
University of Alberta

Library Release Form

Name of Author: Michael Closson

Title of Thesis: The Trellis Network File System

Degree: Master of Science

Year this Degree Granted: 2004

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Michael Closson
11513 40th Avenue
Edmonton, Alberta
Canada, T6J 0R3

Date:

University of Alberta

THE TRELLIS NETWORK FILE SYSTEM

by

Michael Closson

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitled The Trellis Network File System submitted by Michael
Closson in partial fulfillment of the requirements for the degree of Master of Science.

Paul Lu
Supervisor

Pawel Gburzynski

Mike Carbonaro

Date:

University of Alberta

THE TRELLIS NETWORK FILE SYSTEM

by

Michael Closson

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

To Taunia

Abstract

We introduce the Trellis Network File System (TrellisNFS), a distributed file system. TrellisNFS

allows a user to transparently integrate multiple remote file system hierarchies into the local file

system hierarchy. We introduce the motivation behind TrellisNFS, we describe the design and im-

plementation of the TrellisNFS server, and we evaluate the server using three different techniques.

TrellisNFS is unique from other distributed file system projects in its design goals. For the

purposes of the Trellis Project, we desire a distributed file system that allows file sharing over a

Wide Area Network (WAN), works across multiple administrative domains, seamlessly integrates

with the local file system, and places minimal burden on the local system administrator to install and

maintain.

Acknowledgements

I would like to acknowledge my supervisor Dr. Paul Lu for all his guidance, inspiration and patience.
TrellisNFS would not be possible without the efforts Jeff Siegel and Paul Lu and the rest of the
TrellisFS team: Nolan Bard, Morgan Kan and Mark Lee. TrellisNFS would also not have been
possible without the efforts of Morgan Kan and Danny Ngo who implemented the Trellis Security
Infrastructure. I also wish to acknowledge the work of additional members of the Trellis team:
Meng Ding, Mark Goldenberg, Nick Lamb, Chris Pinchak, Dr. Jonathan Schaeffer, Ron Senda, Dr.
Edmund Sumbar and Yang Wang.

Contents

1 Introduction 1
1.1 The Trellis Project . 2
1.2 A Motivating Example . 3
1.3 Contributions . 3
1.4 Concluding Remarks . 4

2 Background and Related Work 5
2.1 Background concepts . 5

2.1.1 Distributed Data Storage Systems versus Distributed File Systems 5
2.1.2 Typical File System Operations in a High Performance Workload 7
2.1.3 The Secure Shell . 7
2.1.4 Secure Copy Locater Notation: The Trellis Namespace 8
2.1.5 File System Concepts . 9
2.1.6 NFS Concepts . 10
2.1.7 TrellisNFS Concepts . 13

2.2 Related Work . 13
2.2.1 The Coda File System . 13
2.2.2 The UFO file system . 14
2.2.3 The PUNCH Virtual File System . 15
2.2.4 The Legion NFS Server . 15
2.2.5 Secure NFS . 16
2.2.6 The Trellis File System . 17
2.2.7 The Ivy File System . 17

2.3 Concluding Remarks . 18

3 The Trellis Network File System Architecture 19
3.1 The NFS Client . 19
3.2 The TrellisNFS Server . 21

3.2.1 The NFS server . 22
3.2.2 Crash Recovery . 23

3.3 The Trellis File System Library . 24
3.3.1 API Details . 25
3.3.2 The Meta Data Cache . 26

3.4 The Secure Shell Proxy . 28
3.5 The Trellis Security Infrastructure . 28
3.6 Security . 30

3.6.1 NFS Security . 30
3.6.2 Security of over-the-Internet traffic . 31

3.7 Concluding Remarks . 31

4 Implementation Details 33
4.1 The TrellisNFS Server . 33

4.1.1 The MOUNT server . 33
4.1.2 The original user-space NFS server . 35
4.1.3 Modifications made to the original server 36
4.1.4 Crash Recovery . 41

4.2 The Trellis File System Library . 43
4.2.1 Implementation Details . 44
4.2.2 User ID and Group ID mapping . 45
4.2.3 The Metadata Cache . 46

4.3 Executing Remote Procedure Calls over SSH . 46
4.4 Concluding Remarks . 49

5 Empirical Evaluation 50
5.1 Experimental Methodology and Platform . 50
5.2 Micro-benchmark: Bonnie++ . 53

5.2.1 Test Description . 54
5.2.2 Results . 54
5.2.3 Conclusion . 60

5.3 Micro-benchmark: The Connectathon NFS Test Suite 60
5.3.1 Test Description . 61
5.3.2 Benchmark setup. 61
5.3.3 Results . 62
5.3.4 Conclusion . 64

5.4 Application-Oriented Benchmark: The Third Canadian Internetworked Scientific
Supercomputer . 70

5.5 Concluding Remarks . 70

6 Conclusion 72

Bibliography 74

List of Figures

2.1 An illustration of a typical Unix file system hierarchy. Files and directories are
organized in a tree structure. Non-leaf nodes are directories and leaf nodes can be
either files or directories. Directories are suffixed with a /. 10

2.2 Architectural diagram of a typical NFS configuration. The main components are a)
the client, b) the MOUNT server and c) the NFS server. NFS server accepts and
processes requests from NFS clients. 11

2.3 An illustration of the flow of operations involved in an NFS WRITE. The process
on the client will block until a reply is received. See Figure 3.3 to compare an NFS
write operation to a TrellisNFS write operation. 13

3.1 The complete TrellisNFS system with all related components. These components
are a) the NFS client, b) the NFS server and c) remote data storage server. 20

3.2 The main components of the TrellisNFS server. These components are a) the user-
level server, b) the TrellisFS library and c) the Secure Shell Proxy. 20

3.3 An illustration of the flow of operations involved in a TrellisNFS WRITE. The pro-
cess on the client will block until a reply is received. See Figure 2.3 to compare a
TrellisNFS write operation to an NFS write operation. 23

3.4 A C-style structure showing the metadata fields available on a Unix file system [1]. 26
3.5 An architectural diagram of the SSH Proxy. The main components are a) the client,

b) the server and c) the agent. The core function of the SSH Proxy is to maintain
persistent SSH connections to remote nodes, allowing clients to send and receive
messages to and from remote nodes without the repeated overhead of setting up a
new SSH connection. 29

4.1 A complete architectural diagram of the TrellisNFS system. Components include: a)
the NFS client, b) the NFS user-level server, c) the MOUNT server, d) the TrellisFS
library, e) the optional meta data cache, f) the Trellis cache, g) the SSH Proxy server,
h) the Trellis Security Infrastructure, i) the Secure Shell and j) the SSH Proxy agent. 34

4.2 The NFS file-id numbers generated by the Trellis NFS server contain part of the
original file’s i-node number and device number, and the IP address of the file’s
home node. NFS file-id numbers are used as i-node numbers by the NFS client. . . 37

4.3 The TrellisNFS file handle contains information used to re-build an SCL from a file.
An NFS file handle uniquely identifies a file between the client and the server. . . . 39

4.4 Example of how a TrellisNFS file handle is generated from an SCL. 40
4.5 Example of how an SCL is rebuilt from an NFS file handle. 42
4.6 An illustration of the SSH Proxy RPC mechanism. 48

5.1 The four different test configurations used in our micro-benchmarks. 52
5.2 This figure shows the routers a packet bound for the University of New Brunswick

will pass through; the latency for each router is also shown. This data was collected
using the traceroute command. 53

5.3 NFS client performance: Bonnie++ throughput times. All results are in megabytes
per second. Higher numbers are better. These numbers do not include data transfer
and MD5 hash calculation. 55

5.4 End-to-end performance: Bonnie++ throughput times. All results are in megabytes
per second. Higher numbers are better. These numbers include data transfer and
MD5 hash calculation. 56

5.5 NFS client performance: Bonnie++ CPU utilization. Number are percentages. Lower
numbers are better. These numbers do not include data transfer and MD5 hash cal-
culation. 57

5.6 End-to-end performance: Bonnie++ CPU utilization. Number are percentages. Lower
numbers are better. These numbers include data transfer and MD5 hash calculation. 58

5.7 In a typical NFS synchronous operation, the client blocks while the request is pro-
cessed on the server. 62

5.8 In a typical TrellisNFS synchronous operation, the client blocks while the request is
processed on the home node. Read and write operations in the TrellisNFS server are
not processed on the home node, but on the TrellisNFS server. 62

5.9 Completion times for the Basic Connectathon Test Suite. The top plot shows the
performance of all configurations. The bottom plot focuses on the completion times
of the first four configurations. 65

5.10 Completion times for the General Connectathon Test Suite. The top plot shows the
performance of all configurations. The bottom plot focuses on the completion times
of the first four configurations. 66

5.11 Completion times for the individual phases of the Basic test of the Connectathon
Test Suite. The top plot shows the performance of all configurations. The bottom
plot focuses on the completion times of the first four configurations. Table 5.7 shows
these results in table format. 68

5.12 Completion times for the individual phases of the General Test of the Connectathon
Test Suite. The top plot shows the performance of all configurations. The bottom
plot focuses on the completion times of the first four configurations. Table 5.8 shows
these results in table format. 69

List of Tables

2.1 A summary of NFS remote procedure calls. 12

3.1 The Trellis File System API with related Unix API functions 27

4.1 A list of the 15 different procedure calls supported by the SSH Proxy remote proce-
dure call mechanism. 47

5.1 Bandwidth and latency of the networks used in our micro-benchmarks. The LAN
is a 100 Mbps switched Ethernet network. The WAN connects a computer from
the University of Alberta with a computer from the University of New Brunswick.
These numbers were measured with the Netperf tool [16]. 52

5.2 NFS client performance: Bonnie++ throughput times. All results are in megabytes
per second. Higher numbers are better. These numbers do not include data transfer
and MD5 hash calculation. 54

5.3 End-to-end performance: Bonnie++ throughput times. All results are in megabytes
per second. Higher numbers are better. These numbers include data transfer and
MD5 hash calculation. 54

5.4 NFS client performance: Bonnie++ CPU utilization. Numbers are percentages.
Lower numbers are better. These numbers do not include data transfer and MD5
hash calculation. 55

5.5 End-to-end performance: Bonnie++ CPU utilization. Numbers are percentages.
Lower numbers are better. These numbers include data transfer and MD5 hash cal-
culation. 55

5.6 Execution times for the Basic and General Connectathon Test Suites. Times are in
Seconds. 64

5.7 Execution times of selected phases of Connectathon’s Basic Test. A plot of these
times is shown in Figure 5.11 . 67

5.8 Execution times of selected phases of Connectathon’s General Test. A plot of these
results is shown in Table 5.12 . 67

Chapter 1

Introduction

In a Trellis metacomputer [21], compute jobs are performed on a geographically distant virtual

computer composed from multiple independent computing resources. Compute jobs are distributed

across the metacomputer in such a way that any compute server is a candidate to perform any com-

puting job [20]. A natural consequence of this fact is that the data required for a compute job must

be made available to the compute server to which the job has been assigned [25].

Issues relating to data movement inside a Trellis metacomputer include:

• Where is the input data coming from and to where should the output data go?

• Since a Trellis metacomputer spans multiple administrative domains, do the respective servers

have the necessary credentials to access each other’s services?

• What are the primitives available for accessing and manipulating data?

• How is data located and named?

• What semantics are in place to deal with multiple copies of data? How and when are the

multiple copies kept synchronized?

• Issues that have perhaps not received much consideration by previous distributed file systems

are the relevant social concerns. For example, since a Trellis metacomputer spans multiple

administrative domains, what burden does a distributed file system place on the respective

system administrators in terms of installation and use?

We present the Trellis Network File System (TrellisNFS); which allows the various computing

resources in a Trellis metacomputer to access and manipulate data on the metacomputer’s various

data storage resources. TrellisNFS accomplishes this by integrating the benefits of the Network File

System [23] (NFS) and the Trellis File System [25] (TrellisFS).

NFS has some features that make it useful as a metacomputing file system: it supports all the

file system functionality associated with a traditional Unix file system, provides primitives for file

1

access that can be used by unmodified binaries, and uses a hierarchal namespace. On the other

hand, there are some features of NFS that make it unsuitable to be used as a metacomputing file

system. NFS was designed to run on a local area network (LAN). NFS features, such as synchronous

operations are designed to be used in a low latency network. A high latency network such as the

wide area networks (WANs) of the Internet would adversely impact the performance of NFS. NFS

was designed to work in a single administrative domain, and the security model of NFS makes the

assumption that it will be used in a tightly controlled environment. Also, installing NFS is the job

of a system administrator, and cannot be performed by ordinary users.

Likewise; the TrellisFS library, which is a component of TrellisNFS, has some advantages that

make it useful as a metacomputing file system. TrellisFS uses strategies to offset high WAN latencies

and has a security model that allows it to work across multiple administrative domains. TrellisFS

is completely user-installable and does not require system administrator support. However, the dis-

advantage of the TrellisFS library is that it exposes an Application Programming Interface (API) as

the primitive for client integration; therefore, applications that wish to take advantage of the Trell-

isFS library must be modified at the source code level and re-compiled. In the case of commercial

software, the source code may not be available; or getting access to the source code may be possible

only by purchasing an additional licence.

The goal of the TrellisNFS server is to leverage the benefits of these two file systems. Explicitly,

the goals of TrellisNFS are to:

• Allow file sharing over a WAN;

• Work across multiple administrative domains;

• Seamlessly integrate with the existing local file system;

• As much as possible, remain user-installable;

• Maintain the security benefits provided by TrellisFS;

• Prevent undermining of a system administrator’s ability to control the security of her own

system.

1.1 The Trellis Project

We have designed TrellisNFS to be a component of the Trellis metacomputing system. A Trellis

metacomputer is a virtual, batch-processing, capacity-oriented computer; comparable to a comput-

ing cluster. The services provided by a Trellis metacomputer are similar to those provided by a

computing cluster; we list these similar services now:

2

• A computing cluster provides a batch-scheduler such as the Portable Batch System (PBS), to

allocate CPU time to compute jobs. The Trellis metacomputer provides a batch-scheduler [20]

that is based on placeholder scheduling.

• Computing clusters are part of a single administrative domain. Existing tools for user authen-

tication and authorization are provided. As part of the Trellis project, a security infrastruc-

ture [17] has been developed for use in a Trellis metacomputer.

• Computing clusters use a shared file system for managing data. TrellisNFS provides an inte-

grated distributed file system for a Trellis metacomputer.

1.2 A Motivating Example

Many areas of research in the natural sciences rely on computers to assist in their understanding

of natural phenomena. Researchers develop complex numerical models that require large amounts

of computational power to simulate; simulation is a powerful technique to aid in the design and

verification of these numerical models of natural phenomena.

As a concrete example, we will use the Gromacs [18, 6] molecular dynamics simulator. Gromacs

is a CPU-bound sequential application. Multiple runs of different molecular configurations can be

executed in parallel. Input files are typically a few megabytes in size, and the size of the output

data is about 10 times that of the input data. These characteristics are typical of High Performance

Computing (HPC) application programs.

If a researcher has access to multiple HPC resources (e.g., multiple compute clusters) that are

in different administrative domains, then distributing the simulation across these resources is more

difficult then confining the simulation to a single cluster. For example, multiple HPC resources do

not have a common batch scheduler or a common file system. It would be of great benefit if using

these multiple HPC resources was as simple and convenient as using a single HPC resource.

This problem is common in computational science, and for this purpose the Trellis project was

initiated. In this work we focus particularly on a shared file system for a Trellis metacomputer.

By deploying a TrellisNFS server in each administrative domain, a researcher can benefit from the

power and convenience of the shared file system of a single HPC resource, while using multiple

HPC resources in multiple administrative domains.

1.3 Contributions

The goal of metacomputing is to harness the collective computing power of existing HPC consortia.

A shared file system in a computing cluster is powerful because if allows users to access files from

across the network by using existing file system primitives. Additionally, a shared file system allows

3

the user to centrally locate their data and still have it be transparently accessible by all nodes in the

cluster. The power of a shared file system in a computing cluster has not been fully realized in a

Trellis metacomputer, for this purpose we have designed and implemented the Trellis Network File

System. This work makes three contributions:

1. We have re-designed and re-implemented the Linux UNFSD server [24], allowing it to work

with remote files; the TrellisNFS server is based on this server.

2. We have expanded the functionality of the TrellisFS library. The original version of the Trel-

lisFS library allowed a client only to access and manipulate remote file data. In order to

integrate the TrellisFS library with the user-level NFS server; we expanded the scope and

functionality of the library to allow it to work with directories, metadata, hard and symbolic

links, and file renaming. In addition, we implemented the TrellisFS metadata cache, a general

purpose mechanism to eliminate redundant metadata queries in TrellisFS clients.

3. We designed and implemented a Remote Procedure Call (RPC) over SSH [30] mechanism.

This mechanism was built on top of the SSH Proxy [25]. The SSH Proxy is a framework for

persistent SSH connections.

1.4 Concluding Remarks

We have discussed our motivation for building the TrellisNFS server and have given a motivating

example of how we envision using it. In the next chapter, we will discuss the issues of distributed

file systems and look at some of the related work in the field.

