSRS) application, which contains an all-to-all communication phase. To measure the

performance of trellis_scan() and trellis_reduce(), we use a seismic data processing

application (3D LSAVA migration application) developed at the Department of Physics, University

of Alberta. We take the original OpenMP implementation of the 3D LSAVA migration application

and convert it into a distributed-memory application using Trellis-SDP.

5.1 Experimental Methodology and Platform

All applications are run on the local-area network because a LAN is a more controlled environment

for benchmarking applications with collective communications. To demonstrate that Trellis-SDP

works across administrative domains, we present the benchmarking results for the trellis grep

application (Section 4.3.1) run on a wide-area network.

All experiments run on the LAN use the same hardware configuration. We use AMD AthlonXP

MP 1800+ processors running at 1.5 GHz, each with 1.5 GB of RAM. All local disk drives interface

with the computer using a SCSI (Small Computer System Interface). The nodes are connected with

a 100 Mbps, switched Fast Ethernet network. All nodes run Linux, with kernel version 2.4.18.

For the WAN settings, the remote nodes we use are located at the University of Calgary, the
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Host Name Administrative Domain Configuration

nexus.westgrid.ca University of Alberta MIPS R16000 IP35 700MHz, 8GB RAM, Irix

lattice.westgrid.ca University of Calgary Alpha ES45 1GHz, 4GB RAM, Tru64

blackhole.westgrid.ca Simon Fraser University AMD Opteron 2.4GHz, 4GB RAM, Linux

Table 5.1: The WAN settings for benchmarking the trellis grep application. The machines
are located at three different administrative domains: the University of Alberta, the University of
Calgary and Simon Fraser University.

University of Alberta and Simon Fraser University. Table 5.1 provides the detailed information of

these hosts.

Finally, as mentioned in Section 4.1, all the data needed for computations in the experiments are

manually distributed at the start since we are targeting naturally-distributed applications. In addition,

metafiles describing the distribution of the data are ready before the computation.

5.2 Distributed Grep

In this experiment, we benchmark the distributed grep (trellis grep) application introduced

in Section 4.3.1. As described earlier, trellis grep performs a grep operation on distributed

data. The source code of the master component is listed in Figure 4.3. The worker component of the

application is the Unix grep program.

We perform this benchmark in both the LAN and WAN environments. For the LAN environ-

ment, we use the metadata file listed in Figure 4.1; for the WAN environment, we use the metadata

file listed in Figure 4.4. We test three sets of input data in both cases, and the total size of the data are

309MB, 618MB, and 927MB, respectively. The data is uniformly distributed across three worker

hosts. All experiments are run 10 times, and only the average numbers are reported. The standard

deviations are less than 3% of the average.

Table 5.2 shows the execution times of trellis grep observed from the master host and

each worker host for all three data sets in the LAN environment. Since the LAN environment is

homogeneous, the results observed from all worker hosts are almost identical. However, there is a

difference (about 0.7 seconds) between the execution times observed from the master host and the

worker hosts. This is due mainly to the overhead of the programming system (e.g., ssh startup

time). Additional discussion on the overhead is provided in later sections.

Table 5.3 shows the execution times of trellis grep observed from the master host and each

worker host for the same input data sets in the WAN environment. This time, the execution times at

different worker hosts are significantly different (for example, with 309MB input data, the execution

time at lattice.westgrid.ca is 7.81 seconds, while the execution time at blackhole.westgrid.ca is only

0.25 seconds), as each worker host has different hardware and software configurations. For all tests,

the total execution time observed at the master host is always greater than the maximum execution
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time of all worker hosts. This is the effect of synchronization at the master host, plus the overhead

of the programming system.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618MB Data Size: 927MB

jasper-03 (sequential) 1.48 3.01 4.73

jasper-03 (master) 1.25 1.77 2.28

jasper-00 (worker) 0.53 1.07 1.58

jasper-01 (worker) 0.53 1.04 1.55

jasper-02 (worker) 0.53 1.05 1.51

Table 5.2: The execution time of the trellis grep application, as observed from the master
host and each worker host in a LAN environment, with three different sets of input data.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618MB Data Size: 927MB

cleardale.cs.ualberta.ca (master) 9.65 17.37 25.01

nexus.westgrid.ca (worker) 5.15 10.27 15.44

lattice.westgrid.ca (worker) 7.81 15.54 23.19

blackhole.westgrid.ca (worker) 0.25 0.49 0.69

Table 5.3: The execution time of the trellis grep application, as observed from the master
host and each worker host in a WAN environment, with three different sets of input data.

The purpose of this experiment is to demonstrate that for simple data-parallel applications,

Trellis-SDP works in both the LAN and WAN environments. We present additional performance-

related metrics in later experiments.

5.3 Content-Based Image Retrieval

In this experiment, we examine additional performance metrics of trellis_scan() and related

functions. We implement a typical information retrieval application: content-based image retrieval

(CBIR).

5.3.1 Application Description

For a computer, retrieving images based on image content is a difficult task. Unlike human beings,

who may easily recognize objects in an image – say, “a red car”– computers do not understand the

contents of the image. Researchers in different disciplines (e.g., computer vision, signal processing,

biology, neuroscience) have proposed various algorithms in this area [31]. It is ideal to parallelize a
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Figure 5.1: The control flow of the content-based image retrieval (CBIR) application

CBIR application using our programming system because it is data-intensive, is easy to decompose,

and the computation is embarrassingly parallel.