4

Chapter 2

Background and Related Work

In the previous chapter we introduced the Trellis Network File System and discussed the motivation

for implementing the TrellisNFS server. We now present important concepts applicable to the design

and implementation of a distributed file system. We also outline previous work in the field.

2.1 Background concepts

Before we present the architecture of the TrellisNFS server in the next chapter, there are some

important concepts to introduce first, which will facilitate later discussion.

The background concepts we discuss in this section can be grouped into seven categories: 1) We

characterize the difference between a distributed data storage system and a distributed file system;

2) We discuss file system operations common to a typical high performance computing workload;

3) We introduce important concepts relating to the Secure Shell [30]. The Secure Shell is used

extensively by the TrellisNFS system for authorization, authentication and data encryption; 4) We

introduce Secure Copy Locater (SCL) notation [25], the notation we use for referring to files in the

Trellis namespace; 5) We describe fundamental concepts that relate to all classes of file systems; 6)

We discuss concepts relating specifically to NFS; 7) Finally, we present concepts relating specifically

to the TrellisNFS server.

2.1.1 Distributed Data Storage Systems versus Distributed File Systems

Systems for accessing remote data can be grouped into two categories. One category, Distributed

Data Storage Systems, includes common tools for retrieving data on a remote system. Examples

include the File Transfer Protocol (FTP) and the Secure Shells’ scp utility. The other category,

distributed file systems, includes examples such as the Network File System (NFS) or Coda.

Distributed data storage systems and distributed file systems both have the basic capability for

accessing data on a remote server, but distributed file systems provide full file system semantics.

File system semantics include features such as the following:

5

1. Distributed file systems implement a full file system API: A distributed file system provides

functionality to access and manipulate files, directories, hard and symbolic links, and meta-

data. In contrast, a distributed data storage system will only support replication of data. Most

distributed data storage systems only provide functionality to transport data between a remote

node and the local node.

2. Distributed file systems provide defined file system consistency guarantees: File system con-

sistency deals with the notion of how the contents of multiple copies of the same file are kept

synchronized with each other. If updates are propagated after every write, and are therefore

immediately visible to all potential readers, we say that the file system has strong consistency

guarantees. If file updates are propagated infrequently, we say the file system has weak con-

sistency guarantees. There is a trade-off between strong and weak file system consistency.

Strong consistency generally leads to a slower file system because file operations will have

to communicate more frequently with other nodes to determine if cached data has changed.

Also, maintaining strong consistency means potentially wasting network bandwidth. On the

other hand, weak consistency means that all readers may not have the most recent data and

that the file system may not correctly handle multiple clients writing to the same file at the

same time. The decision about what strength of file system consistency to support depends

on the nature of the workloads that applications will place on the file system. It is generally

accepted that no single file system consistency policy is optimal for all file systems.

There are 3 common file consistency policies: 1) write-to-read consistency, 2) close-to-open

consistency, and 3) last-writer-wins consistency. This is not an exhaustive list of the different

levels or kinds of file system consistency, but is meant to illustrate the spectrum of possible

options. Write-to-read consistency is the strongest of the three; it means that if any process

reads from a file it will see all past writes performed by any writer. That is, after a file system

write by any writer, the next read performed by any reader will see the most up-to-date file

data. Write-to-read consistency is the consistency policy associated with a local disk file

system. Close-to-open consistency, also referred to as session consistency, is weaker then

write-to-read consistency. Close-to-open consistency, as the name suggests, means that when

a process opens a file, it will see all changes from all past writers who have already closed the

file. This means that if two writers both have a file open at the same time, then changes to the

file made by one of these writers may be lost. Even weaker than close-to-open consistency

is last-writer-wins consistency. As the name suggests, the last process to write to the file will

potentially overwrite changes made by any previous writer. It should be noted that the order

of writes is not necessarily determined by the time at which a write function call completes,

but most likely at the time the master copy of the file is updated.

6

A distributed file system provides more guarantees when dealing with multiple readers and

multiple writers then do remote data storage systems, which typically only support last-writer-

wins semantics. When dealing with multiple copies of a file, a remote data storage system may

not even be able to provide last-writer-wins semantics.

3. Distributed file systems support seamless and transparent integration with the existing file sys-

tem hierarchy: A distributed file system integrates with the file system hierarchy of the local

machine to provide seamless access to remote files. Specifically, a distributed file system al-

lows an application to use the existing file access primitives provided by the operating system,

rather then implement new primitives. For example, the open() function in a distributed

file system will return a file descriptor, and this file descriptor can be operated on through ex-

isting operating system functions. In contrast, a distributed data storage system will provide

primitives that are incompatible with those provided by the operating system.

This is not meant to be an exhaustive list, but it is meant to illustrate some of the reasons that have

motivated us to design and implement the TrellisNFS server.

2.1.2 Typical File System Operations in a High Performance Workload

Different applications create different demands on the file system. TrellisNFS is designed to be

useful for HPC. Sequential, whole-file access is the common access pattern of HPC application;

operations such as accessing only a portion of a file, directory operations, and symbolic/hard link

operations are rare. Although TrellisNFS supports all Unix file system operations, we have opti-

mized the TrellisNFS server and the TrellisFS library for reads and writes.

2.1.3 The Secure Shell

TrellisNFS and TrellisFS use the Secure Shell [30, 5] (SSH) for authentication, authorization and

data encryption. The SSH enables end-to-end privacy for data sent over an insecure network: all

traffic between a home node and the TrellisNFS server is encrypted.

The SSH has several modes of authentication. The most common are host-based, public-key and

password.

Host-based authentication is most commonly used inside a single administrative domain. If two

hosts are declared to be equivalent, then a user on one host can connect to the account with the

same user-id on the second host. A public-private key challenge-response system is used to allow

the hosts authenticate to each other. Because of the security concerns associated with host-based

authentication, it is often used only within a computing cluster that is not directly accessible from

an external network.

7

With password authentication, as the name suggests, the user is required to enter a password to be

authenticated; this password is encrypted before it is sent over the network. Password authentication

is more secure then host-based authentication, but requires the user to interactively enter a password.

This is not suitable for TrellisNFS, since entering a password is interactive in nature and the Trellis

environment is a batch-processing environment.

Public-key authentication uses a challenge-response system with a public-private key pair to

authenticate the user. The server has the public portion of the key pair, and uses this key to generate

a challenge to the client. The client then decrypts the challenge with the private key and sends

the response to the server. The server verifies this response to determine if access can be granted.

Public key authentication is the most secure since no private information (such as a password or

a private key) is sent over the network. For added security, private keys are stored on disk in an

encrypted format; if the private key is in encrypted format, the user is required to enter a pass-phrase

to decrypt the private key. This interactivity presents the same problem we identified above with

password authentication. The problem is solved with the help of a standard SSH utility program, the

SSH agent. The SSH agent runs as a daemon on the same machine as the TrellisNFS server, and the

user can load private keys into the agent. When the server needs access to a remote server, it can use

the private keys in the SSH agent to decrypt public key-based authentication challenges.

The current implementation of the TrellisNFS server uses a single SSH agent. The server is not

selective about which key to use based on what user on the client initiated the request. Because

of this, the current implementation of the TrellisNFS server is not suitable for use as a multi-user

server.

2.1.4 Secure Copy Locater Notation: The Trellis Namespace

In this section, we introduce Secure Copy Locater (SCL) notation. We need a way to refer to files

in the Trellis metacomputing system, and an SCL names a file in a Trellis metacomputer. SCL

syntax mirrors the syntax used by the scp command, which is part of the SSH suite [30]. An SCL

is analogous to a Uniform Resource Locater (URL) for the World Wide Web; it identifies a file or

directory in a Trellis metacomputer. For example, the SCL

scp:closson@scovil.cs.ualberta.ca:dir1/file1

Refers to the file file1 in directory dir1. Directory dir1 is in user closson’s home directory.

The file is located on the server scovil.cs.ualberta.ca. The user-id closson is used when

authenticating with the server. scp refers to the Secure Copy via SSH access method.

Formally, an SCL has the following format.

<protocol>:[<username>@]<nodename>:[/]<location>

8

protocol can be one of scp, http or ftp; for the TrellisNFS server, we use only scp.

nodename identifies the name of the Internet node where the file is located. username is the

name of the account to use for authentication. If username is omitted, then the user name of the

owner of the currently running process is used. Finally, location is the pathname of the file on

the server. If the location is prefixed with a slash (/), then it is an absolute pathname. Without the

slash, the location is relative to the user’s home directory.

Integrating the TrellisFS library and NFS introduces a small inconsistency in SCL notation. In

a Unix pathname, directories are delimited with a forward slash (/). In TrellisNFS, the nodename

part of an SCL is considered to be a directory, and therefore should be properly delimited.

Consider the following SCL:

scp:closson@jasper-10:water.tpr

This SCL refers to the file water.tpr in the user’s home directory on the node jasper-10.

This presents an inconsistency with our TrellisNFS namespace. Assuming the TrellisNFS volume is

mounted at /trellis, the TrellisNFS path:

/trellis/scp:closson@jasper-10:water.tpr

refers to a file under closson’s home directory, but /trellis is not closson’s home directory.

This path is not legal in the current implementation of the TrellisNFS. TrellisNFS forces the user

to use the entry scp:closson@jasper-10:., when referring to SCLs that are home directory

relative (i.e., paths that are relative to a home directory). So, the correct TrellisNFS syntax for this

SCL would be:

/trellis/scp:closson@jasper-10:./water.tpr

SCLs with a location relative to the root of the remote file system hierarchy are not affected

by the integration of TrellisFS with NFS. Below is an example of a root relative SCL:

/trellis/scp:closson@jasper-10:/scratch/closson/water.tpr

The file water.tpr is located in the directory /scratch/closson on server jasper-10.

The user account closson will be used when authenticating to the server.

2.1.5 File System Concepts

In this section, we provide an introductory explanation of some fundamental Unix file system con-

cepts. We first introduce the notion of a file system hierarchy and then introduce i-node numbers

and device numbers.

A File System Hierarchy is the notion of a tree of files and directories. A typical Unix file system

hierarchy is shown in Figure 2.1.

9

lib/

/

usr/ home/

bin/ closson/

water.tpr

Figure 2.1: An illustration of a typical Unix file system hierarchy. Files and directories are organized
in a tree structure. Non-leaf nodes are directories and leaf nodes can be either files or directories.
Directories are suffixed with a /.

I-node numbers and device numbers are used extensively by NFS and by our implementation. In

a Unix file system hierarchy, files are uniquely identified by their device and i-node numbers. Each

file storage device, such as a partition on a hard drive, is assigned a unique device number by the

operating system. On each file storage device, files are uniquely identified by an i-node number. It

is possible for two files, each on a different device to have the same i-node number. In contrast, two

files on the same Unix device cannot have the same i-node number. Also, Unix file system semantics

are such that i-node and device numbers do not change during a file’s or device’s lifetime.

TrellisFS aims to make files from across the Internet available under a single device. Special

care needs to be taken when assigning i-node numbers. It should be noted that most applications

do not rely on these semantics for proper operation, i.e., most applications do not require that all

files on a single Unix device have a unique i-node number; however, system software, such as the

TrellisNFS server, does.

2.1.6 NFS Concepts

In this section we introduce the following concepts: NFS Volume, MOUNT Server, MOUNT Proto-

col, NFS Server, NFS Protocol; we define mount, and remote procedure calls (RPCs); we discuss the

stateless nature of the NFS protocol, the NFS file handle, a NFS file-id number, the stateful nature

of the MOUNT protocol, and the notion of synchronous operations.

10

(a) NFS Client

(b) MOUNT server(a) NFS Client

(c) NFS Server

Figure 2.2: Architectural diagram of a typical NFS configuration. The main components are a) the
client, b) the MOUNT server and c) the NFS server. NFS server accepts and processes requests from
NFS clients.

NFS [23], is designed to allow file sharing over a LAN. An NFS server exports a hierarchy of

files and directories to a client. A hierarchy like this is known as an NFS volume.

A typical NFS server setup is shown in Figure 2.2. an NFS server consists of two programs: the

MOUNT server (object (b) in the Figure 2.2), which implements the MOUNT protocol, and the NFS

server (object (c) in the figure 2.2), which implements the NFS protocol.

The MOUNT server is only used when establishing and dropping the mount; the NFS server

does the majority of the work. The term mount refers to integrating a new file system hierarchy into

an existing one.

A RPC is synonymous with a standard procedure call except that the process that invokes the

procedure call and the process that executes the procedure code can be on different machines. A

synchronous remote procedure call means that the process that calls the RPC will block until the re-

mote machine has executed the procedure and returned the result; all RPCs in NFS are synchronous

RPCs.

The NFS protocol is stateless by design. The server does not store any information for a specific

client, which makes crash recovery simple. If the server restarts, it does not need to contact the

clients to resynchronize their states. This stateless design means that a NFS server does not know

when a process on a client opens or closes a file; all the server knows is that a file is being written

to or read from. As we will discuss further in Sections 3.2.1 and 4.1.3, not knowing when a client

application closes a file makes it difficult to know when to update the remote copy of a file with

changes made to the cached copy (i.e., makes it difficult to implement strong consistency).

In NFS, the server and client use a data structure called a NFS file handle to identify files or

directories. All NFS remote procedure calls use an NFS file handle as one of their arguments. NFS

file handles are opaque data structures from the view of the NFS client. Before a client can perform

11

Remote Procedure Call Description
NULL Used for testing purposes.
GETATTR Retrieve file or directory attributes.
SETATTR Modify file or directory attributes.
LOOKUP Retrieve NFS file handle.
READLINK Retrieve the target of a symbolic link.
READ Read from a file.
WRITE Write to a file.
CREATE Create a file.
MKDIR Create a directory.
SYMLINK Create a symbolic link.
REMOVE Remove (delete) a file.
RMDIR Remove (delete) a directory.
RENAME Rename (move) a file.
LINK Create a hard link.
READDIR List directory contents.
STATFS Retrieve file system information.

Table 2.1: A summary of NFS remote procedure calls.

any operation on a file, an NFS file handle must be obtained from the NFS server. The file handle

referring to the root of the NFS volume is called the root NFS file handle.

For each file available in an NFS volume, the server generates an identification number unique

to the file. This number is known as the NFS file-id number. Clients use this number as the Unix

i-node number. We discuss NFS file-ids in Sections 3.2.1 and 4.1.3. Table 2.1 lists a summary of

the 16 NFS procedure calls.

The MOUNT server performs two primary functions: it provides the root NFS file handle to the

NFS client, and also maintains a list of which clients currently have an NFS volume mounted.

The MOUNT protocol is stateful. It tracks which clients have mounted which volume. Tracking

state is the reason that the functionality of the MOUNT protocol is not integrated into the NFS

protocol [10].

All NFS RPC operations are processed in the same request-response manner. The server receives

the request, processes the request, and returns the result. For example, the client may request that

data be written to a file. The server requires a file handle, an offset, and the data to be written, to

perform the operation; the client provides these arguments to the server. The server will attempt

the operation and return a result, which could be success or a failure code, such as “no space left”

or “permission denied”. The client blocks until the request is performed (refer to Figure 2.3 for

an illustration of an NFS WRITE operation). This synchronous operation simplifies the design

and implementation of an NFS server. Synchronous writes have proved to be a major obstacle to

improving NFS performance [15].

12

NFS Client
jasper−11

NFS
WRITE
RPC

NFS
REPLY NFS Server

scovil

(1)

(3)

(2)Order of operations:

1) Client sends WRITE request to server.
2) Server commits WRITE to local store.
3) Server sends REPLY to client. Local

Disk

Figure 2.3: An illustration of the flow of operations involved in an NFS WRITE. The process on the
client will block until a reply is received. See Figure 3.3 to compare an NFS write operation to a
TrellisNFS write operation.

2.1.7 TrellisNFS Concepts

TrellisNFS is similar to NFS. With NFS, files on a central store are made available over a LAN.

TrellisNFS is different in that rather than providing access to files already on the central store, files

are copied on demand from a remote server into the local store. From there, the file is made available

over NFS. The remote node that the file originated from is referred to as the file’s home node. In

other words, TrellisNFS usually involves three nodes.

2.2 Related Work

We now discuss some related work in the field of distributed file systems and distributed data storage

systems.

2.2.1 The Coda File System

Coda is a distributed file system designed to work over a WAN. Coda allows for server replication,

that is, storing the same files on multiple server to increase availability. Coda also allows for dis-

connected operation, in that a client can disconnect from the network and still have access to cached

files. The files are synchronized with the server when the client is again connected to the network.

Coda uses a cache management program called Venus that runs in user-space. Venus is responsible

13

for copying files in and out of the local Coda cache.

The Coda file system is implemented at the kernel level, and Coda implements all Unix file

system functionality. It interfaces with a operating system’s Virtual File System (VFS) layer, which

allows seamless integration of a Coda namespace with the existing client file system hierarchy.

Coda supports close-to-open consistency, and imposes a location-transparent namespace. Remote

data storage servers cannot be dynamically added to the pool of available data storage servers; this

design choice is integral to the security of a Coda system.

We considered using Coda as the mechanism to achieve seamless integration with the existing

file system hierarchy. A Coda cache manager that uses the TrellisFS library to fetch and store files

from a home node could be implemented. Using Coda clients instead of NFS clients would have

some advantages; for example, a Coda cache manager knows when files are closed, so it would

be easier to implement full close-to-open consistency across the entire metacomputer. We chose to

not use Coda because most HPC consortia in Canada do not use it. Coda support is not generally

enabled on HPC resources, and would therefore inhibit adoption of a TrellisCoda system.

2.2.2 The UFO file system

The UFO File system [4] is a distributed file system that runs completely in user-space. UFO uses the

operating system’s debugging mechanisms to catch system calls and redirect them to a user-space

process. UFO supports transparent access to remote files stored on ftp servers and read-only access

to files on HTTP servers, and it can be installed and used completely at the user level. However,

UFO’s system call interception mechanism is not generally portable across operating systems and

imposes a non-trivial performance overhead.

UFO allows access to remote files through the FTP and HTTP protocols. Because of limitations

in these protocols, full file system functionality cannot be supported. This limitation is not integral

to UFO however, and other protocols can be used to implement full file system functionality. File

system consistency in UFO is also dependent on the underlying protocol used for data transfer;

the UFO file system caches remote files to the local disk. UFO implements a consistency policy

based on a timeout. The timeout can be increased to provide weaker consistency, or shortened to

provide stronger consistency. A timeout of zero is equivalent to close-to-open consistency. The

security of a UFO file system is also tied to the underlying protocol. For example, with the FTP

protocol, passwords can be stored in a special file so that they do not have to be entered as part

of the file pathname. The UFO system supports 3 different methods of naming remote files: 1)

through a URL, 2) through a filename that contains location and authentication information (because

some applications are confused by URL syntax) and 3) through the notion of a UFO mount. To

set up a UFO mount, the user associates a pathname prefix with specific protocol, location, and

authentication information.

14

The UFO file system uses the debugging facilities of the operating system to implement a dis-

tributed file system. OS debugging facilities are specific to the operating system, and therefore UFO

is not generally portable across operating systems. Like the TrellisNFS, the UFO file system uses

a timeout to allow the user to control file system consistency strength. The overhead introduced by

intercepting system calls is high for opening and closing files, but is relatively small for reading and

writing.

2.2.3 The PUNCH Virtual File System

The PUNCH Virtual File System [13] (PVFS) is an NFS proxy that provides dynamic uid trans-

lation and can allow standard NFS clients to connect to standard NFS servers in a different ad-

ministrative domain. PVFS provides on-demand, block transfer of file data; it does not provide

additional caching over that which standard NFS clients already provide. PVFS does not require

kernel changes, but does require super-user access in the administrative domains in which it runs.

PVFS is designed to fit into the PUNCH environment.

PVFS implements full file system functionality. Since PVFS is only an NFS RPC forwarding

mechanism, it supports close-to-open consistency. In terms of security semantics, PVFS inherits

security from traditional NFS. It allows for dynamic translation of user identification credentials to

permit interoperability among different administrative domains. Since PVFS uses the unmodified

NFS clients and servers, its namespace is identical to that of a traditional NFS system. The establish-

ment and disconnection of a PVFS hierarchy, and therefore location information, is not controlled

by PVFS itself but through PUNCH middle-ware. PVFS achieves seamless integration through its

use of NFS.

PVFS only rewrites NFS packet contents, it does not batch them. Because NFS remote procedure

calls are synchronous, using PVFS over a high latency network, such as the Internet, will result

in unacceptable performance. TrellisNFS uses whole-file caching to reduce the number of remote

procedure calls. PVFS is useful only when combined with PUNCH middle-ware. Since the PUNCH

middle-ware is responsible for establishing and disconnecting NFS mounts, it must run as a root

process.

2.2.4 The Legion NFS Server

The goal of the Legion project [14] is to incorporate sparsely connected computing resources under

a single virtual supercomputer with a single system image. It addresses the notion of a global file

system through its Legion I/O libraries and NFS server [29]. The Legion I/O model focuses on

performance and usability, the Legion I/O library provides a hierarchy of classes for interacting with

the Legion virtual supercomputer. The Legion project has implemented an NFS server that allows a

Legion file system hierarchy to be integrated with the file system hierarchy of the local machine. The

15

NFS server uses an asynchronous read-ahead and write-behind cache for remote data. The Legion

I/O libraries are most efficient when operating on data in large granules.

The Legion I/O libraries provide full file system functionality. When using the Legion NFS

server, written data is flushed from the server’s cache after a configurable delay. In addition to

supporting the same security mechanisms as traditional NFS, the Legion NFS server and the NFS

client are co-located on the same machine. The Legion NFS server accepts connections only from

the local loop-back network interface, this prevents malicious users from snooping NFS traffic on

the LAN, as well as preventing an attack based on spoofing an IP address. The Legion I/O model

imposes a namespace known as context space. This namespace does not require location information

in the name for a file to be located.

In some ways, the architecture of the Legion system is similar to that of the Trellis system. Both

implement a library for file access in a virtual supercomputer, and both implement an NFS server

to integrate their namespace into the local file system hierarchy. Unlike the Legion I/O Library, the

TrellisFS Library supports two modes of file access, which mode to use depends on the nature of

the application’s workload. The Legion I/O model uses only read-ahead and write-behind caching.

To enhance security, the Legion NFS server will only accept client connections from the same host

(i.e., 127.0.0.1), and therefore employs a one-server-per-client ratio. This way, forged NFS packets,

with spoofed headers, will not be accepted by the server. TrellisNFS clients are typically compute

nodes in a cluster; the system already has security policies and contracts with the users. Root access

to restricted, and non-root users cannot forge IP packets; also, the cluster is on a private subnet so a

forged IP packet from the Internet is not a risk. The Legion NFS server must run as a root process,

by keeping the TrellisNFS server running as an unprivileged process we provide additional security

from programming bugs or any unforeseen consequences of integrating the file system hierarchy

of a foreign administrative domain. The current implementation of the TrellisNFS system does not

support a location-independent namespace, we chose this because we do not foresee a location-

independent namespace as an advantage for the Trellis environment; this is because in a typical

HPC environment users know on what server they have stored their data.

2.2.5 Secure NFS

Secure NFS [7] (SNFS) uses the Secure Shells port forwarding mechanism to forward NFS messages

through a secure tunnel. The mechanism to accomplish this is the User Datagram Protocol (UDP)

forwarding mechanism of SSH (version 2) and an additional software program that must be installed

on top of SSH. To set up SNFS, an NFS server exports mount points to itself. The NFS client will

mount an NFS volume from itself. SSH and the SNFS RPC forwarding program are the connective

services that forward client and server requests to each other.

Since SNFS is based on NFS, it implements full file system functionality. Also, like NFS,

16

SNFS supports close-to-open consistency. Security in SNFS is inherited from NFS, with the added

protection of encrypting packets that pass over the network. Since SNFS uses the unmodified NFS

client, it seamlessly integrates with client’s local file system hierarchy.

NFS requires root privileges to install and root privileges on both the client and server machines

to set up. However, once it has been set up, any user can access files on the NFS server without

additional system administrator support. SNFS shows a slight performance decline over unsecured

NFS when operating on a LAN. There has been no evaluation of SNFS’ performance when operating

over the Internet, although since NFS (and therefore SNFS) uses synchronous remote procedure

calls, using SNFS over the Internet would result in unacceptable performance.

2.2.6 The Trellis File System

The Trellis File System [25] is a library that allows access to remote files accessible through SSH,

HTTP, or FTP. The TrellisFS namespace supports either Secure Copy Locater (SCL) or Uniform

Resource Locater (URL) syntax. TrellisFS is an overlay file system, meaning that it: 1) does not

require special kernel support, 2) does not require super-user permission to install and 3) does not

require users to share the same namespace, although users can share a common namespace if they

wish. TrellisFS is built on top of existing file system services, and provides a C language interface

that mimics the POSIX file system API. TrellisFS supports whole-file caching, sparse-file access

and file data pre-fetch.

The original version of TrellisFS only supports functions to access file data; file metadata, di-

rectories, hard and symbolic links, and file renaming were not supported. We have added this func-

tionality as part of this work. TrellisFS supports close-to-open consistency. All access to remote

data is done through the SSH, which provides end-to-end encryption. Also, TrellisFS uses the au-

thentication and authorization mechanisms provided by the SSH. As mentioned above, TrellisFS

supports SCL and URL syntax in its namespace. It also supports a location-independent method of

naming files through the use of Unix environment variables. However, the TrellisFS library does not

seamlessly integrate with an existing file system hierarchy. Applications that wish to integrate with

TrellisFS must modify their source code and be re-compiled.

The TrellisFS library is an integral part of the TrellisNFS system. It could be said that the

TrellisNFS user-level server is the glue that allows seamless integration of a TrellisFS namespace

with an existing client file system hierarchy. As part of this work, we made many improvements to

the TrellisFS library and its related components.

2.2.7 The Ivy File System

The Ivy file system [19] is a peer-to-peer file system. Ivy provides three novel contributions over

previous work in peer-to-peer file systems: 1) Ivy supports multiple readers and writers; 2) it does

17

not require that all users of the file system fully trust each other; and 3) it uses a distributed hash

table to support replication and high availability. The Ivy file system is a log-based file system,

similar to transaction logs in a database system. When a user performs a file system operation, Ivy

scans a chain of log records to satisfy the request. File system integrity is maintained through the

use of public key encryption.

The Ivy file system uses an NFS server to integrate with the client’s existing file system hierarchy.

The Ivy NFS server modifies the NFS client by adding a close remote procedure call, this was done

in order to support close-to-open consistency. Since the Ivy file system replicates log entries on

multiple potentially untrusted computers, security can only be enforced by requiring the user to

encrypt their files. Because of this method of distributing log entries across potentially untrusted

computers, Ivy does not enforce ownership or permission modes of files.

The Ivy file system is designed to work in a peer-to-peer setting where the respective users may

not fully trust each other. These design goals differ from the ones we list in Chapter 1. In addition,

we feel that modifying the NFS client is not an acceptable option for the Trellis environment. The

NFS client is implemented in the operating system kernel; requiring that system administrators of

participating sites modify their operating system’s kernel is unreasonable and will inhibit adoption

of the file system.

2.3 Concluding Remarks

In this chapter we discussed the differences between a distributed data storage system and a dis-

tributed file system. A distributed file system provides more functionality than a distributed data

storage system.

We also reviewed some previous work in the field of distributed file systems; however, of the

works reviewed, none matches the goals we have laid out in Chapter 1. Fully functional distributed

file systems such as Coda and the Legion NFS server require more system administrator assistance

to install and use than should be necessary. Distributed file systems such as PVFS and SNFS will

not perform well over a high latency network like the Internet. The Ivy file system is designed to

work in a peer-to-peer environment, where the different peers may not trust each other. The goals

set out by the Ivy designers make Ivy unsuitable for use in the Trellis environment. The UFO file

system is generally not portable and the system call redirection mechanism is expensive.

18

Chapter 3

The Trellis Network File System
Architecture

In the previous chapter, we discussed some important background concepts that relate to building

a distributed file system. We also commented on previous work in the field that relates to the Trel-

lisNFS server. Now, we discuss the architecture of the TrellisNFS server. The complete TrellisNFS

system with all related components is shown in Figure 3.1. The three principal components of the

TrellisNFS server are illustrated in Figure 3.2. They are: 1) the user-level server, 2) the Trellis file

system library, and 3) the SSH Proxy. The focus of this chapter is on these three components.

3.1 The NFS Client

In the TrellisNFS system, the NFS client is unmodified. This design decision is important because,

in theory, it allows our system to be compatible with the existing deployment of NFS clients. We

did not implement our own NFS client, as one of the goals of the project is to be compatible with,

and take advantage of, existing infrastructure as much as possible. The current wide use of NFS

is the principal reason we chose it as the protocol of choice to achieve seamless integration of the

Trellis File System with an existing file system hierarchy. Other members of the Trellis team are

investigating the integration of the TrellisFS library with the Samba server [3], as an alternative to

NFS.

NFS clients are implemented in the operating system’s kernel. If we chose to modify the NFS

client, as does the Ivy [19] file system, we would need to ask system administrators to modify their

operating system kernel to use the TrellisNFS system. In many cases this is not possible, proprietary

operating system vendors are generally not willing to allow users access to their operating system’s

source code. In all cases it is inconvenient for system administrators to make kernel changes.

System administrator involvement in setting up an HPC cluster to use the TrellisNFS server is

minimal. For example, as part of the CISS-3 experiment, we configured TrellisNFS for use on the

19

The Internet

c) Remote

blackhole.westgrid.ca

c) Remote

c) Remote

Node

Node

Node

a) NFS Client a) NFS Client a) NFS Client a) NFS Client

$ cd /trellis/scp:blackhole.westgrid.ca:/opt/data

b) TrellisNFS Server
scovil.cs.ualberta.ca

jasper−11

Figure 3.1: The complete TrellisNFS system with all related components. These components are a)
the NFS client, b) the NFS server and c) remote data storage server.

SSH Proxy
Server

SSH Proxy
Agent

SSH Proxy
Agent

Library
b) TrellisFS

a) User−level
NFS Server

c) The SSH Proxy

Figure 3.2: The main components of the TrellisNFS server. These components are a) the user-level
server, b) the TrellisFS library and c) the Secure Shell Proxy.

20

chorus cluster at the University of New Brunswick, the only system administrator support required

to install the TrellisNFS server was appending a single line to the file system table (i.e., the mount

table) of all the nodes in the cluster. We were able to compile, install, and run the server; create

server and client mount points; and establish the mount from our unprivileged user account.

Protocol compliance does not always guarantee compatibility with existing client implementa-

tions. We tested the NFS client in the Irix operating system with the TrellisNFS server, and found

that file system operations other then creating, reading and writing files were not possible due to

implementation differences.

3.2 The TrellisNFS Server

The TrellisNFS user level server is the front end of the three components we discuss in this chapter.

The TrellisNFS server is based on Linux’s UNFSD server [24]. We have modified the original server

to allow it to work with remote files. The primary change was integrating the application with the

TrellisFS library (we discuss the TrellisFS library in Section 3.3). In addition to this integration,

the semantics of working with remote files required additional changes to the NFS server. In this

section we discuss how the architecture of the original server was modified. Recall that an NFS

server system consists of two servers, the MOUNT server and the NFS server.

There are three key differences between NFS and TrellisNFS:

1. Dealing with network latency: With NFS, the client and server are connected via a LAN, and

the server’s files are on its local disk (refer to Figure 2.2). A LAN has higher bandwidth and

lower latency then a WAN. The timeout/retry algorithms in NFS clients are tuned to LAN

latencies. The TrellisNFS server works with files on the Internet (refer to Figure 3.1). On a

high latency network, NFS performance can degrade significantly due to client timeouts and

retries. TrellisNFS uses aggressive caching to offset high WAN latencies.

2. Device, I-node and IP Address name conflicts: The files available from a single NFS volume

come from the same device. Servers that provide data from multiple devices (for example,

from multiple partitions or disks) do so by exporting one NFS volume per device. The Trellis-

NFS server makes files from multiple servers and multiple devices available through the same

NFS volume. NFS servers have this policy because an NFS server must provide a unique NFS

file-id number for each file it exports; Unix NFS servers use the i-node number assigned by the

underlying file system as the file’s file-id number. If a server were to export multiple devices,

there would be the possibility of two files having the same identifier. The TrellisNFS server

exports multiple files from multiple servers, each with multiple devices, and must avoid file-

id collisions. See Section 4.1.3 for a discussion on how TrellisNFS generates unique file-id

numbers.

21

3. Dynamic integration of home node file system hierarchies: In a traditional NFS setup, the sys-

tem administrator declares available NFS file systems statically via system configuration files.

With TrellisNFS, the system administrator must add the Trellis mount point to the client’s file

system table, but the connection to a remote node is made dynamically, on-demand, when a

user tries to access a file on a remote node [13].

The TrellisNFS MOUNT server is unmodified from the original. Recall that the purpose of the

MOUNT server is to give the root file handle to the client, and to maintain a list of which clients

have mounted the NFS volume.

3.2.1 The NFS server

The TrellisNFS server runs in single-threaded mode under an unprivileged user account. Modifi-

cations to the NFS server can be grouped into five categories. We will discuss these modifications

now:

1. File System API: The original user level server called Unix file system API functions directly.

We modified call sites in the original server to call file system functions from the TrellisFS

library.

2. Namespace: The original server only recognized files from the Unix file system namespace.

We modified the server to recognize Trellis SCLs.

3. NFS File Handle Format: The format of the NFS file handle has changed to store additional

information needed to support remote file system access. Also, the method of rebuilding an

SCL from the information contained in the NFS file handle has changed. Recall that NFS

clients do not interpret the contents of an NFS file handle. NFS file handles are opaque to the

NFS client.