The process of writing a distributed CBIR application using Trellis-SDP is similar to that of

the CBMR example described in Section 1. The sequential CBIR application takes a sample query

image and performs a feature-extraction algorithm on the image to generate a multidimensional

feature vector (e.g., color, edge and texture information are vector components). The feature vector

is then searched through the feature space to find the top � most-matched feature vectors. That

is, the feature space is formed by all the feature vectors that have been generated by preprocessing

all images in the image database. New feature vectors are continuously added to the feature space

during the query processes. It should be noted that there are certain issues related with distributed

CBIR applications, such as local relevance versus global relevance [5]. But we use this application

mainly for benchmarking purposes and do not look at these issues.

5.3.2 Experimental Setup

To write a distributed version of CBIR, the application is first decomposed into a master component

and two worker components: feature extraction and feature comparison. The number of worker

components depends on how the image database is distributed. Figure 5.1 depicts the control flow

of the distributed CBIR application.

As shown in the figure, the two worker components are written using different tools. We build

the feature-extraction component using MATLAB – since it greatly simplifies matrix-based pro-

gramming – while we build the feature-comparison component using standard C. In practice, when

using Trellis-SDP, a programmer may choose to write the worker component using his/her favorite
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Image Database Sequential 2 Worker Hosts 4 Worker Hosts 8 Worker Hosts

Size Time � Time � Time � Time �

60,000 101.67 0.87 56.40 1.28 28.77 1.03 16.19 1.04

Table 5.4: The raw execution time of the CBIR application: Time is the average execution time (5
repeated runs) in seconds, � is the standard deviation.

language, to speed up the software development process.

This experiment is performed in a LAN environment and we use up to 8 computing nodes (as

described in Section 5.1). The image database contains 60,000 images with a total feature space of

600 MBytes (i.e., all the feature vectors take 600 MBytes).

5.3.3 Experimental Results

Figure 5.2: The speedup of the distributed CBIR application. The size of the image database is
600MB.

The main experiment is the scalability test, which involves distributing the image database onto

different numbers of nodes. This is shown in Table 5.4 where the average raw execution times of
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Figure 5.3: The overheads of the programming system in the CBIR application.

the CBIR application on 2, 4 and 8 worker hosts, plus the sequential execution time, are given. We

also present a speedup graph to further illustrate the scalability of the application (Figure 5.2).

The distributed CBIR application shows good scalability when the number of participating nodes

increases. This is expected, since the distributed CBIR is naturally parallel. The contribution of

Trellis-SDP is in simplifying the implementation of the CBIR application (Appendix B) and in

minimizing the overheads that detract from linear speedup.

To gain some insight into the overheads (e.g., the startup time of ssh connections and the en-

cryption of the communication channel), we measure and factor out the ssh startup times, compared

to the overall execution time (Figure 5.3). The worst case overhead is 15.5% when the number of

nodes is 8. This is understandable since the number of ssh calls and connections grows linearly

for CBIR, with the number of nodes. As shown with the next application (Section 5.4), ssh startup

overheads can become a bottleneck as the number of worker processes grows, especially when group

communication is involved.

5.3.4 Discussion and Conclusion

Content-based image retrieval is a typical data-intensive and data-parallel application. In practice,

many real applications fall into this category, for example, distributed database operations, image

processing and data mining. Trellis-SDP is designed for this kind of application and our experimen-
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tal results demonstrate that the overheads introduced by Trellis-SDP are minimal.

5.4 Parallel Sorting by Regular Sampling

We use the Parallel Sorting by Regular Sampling (PSRS) application to benchmark the trellis_

gather(), in addition to trellis_scan(). The main purpose of the PSRS experiment is to

show that our programming system works for parallel applications with all-to-all communication

phases.

5.4.1 Application Description

Parallel Sorting by Regular Sampling is an algorithm that is suitable for many parallel architectures.

It has “good load balancing properties, modest communication needs, and good locality of refer-

ences” [21]. To sort the data distributed on � hosts, the algorithm divides the whole process into

four phases, which fits well with our programming system.

In Phase One, each worker component sorts its local data using quick sort. Then, regular

samples are collected from each sorted local data and merged together in the master component.

Merged regular samples are also sorted using quick sort. In Phase Two, ����� pivots are found

from the sorted regular samples and sent back to each worker component, which partitions its local

data according to the pivots. In Phase Three, there is a communication-intensive data exchange

where the ���	� partition in each worker component is transferred to the �
�	� worker. Finally, in Phase

Four, the exchanged partitions in each worker are merged using n-way merge sort, and the

algorithm ends.

Figure 5.4 shows the control flow of PSRS using Trellis-SDP. To simplify the implementation,

we create three worker components on each remote host: the first component performs the local sort

and collects samples; the second reads in pivots and generates the partition index information; the

last component exchanges the data partitions using trellis_gather(), and does a final local

merge sort. The sorted data still resides in remote hosts and is represented by a metadata file in the

master host.

5.4.2 Experimental Setup

This experiment is performed in a LAN environment. The experimental setup is the same as the one

described in Section 5.3.2, except that the dataset used contains 1 GB of unsorted (binary) integers

(i.e., 256 million keys), in total. While benchmarking, no other applications are run on the same

cluster.
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Figure 5.4: The control flow of the PSRS application.

Data Size in Total Real Execution Times (in seconds)

Total Sequential 2 Worker Hosts 4 Worker Hosts 8 Worker Hosts

1GB 184.62 149.34 73.61 48.88

Table 5.5: The raw execution time of the PSRS application on 2, 4 and 8 worker hosts.
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Figure 5.5: The speedup of the PSRS application.

5.4.3 Experimental Results

Scalability

The raw execution time and speedup graphs of the distributed PSRS application are given in Ta-

ble 5.5 and Figure 5.5. The execution time is an average of 5 repeated runs. As seen from the figure,

for 8 worker hosts, we obtain a speedup of 3.7. This is not high, compared with the previous CBIR

experiment but, considering the all-to-all communications, and a secure data transfer, the result is

reasonable. In fact, we are more interested in identifying the overheads of Trellis-SDP for group

communications.