4. Consistency: We define file consistency to be the notion of where the latest version of a file

is considered to be located. After a NFS WRITE procedure call, the file in the Trellis Cache

is the most recent version. During this time, if a third party reads the original file on the

home node, they will not see the latest version. This window of inconsistency between the

cached copy of a file and the copy on the home node implies weak file consistency; this

weak consistency is intentional. With the original server, file changes were committed to disk

frequently; however, with the TrellisNFS server, frequent synchronization of file data between

cached and remote files would waste bandwidth.

The NFS protocol requires that data from a WRITE procedure call be committed to stable

storage before the procedure call returns. The original user-level server did not comply with

this requirement. After a write, data is held in the kernel buffer cache, and the operating

22

NFS Client
jasper−11

NFS
WRITE
RPC

NFS
REPLY NFS Server

scovil

(1)

(3)

(2)Order of operations:

1) Client sends WRITE request to server.
2) Server commits WRITE to local store.
3) Server sends REPLY to client. Trellis

Cache

Internet Home Node
blackhole

(4)

4) After a timeout, the file in the Trellis Cache
 is copied to the home node.

Figure 3.3: An illustration of the flow of operations involved in a TrellisNFS WRITE. The process
on the client will block until a reply is received. See Figure 2.3 to compare a TrellisNFS write
operation to an NFS write operation.

system schedules the actual disk write at a future time. TrellisNFS maintains this semantic; it

also does not commit the write to the file on the home node before returning from the WRITE

procedure call.

Because the NFS protocol is stateless, it does not contain a procedure call that indicates to the

server when a client application has closed a file. Having information about when an appli-

cation closes a file would help the NFS server to determine when to synchronize a file in the

Trellis cache with the original copy on the home node. The TrellisNFS server will synchro-

nize dirty data in the Trellis Cache after a timeout. Refer to Figure 3.3 for an illustration of a

TrellisNFS write operation.

5. Unique File-Id Generation: The original server was designed to be able to export files from

multiple devices on the same node. The TrellisNFS server exports files from multiple remote

nodes, each with potentially multiple devices. Because the server exports from multiple nodes

in addition to multiple devices, the method of generating file-id numbers was modified.

3.2.2 Crash Recovery

The stateless model of the NFS protocol makes recovering from a server crash simple. It is possible

for the server to crash and restart without the client knowing. Every NFS request contains an NFS

file handle that uniquely identifies a file on the server. The NFS server examines the NFS file handle

to determine which file the client is requesting. The contents and format of a file handle cannot

change across server restarts.

NFS operations are synchronous. For example, an NFS write must be committed to stable stor-

age before the server can return a result to the client. This way, if the server crashes in the middle

23

of processing an NFS request, no result will be returned to the client, and the client will retry the

request. Once the server restarts, the clients request can be serviced.

Another reason crash recovery is simple is because the NFS protocol makes most procedure

calls idempotent. Idempotent requests can be executed multiple times and the result is always the

same. Some NFS procedure calls, such as REMOVE, are non-idempotent by nature. It is possible

for unexpected operation to occur when processing a non-idempotent request. For example, a client

requests that a file be removed, and the server crashes after the file is removed, but before the reply

is sent. In this case, the server will restart, and the client request will be re-tried. Since the file no

longer exists, the server will incorrectly return an error [10].

3.3 The Trellis File System Library

The Trellis File System library implements a Unix file system API [25]. The TrellisFS library is

semantically equivalent to the Unix API, except that the TrellisFS library allows access to remote

files, not just the files in the local file system hierarchy.

The TrellisFS library is implemented using the concept of a function wrapper. For example, the

function trellis open() will fetch a remote file into the Trellis cache, and call the local Unix

open() function.

The original implementation of the TrellisFS library provided functions to access and manipulate

file data. We extended the library to handle file metadata, directories, directory metadata, links and

file renaming. The complete list of functions supported by the TrellisFS library, with their Unix

equivalents, is provided in Table 3.1. It is our goal to make these functions as semantically equivalent

to their Unix counterparts as possible. TrellisFS allows access to files on remote file systems that

can be reached via the Secure Shell. Although TrellisFS provides access to remote files through

a variety of protocols, such as SSH, HTTP and FTP, for the purposes of the TrellisNFS server we

exclusively use SSH.

The file system functions supported by the TrellisFS library can be divided into 5 categories. 1)

File functions, 2) directory functions, 3) metadata functions, 4) hard and symbolic link functions

and 5) user authority functions. In addition to file system functions, additional functions have been

implemented to facilitate working with remote files.

TrellisFS uses whole-file caching. Cached files are placed on the local disk in a special directory

called the Trellis cache. File data and some metadata are stored in the Trellis cache.

TrellisFS also supports sparse file access. In sparse file access mode, only the portion of the file

the user is interested in is fetched from the home node, and not the entire file. The TrellisNFS server

does not use sparse access mode.

24

3.3.1 API Details

We now discuss how the semantics of TrellisFS functions differ from the semantics of standard Unix

file system functions. We group our discussion according to the 5 function categories listed above.

1. File Functions: The functions to open, close, read and write files are the core TrellisFS func-

tions. They are semantically equivalent to their Unix counterparts. On a call to

trellis open() the remote file is fetched and opened. If a copy of a file already exists in

the Trellis cache, its MD5 [22] checksum is compared with the MD5 checksum of the original

file; if the checksums are the same, the file is not fetched. On a call to trellis close()

the file is closed and, if necessary, resynchronized with its remote copy. Calling

trellis close() implies potentially copying data over the network.

If we know there will be additional changes to the file and wish to delay file synchronization

until later, the API provides the functions trellis close no flush() and

trellis reopen(). The former will close the file, but not copy a changed file back to

its home node. This is useful, for example, if we know the file will be deleted immediately

after it is closed. The later allows the user to open the same file with a different mode, for

example, for writing instead of reading, without synchronizing the file with its remote copy.

2. Directory Functions: Since the TrellisFS library does not cache directories, directory func-

tions involve remote communication.

The semantics of the trellis readdir() function differ from those of the Unix

readdir() function. The Unix readdir() function usually returns the same i-node

number as the Unix stat() function. The i-node returned with the trellis readdir()

function is the i-node of the remote file, as returned by the remote readdir() function.

This is different from trellis stat(), which returns the i-node of the file in the Trellis

cache. We discuss our choice to return the i-node of the cached file rather then the remote file

in Section 4.1.3.

3. Meta Data Functions: The metadata functions query metadata of cached files, and remote

directories. Metadata fields supported in a Unix file system are shown in figure 3.4. There

are also functions to query the metadata of a remote file if the user requires it. We choose

to query cache file metadata where possible for performance reasons (see Section 4.1.3 for

further discussion). Since we query remote data for directories and local data for files, there is

the possibility that a file and a directory could have the same device and i-node number. This

differs from Unix file system semantics.

Metadata functions return ownership data that is valid only on the file’s home node. The

TrellisFS library provides a means to automatically map user and group ownership informa-

25

/* From section 2 of the Linux manual ("man 2 stat"). */

struct stat {
dev_t st_dev; /* Device number */
ino_t st_ino; /* I-node number */
mode_t st_node; /* Permission bits */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device type (if i-node device) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for file system I/O */
blkcnt_t st_blocks; /* Number of allocated blocks */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last modification */
time_t st_ctime; /* Time of last status change */

};

Figure 3.4: A C-style structure showing the metadata fields available on a Unix file system [1].

tion from the file’s home node to equivalent information on the local node. This uid and gid

mapping is discussed in detail in Section 4.2.2.

4. Hard and Symbolic Link Functions: Hard and symbolic link functions query remote files;

calling these functions will result in a remote operation. All other semantics are the same as

those of the traditional Unix file system API.

5. User Authority Functions: The user authority functions are not file system functions, but are

used by the TrellisNFS server to enforce security. These functions are identical to their Unix

counterparts except that they operate on a remote node. Calling these functions will result in

a remote operation.

The TrellisNFS server and the Trellis File System are designed for HPC workloads. Many file

system functions such as directories, symbolic links, and the persistent semantics of i-nodes are not

used by HPC applications.

3.3.2 The Meta Data Cache

The TrellisFS library has an optional metadata cache. The metadata cache stores the results of

trellis stat() or trellis lstat() calls. A consequence of the metadata cache is that

external updates to a remote file system may not be seen through TrellisFS. The benefit of the meta-

data cache is that it significantly reduces remote communication from calls to trellis stat()

or trellis lstat(). The metadata cache provides a significant performance boost to applica-

tions, such as the TrellisNFS server, that frequently query metadata. See Section 5.3 for experimental

results.

26

TrellisFS Function Unix Function Locality Comments

File access functions
trellis open() open() remote
trellis fopen() fopen() remote
trellis reopen() local
trellis close() close() remote
trellis close no flush() local Local and remote files

are not synchronized.
trellis fclose() fclose() remote
trellis read() read() local1

trellis write() write() local1

trellis lseek() lseek() local1

trellis truncate() truncate() local
trellis flush all() fflush(), fsync() remote All remote files are

synchronized with cached files.
trellis close all() close() remote Same as flush all, any open

files are no longer valid.
User authority functions
trellis getuid() getuid() remote
trellis getgroups() getgroups() remote
Metadata functions
trellis stat() stat() local or remote2

trellis stat remote only() remote
trellis lstat() lstat() local or remote2

trellis lstat remote only() remote
trellis unlink() unlink() remote
trellis unlink remote only() remote
trellis utimes() utimes() remote
trellis chmod() chmod() remote
trellis chmod remote only() remote
trellis lchown() lchown() remote
trellis rename() rename() remote
Hard and Symbolic Link functions
trellis link() link() remote
trellis symlink() symlink() remote
trellis readlink() readlink() remote
Directory Functions
trellis mkdir() mkdir() remote
trellis rmdir() rmdir() remote
trellis opendir() opendir() remote
trellis readdir() readdir() remote
trellis closedir() closedir() remote
trellis seekdir() seekdir() remote
trellis telldir() telldir() remote

1 — The Operation could involve remote communication if sparse file access is enabled.
2 — If the file is open the operation is local.

Table 3.1: The Trellis File System API with related Unix API functions

27

The Metadata cache is a general purpose solution to the problem of redundant metadata queries.

Calls to the Unix file system API functions stat() and lstat() are fast on a local file system;

therefore, existing applications will issue multiple calls to these functions rather then store and re-use

the results of the first call.

3.4 The Secure Shell Proxy

The Secure Shell proxy is distributed as part of the TrellisFS library. The original implementation

of the SSH Proxy is due to Siegel and Lu [25].

Figure 3.5 shows the architecture of the SSH Proxy. TrellisFS communicates with remote nodes

to perform file system operations. Setting up a new SSH connection costs some overhead. To avoid

repeatedly paying this overhead, it is desirable to maintain a persistent connection. This is the

primary function of the Secure Shell Proxy.

Another function of the SSH Proxy is to implement a convenient way to execute remote proce-

dure calls over SSH on a remote node. For example, a user program calls trellis mkdir() on a

local node; the TrellisFS library sends a message using the SSH Proxy to a remote node instructing

it to execute the its mkdir() function and return a result code, which the library then returns to the

user program.

The SSH Proxy consists of 3 main programs: the client, the SSH Proxy server, and the SSH

Proxy agent. The SSH Proxy server maintains persistent connections to remote nodes and relays

messages between clients and remote nodes. The SSH Proxy agent is a program that runs on the

remote node. It accepts, processes and replies to messages sent via the SSH Proxy server. The client

initiates SSH Proxy requests by communicating with the SSH Proxy server running on the local

node.

The SSH Proxy suite comes with two standard clients, ssh via proxy and scp via proxy.

These programs mimic the functionality of the ssh and scp programs, respectively.

3.5 The Trellis Security Infrastructure

The Trellis Security Infrastructure [17] (TSI), allows single sign-on (SSO) capability using only

SSH and SSH agents. SSO means that a user needs to authenticate to the overlay metacomputer

only once. The TrellisFS library uses the TSI for authentication and authorization with remote

nodes. The user can then access resources from all other nodes in the metacomputer without re-

authenticating. This is a benefit to the TrellisNFS server; the server can set up TSI authentication

once, and then access file systems from anywhere in the metacomputer without the need to enter

passwords or pass phrases.

The TSI is similar to the Grid Security Infrastructure [9] (GSI) in its basic design goals. The

28

This allows clients to communicate with remote
nodes without repeatedly paying the overhead
of establishing a new SSH connection.

The SSH Proxy Server maintains persistent
SSH connections to remote nodes.

Local Node Remote Node

Remote Node

c) Proxy Agent

c) Proxy Agent
a) Client a) Client

b) Proxy Server

Figure 3.5: An architectural diagram of the SSH Proxy. The main components are a) the client,
b) the server and c) the agent. The core function of the SSH Proxy is to maintain persistent SSH
connections to remote nodes, allowing clients to send and receive messages to and from remote
nodes without the repeated overhead of setting up a new SSH connection.

29

difference is that the TSI shifts the burden of administration from the system administrators to the

users. This has the advantage that system administrator involvement is not required to install and

configure the TSI; however the user must now manage administration tasks themselves.

The TSI includes a tool called trellis-ssh. Trellis-ssh is a drop-in replacement for the standard

ssh command; it allows for SSO operation and allows the user to access remote nodes through a

gateway. Trellis-ssh is a wrapper around the standard ssh command.

3.6 Security

In this section, we talk about the security issues relating to the TrellisNFS server. We first discuss

security between NFS clients and the TrellisNFS server. Next, we discuss security between the

TrellisNFS server and the home nodes.

3.6.1 NFS Security

Security issues between NFS clients and the TrellisNFS server are identical to the issues found in

a traditional NFS setup. All NFS traffic is unencrypted over the local network. A user inside the

local administrative domain could potentially monitor and record these unencrypted NFS packets.

Computing clusters are typically implemented on a private subnet, where network packet monitoring

is only possible by a system administrator.

The TrellisNFS server controls access to its volumes on a per-host granularity. The server can

determine if a request originated from a secure port. A secure port has a port number less than or

equal to 1024. By allowing connections only from secure ports, the server prevents ordinary users

from communicating with the server by generating custom NFS requests that pretend to originate

from a different user, and therefore compromise security.

The NFS client also plays a role in NFS security. The NFS client enforces security at the per-

user granularity. For example, the NFS client will prevent user Bob from accessing files belonging

to user Alice. A consequence of this NFS design choice is that when the server gives access to a

client to mount its NFS volume, any user with super-user access to that client can access all non-root

owned files exported by the TrellisNFS server.

The current implementation of the TrellisNFS server supports only a single user. The user who

wants to access files over TrellisNFS must run the server under their account. Any files on a remote

node that the user does not have access to will be reported as being owned by the special user nobody.

One consequence of our policy to query the metadata information of files in the Trellis cache is

that all files (but not directories) will appear to be owned by the user running the server. However, if

the user does not have access to the file on the remote node, any attempt to read or write to the file

will fail.

30

In a traditional NFS setup, a file with world read permissions can be read by users in the local

administrative domain. With the TrellisNFS server, the model changes somewhat. As an example,

refer to Figure 3.1: a TrellisNFS server on machine scovil at the University of Alberta is used by

the NFS client jasper-11 to access files from machine blackhole at Simon Fraser University.

If a user on blackholemakes a file world readable, then all users on jasper-11 and other NFS

clients of the TrellisNFS server running on scovil, in addition to all users on blackhole, can

now read that file. To help preserve the original security model, the TrellisFS library can optionally

zero group or world permissions on all files and directories.

In a traditional NFS setup, the system administrator has control over both the client and the

server. With TrellisNFS, the remote node, and files on the remote node are not under the control of

the local administrator. A malicious user could exploit this by installing a set-uid binary on a remote

node. NFS server options such as root squashing [26] and configuring a client to disallow set-uid

execution should be enabled to prevent this type of attack.

3.6.2 Security of over-the-Internet traffic

The TrellisNFS server uses the Trellis Security Infrastructure [17] for access control, authentication

and authorization. All over-the-Internet traffic is encrypted with the SSH. The same access and

authentication mechanisms built into the SSH are available for controlling access and authentication

between the TrellisNFS server and a remote node.

The TrellisNFS server uses the SSH public-key authentication method. Private keys are stored in

a SSH agent, and the server uses this agent to gain access to remote systems. Granting and revoking

access to remote systems is a matter of managing the private keys loaded in the server’s agent, and

placing public keys in the authorized keys file on the home node [5].

3.7 Concluding Remarks

In this chapter, we discussed the architecture of the TrellisNFS system. We designed the TrellisNFS

server to be used in the Trellis environment, a large scale metacomputing environment. The Trellis-

NFS server provides applications with seamless, transparent access to files on a remote data storage

site.

The TrellisNFS system consists of four components: 1) the NFS client, 2) the TrellisNFS server,

3) the TrellisFS library, and 4) the Secure Shell Proxy.

We chose not to modify the NFS protocol, and we have not intentionally changed semantics that

NFS clients expect from NFS servers. We discussed architectural changes that were made to Linux’s

UNFSD server to deal with working across multiple administrative domains, and also with the high

latencies of the Internet. We discussed how to preserve the NFS model of crash recovery.

31

We discussed the necessary extensions made to the TrellisFS library in order that it would be

able to support the full Unix file system API. We also discussed the SSH Proxy, a high-performance

architecture that allows remote command invocation, remote data copying and execution of remote

procedure calls.

We finished the chapter by discussing the security of the TrellisNFS system. We identify known

security issues inherent in NFS. Since we decided not to implement our own NFS client or modify

the NFS and MOUNT protocols, we inherit all the same security considerations associated with a

traditional NFS server.

32

Chapter 4

Implementation Details

In the previous chapter, we discussed the architecture of the TrellisNFS server. In this chapter, we

discuss the implementation the TrellisNFS server and the TrellisFS library. We exclusively used the

Linux NFS client during the development of the TrellisNFS server.

4.1 The TrellisNFS Server

Figure 4.1 shows a complete architectural diagram of a TrellisNFS configuration. For the remainder

of this section we will discuss the MOUNT server, modifications we made to the original user-level

NFS server, and issues in preserving crash recovery.

4.1.1 The MOUNT server

There are four details relating to the MOUNT server that we will discuss: 1) The MOUNT server

is able to operate using an unprivileged port; 2) It contributes to the security of TrellisNFS; 3) It

maintains a list of clients that have mounted an NFS volume; and 4) The MOUNT server generates

the root NFS file handle and provides it to NFS clients.

The MOUNT protocol uses a port-mapper assigned port, the port number can be in the range

of port to which an unprivileged process can bind. If this were not the case, we could not run our

server as an unprivileged process.

The MOUNT server plays a role in NFS security. An NFS server system administrator lists the

host names of nodes that have access to the NFS volume in the servers exports file. The exports file is

typically located at /etc/exports, and lists whether a client has read-only or read-write access.

When a MOUNT request comes in, the MOUNT server checks the client’s IP address against the

contents of the exports file. A typical exports file looks like this:

/usr/scratch/trellis jasper-11(rw),jasper-12(rw)

In this example, the server has given the clients jasper-11 and jasper-12 permission to mount

33

Administrative Domain #1

Administrative Domain #2

Trellis NFS Server

Administrative Domain #3

a) NFS Client a) NFS Client a) NFS Client

c) MOUNT server

b) NFS server

d) TrellisFS

e) optional

f) Trellis Cache

Remote
Server

Remote
Server

j) SSH proxy agent j) SSH proxy agent

i) The Secure Shell

h) Trellis Security

g) SSH proxy server

Infrastructure

Library

Meta Data
Cache

Figure 4.1: A complete architectural diagram of the TrellisNFS system. Components include: a)
the NFS client, b) the NFS user-level server, c) the MOUNT server, d) the TrellisFS library, e)
the optional meta data cache, f) the Trellis cache, g) the SSH Proxy server, h) the Trellis Security
Infrastructure, i) the Secure Shell and j) the SSH Proxy agent.

34

the NFS volume at /usr/scratch/trellis. The (rw) means the client has read-write access

to the NFS volume.

As an additional security check, the MOUNT and NFS servers check the incoming port number

of the client. If the port number is in the range of ports to which a standard user can connect,

the connection is denied. This mechanism prevents a user from accessing another user’s files by

constructing a custom RPC packet with forged authentication information. There are known security

issues relating to NFS that can be managed, for more information the reader is referred to Stern [26].

The MOUNT server maintains a list of clients and the NFS volumes each client has exported.

Tracking this state information is the reason that the functionality of the MOUNT protocol was not

integrated into the NFS protocol [10]. The MOUNT server writes this state information to a special

file called rmtab. The rmtab file is usually located at /etc/rmtab. A typical rmtab file looks

like this:

jasper-11:/usr/scratch/trellis
jasper-12:/usr/scratch/trellis

Clients jasper-11 and jasper-12 have each mounted the TrellisNFS volume. The directory

/usr/scratch/trellis is used as the root mount directory.

The MOUNT server also passes the root NFS file handle to the client. The code to generate this

file handle was not modified from the original server’s code. A directory must exist on the server

before the root file handle can be generated; this directory is used when generating the root NFS

file handle. When a STATFS procedure call is executed, information from the file system that this

directory resides in, is used in the reply. File handle generation is discussed in detail in Section 4.

4.1.2 The original user-space NFS server

The TrellisNFS server is based on Linux’s UNFSD server [24]. The TrellisNFS server implements

version 2 of the NFS protocol. We chose not to use the more recent version 3 implementation

because we were not able to find a user-level implementation that had a track record of reliability in

production environments.

The NFS protocol uses port 2049 by convention. The port number is in the range of ports that

user-level processes are allowed to bind to; this allows our server to run as an unprivileged process.

The original UNFSD server required root privileges to access files for multiple users. At this

time, the TrellisNFS server only supports a single user, thus removing the requirement that the

server must run as a root process.

It should be noted that the original UNFSD server does not completely comply with NFS se-

mantics. After a WRITE procedure call completes, data is held in the kernel’s buffer cache and not

immediately committed to stable storage. The consequence of this is that, if the NFS server crashes

immediately after returning from a WRITE, the data will be lost and the client will falsely assume

35

that the operation succeeded. The TrellisNFS server semantics are the same; after a WRITE the new

data is not committed to the file in the cache but is held in the kernel’s buffer cache. Additionally,

the write does not change the file on the home node immediately, rather the change is made after a

timeout (refer to figure 3.3).

The original UNFSD server implements a data structure called the file handle cache. The file

handle cache performs a variety of functions for the NFS server. One function we wish to identify

for this section is that the file handle cache maintains a mapping of NFS file handles to server-side

file paths. This cache allows the server to quickly service client requests. In the TrellisNFS server,

the file handle cache maps NFS file handles to SCLs.

4.1.3 Modifications made to the original server

In order to integrate the original UNFSD server with the Trellis File System, it was necessary to make

a number of changes (see Section 3.2.1). In this section, we discuss the specific implementation

details of those changes.

1. Unix API and Namespace

To enable the server to call the TrellisFS API functions instead of the Unix file system func-

tions, we directly modified the server’s source code. These changes were minimal since the

original server localized Unix file system calls into a single file.

Special handling of pathnames that contain embedded SCLs had to be implemented in several

areas of the original server’s code. The code to build a file handle from an SCL and the code

to re-build an SCL from a file handle was modified. We discuss file handles in more detail

later in this section.

2. File system consistency

NFS supports close-to-open consistency. This means that if a file’s contents are modified

and the file is closed, the modifications will be visible the next time the file is opened. With

the original UNFSD server, these semantics were maintained because all file operations were

serialized by the operating system on the NFS server. All NFS WRITE operations were com-

mitted to the operating system kernel’s buffer cache before the WRITE call is returned. Any

access after the WRITE, whether it is made by an external process running on the same ma-

chine as the NFS server, or through an NFS client of the UNFSD server, will see the modified

data in the kernel’s buffer cache.

With TrellisNFS, changes to a file are made immediately to the file in the Trellis cache, but

changes are not reflected to the file on the home node until a call to trellis close()

is made. Recall that since the NFS protocol is stateless, the server has no way of deter-

mining when the application running on the NFS client closes a file. The time at which

36

�����
�����
�����
�����

���
���
���
���

�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����
�����
�����

�����
�����
�����

I−Node Field: 20 bits
Device Field: 9 bits
Remote IP Address Field: 3 bits

0 19 20 28 29 31bit:
NFS file−id number:

Figure 4.2: The NFS file-id numbers generated by the Trellis NFS server contain part of the original
file’s i-node number and device number, and the IP address of the file’s home node. NFS file-id
numbers are used as i-node numbers by the NFS client.

an application closes a file is the natural choice for synchronizing data between the Trellis

cache and the home node. A call to trellis close() is expensive, therefore calling

trellis close() during every WRITE procedure call is not an option.

Not knowing when a client application closes the file presents a problem for the TrellisNFS

server; we solve this problem by introducing a timeout. Each file that the server has open,

has a time stamp indicating when the file was last used. If the file is unused for the duration

of the timeout, the TrellisNFS server will call trellis close() to synchronize the file’s

contents with the file on the remote node. For the CISS-3 experiment, we used a timeout of

one hour.

The impact this has on the Trellis environment is that after a job completes, its output data

may not be visible on the home node for one hour. In a batch computing environment where a

workflow takes days or weeks to complete, there is more tolerance for this timeout latency. In

an environment that is more sensitive to such a large timeout latency, the length of the timeout

can be reduced. We are exploring other mechanisms to detect the optimal file synchronization

time.

3. File-id number generation

A traditional NFS server exports files from one Unix device. The TrellisNFS server exports

files from multiple home nodes (i.e., multiple servers) with multiple devices, which results in

potential collisions when generating file handles. The file-id number is an important part of

the NFS file handle; NFS clients use the file-id number as the i-node number.

Files and directories in a single Unix file system are uniquely identified by their i-node and

device numbers. An NFS server must map each file it serves to its own unique file-id number.

According to the NFS protocol specification, version 2 [28], i-nodes are 32 bits in length.

When generating file-id numbers, traditional NFS servers are able to use the i-node number

assigned by the underlying local file system. These i-node numbers are usually 32 or 64 bits

in length, as are device numbers. Network nodes on the Internet are uniquely identified by

37

their 32-bit IP address. Therefore, all files on the Internet can be uniquely identified by the

three numbers, IP address, device number and i-node number.

Assuming 32 bit i-node and device numbers, a naive NFS server file-id generation scheme

would need 96 bits to guarantee unique file-id numbers. Since the NFS protocol limits file-id

numbers to 32 bits, some sort of hash function must be applied to reduce these 96 bits to only

32.

In the TrellisNFS server, we use the following scheme to generate file-id numbers. This

scheme does not guarantee a file-id collision will not occur; however, the possibility of a file-

id collision is rare because the scheme was designed to work in the CISS-3 experiment. We

are currently working on a more general approach.

Figure 4.2 shows the breakup of the 32 available bits for the file-id number. A TrellisNFS

generated i-node number has 3 bit-fields: the i-node, device and IP address bit-fields. The

first 20 bits of the file-id number are the 20 least significant bits of the file’s i-node number;

the next 9 bits are a mask of the file’s device number. It is common for Unix systems to use

major and minor device numbers. We concatenate the 5 least significant bits of the minor

device number with the 4 least significant bits of the major device number to obtain the 9 bits

of the device bit-field of the file-id number. The last 3 bits of the file-id are for the remote

node’s IP address. We map an IP address to a 3 bit number, which is selected sequentially,

on-demand, starting from zero. Since only 3 bits are used for the IP address part of the i-node

number, the current server can serve files from at most 8 hosts at the same time. However, this

number can be changed at compile time if more hosts are needed. This, of course, is done at

the expense of either the accuracy of the i-node bit-field or the device bit-field.

The table that maps IP addresses to 3 bit numbers is stored in memory, and to disk. Storing this

map to disk is necessary to support crash recovery in the server. If the server is restarted, the

IP address map is loaded from disk so that the server is able to continue to deterministically

generate file-id numbers from IP address, device number and i-node number triples.

File handle collisions are also a potential problem with the original UNFSD server. We do

not solve the problem, but the potential of a file-id collision is rare, and the TrellisNFS server

contains code to detect and report the occurrence of a file-id collision. We are working on

a new method of generating file-id numbers that will totally avoid file-id collisions in the

general case, and remove the 8-host restriction of our present scheme.

4. The NFS File Handle

Between client and server, NFS files are uniquely identified by an NFS file handle, which is a

32 byte opaque data structure. The NFS client does not interpret the contents of an NFS file

handle. The format of a TrellisNFS file handle is shown in Figure 4.3.

38

���������������
���������������
���������������������
���������������������

���
���������������������������������������

�����
�����
�����
�����
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������
���
������
���

�

�

�

������
���

������
���
������
���

���
���
���
������
���
���
���

Bit: 0 255

User Name on home node: 80 bits (10 bytes)

File−id number: 32 bits
IP Address of home node: 32 bits

Path relative to root flag: 8 bits
Representation of File Path on
home node (hash_path): 112 bits

Figure 4.3: The TrellisNFS file handle contains information used to re-build an SCL from a file. An
NFS file handle uniquely identifies a file between the client and the server.

The difference between a file-id number and a file handle is that the file handle contains

additional information to re-build the server path of a file. In TrellisNFS, an SCL is re-built

from the TrellisNFS file handle.

The content of a TrellisNFS file handle is inspired from the original user-level server (Fig-

ure 4.4 shows an example of generating a TrellisNFS file handle). A TrellisNFS file handle

contains the NFS file-id number of the file, the IP address of the file’s home node, the user

name of the account on the home node that will be used to access the file, a boolean flag that

indicates if the server path is relative to the root of the server’s file system hierarchy or the

users home directory, and a string of numbers known as the hash path, that helps the server

determine the full pathname of the file on the remote node.

Figure 4.4 illustrates how the server builds a file handle for the SCL:

scp:closson@padstow:/usr/scratch/closson/water.dat

The file’s file-id number is generated as described above and is stored in the first 32 bits of

the file handle. The IP address of the file’s home node is stored in the subsequent 32 bits. The

next 10 bytes are used to store the name of the account to be used to access the home node; the

account name is null terminated. If the account name is longer then 10 characters, the server

will not be able to generate a file handle; a LOOKUP request with a user name that is longer

than 10 characters will return an error. The following byte of the file handle is a boolean flag

that indicates if the SCL is relative to the root of the home node’s file system hierarchy or to

the user’s home directory. For example, the SCL scp:padstow:water.dat is relative

to the user’s home directory and the SCL scp:padstow:/scratch is relative to the root

of the home node’s file system hierarchy. For simplicity, the relative root flag occupies an

entire byte instead of a single bit. The hash path is built by hashing the NFS file-ids of all the

directories from the root of the SCL (either the user’s home directory or the root of the remote

39

/

usr

scratch

water.dat

closson

Hashed file−id number:

0x34

0xf3

0xf1

0xfe

TrellisNFS File Handle for the SCL:
scp:closson@padstow:/usr/scratch/closson/water.dat

0x6300002

0x634c001

0x63500c2

0x6350ec3

0x6350ec9

File−id number:

closson 1192.168.0.10x6350ec9

Indicates that there are 4 entries in the hash path

Indicates that the hash path is relative to the root directory

Username on the remote node

IP address of remote node

04 34 f3 f1 fe 00 00 ... 00

Hash Path

Figure 4.4: Example of how a TrellisNFS file handle is generated from an SCL.

40

node’s file system hierarchy) to the directory containing the file in question. In Figure 4.4,

the SCL is relative to the root of the remote node’s file system hierarchy. The NFS file-id of

the root directory is 0x6300002. This 32 bit number is hashed to an 8 bit number, 0x34,

which is stored in the second 8 bits of the hash path. The next directory in the file’s path is

usr; its file-id number is hashed and placed in the next 8 bits of the hash path. The last entry

of the hash path is the parent directory of the file. The first 8 bits of the hash path contain the

length of the hash path; in this example, the length is 4. The hash path places a restriction on

directory depth: files accessible with TrellisNFS can be only 13 directories deep. The original

UNFSD server also has a depth restriction, but it is more then 13 levels.

One problem with this file handle format is that if a file is moved from one directory to

another, the hash path changes, causing the file handle to become invalid. When our server is

combined with the Linux NFS client, this problem never manifests itself because after moving

a file, the NFS client will obtain the new file handle with an NFS LOOKUP remote procedure

call before performing any operation on the new file handle.

If the contents of the file handle cache are lost, then the server must rebuild the SCL from

the file handle. This operation involves communication with the file’s home node; therefore

re-building an SCL from a file handle is an expensive operation.

If a client makes a request with a file handle that is not in the server’s file handle cache, the

server must rebuild the SCL of the file in question. Figure 4.5 shows a detailed example of

how an SCL is rebuilt from a TrellisNFS file handle.

The NFS file handle contains the user name and IP address of the remote machine; it also

contains the file-id number of the file on the remote machine. To locate the file, the server

will perform a breadth-first search (BFS) from either the root of the remote nodes file system

hierarchy, or from the user’s home directory (depending on the contents of the from root

flag). The hash path component of the NFS file handle gives hints on which directory path

the file resides in. The hash path effectively turns the BFS into a linear time algorithm in the

average case.

4.1.4 Crash Recovery

One of the most attractive features of the NFS protocol is its simple method of crash recovery. The

CISS-3 experiment ran for several months, and for long running systems, it is often the case that one

part of the system will go down, and need to be restarted. The TrellisNFS server can be restarted

while client programs are still running.

To provide seamless crash recovery, there were three details that needed to be taken care of:

1. Contents of file handle cache are lost: In the event of a server crash, the contents of the file

41

NFS File Handle:

Initial SCL:

Hash Path
Hash Path Length

File−id number

IP Address

User Name

From Root

scp:closson@192.168.0.1:/

0x6350ec9 04 34 f3 f1 fe 192.168.0.1 closson 1

The server attempts to rebuild the SCL by running a breadth first search starting from the initial
SCL. The algorithm matches entries in the hash path with the hashed file−id numbers of
directores encountered during the search. Once all entries in the hash path have been
matched, the algorithm looks for a file with the same file−id number as the one in the file
handle.