Execution Time Breakdown

We use the phase-by-phase analysis to quantify the execution times in each phase. Figure 5.6 illus-

trates the breakdown of the execution time of PSRS. As expected, Phase Three becomes a perfor-

mance bottleneck when the number of worker hosts increases. For example, when there are only

two worker hosts, Phase Three is 22% of the total execution time. But, when the number of worker

hosts increases to eight, Phase Three grows to 55%.
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Figure 5.6: The breakdown of the execution time of the PSRS application with default ssh. (a)
phase-by-phase with real time; (b) phase-by-phase with percentage of real time.

The major reasons for this bottleneck are the saturation of the network bandwidth (i.e., ex-

changing millions of keys), the number of ssh connections, and the data encryption overheads.

For all-to-all communications among � worker components in Phase Three, there are ��� ����� ssh
connections.

To further quantify the overhead, we perform an additional test by replacing all ssh connections

in Phase Three with rsh (which is faster than ssh since rsh uses clear text channels). Figure 5.7

shows the new breakdown of the execution time of PSRS with rsh enabled in Phase Three. With

rsh, both the total execution time and the percentage of the execution time for Phase Three are

reduced. Figure 5.8 more directly shows the impact of the choice of the underlying communication

mechanism.

5.4.4 Discussion and Conclusion

In this section, we have shown the experimental results for the PSRS application. As expected,

due to an all-to-all communication phase in the application, the overhead introduced by Trellis-

SDP is significantly larger than that in the CBIR application. In the future, we plan to explore the

communication optimization of ssh for large data transfers.

5.5 Seismic Data Processing by 3D LSAVA Migration

We use the 3D LSAVA migration application to test trellis_scan() and trellis_reduce().

For this application, we test two sets of input data: one small data set (32 MB) and one large data

set (6 GB). Since a considerable amount of resources are required to process the large data set (i.e.,

it takes more than two weeks to process the 6 GB data on 8 worker hosts), it is impractical to com-
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Figure 5.7: The breakdown of the execution time of the PSRS application with rsh enabled in
Phase Three. (a) phase-by-phase with real time; (b) phase-by-phase with percentage of real time.

Figure 5.8: The overheads of the programming system in the PSRS application with different un-
derlying communication mechanisms.
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Figure 5.9: The control flow of the 3D LSAVA migration application with small input data set.

plete the entire computation in a reasonably short time. Nevertheless, it is still demonstrated that

Trellis-SDP works for the application that handles large amounts of data, and we provide all the

experimental results collected.

5.5.1 Application Description

To demonstrate that Trellis-SDP is applicable to large-scale scientific applications, we collaborate

with the research group in the Seismic Image Processing Lab, Department of Physics, University

of Alberta. We port their novel 3-dimensional least-square amplitude versus angle (3D LSAVA)

migration application for seismic data processing to clusters of workstations using Trellis-SDP.

The goal of the 3D LSAVA migration application is to process the raw seismic data, and make

good-quality images of the earth’s interior. The raw seismic data is collected by the reflection seismic

prospecting technology. For example, at first, a survey area is defined at the earth’s surface; then, a

mesh of sources (i.e., the equipment for impulsive sound waves) is deployed and activated across the

area; finally, echoes of the sources (arriving from multiple directions) are recorded by the receivers

(i.e., geophone or hydrophone) nearby [6].

To process the data, first, the data is transformed from time-domain into frequency-domain using

Fast Fourier Transform (FFT). Then, for each frequency unit, each layer is iteratively processed by

the 3D LSAVA migration algorithm. The result of each frequency unit is a fix-sized two-dimensional
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size of input number of frequencies number of layers size of global model

small data 32 MBytes 99 130 (4 meters/layer) 1.94 MBytes

large data 6 GBytes 178 210 (20 meters/layer) 9 GBytes

Table 5.6: The parameters of the small data set and the large data set for the 3D LSAVA migration
application.

matrix. The final model is generated by globally summing up all matrices [36].

The original 3D LSAVA migration application was implemented using the shared-memory OpenMP

system. In this implementation, the global model resides in the main memory and is shared by all

processes. Each process updates this memory region after processing a frequency unit. To port

this application to a distributed-memory environment, we factor out into a separate executable the

function to process all frequency units in parallel via trellis_scan(), and generate the result

for each frequency unit locally. As illustrated in Figure 5.9, each worker process takes in an in-

put frequency file and a velocity file, and generates a two-dimensional model onto the local disk.

When all local models are generated, a global sum (i.e., a merge operation) is invoked by calling

trellis_reduce(), which produces the global model. Note that the reduction operation uses an

existing binary taken directly from the Center for Waveform Phenomena/Seismic Unix (CWP/SU)

package [32]. The final global model can be visualized (i.e., the seismic image) and examined by

experts.

5.5.2 Benchmark Setup

The experiments are run in a LAN environment only; the LAN settings are described in Section 5.1.

We use two sets of input data to evaluate this application. One is a small synthetic data set,

which contains 32MB of input data, and the final model is approximately 2MB. We perform simple

speedup tests and measure the breakdown of the execution time, using the small data set.