If at anytime a directory cannot be found that matches an entry in the hash path, or a file
matching the file−id number in the file handle cannot be found, the algorithm terminates and
returns a Stale File Handle error to the NFS client.

Steps:

− Verify that the hashed file−id of the initial SCL matches the first entry of the hash path (0x34)

− Search SCL for next entry in the hash path

mnt

opt

tmp

var

usr

lib

etc

dev

bin

0xb7

0x31

0x1

0xb6

0xa8

0xf4

0xfd

0xbb

0x7a

0xba

0xfa

0xf3

0x32

0xb1

0x72

0x70

0xb7

0xb5

0xb0

0xf7

0x36

0xf5

0x31

0x9c

0x35

0xf1

bin

doc

lib

man

src

tmp

info

sbin

X11R6

local

share

libexec

include

scratch

test

closson

boot

lost+found

proc

sys

0xf3 matches the second entry of the hash path

0xf1 matches the third entry of the hash path

0xf3 matches the fourth entry of the hash path

water.dat

We have finished searching the hash path, now search for the file−id number

− This NFS File Handle refers to the SCL scp:closson@192.168.0.1:/usr/scratch/closson/water.dat

− Descend into scp:closson@192.168.0.1:/usr/scratch/closson

− Descend into scp:closson@192.168.0.1:/usr/scratch

− Descend into scp:closson@192.168.0.1:/usr

0x6350ec9

0xfe

0xa8

0x3d <−− 0x3d is the hashed file−id of the lost+found directory.

Figure 4.5: Example of how an SCL is rebuilt from an NFS file handle.

42

handle cache are lost. As clients issue NFS requests that contain file handles not found in

the file handle cache, the server will have to re-build the SCL of the file using the method

described in the previous section.

2. The IP Address map must be committed to disk: As mentioned in the file-id number genera-

tion section of Section 4.1.3, the server maintains a map of IP addresses. This map is used to

generate file-id numbers, which become part of a file handle. After the server restarts, client

requests will be processed, and the NFS file handle passed by the client will contain informa-

tion from this mapping. The same mapping needs to be restored after a crash; therefore, the

mapping must be committed to disk so that the same mapping can be restored when the server

restarts.

3. Synchronization of data in the Trellis cache: The third problem is flushing data from the Trellis

cache. In the event of a graceful shutdown1, the server can flush any dirty cache data to the

home node. In the event of a forced shutdown, the Trellis cache will have to be examined

at start-up for any dirty data. There is enough information saved in the cache that cached

and remote files can be synchronized on server startup. In the current implementation of the

TrellisFS library and the TrellisNFS server, Trellis cache synchronization during a graceful

shutdown has been implemented; cache synchronization in the event of a forced shutdown

has not yet been implemented.

4.2 The Trellis File System Library

The Trellis File System library implements a Unix file system API [25]. The TrellisFS library is

semantically equivalent to the Unix API, except that the TrellisFS library allows access to remote

files, not just the files in the local file system hierarchy.

The TrellisFS library is implemented using the concept of a wrapper function. For example, the

trellis open() function wraps the standard Unix open() function. Specifically, when the

trellis open() function is invoked, it will first copy the remote file to the local disk, and then

it will invoke the local open() function on this new copy.

The TrellisFS library is implemented in C++. The original implementation of TrellisFS provided

functions to access and manipulate file data. We extended the library to handle file metadata, direc-

tories, directory metadata, links, and file renaming. The complete list of functions supported by the

TrellisFS library, with their Unix equivalents, is provided in Table 3.1. It is our goal to make these

functions as semantically equivalent to their Unix counterparts as possible. TrellisFS allows access

to files on remote file systems that can be reached via the Secure Shell. Although TrellisFS provides

1For example, by receiving a Terminate or Interrupt signal.

43

access to remote files through a variety of protocols, such as SSH, HTTP and FTP, for the purposes

of the TrellisNFS server we exclusively use SSH.

4.2.1 Implementation Details

TrellisFS uses whole-file caching to speed up read and write operations. Whole-file caching, as the

name suggests, caches the entire file to the local disk. On a call to trellis open() the whole

file is fetched into the Trellis cache. On a call to trellis close() the file is synchronized with

its remote counterpart, if necessary. TrellisFS supports close-to-open consistency.

In addition to working with file data, the TrellisFS library also allows the user to manipulate a

file’s metadata. When a user queries the metadata of a file, we chose to return the metadata of the

file in the cache, rather than performing a remote metadata query. We made this decision because

remote communication is expensive.

Because of this policy to query the metadata of the file in the Trellis cache, and because i-node

numbers must be the same during the file’s lifetime, it becomes necessary to create a placeholder

file in the Trellis cache if trellis stat() is called on a file before trellis open(). By

creating a placeholder file, trellis stat() can report an i-node number that will remain the

same throughout the file’s lifetime. The size and times of the placeholder file match that of the

original file. The file’s data is not transferred until a call to trellis open() is made. Since

TrellisFS does not cache directories, placeholder directories are not created.

Most TrellisFS clients do not directly use the i-node number of a file, or rely on its persistence

for the client to operate correctly, however, the TrellisNFS server is an exception. I-node numbers

are incorporated into the NFS file handle that is sent to the NFS client. If the i-node number of a file

changes, and a client submits a request involving that file, the server may not be able to find it and

will have to return a stale file handle error to the client.

Additionally, files in the Trellis cache cannot be deleted arbitrarily since the file may be used in

the future. If an NFS client has an NFS file handle for a file that has been deleted from the Trellis

cache, then that file handle will become stale. It is possible to replace the file in the Trellis cache

with a placeholder file that preserves the i-node number, while recovering the disk space that the file

once occupied.

TrellisFS functions are of two types (see Table 3.1): either the operation is performed on the file

in the Trellis cache, or it is performed on the file on the home node. Operations that are performed

on the remote node are referred to as remote operations. The flow of a typical remote operation

in the TrellisFS library depends on whether the SSH Proxy has been enabled. Recall that the SSH

Proxy (refer to Section 3.4) provides a mechanism to execute remote procedure calls over SSH.

If the SSH Proxy has not been enabled, then the TrellisFS library will copy a Perl script to the

remote node and execute it. The Perl script will perform the remote file system operation and report

44

success or an error code. Earlier implementations of the TrellisFS library executed a Unix command

to accomplish the same operation; for example, a chmod() operation could be performed by the

chmod command. We chose to use the Perl script approach because it was difficult to obtain a

good error code from running a Unix command. Different versions of Unix report different error

messages, and rather then try to parse these human readable error messages, we return the numeric

error code returned by the Perl function. The Perl script mechanism provides a consistent method

of executing remote functions and collecting a result.

If the SSH Proxy has been enabled, then the TrellisFS library will perform the remote file system

operation by connecting to a remote SSH Proxy agent through the SSH Proxy server. By using

messages defined by the SSH Proxy protocol the TrellisFS library instructs the SSH Proxy agent to

attempt the desired remote file system operation and return a result.

Using the SSH Proxy to perform remote file system operations leads to better performance than

using the script method, which necessitates paying the price of SSH connection overhead multiple

times. In addition, the SSH Proxy method does not require the overhead of forking extra processes

and starting up a Perl interpreter with every operation.

4.2.2 User ID and Group ID mapping

The NFS security model relies on the NFS client to enforce access to files on a per-user granularity.

An NFS client uses Unix user-id and group-id numbers to enforce security, and the NFS protocol

assumes that both the client and server share a common user-id and group-id database. The Trel-

lisNFS server is designed to work in multiple administrative domains, each with a different user-id

and group-id database. To preserve the NFS security model, it is necessary for TrellisFS to maintain

a map of equivalent user-id and group-id numbers between the different administrative domains.

The mapping policy is simple. Suppose that a user with a numeric uid of 100 in the local admin-

istrative domain has access to another account, with numeric uid 500, in the remote administrative

domain. TrellisFS will report all files owned by user-id 500 in the remote node as being owned by

user-id 100. Specifically, the trellis stat() function will call the local stat() function on

the remote node. If the uid field contains the numeric uid 500, trellis stat() will replace this

value with the corresponding value in the local administrative domain, 100. Files owned by all other

users are reported as being owned by the special user nobody.

Group ID mapping is similar, except that a user may be part of multiple groups. Therefore,

TrellisFS will map multiple remote group ID numbers to a single local group ID. These maps are

created dynamically, on-demand, by executing the functions getuid() and getgroups() on

the remote node.

45

4.2.3 The Metadata Cache

The TrellisFS library has an optional in-memory cache of file metadata. On a Unix file system,

metadata is queried with the stat() and lstat() system calls. Figure 3.4 shows a C-style

structure containing the various metadata fields.

Executing the stat() and lstat() system calls on a remote machine is expensive, especially

in a high latency network. The metadata cache stores this metadata to avoid redundant remote

procedure calls. The cache not only stores metadata for valid files and directories, it stores error

codes if a metadata query fails.

The metadata cache is a self-invalidated cache. If an operation changes the metadata, the cache

entry is marked invalid. The next time the metadata is queried, the TrellisFS library will have to

query the remote node.

The metadata cache is optional because it weakens TrellisFS’s consistency policy. If a third party

externally updates the home node, say, by creating a new file, the change may not be immediately

visible.

In addition to weaker consistency, when the metadata cache is enabled, hard links are not well

supported. If a file is linked to two different directory entries, and one of them is unlinked, the other’s

i-node should be updated to show that there is now only one link. The TrellisFS library metadata

cache does not currently track these relationships. Multiple links can be created and deleted, but the

“number of hard links” field in the metadata of the other links will not be correct. In practise, this is

a small inconsistency that does not affect the correctness of either the TrellisNFS server or of any of

the applications that were run in Chapter 5.

As a rule of thumb, external updates to a remote file system will not be seen by the TrellisFS

library if the metadata cache is enabled. The metadata cache does not cause a problem for the Trel-

lis environment because the TrellisNFS server was designed for applications where all file system

modifications are made through the TrellisNFS server.

The metadata cache provides a large benefit for the TrellisNFS server. NFS clients use metadata

for client cache consistency and this results in frequent metadata queries. For the Connectathon

basic test in Section 5.3, 30% of all NFS remote procedure calls are GETATTR calls, these calls are

serviced by the metadata cache. See Section 5.3 for empirical analysis of performance gains due to

the metadata cache.

4.3 Executing Remote Procedure Calls over SSH

The Secure Shell Proxy is built on top of the Secure Shell [30]. One problem faced during the imple-

mentation of the TrellisFS library is that establishing a new SSH connection costs some overhead,

and by repeatedly executing TrellisFS functions that communicate over the SSH, the SSH startup

46

Message Name Unix function Description
PROXY CHMOD chmod() Change file permissions.
PROXY LCHOWN lchown() Change file ownership.
PROXY LINK link() Create a new hard link.
PROXY LSTAT lstat() Query file metadata.
PROXY READLINK readlink() Read the value of a symbolic link.
PROXY STAT stat() Query file metadata.
PROXY SYMLINK symlink() Create a new symbolic link.
PROXY UTIME utime() Update file access and modification times.
PROXY MKDIR mkdir() Create a new directory.
PROXY RMDIR rmdir() Delete an existing directory.
PROXY LISTDIR readdir() Read directory contents.
PROXY UNLINK unlink() Delete an existing file.
PROXY RENAME rename() Rename a file.
PROXY GETUID getuid() Query user-id number of running process.
PROXY GETGROUPS getgroups() Query group-id list of running process.

Table 4.1: A list of the 15 different procedure calls supported by the SSH Proxy remote procedure
call mechanism.

overhead quickly becomes a performance issue. To solve this problem, the designers of the original

TrellisFS library also implemented the SSH Proxy as a way to maintain persistent SSH connections.

The SSH Proxy provides three services to the TrellisNFS system: 1) it allows execution of arbitrary

commands on a remote machine, 2) it permits copying of file data between the local and remote

machine and 3) it provides a remote procedure call mechanism for executing Unix file system func-

tions on a remote machine. We discuss only the implementation of the RPC mechanism of the SSH

Proxy.

The SSH proxy system contains a mechanism to execute a set of predefined Unix file system

procedure calls over the persistent connection (refer to Table 4.1 for a list of the available remote

procedure calls). A diagram of the remote procedure call architecture is shown in Figure 4.6. A

client that wishes to use this remote procedure call mechanism connects to the SSH Proxy server by

reading and writing to a Unix domain socket. This client sends messages to the server informing

it which remote node it wishes to connect to and any special connection parameters. The client

can then send a predefined message indicating what procedure the client wants the remote agent to

execute. For example, the client can instruct the remote agent to execute the mkdir() procedure

call by sending a PROXY MKDIR message and appropriate arguments. The agent will respond

indicating success or an error message. All communication between the client and agent is relayed

through the server.

47

c) SSH Proxy Agentb) SSH Proxy Server

blackhole.westgrid.cascovil.cs.ualberta.ca

a) SSH Proxy Client

The SSH Proxy Server relays
requests and replies over the
persistent SSH connection.

SSH Proxy clients communicate
with the SSH Proxy server through
a Unix domain socket.

Figure 4.6: An illustration of the SSH Proxy RPC mechanism.

48

4.4 Concluding Remarks

In this chapter, we have discussed the implementation of the TrellisNFS server and the TrellisFS

library. The TrellisNFS server owes much of its design and implementation to Linux’s UNFSD

server, the server that the TrellisNFS server is based on. In particular, we discussed four categories

of changes that needed to be made to the server. These categories are: 1) Unix API and Namespace

changes; 2) File system consistency changes; 3) NFS file-id number generation and 4) NFS File

Handle generation. Additionally, we discussed changes made in the server to support the NFS crash

recovery model.

We also discussed modifications made in the TrellisFS library to support full file system se-

mantics, and not just file data manipulation. To preserve the NFS security model, we implemented

functions to support all NFS operations including directory, link and meta data operations. We

implemented a mechanism to automatically map user identification information between different

administrative domains. Next, we discussed the Metadata cache, a cache that eliminates redundant

metadata queries. Metadata is used by both the TrellisNFS server and NFS clients to determine if

data in their respective internal caches is stale. We measure the performance benefits of the metadata

cache in Section 5.3. Finally, we discussed the implementation of the RPC over SSH mechanism

of the SSH Proxy. This mechanism allows the TrellisNFS server to perform file system operations

directly on a home node.

49

Chapter 5

Empirical Evaluation

In this chapter, we present our evaluation of the TrellisNFS server. We evaluate the server’s per-

formance and correctness, we show that overheads introduced by integrating the TrellisFS library

with the original UNFSD server are minimal. We formally verify that the TrellisNFS server and the

Linux NFS client are compatible implementations, and we show the TrellisNFS server’s utility by

using it as part of the CISS-3 experiment.

To measure the read/write performance of the TrellisNFS server, we use the Bonnie++ [11]

benchmark. For a more all-round performance evaluation of the TrellisNFS server, and to determine

the interoperability of the TrellisNFS server with the Linux NFS client, we use the Connectathon test

suite [27]. A valuable metric for systems software is its utility in a production environment. During

the CISS-3 experiment we used two real-world applications, Gromacs [18, 6] and Charmm [8, 2],

as clients of the TrellisNFS server. The results produced by these programs were used in real-world

research.

5.1 Experimental Methodology and Platform

We used two micro-benchmarks to evaluate the TrellisNFS server. Our first micro-benchmark, Bon-

nie++, tests the raw read/write bandwidth of a file system. Sequential file reading and writing is the

common case for HPC workloads. The whole-file caching strategy gives local disk performance on

the TrellisNFS server. Any additional overhead when comparing the TrellisNFS server to the origi-

nal UNFSD server is due to the cost of copying data to and from the home node. We use Bonnie++

to quantify the additional overhead introduced by the TrellisNFS server.

Our second micro-benchmark, the Connectathon test suite [27], has three purposes. First, it is

the standard test suite to determine interoperability between an NFS client and an NFS server. We

use the Connectathon test suite to determine the interoperability of the Linux NFS client and the

TrellisNFS server. Secondly, we used the Connectathon test suite is used to stress test the Trellis-

NFS server; and third, as a benchmark. The Connectathon test suite evaluates all NFS file system

50

features, not just read/write performance. The TrellisNFS server has not been optimized for file

system operations other than reads and writes. Therefore, we expect a relatively large performance

difference between the TrellisNFS server and the original UNFSD server for file system operations

other then reads and writes.

For our third evaluation method, we used the TrellisNFS server in a production environment.

Figure 5.1 shows a diagram of the different test configurations used for the micro-benchmarks. We

use four different test configurations for our micro-benchmarks: a) The first configuration is a single

machine; file system operations are performed on the local disk. b) The second configuration is a

typical NFS system; file system operations performed by an application running on the client are

serviced by the original UNFSD server running on the server. c) The third configuration is the

TrellisNFS system in which the home node is connected to the TrellisNFS server by a LAN; file

system operations performed by an application running on the client are serviced by the TrellisNFS

server running on the server. The destination of the file system operations is the home node. The

local disk attached to the server is used to cache file reads and writes. d) The fourth configuration

is the TrellisNFS system where the home node is connected to the TrellisNFS server by a WAN.