The other input data used is a 6GB 3D SEG/EAGE (i.e., Society of Exploration Geophysi-

cists/European Association of Geoscientists and Engineers) salt model dataset, which has been

widely used by the oil and gas industry for the research of three-dimensional seismic surveys. For

8 worker hosts, the processing of this data will produce 198GB of output data on each worker host

before final reduction. Since there is not enough disk space to accommodate the data, we choose

to make some modifications to the code. Instead of computing all layers in a row, and generating a

large set of local models for each worker host, we have each worker process compute only a single

layer for all frequencies at a time. After each layer is completed at all worker processes, a reduc-

tion operation is performed and an intermediate model for that layer is generated and moved to a

backup storage. Then, the computation and reduction for another layer is initiated until we finish

processing all layers. Finally, a global reduction is performed on all intermediate models to generate

the final global model. In this way, we require less than 4GB of disk space to process one layer for
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Figure 5.10: The control flow of the 3D LSAVA migration application with large input data set.
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Figure 5.11: The visualization of the 3D LSAVA migration application for the small input data set.

each worker host. The control flow of the modified 3D LSAVA migration application is shown in

Figure 5.10.

Some detailed parameters of the two data sets are listed in Table 5.6.

5.5.3 Experimental Results

Small Synthetic Data

Figure 5.11 illustrates the visualized result of the 3D LSAVA migration application for the small

data set. Since this is only a synthetic data set, it does not have real geographic meanings. However,

in order to study the properties of the application, it is still valuable to measure the scalability, the

breakdown of the execution times of different phases, and the ssh startup overheads. The results

are shown in Figures 5.12, 5.13 and 5.14, respectively.

Figure 5.12 indicates that the distributed 3D LSAVA migration application has good scalability.

For example, when the number of worker hosts is 8, we get a speedup number of 7.3. This is because

the majority of the computation is done in the scan phase (i.e., phase one), and the reduction phase

(i.e., phase two) takes up to only 5% of the total execution time, as shown in Figure 5.13. The ssh
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Figure 5.12: The speedup of the 3D LSAVA migration application in a LAN environment.
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Figure 5.13: The breakdown of the execution time of the 3D LSAVA migration application in a LAN
environment.
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Figure 5.14: The ssh startup overhead of the 3D LSAVA migration application in a LAN environ-
ment.
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time on scan operations time on reduction operations total execution time

120 layers 210.67 hours 1.93 hours 212.6 hours

Table 5.7: The total time spent to generate 120 layers of the final model of the 3D LSAVA migration
application using 8 worker hosts. The size of the input data is 6GB.

startup overhead is also negligible, according to Figure 5.14. The worst case overhead is 3.7% of

the total execution time when the number of worker hosts is 8.

3D SEG/EAGE Salt Model Dataset

We complete the processing of 120 layers (2400 meters) out of 210 layers of the global model, and

the result has been verified to be correct. Figure 5.15 illustrates one profile of the 3D model that is

generated. In the figure, the noticeable curves are reflections resulting from different properties of

adjacent strata.

The total time spent in generating the 120 layers of the global model using 8 worker hosts is

given in Table 5.7. The times spent on all scan phases and all reduction phases are also reported in

the same table. Since a considerable amount of time is required to complete the whole computation,

given the current system configurations, it is impractical to measure speedups at this problem scale.

(For example, 212.6 hours (8.86 days) are spent to process 120 layers; at least another estimated 160

hours will be needed in order to complete the entire 210 layers). However, from Table 5.7 we can

see that the reduction operations take less than 1% of the total execution time. This indicates that

the 3D LSAVA migration application on the large data set has the potential to have good scalability

if we add more processors to the computation.

There are several factors contributing to the long running time of the modified 3D LSAVA mi-

gration application (Section 5.5.2) in the current system configurations. In addition to the time for

the additional I/O (writing to and reading from disks) between scan phases, and the time for the

extra reduction phases that generate the intermediate models, there are two other major overheads

introduced by the modification:

1. If we process one layer at a time, we need to read in the velocity file (366MB) for each layer,

which takes approximately 10 seconds each time. If we process all layers in a row (before

modification), we need to read in the velocity file only once.

2. If we process one layer at a time, we also run fftw_create_plan() for each layer, which

takes approximately 33 seconds each time. If we process all layers in a row, we need to

perform fftw_create_plan() only once.

Given the above facts, if we had sufficient storage on each worker host and processed all layers

in a row, we would expect to reduce the total execution time by at least 31.5 hours on 8 worker hosts.
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Figure 5.15: The visualization of the 3D LSAVA migration application for the 3D SEG/EAGE salt
model data set.
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5.5.4 Discussion and Conclusion

In this section, we presented the experimental results of the 3D LSAVA migration application, a

project carried out in cooperation with the researchers in the Department of Physics, University of

Alberta. The significant features of this experiment are:

1. The 3D LSAVA migration application is a non-trivial application, developed independently at

the Department of Physics, University of Alberta.

2. The amount of data that was processed is extremely large.

3. Although the porting of the original OpenMP program to the clusters of workstations needs

source code modifications, we have managed to make the changes as minimal as possible

by using Trellis-SDP. In fact, the only change required is the way the original application

outputs the results. The OpenMP program writes the local models to a large shared-memory

region, and performs the global sum at the same time; the modified program (the Trellis-SDP

version) first generates the local models to files, then all the local models are merged by the

global reduction.

We have verified that the trellis version of the 3D LSAVA migration application produces the

correct results for both small and large data sets, and have also demonstrated that it has good scala-

bility.

5.6 Concluding Remarks

In this chapter, we have given the empirical evaluations of our Trellis-SDP system. We studied four

applications: distributed grep, content-based image retrieval, Parallel Sorting by Regular Sam-

pling, and seismic data processing by 3D LSAVA migration. The results we obtained are summa-

rized as follows:

1. Trellis-SDP can work across administrative domains (Section 5.2).

2. For simple data-parallel applications with coarse-grained communication patterns, Trellis-

SDP does not introduce excessive overhead and the application shows good scalability (Sec-

tion 5.3).