This configuration is similar to configuration (c) in Figure 5.1 except that the home node and the

TrellisNFS server are connected with a WAN. The home node is located at the University of New

Brunswick and the TrellisNFS server and client are located at the University of Alberta. For all tests

we used the Linux NFS client.

Network latency is a big factor in the performance of the file system; we choose whole-file

caching to overcome the effects of network latency for file reads and writes. We choose these four

different configurations ((a) to (c) above) to help give us an understanding of the effects of network

latency on TrellisNFS.

For the Connectathon benchmarks we run two sets of benchmarks for each of configurations (c)

and (d) in Figure 5.1, one set where the meta data cache is enabled, and the other where the meta

data cache is not enabled. So, for the Connectathon benchmarks, a total of six configurations are

used.

All local/LAN tests use the same hardware configuration. We use AMD AthlonXP processors

running at 1.5 GHz, each with 1.5 GB of RAM. All local disk drives interface with the computer

using a SCSI interface. The nodes were connected with a 100 Mbps switched Ethernet network.

For experiments conducted on a WAN, the remote node used was located at the University of New

Brunswick. Bandwidth and latency measurements for these two network configurations are shown

in Table 5.1. Figure 5.2 shows the number of WAN routers an outbound TCP packet will go through

between the University of Alberta and the University of New Brunswick. The latencies of each

router is also shown.

51

Client Server

Stable
Storage

File Data
Cache

Stable
Storage

Client

File Data
Cache

The Internet

Stable
Storage

Stable
Storage

Client Server

Client Server

(a) Local Disk:

UNFSD Server:

The Trellis NFS Server
on a LAN

The Trellis NFS Server
on a WAN

(b)

(c)

(d)

(Original user−level server)

Home
Node

Node
Home

Figure 5.1: The four different test configurations used in our micro-benchmarks.

TCP Request Response Rate TCP Stream Bandwidth
(Transactions per second) (bits/sec)

LAN 7904.32 94.11 * 10
6

WAN 16.80 4.48 * 10
6

Table 5.1: Bandwidth and latency of the networks used in our micro-benchmarks. The LAN is a 100
Mbps switched Ethernet network. The WAN connects a computer from the University of Alberta
with a computer from the University of New Brunswick. These numbers were measured with the
Netperf tool [16].

52

traceroute to chorus.cs.UNB.ca (131.202.139.59),
30 hops max, 38 byte packets

1 fawcett.cs.ualberta.ca (129.128.23.254) 1.306 ms
2 fw-inside.cs.ualberta.ca (192.168.254.254) 0.364 ms
3 compsci-gw.gw.ualberta.ca (129.128.153.33) 0.550 ms
4 gsb175-netera-gsr-uofa.backbone.ualberta.ca (129.128.153.202)

0.354 ms
5 c4-win01.canet4.net (205.189.32.242) 17.480 ms
6 c4-mon01.canet4.net (205.189.32.14) 49.337 ms
7 c4-UNB.canet4.net (205.189.32.209) 59.177 ms
8 FTNECN.ecn.UNB.ca (198.164.163.241) 59.192 ms
9 hub-backbone.net.UNB.ca (131.202.251.201) 59.440 ms

10 131.202.139.59 (131.202.139.59) 59.211 ms

Figure 5.2: This figure shows the routers a packet bound for the University of New Brunswick
will pass through; the latency for each router is also shown. This data was collected using the
traceroute command.

5.2 Micro-benchmark: Bonnie++

Our first micro-benchmark is Bonnie++ [11]. The Bonnie++ benchmark tests disk throughput and

CPU utilization during disk operations. In general, Bonnie++ is not used to test NFS servers or

distributed file systems. However, it is still useful to compare performance between the local disk,

the original UNFSD server, and the TrellisNFS server. In addition, the Bonnie++ benchmark is

useful to stress test a file system.

We use the Bonnie++ benchmark to measure any overhead added on top of the original UNFSD

server by its integration with TrellisFS. Our goal is to quantitatively measure that the TrellisNFS

server and the UNFSD server are comparable in performance. By comparing the UNFSD server

(Figure 5.1(b)) with the local disk (Figure 5.1(a)) we quantitatively measure the overhead of a user-

space NFS implementation.

Bonnie++ reads and writes 3 gigabytes of data to factor out kernel buffer cache effects. We want

to cancel out kernel buffer cache effects to expose the real performance of the disk and network.

Any difference between the local disk and NFS configurations can then be attributed to overhead

caused by the additional network traffic, and our implementation.

The Bonnie++ micro-benchmark compares the performance of the TrellisNFS server to the orig-

inal UNFSD server and the local disk. Because of the different natures of these file systems, it is

difficult to compare them with a single number. For example, Bonnie++ will not block while the

TrellisNFS server computes MD5 hashes and performs the data transfer; neither does performing

these operations consume CPU time on the client. In addition, these operations are performed on the

server, freeing the client to start computing the next job. The data transfer and MD5 hash computa-

tion on the server can be performed in parallel with job execution on the client. To help capture a

more realistic view of the performance of the TrellisNFS server report two sets of benchmark times:

53

File System Throughput (MB/s)
Configuration Read Write Re-write
Local Disk 55.4 23.3 15.5
UNFSD 24.1 22.1 7.6
TrellisNFS over a LAN 23.9 22.3 7.7
TrellisNFS over a WAN 24.4 22.5 7.6

Table 5.2: NFS client performance: Bonnie++ throughput times. All results are in megabytes per
second. Higher numbers are better. These numbers do not include data transfer and MD5 hash
calculation.

File System Throughput (MB/s)
Configuration Read Write Re-write
Local Disk 55.4 23.3 15.5
UNFSD 24.1 22.1 7.6
TrellisNFS over a LAN 7.0 5.3 3.1

Table 5.3: End-to-end performance: Bonnie++ throughput times. All results are in megabytes per
second. Higher numbers are better. These numbers include data transfer and MD5 hash calculation.

one will not include data transfer and MD5 hash computation times, and the other will.

5.2.1 Test Description

There are 3 stages in the Bonnie++ benchmark: write, read, and re-write. First, three 1 gigabyte files

are created and written using the write() system call. Second, the 3 gigabytes of data is read back

using the read() system call. Third, the 3 gigabytes of data is split into 16 KB pages; each page

is read, dirtied and re-written, which requires a call to lseek(). Each of the 3 tests was performed

10 times; results are an average of these 10 runs.

As mentioned in the previous section, we report two sets of benchmark times; one set contains

MD5 hash computation and data transfer times, the other set does not. In order to include these ad-

ditional overheads we modified the Bonnie++ benchmark program to instruct the TrellisNFS server

to synchronize the Trellis cache after each of the three benchmark phases.

The benchmark set that involves measuring data copying overheads and MD5 checksum com-

putation would result in copying an unreasonable amount of data over the Internet, therefore we

decided not to run the benchmark with this configuration. Since the cost of copying data over the

Internet is much more expensive then copying data over a LAN, we expect the benchmark times to

be much lower for the TrellisNFS over a WAN configuration ((d) in Figure 5.1).

5.2.2 Results

Figure 5.4 and Table 5.3 show the throughput of the read, write and re-write tests, including the

additional MD5 computation and data transfer overheads. Figure 5.3 and Table 5.2 contain results

54

Read Write Rewrite
0

10

20

30

40

50

60

D
at

a
Pr

oc
es

se
d

(M
B

/s
ec

)

Local Disk
UNFSD
TrellisNFS - LAN
TrellisNFS - WAN

Figure 5.3: NFS client performance: Bonnie++ throughput times. All results are in megabytes per
second. Higher numbers are better. These numbers do not include data transfer and MD5 hash
calculation.

CPU Utilization (%)
Configuration Read Write Re-write
Local Disk 21.9 21.7 9.4
UNFSD 10.1 21.2 6.4
TrellisNFS over a LAN 9.9 21 6.1
TrellisNFS over a WAN 10.1 21.3 6.2

Table 5.4: NFS client performance: Bonnie++ CPU utilization. Numbers are percentages. Lower
numbers are better. These numbers do not include data transfer and MD5 hash calculation.

CPU Utilization (%)
Configuration Read Write Re-write
Local Disk 21.9 21.7 9.4
UNFSD 10.1 21.2 6.4
TrellisNFS over a LAN 2.8 4.7 2.6

Table 5.5: End-to-end performance: Bonnie++ CPU utilization. Numbers are percentages. Lower
numbers are better. These numbers include data transfer and MD5 hash calculation.

55

Read Write Rewrite
0

10

20

30

40

50

60

D
at

a
Pr

oc
es

se
d

(M
B

/s
ec

)

Local Disk
UNFSD
TrellisNFS - LAN

Figure 5.4: End-to-end performance: Bonnie++ throughput times. All results are in megabytes per
second. Higher numbers are better. These numbers include data transfer and MD5 hash calculation.

56

Read Write Rewrite
0

5

10

15

20

25

30

C
PU

 U
til

iz
at

io
n

(%
)

Local Disk
UNFSD
TrellisNFS - LAN
TrellisNFS - WAN

Figure 5.5: NFS client performance: Bonnie++ CPU utilization. Number are percentages. Lower
numbers are better. These numbers do not include data transfer and MD5 hash calculation.

57

Read Write Rewrite
0

5

10

15

20

25

30

C
PU

 U
til

iz
at

io
n

(%
)

Local Disk
UNFSD
TrellisNFS - LAN

Figure 5.6: End-to-end performance: Bonnie++ CPU utilization. Number are percentages. Lower
numbers are better. These numbers include data transfer and MD5 hash calculation.

58

that do not include these additional overheads. The read test, without accounting for MD5 hash

computation and data transfer overheads, show virtually identical performance between the three

NFS server configurations (Figure 5.1 (b), (c), and (d)). Local disk read performance is about 2.3

times faster then the NFS configurations. The write test shows all four test configurations have

almost equal performance. The NFS configurations perform about 1 MB/s slower then local disk.

The re-write test shows a similar pattern as the read test; which is, the throughput of the local

disk configuration is about twice that of the NFS configurations, and the three NFS configurations

have about the same performance. The read test that does include MD5 hash computation and data

transfer overheads shows the original UNFSD server’s read bandwidth is about 3.4 times faster then

that of the TrellisNFS server. The write and re-write tests show a performance disparity of 4.2 and

2.5 times respectively.

File operations performed on the NFS configurations require a network message to be sent to

the server, the disk operation to be performed, and a reply to be sent back to the client. For local

disk operations, only the disk operation is performed, no network communication takes place. We

attribute the difference in performance between the local disk and the NFS configurations to this

network traffic, and the synchronous nature of NFS operations. Although the average throughput of

TrellisNFS over a WAN is higher in some tests than with the original UNFSD server, we attribute

this to benchmark noise since there is significant overlap in the error bars shown on Figure 5.3.

For the TrellisNFS configurations, a file is created on the remote node, but all reads and writes

are processed out of the Trellis cache. The overhead of creating this remote file is amortized by

the length of time spent writing or reading from disk. The Bonnie++ benchmark only measures

file system performance from the perspective of the client, and since MD5 hash computation and

data transfer overheads take place on the server, they are not measured by the Bonnie++ benchmark.

To get some understanding of the impact of these additional overheads we chose to modify the

Bonnie++ benchmark; our modification makes update of file data between the TrellisNFS server

and the home node, synchronous. This modification will account for the overheads not measured

by unmodified Bonnie++, but still does not truly reflect the performance of the TrellisNFS server as

Trellis cache synchronization can be done in parallel with processing on the NFS client. Never-the-

less, both measurements are valuable to gain an understanding of the performance of the TrellisNFS

server.

Figure 5.6 and Table 5.5 show CPU utilization during the tests that include MD5 hash computa-

tion and data transfer overheads. Figure 5.5 and Table 5.4 show CPU utilization during the tests that

do not include MD5 hash computation and data transfer overheads. The CPU utilization tests show

a similar trend to the throughput tests, except that the NFS server configurations consume less CPU

time then the local disk. The local disk read test differs from the NFS configurations by a factor of

about 2. We attribute this to the fact that the actual disk operations are performed on the NFS server,

59

whose CPU utilization was not measured. CPU utilization during the write test is about equal for

all four configurations. The re-write test also shows a similar trend to the read test, although not as

exaggerated.

The CPU utilization test that measures MD5 hash computation and data transfer overheads shows

even less CPU usage then the test that does not include these overheads. This is because these oper-

ations are performed on the TrellisNFS server, leaving the client CPU idle during these operations.

5.2.3 Conclusion

For the purposes of the Bonnie++ benchmark, the primary difference between the original UNFSD

server and the TrellisNFS server is that the TrellisNFS server will create a file on the home node at

the beginning of the benchmark and potentially copy data between the home node and the TrellisNFS

server at the end of each phase. It is important to measure the effects of these differences, but

designing a method of doing so is difficult. We chose to report two sets of results; one set does not

include MD5 hash computation and data transfer overheads; this set is more indicative of NFS client

performance. The other set of results does include these overheads, this set is more indicative of

end-to-end system performance.

The results show that the TrellisNFS server adds minimal overhead to the original UNFSD server

when performing reads and writes out of the Trellis cache; and that the cost of computing MD5

hashes and data transfer is significant. By comparing the original UNFSD server and the TrellisNFS

server to the local disk, we see that disk performance, and not network performance, is the bottleneck

to write throughput.

5.3 Micro-benchmark: The Connectathon NFS Test Suite

The Connectathon NFS [27] test suite is the de facto test suite to ensure NFS client and server

compatibility. Connectathon is a yearly event sponsored by Sun Microsystems and other industrial

and academic institutions. NFS implementors are invited to test their individual client and server

implementations with each other. We used the test suite from the 2003 Connectathon event.

We used the Connectathon suite for three purposes: 1) To test compatibility between the Trel-

lisNFS server and the Linux NFS client. According to the Connectathon suite, TrellisNFS and the

Linux NFS client are 100% compatible. 2) As a stress test, to evaluate the server’s correctness and

stability while operating under a heavy load. And 3) to use the Connectathon tests as a benchmark.

Using the Connectathon suite as a benchmark will provide a more all-round evaluation than that

provided by the Bonnie++ benchmark. We have not optimized non-read/write operations and we

expect the performance of these operations to be much worse then that of the original server or the

local disk. Also, we measure the performance benefit of the metadata cache with the Connectathon

test suite.

60

5.3.1 Test Description

The Connectathon test suite consists of four tests: basic, general, special and locking. Each test

consists of running several programs on an NFS client that mounts an exported volume from an

NFS server.

The basic test is designed to test individual NFS procedure calls. Unix file system API calls are

used to exercise the file system. The general test exercises the server by running a series of standard

Unix programs. The general test simulates an interactive user session.

We use two of the four Connectathon tests to evaluate the correctness of the TrellisNFS server.

The special and locking tests are not performed, since neither the TrellisNFS server nor the orig-

inal unmodified UNFSD server pass them. The Connectathon test suite documentation explicitly

states that the special and locking tests are optional. A client and server pair is considered 100%

interoperable if they pass the basic and general tests.

We used Linux 2.4.18 as our NFS client. This pair (the TrellisNFS server and Linux client) pass

both the basic and general tests. The only other client we tested with the TrellisNFS server was the

NFS client in the Irix operating system. This pair did not pass either the basic or the general tests.

Since we only planned to use Linux clients for evaluating the server, we did not investigate the cause

of the failure.

5.3.2 Benchmark setup.

When using the Connectathon test suite as a benchmark, we test the four configurations shown in

Figure 5.1. The configurations are: a) local disk; b) the original UNFSD server; c) the TrellisNFS

server on a LAN, with and without enabling the metadata cache; and d) the TrellisNFS server on a

WAN, with and without enabling the metadata cache. We ran both the basic and general Connec-

tathon tests in each configuration. Results from each test were gathered by averaging 10 runs.

Running Connectathon on the local disk is done purely for baseline comparison. Local disk

benefits from memory caching for writing data and metadata, as provided by the operating system.

The NFS protocol explicitly states all writes must be synchronous. In contrast, a local disk system

does not perform synchronous writes.

There are additional overheads in the TrellisNFS server when compared to the original UNFSD

server. With the TrellisNFS server configurations, (Figure 5.1(c) and (d)) data must be copied back

and forth between the home node and the TrellisNFS server. In contrast, in the UNFSD server

configuration (Figure 5.1(a)), the final location for the data is on the server’s local disk. In the Trel-

lisNFS server, all operations other than reads and writes are synchronous across both the TrellisNFS

server and the home node. To further illustrate the difference between a synchronous NFS operation

and a synchronous TrellisNFS operation, refer to Figures 5.7 and 5.8. For non-read/write operations,

the client blocks until network messages are sent to the TrellisNFS server, then to the home node,

61

NFS Client NFS Server

(1)

(2)(3)

Time

1) The client sends an NFS request.

2) The server processes the request.