3. Trellis-SDP works for parallel applications with all-to-all collective-communication phases.

However, the collective-communication phases may become a performance bottleneck in the

applications (Section 5.4).

4. Trellis-SDP works for applications that need to process very large data sets. Due to limited

resources, we were not able to scale the application beyond 8 worker hosts (Section 5.5).
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Chapter 6

Conclusion

In this thesis, we presented the design and implementation of Trellis-SDP, a simple data-parallel

programming system. One major contribution of this work is that Trellis-SDP enables fast devel-

opment of data-intensive and naturally data-parallel applications in a metacomputing environment.

Another major contribution of Trellis-SDP is that it allows worker processes to run existing, un-

modified binaries. Trellis-SDP also uses the metadata file to represent files or directories that are

distributed across the wide-area network.

Trellis-SDP is built upon the existing Trellis project and provides a Master-Worker programming

framework. Function shipping and remote execution strategies are adopted to move the executables

to the worker hosts where the data resides. To integrate the metadata file into our programming

system, we introduced the file-level data parallelism and file-level collective-communication con-

cepts, enabling the data-parallel and collective-communication operations to be performed at the file

level, instead of at the memory level. This offers several advantages, such as facilitating a batched-

pipelined execution model and requiring less-strict synchronization of parallel processes, especially

in a metacomputing environment.

We discussed all the major application programming interfaces that we proposed and imple-

mented, and gave detailed examples of how these interfaces can be used to write non-trivial data-

parallel applications. We demonstrated that if the problem itself is simple, the implementation can

also be simple.

We evaluated Trellis-SDP using four applications: the distributed trellis grep application

demonstrates that Trellis-SDP works over a wide-area network; the content-based image retrieval

application demonstrates that for data-parallel application without collective-communication phases,

the overhead introduced by Trellis-SDP is minimal, and the application shows good scalability; the

Parallel Sorting by Regular Sampling application and the 3D seismic data processing application

demonstrate that Trellis-SDP works for applications with collective-communication phases, and that

Trellis-SDP is reliable when the application is required to process very large data sets.

Future research directions may include the investigation of other data-intensive applications to

further improve the programming system with regard to simplicity and efficiency; the design of
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abstractions (e.g., metafiles); the implementation of library functions (e.g., trellis_scan(),

trellis_gather() and trellis_reduce()), and the evaluation of techniques to create

data-parallel applications.

56



Bibliography

[1] A. Acharya, M.Uysal, and J.Saltz. Active Disks: Programming Model, Algorithm and Evalua-
tion. In Proceedings of the 8th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 81–91, San Jose, California, United States,
1998.

[2] M. Banikazemi, V. Moorthy, and D. Panda. Efficient Collective Communication on Hetero-
geneous Networks of Workstations. In Proceedings of International Conference on Parallel
Processing, pages 460–467, Minneaplis, Minnesota, USA, August 1998.

[3] D.J. Barrett and R.E. Silverman. SSH, the Secure Shell: The Definitive Guide, 2nd Edition.
O’Reilly and Associates, 2005.

[4] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results
vs. Theory. Concurrency: Practice and Experience, 10(5):359–386, April 1998.

[5] S. Berretti, A. Del Bimbo, and P. Pala. Collection fusion for distributed image retrieval. In Pro-
ceedings of ACM SIGIR Workshop on Distributed Information Retrieval, pages 70–83, Toronto,
Canada, August 2003.

[6] J. F. Claerbout and J. L. Black. Basic earth imaging, version 2.4. http://sepwww.
stanford.edu/sep/prof/toc_html/bei/toc_html/index.html.

[7] M. Closson. The Trellis Network File System. Master’s thesis, Department of Computing
Science, University of Alberta, 2004.

[8] Condor. http://www.cs.wisc.edu/condor.

[9] SSH Communication Security Corp. Enabling Virtual Private Networks with Public Key In-
frastructure, 2004. http://www.ssh.com.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Pro-
ceedings of 6th Symposium on Operating Systems Design and Implementation (OSDI ’04),
pages 137–150, San Francisco, California, USA, December 2004.

[11] C. Lee et al. A Grid Programing Primer, August 2001. Advanced Programming Models
Working Group, Global Grid Forum, http://www.gridforum.org/.

[12] C. Pinchak et al. The Canadian Internetworked Scientific Supercomputer. In Proceedings of
17th Annual International Symposium on High Performance Computing Systems and Applica-
tions (HPCS), pages 193–199, Sherbrooke, Quebec, Canada, May 11–14, 2003.

[13] D. Thain et al. The Architectural Implications of Pipeline and Batch Sharing in Scientific
Workloads. Technical Report UW-CS-TR-1463, Computer Sciences Department, University
of Wisconsin, United States, January 2003.

[14] I. Foster et al. The Physiology of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration, 2002. Open Grid Service Infrastructure WG, Global Grid Forum, http:
//www.globus.org/.

[15] J. P. Goux et al. An Enabling Framework for Master-Worker Applications on the Computa-
tional Grid. In Proceedings of 9th International Symposium on High Performance Distributed
Computing, pages 43–50, Pittsburgh, Pennsylvania, United States, August 2000.

[16] K. Seymour et al. GridRPC: A remote procedure call API for grid computing.
https://forge.gridforum.org/projects/gridrpc-wg/.

57



[17] M. Beynon et al. Design of a Framework for Data-Intensive Wide-Area Applications. In
Heterogeneous Computing Workshop, pages 116–130, Cancun, Mexico, 2000.

[18] M. Stonebraker et al. A Wide-Area Distributed Database System. Very Large Data Bases
(VLDB), 5(1):48–63, 1996.

[19] R. Butler et al. A National-Scale Authentication Infrastructure. IEEE Computer, 33(12):60–66,
2000.

[20] T. Kielmann et al. MagPIe: MPI’s Collective Communication Operations for Clustered Wide
Area Systems. ACM SIGPLAN Notices, 34(8):131–140, 1999.

[21] X. Li et al. On the Versatility of Parallel Sorting by Regular Sampling. Parallel Computing,
19(10):1079–1103, 1993.

[22] J. Foote. An Overview of Audio Information Retrieval. Multimedia Systems, 7(1):2–10, 1999.

[23] I. Foster. The GRID: Blueprint for a New Computing Infrastructure. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 1998.

[24] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed
computing systems. In Proceedings of Supercomputing ’98. ACM Press, Orlando, Florida,
United States, 1998.

[25] Globus. http://www.globus.org/.

[26] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson, M. Ding, M. Goldenberg, N. Lamb,
R. Senda, E. Sumbar, and Y. Wang. The Trellis Security Infrastructure: A Layered Approach
to Overlay Metacomputers. In 18th International Symposium on High Performance Computing
Systems and Applications (HPCS), pages 109–117, Winnipeg, Manitoba, Canada, May 16–19,
2004.

[27] N. T. Karonis. MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing (JPDC), 63(5):551–563, May 2003.

[28] Message Passing Interface Standard 1.1. http://www-unix.mcs.anl.gov/mpi/.

[29] C. Pinchak. Placeholder Scheduling for Overlay Metacomputing. Master’s thesis, Department
of Computing Science, University of Alberta, 2003.

[30] E. Riedel and G. Gibson. Active Disks - Remote Execution for Network-Attached Storage.
Technical Report CMS-CS-99-177, Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburgh, PA, United States, November 1999.

[31] Y. Rui, T. S. Huang, and S. Chang. Image Retrieval: Past, Present, and Future. In Proceedings
of International Symposium on Multimedia Information Processing, pages 211–220, Taipei,
Taiwan, December 1997.

[32] Seismic Unix (CWP/SU). http://www.cwp.mines.edu/cwpcodes.

[33] K. C. Sevcik. Application Scheduling and Processor Allocation in Multiprogrammed Parallel
Processing Systems. Journal of Performance Evaluation, 19:107–140, 1994.

[34] G. Shao. Adaptive Scheduling of Master/Worker Applications on Distributed Computational
Resources. PhD thesis, Department of Computer Science, University of California at San
Diego, 2001.

[35] J. Siegel and P. Lu. User-Level Remote Data Access in Overlay Metacomputers. In Pro-
ceedings of the 4th IEEE International Conference on Cluster Computing, pages 480–483,
September 2002.

[36] J. Wang, H. Kuehl, and M. D.Sacchi. Least-squares wave-equation avp imaging of 3D common
azimuth data. In Proceedings of the 73rd Annual International Meeting, Society of Exploration
Geophysicists, Dallas, USA, October 2003.

[37] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers, 2nd Edition. Prentice Hall, 2005.

58



Appendix A

Preliminary Study of Application
Profiling and Performance Prediction

In this thesis, our programming system assumes static data distribution and resource allocation.

This means that the selection of master and worker hosts are determined before the computation

starts, and there are no data movements involved. In practice, if we want to run an application

across a wide-area network, a scheduler is almost always needed to ensure that limited resources are

allocated to different workloads or jobs in a reasonable fashion. In this chapter, we briefly discuss

our preliminary effort on the application profiling model and performance prediction model, based

on Trellis-SDP, for our future scheduler.

Scheduling in a metacomputing environment is challenging. The ability to make good schedul-

ing decisions relies largely on the amount and accuracy of the system and the application informa-

tion. However, the dynamically-changing system information and the detailed application informa-

tion may not be readily available, or may be too expensive to collect.

We assume that the research on the scheduling of data-parallel applications is a practical start-

ing point because data-parallel applications are simple, and have coarse-grained communication

patterns. More specifically, we focus on the load balancing problem for data-parallel applications

written in Trellis-SDP. Figure A.1 illustrates the control flow for the load balancing of a Trellis-SDP

application. First, the application and system profiling data from previous runs are collected and an-

alyzed. Then, a performance prediction model is built upon the profiling information, and provided

to the scheduler. The scheduler, aware of the current system status, obtains the estimated execution

time from the performance prediction model and, finally, generates the best scheduling scheme.

A.1 Application Profiling

Since Trellis-SDP works at the file level, and Trellis-SDP applications are written in data-parallel and

collective-communication phases, we can naturally extend our system to integrate application pro-

filing capabilities at a coarse-grained level. Currently, we are interested in the number of phases in
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Figure A.1: The control flow for the load balancing of Trellis-SDP applications

the application, the characteristics of each phase (data-parallel phases or collective-communication

phases), the execution time of each phase, and the number of worker hosts. Our programming

system maintains a static profiling object. It provides two functions:

void Profile::registerPhaseStart(struct timeval start_time,
const char * phase);

void Profile::registerPhaseEnd(struct timeval end_time);

These two functions are called at the beginning and the end of each phase, respectively, if the

user turns on the profiling capability of the programming system. In this way, the number and types

of phases, as well as the time spent in each phase, are recorded during each run of the application.

This information will be analyzed and fed into the performance prediction model.
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A.2 Performance Prediction and Scheduling

A.2.1 Introduction

The performance prediction model is a metric used to predict the expected application performance

at future runs. The performance model uses the application profiling data and system configuration

data gathered from previous runs to make the estimation. Currently, we are experimenting with a

simple performance prediction model based on homogeneous architectures.

Our performance prediction model may be useful if the scheduler is adopting a backfilling

scheduling policy where there might be some “holes” in the job waiting queues (Figure A.2). If

the scheduler predicts that the run-time of a later submitted application can be fit into the time slot

of the “holes”, that application can be scheduled earlier.

Figure A.2: The backfilling scheduling policy. There might be “holes” in the job waiting queues.

A.2.2 Prediction of the Execution Time

The model we used for execution time prediction is taken from Sevcik [33]. This model takes into

account the following major issues:

1. The essential computational work of the application (e.g., the sequential running time of the

application).

2. The imbalance with which the essential work is distributed across the processors.
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3. The overhead introduced for parallel processing (e.g., the overhead of the programming sys-

tem/framework).

4. The communication and congestion delays.

The original model is defined as:

��� � � ����� � � � �
���
�
	�
 � � � � 	
� � � � �

where
�

represents the sequential computational work of the application, � is the number of

processors, � � � � represents the unevenness among the work distributed across � processors,



rep-

resents the overhead introduced by the parallel processing, and
� � � � represents the communication

and congestion delays (a function of � ).

In our study, we assume that the data is always evenly distributed across processes and we

consider only homogeneous architecture, so � � � � equals to � . We further simplify the model by

removing the factors for communication and congestion delays, since we assume data-intensive

operations of the application are performed locally by worker processes, and only a small amount

of data needs to be transferred over the network. The final model we use is:

� � � ���
�
�
	�� �
� 	������ � �

where
�

is still the sequential computational work of the application and � is the number of

processors.
� �
� 	���� � � � is our version of the overhead introduced by parallel processing, determined

by the historical profiling of the application, where
�

is the number of phases in the application and

�
� 	������ � � is the average overhead for each phase (basically ssh startup overheads, which has been

discussed in Chapter 5).

A.3 Preliminary Evaluation Results

In the previous section, we presented our simple performance prediction model for homogeneous

architectures by the following equation:

� � � ���
�
�
	�� �
� 	������ � �

We evaluate this equation by the CBIR application described in Section 5.3. The experiment is

performed in the LAN environment with 2, 4 and 8 worker hosts. We measure the actual execution

time of the application running on a given number of worker hosts, and use the equation to derive

the predicted execution time of the application running on different number of worker hosts. The

results are shown in Table A.1.

From the table, we can see that the worst-case prediction error is less than 5%, which indicates

that our performance prediction model is relatively accurate and practical for simple data-parallel

applications.
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2 worker hosts 4 worker hosts 8 worker hosts

actual (s) predicted (s) error actual (s) predicted (s) error actual predicted error

55.78 – – 28.5 28.99 1.7% 15.45 16.1 4.2%

55.78 54.8 1.8% 28.5 – – 15.45 15.9 2.9%

55.78 53.5 4.1% 28.5 27.6 3.2% 15.45 – –

Table A.1: The prediction of the execution time of the CBIR application on different numbers of
worker hosts.
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Appendix B

Source Code for CBIR Application

#define DISABLE_MACRO_REPLACEMENT

#include <string>
#include <trellis.h>
#include <trellis_sdp.h>
#include <iostream>
#include <stdlib.h>
#include <assert.h>

struct top{
float distance;
int index;

} * toplist = NULL;

int main(int argc, char * argv[] ){

Trellis_Request request;
Trellis_Status status;

char * sample_disk = argv[1];
char * sample_offset = argv[2];
char * top_n = argv[3];
char * metafile = argv[4];
int items_read = 0;
string op;
float * buffer;

op += "query " + string(sample_disk) + " " + string(sample_offset)
+ " " + string(top_n);

trellis_init(argc, argv);

if(trellis_scan(metafile, op.c_str(), &request) < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}else{
memset(buffer,0, BUF_SIZE);
items_read = trellis_scan_readall(&buffer, Trellis_FLOAT,

request);
trellis_scan_wait(request, status);

assert(items_read > 0);
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toplist = (struct top *)malloc(items_read / 2 *
sizeof(struct top));

for(int i = 0; i < items_read/2; i++){
toplist[i].distance = buffer[i*2];
toplist[i].index = (int)(buffer[i*2+1]);

}

quicksort(toplist, 0, items_read/2 - 1);
for(int i = 0; i < items_read/2; i++)

printf("%f %d\n", toplist[i].distance,
toplist[i].index);

}

trellis_finalize();

if(toplist!=NULL){
free(toplist);
toplist = NULL;

}

return 0;
}

65



Appendix C

Source Code for PSRS Application

#define DISABLE_MACRO_REPLACEMENT

#include <trellis.h>
#include <trellis_sdp.h>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <unistd.h>
#include "quicksort.h"

using namespace std;

#define PTRACE_PATH "ptrace"
#define LOCALSORT_PATH "/usr/scratch/ading/PSRS/localsort"
#define GSAMPLE_PATH "/usr/scratch/ading/PSRS/gathersample"
#define COLLECTIDX_PATH "/usr/scratch/ading/PSRS/collectidx"
#define MERGESORT_PATH "/usr/scratch/ading/PSRS/mergesort"

int DISK_NUM;
int SUBARRAY_SIZE;
int SAMPLE_EACH;
int INDEX_PIVOTS;

int * phase1(const char * metafile_in, const char * metafile_localsorted){

char sample_each_string[1024], subarray_num_string[1024];
int * sample_array = NULL;
int items_read;
string op1, op2;
Trellis_Request request;
Trellis_Status status;

sprintf(sample_each_string, "%d", SAMPLE_EACH);
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);
op1 = string(LOCALSORT_PATH) + " " + string(subarray_num_string);
op2 = string(GSAMPLE_PATH) + " " + string(subarray_num_string)+ " "

+ string(sample_each_string);

if(trellis_scan(metafile_in, op1, &request) < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}
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trellis_scan_wait(request, status);

if(trellis_scan(metafile_localsorted, op2, &request) < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}
sample_array = (int *)malloc(DISK_NUM * SAMPLE_EACH * sizeof(int));
items_read = trellis_scan_read(sample_array, Trellis_INT,

DISK_NUM * SAMPLE_EACH, request);
trellis_scan_wait(request, status);

return sample_array;
}

int ** collect_index_info(const char * metafile_localsorted,
string pivots_file_name){

char disk_num_string[1024], subarray_num_string[1024];
int ** index_table = NULL;
string op;
Trellis_Request request;
Trellis_Status status;
int items_received;

sprintf(disk_num_string, "%d", DISK_NUM);
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);

op = string(PTRACE_PATH) + " " + string(COLLECTIDX_PATH) + " " +
string(subarray_num_string) + " " + string(disk_num_string)
+ " " + pivots_file_name;

if(trellis_scan(metafile_localsorted, op, &request) < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}

index_table = (int **)malloc(scan->GetDisknum() * sizeof(int *));
for(int key = 0; key < scan->GetDisknum(); key++){

index_table[key] = (int *)malloc(scan->GetDisknum() * 2 *
sizeof(int));

items_received = trellis_scan_readidx(index_table[key],
Trellis_INT, scan->GetDisknum() * 2, key,
request);

if(items_received < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}
}

trellis_scan_wait(request, status);
return index_table;

}

int ** phase2(const char * metafile_localsorted, int * sample_array){

int * pivots_array = NULL;
int i, j;
int ** index_table;
FILE * pivots_file_fp;
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string pivots_file_name;
string pivots_file_scl;

quicksort(sample_array, 0, DISK_NUM * SAMPLE_EACH - 1);
pivots_array = (int *)malloc((DISK_NUM-1)*sizeof(int));

for(i = 1; i < DISK_NUM; i++){
j = i * DISK_NUM + INDEX_PIVOTS - 1;
pivots_array[i-1] = sample_array[j];

}

pivots_file_name = string(getenv("HOME")) + "/pivots_file";
pivots_file_fp = fopen(pivots_file_name.c_str(), "w");
if(pivots_file_fp == NULL){

fprintf(stderr, "Open Pivots File Error\n");
exit(-1);

}
for(i = 0; i < DISK_NUM - 1; i++)

fprintf(pivots_file_fp, "%d\n", pivots_array[i]);
fclose(pivots_file_fp);

pivots_file_scl = "scp:"+string(getenv("HOST"))+":pivots_file";
index_table = collect_index_info(metafile_localsorted,

pivots_file_scl);
free(pivots_array);

return index_table;
}

int phase3(const char * metafile_localsorted, const char *
metafile_gather, int ** index_table, Trellis_Datatype datatype){

return trellis_gather(metafile_localsorted, metafile_gather,
index_table, datatype);

}

void phase4(const char * metafile_gather, const char *
metafile_globalsorted){

string op;
Trellis_Request request;
Trellis_Status status;

op = string(MERGESORT_PATH);
if(trellis_scan(metafile_gather, op, &request) <0 ){

fprintf(stderr, "Scan Failed\n");
exit(-1);

}
trellis_scan_wait(request, status);

return;
}

int main(int argc, char * argv[] ){

int * sample_array = NULL;
int ** index_table;
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char metafile_in[] = "tosort.meta";
char metafile_localsorted[] = "localsorted.meta";
char metafile_gather[] = "sortgather.meta";
char metafile_globalsorted[] = "sorted.meta";

int size;

DISK_NUM = 8;
SUBARRAY_SIZE = 33554400;
SAMPLE_EACH = DISK_NUM;
INDEX_PIVOTS = DISK_NUM/2;

trellis_init(argc, argv);

sample_array = phase1(metafile_in, metafile_localsorted);
index_table = phase2(metafile_localsorted, sample_array);
phase3(metafile_localsorted, metafile_gather, index_table,

Trellis_INT);
phase4(metafile_gather, metafile_globalsorted);

for(int i = 0; i < DISK_NUM; i++)
free(index_table[i]);

free(index_table);
free(sample_array);

trellis_finalize();

return 0;

}
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Appendix D

Source Code for 3D LSAVA
Migration Application

#define DISABLE_MACRO_REPLACEMENT

#include <string>
#include <string.h>
#include <stdio.h>
#include <trellis.h>
#include <trellis_sdp.h>

int main(int argc, char * argv[]){

Trellis_Request request;
Trellis_Status status;

char * metafile_scan = argv[1];
char * scan_op = "/usr/scratch/ading/SEISMIC/LS_AVA ";
char * reduce_op = "susum";
char * metafile_input = argv[2];
char * host_num = argv[3];
char scan_command[1024];
char metafile_output[] = "LSAVA.data/LSAVA_OUTPUT.meta";

trellis_init(argc, argv);

/* Trellis Scan */

memset(scan_command, 0, 1024);
strcat(scan_command, scan_op);
strcat(scan_command, host_num);
if(trellis_scan(metafile_scan, scan_command, &request) <0 ){

fprintf(stderr, "Scan Failed\n");
exit(-1);

}

trellis_scan_wait(request, status);

/* Trellis Reduce */

if(trellis_reduce1(metafile_input, metafile_output, reduce_op)<0){
fprintf(stderr, "Reduce Failed\n");
exit(-1);
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}

trellis_finalize();
return 0;

}
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