3) The server replies to the client.
(4)

4) The client blocks until a reply is recieved.

Figure 5.7: In a typical NFS synchronous operation, the client blocks while the request is processed
on the server.

NFS Client

(1)
(2)

(3)(4)

1) The client sends an NFS request.

3) The home node processes the request.
Time

2) The server forwards the request to the home node.

4) The home node replies to the TrellisNFS server.

5) The TrellisNFS server replies to the NFS client.

Home Node

(5)

(6)

6) The client blocks until a reply is received.

TrellisNFS Server

Figure 5.8: In a typical TrellisNFS synchronous operation, the client blocks while the request is
processed on the home node. Read and write operations in the TrellisNFS server are not processed
on the home node, but on the TrellisNFS server.

back to the TrellisNFS server and, finally, back to the NFS client.

When testing the TrellisNFS server on a LAN, the remote node is attached to the same LAN

as the server and client. To test the TrellisNFS server on a WAN, we use a machine located at the

University of New Brunswick. A comparison of network bandwidth and latency between our LAN

and WAN configurations is shown in Table 5.1.

5.3.3 Results

The primary purpose of using the Connectathon suite in this evaluation was to determine compatibil-

ity between the TrellisNFS server and the Linux NFS client. By passing the basic and general tests,

the Connectathon test suite certifies that our server and the Linux NFS client are 100% compatible

with each other.

The second purpose of the Connectathon suite was to stress test the TrellisNFS server. In order

to do this, we ran two instances of both the basic and general test in a continuous loop. The basic

test is a file system intensive test; running a single instance of the basic test produces enough NFS

62

traffic to keep the TrellisNFS server operating full-time. We also ran two instances of one of the

CISS-3 applications in a continuous loop. All six of these clients ran continuously for the period of

two weeks, and in this time the server continued to operate without degraded performance.

The third purpose of the Connectathon test suite was to use it as a benchmark, which gives us

a more complete view of the TrellisNFS server’s performance. Unlike the Bonnie++ benchmark,

the Connectathon test suite exercises all file system functionality, not just file reads and writes.

The results of the benchmark are shown in Figures 5.9, 5.10, 5.11 and 5.12. Also, the results are

shown in table form in Tables 5.6, 5.7 and 5.8. We attribute the difference in the performance of the

TrellisNFS and the original UNFSD server to three causes: 1) The additional network overhead of

performing synchronous remote procedure calls between three computers instead of only two (see

Figures 5.7 and 5.8); 2) the overhead of encrypting data with the SSH [12] and 3) not optimizing our

implementation for non-read/write operations. By using the Connectathon test suite as a benchmark,

we also quantified the performance benefit of the metadata cache.

For each test in the basic and general test suites, the test programs go through the same admin-

istrative startup work. Each test checks for and, if necessary, removes the old test directory; a new

directory to perform the tests is then created.

For each test set, we started with a clean directory, so no unnecessary cleanup was required, that

might skew results. The creation of the test directory requires a handful of remote operations that

will affect all tests, even those that do not perform any remote operations.

1. The cumulative times for the basic test are shown in Figure 5.9 and Table 5.6. In the best case,

the TrellisNFS server is six times slower then the original UNFSD server. This is because:

1) all operations are performed on the home node; and 2) there is additional overhead due

to the extra network communication between the TrellisNFS server and the home node. The

illustration in Figure 5.8 shows that for a single NFS operation between the NFS client and the

TrellisNFS server, there is only one remote operation between the TrellisNFS server and the

home node; but in most cases, there are several remote procedure calls between the TrellisNFS

server and the home node. Often the original UNFSD server will perform redundant calls to

stat(). Performing these extra calls is not a problem for the original UNFSD server because

the stat() function is very fast when performed on a local disk. In the TrellisNFS server,

stat() calls result in communication with the home node. The performance benefit of the

metadata cache comes from eliminating these multiple redundant stat() calls. And finally,

3) all communication between the TrellisNFS server and the home node bears the additional

overhead of SSH encryption.

2. Details for each phase of the basic test are shown in Figure 5.11 and Table 5.7. The STAT

ROOT, READ WRITE and STATFS tests stand out because even in the worst case they com-

63

Basic Test General Test
Local Disk 0.37 3.05
UNFSD 2.46 3.63
LAN w/ Metadata Cache 12.27 5.55
LAN w/o Metadata Cache 27.99 7.94
WAN w/ Metadata Cache 369.08 48.79
WAN w/o Metadata Cache 1080.84 259.59

Table 5.6: Execution times for the Basic and General Connectathon Test Suites. Times are in Sec-
onds.

plete an order of magnitude faster than the other tests. These three tests result in much less

communication between the TrellisNFS server and the home node, and this is the nature of

the performance improvement.

3. The cumulative times for the general test are shown in Figure 5.10 and Table 5.6. There is

less disparity between different configurations (Figure 5.1) with the general test than with the

basic test. This difference can be attributed to the fact that the general test is less I/O bound

than the basic test.

4. Details for each phase of the general test are shown in Figure 5.12 and Table 5.8. Performance

differences among the different configurations can be attributed to the same three reasons iden-

tified above in point number 1. The performance gains due to the metadata cache are most

noticeable in the Makefile test. Makefiles use file timestamps to determine if build depen-

dencies need to be run. Querying timestamps results in a call to stat() in the TrellisNFS

server. In the best case, the metadata cache improves the performance of the Makefile test

7-fold, because the metadata cache eliminates redundant stat() calls.

5.3.4 Conclusion

The purpose of using the Connectathon NFS test suite to evaluate the TrellisNFS server is three-

fold: 1) To certify that the TrellisNFS server is 100% compatible with the Linux NFS client; we

have achieved this goal; 2) To stress test the TrellisNFS server. We found that the TrellisNFS server

ran reliably in a demanding environment for the two-week period; and 3) as a benchmark to get

a more all-round evaluation of the TrellisNFS server. We attribute the difference in performance

of our three configurations to three causes: the cost of performing synchronous remote procedure

calls between three computers, instead of two, the additional overhead of encrypting data with the

SSH [12], and our unoptimized implementation of non-read/write operations. We also quantified

the performance benefit of the metadata cache.

64

Local
Disk

UNFSD LAN
w/
Metadata
Cache

LAN
w/o
Metadata
Cache

WAN
w/
Metadata
Cache

WAN
w/o
Metadata
Cache

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

T
im

e
(S

ec
on

ds
)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

Figure 5.9: Completion times for the Basic Connectathon Test Suite. The top plot shows the per-
formance of all configurations. The bottom plot focuses on the completion times of the first four
configurations.

65

Local
Disk

UNFSD LAN
w/
Metadata
Cache

LAN
w/o
Metadata
Cache

WAN
w/
Metadata
Cache

WAN
w/o
Metadata
Cache

0

1

2

3

4

5

6

7

8

9

10

T
im

e
(S

ec
on

ds
)

0

50

100

150

200

250

300

Figure 5.10: Completion times for the General Connectathon Test Suite. The top plot shows the
performance of all configurations. The bottom plot focuses on the completion times of the first four
configurations.

66

MKDIR RMDIR STAT CHMOD READ
CREATE UNLINK ROOT *ATTR WRITE

Local Disk 0.03 0.01 0.02 0.02 0.12
UNFSD 0.15 0.15 0.01 0.41 0.33
LAN w/ Metadata Cache 3.01 0.32 0.02 1.28 0.36
LAN w/o Metadata Cache 4.78 1.53 0.05 2.98 0.46
WAN w/ Metadata Cache 65.44 15.63 0.72 68.62 1.99
WAN w/o Metadata Cache 118.34 73.59 3.87 163.80 8.05

READDIR RENAME SYMLINK STATFS
READLINK

Local Disk 0.03 0.01 0.02 0.06
UNFSD 0.45 0.19 0.30 0.44
LAN w/ Metadata Cache 4.31 1.68 0.83 0.40
LAN w/o Metadata Cache 9.08 4.21 4.30 0.44
WAN w/ Metadata Cache 103.61 45.44 66.22 0.85
WAN w/o Metadata Cache 279.30 167.77 260.36 3.87

Table 5.7: Execution times of selected phases of Connectathon’s Basic Test. A plot of these times is
shown in Figure 5.11

Small Tbl Nroff Large (x4) Large Makefile
Compile Compile Compile

Local Disk 0.49 0.06 0.24 0.63 1.38 0.16
UNFSD 0.58 0.08 0.26 0.73 1.50 0.37
LAN w/ Metadata Cache 0.68 0.22 0.30 0.85 1.66 1.48
LAN w/o Metadata Cache 0.78 0.28 0.37 0.94 1.94 2.99
WAN w/ Metadata Cache 3.19 1.90 1.06 3.39 10.81 21.30
WAN w/o Metadata Cache 11.87 6.54 9.40 11.69 40.14 159.04

Table 5.8: Execution times of selected phases of Connectathon’s General Test. A plot of these results
is shown in Table 5.12

67

File and
Directory
Creation

File and
Directory
Deletion

Lookup
across
mount point

Setattr
Getattr
Lookup

Read
Write

Read
Directory

Rename Symlink
Readlink

StatFS
0

1

2

3

4

5

6

7

8

9

10
0

50

100

150

200

250

300
T

im
e

(S
ec

on
ds

)
Local Disk
UNFSD
LAN w/ Metadata Cache
LAN w/o Metadata Cache
WAN w/ Metadata Cache
WAN w/o Metadata Cache

Figure 5.11: Completion times for the individual phases of the Basic test of the Connectathon Test
Suite. The top plot shows the performance of all configurations. The bottom plot focuses on the
completion times of the first four configurations. Table 5.7 shows these results in table format.

68

Small
Compile

Tbl Nroff Large
Compile

Large
Compile
(x4)

Makefile
0

1

2

3T
im

e
(S

ec
on

ds
)

0

50

100

150
Local Disk
UNFSD
LAN w/ Metadata Cache
LAN w/o Metadata Cache
WAN w/ Metadata Cache
WAN w/o Metadata Cache

Figure 5.12: Completion times for the individual phases of the General Test of the Connectathon
Test Suite. The top plot shows the performance of all configurations. The bottom plot focuses on
the completion times of the first four configurations. Table 5.8 shows these results in table format.

69

5.4 Application-Oriented Benchmark: The Third Canadian In-
ternetworked Scientific Supercomputer

We used the TrellisNFS server as part of the CISS-3 Metacomputer. The CISS-3 experiment is

a production environment, and results from the CISS-3 experiment will be incorporated into real-

world research results. The primary benefit of using the TrellisNFS server in the CISS-3 experiment

is to show the utility of the server in a real research environment; a secondary benefit is that we can

further evaluate the quality of our implementation. As of August 2004, the CISS-3 experiment has

now run for 3 months. The CISS-3 experiment will run through the month of September 2004.

During the CISS-3 experiment, we are running two applications. The first application, Gro-

macs [18, 6], is a molecular dynamics simulator written in C, with in-line x86 assemble code. The

second application, Charmm [8, 2], is a macromolecular simulator written in Fortran.

We now describe the architecture of the CISS-3 Metacomputer, focusing on the parts most rel-

evant to the TrellisNFS server. The CISS-3 Metacomputer encompassed research organizations

from all across Canada; every province, except P.E.I., was represented. The TrellisNFS server was

used in two of the many administrative domains participating in the CISS-3 experiment. The first

site to use the TrellisNFS server was the Jasper cluster at the University of Alberta; this is a 20-

node, 40-processor Linux cluster. The second site to use the TrellisNFS server was the Chorus

cluster at the University of New Brunswick; which is an 80-node, 160-processor Linux cluster.

There are two data storage servers in the CISS-3 Metacomputer; the input and output data for the

Gromacs application is stored on the server squirrel.bio.ucalgary.ca located at the Uni-

versity of Calgary. The input and output data for the Charmm application is stored on the server

blackhole.westgrid.ca at Simon Fraser University. Both of the TrellisNFS servers pro-

vided seamless access to the file systems on the two remote data storage servers. As of September

2, 2004; the CISS-3 experiment had been running for 20 weeks.

5.5 Concluding Remarks

In this chapter, we have measured the performance of the TrellisNFS server. We used three methods

to evaluate our implementation: we used the Bonnie++ micro-benchmark to test the read/write per-

formance of the server; we used the Connectathon test suite to measure the compatibility, stability,

and performance or the server; and finally, we used the TrellisNFS server in the CISS-3 experiment,

a production environment.

Through the Bonnie++ benchmark we see that from the perspective of the NFS client, the Trel-

lisNFS server has equal performance to the original UNFSD server. We also measured end-to-end

system performance to determine the cost of copying data over the network and computing MD5

hashes; we saw that these costs are significant.

70

The Connectathon benchmark was used to certify the compatibility of the TrellisNFS server with

the Linux NFS client. Additionally, we used the Connectathon test suite, with other programs, to

stress test our implementation. Through this exercise, we found our implementation works reliably

under heavy load. The third purpose of the Connectathon test suite was to help us see a more

all-round evaluation of the performance of the TrellisNFS server. The Bonnie++ benchmark only

measures the performance of file system reads and writes; the Connectathon test suite exercises

all file system functionality. Our implementation does not perform as well as the original UNFSD

server; we identified three sources of additional overhead in the TrellisNFS server that do not affect

the original UNFSD server.

As an additional measure of the utility of our design and the stability and usefulness of our

implementation we used the TrellisNFS server as a shared file system in the CISS-3 metacomputer.

The CISS-3 experiment began April 15, 2004 and will continue through the month of September

2004. The TrellisNFS server has performed well in the CISS-3 environment.

71

Chapter 6

Conclusion

In this work, we presented the design and implementation of the TrellisNFS server. A key concept

in the design of TrellisNFS is that the TrellisNFS server allows unmodified binaries to work with

remote files. Another key design concept is preserving compatibility with existing NFS clients; to

ensure compatibility, we do not modify the NFS protocol or change semantics that existing NFS

clients expect from the original UNFSD server.

We modified Linux’s UNFSD server and integrated it with the TrellisFS library. We used ag-

gressive caching to deal with the high latencies of wide area networks. The TrellisNFS server

implements last-writer-wins consistency semantics. This design choice eliminates expensive WAN

communication that would be needed to support stronger consistency semantics; our motivating

applications do not require stronger consistency semantics. Implementing the TrellisNFS server re-

quired a re-design of key NFS data structures to allow the server to work with files from multiple

servers. We also took care to preserve the NFS model of crash recovery.

We expanded the scope of the TrellisFS library to allow it to work with more file system features;

such as directories, links, file renaming and metadata. We have implemented a metadata cache,

which is designed as a general purpose mechanism to eliminate redundant calls to the stat() and

lstat() system calls.

We implemented a mechanism to execute remote procedure calls over a persistent SSH connec-

tion, and we use this mechanism extensively to implement file system functionality in the TrellisFS

library.

We have evaluated the TrellisNFS server using three methods. We used the Bonnie++ bench-

mark to evaluate the performance of individual read and write operations. Read and write operations

are the common case for HPC applications, and because of this we have focused on them with this

benchmark. From the perspective of the NFS client, read/write performance is equivalent to that of

the original UNFSD server. We observed that performance differences between the UNFSD server

and the TrellisNFS server can be attributed to computing MD5 checksums and data copying over

the network. We used the Connectathon NFS test suite for three purposes: 1) to determine inter-

72

operability between the Linux NFS client and our TrellisNFS server; 2) as a stress test to evaluate

performance and stability of the TrellisNFS server while under heavy load; and 3) as a benchmark

to get a more all-round evaluation of TrellisFS’ performance than that of Bonnie++. We determined

that the TrellisNFS server and the Linux NFS client are 100% compatible and that the TrellisNFS

server is stable under high load. Performance of non-read/write operations are more expensive under

the TrellisNFS server than under the original UNFSD server. We attribute this to three factors: 1)

the cost of performing synchronous remote procedure calls between three computers instead of two;

2) the additional overhead of encrypting data with the SSH; and 3) our unoptimized implementation

of non-read/write operations.

We have used the TrellisNFS server in a production environment, producing real research results.

Through the CISS-3 experiment we have shown the utility of our design and the stability of our

implementation.

In a Trellis metacomputer, compute jobs can be assigned to any node. The TrellisNFS server

allows files from any storage node to be accessed by any compute node. Also, application programs

do not have to be modified to take advantage of the TrellisNFS distributed file system.

73

Bibliography

[1] The Linux Manual: section 2, stat() and lstat(), 1998.

[2] A. D. MacKerell, Jr., B. Brooks, C. L. Brooks, III, L. Nilsson, B. Roux, Y. Won, and
M. Karplus. CHARMM: The Energy Function and Its Parameterization with an Overview
of the Program. The Encyclopedia of Computational Chemistry, 1:271–277, 1998.

[3] A. Tridgell and the Samba Team. The Samba Website. http://www.samba.org.

[4] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Ufo: A personal global file
system based on user-level extensions to the operating system. ACM Transactions on Computer
Systems, 16(3):207–233, 1998.

[5] D. J. Barrett and R. E. Silverman. SSH, the Secure Shell: The Definitive Guide. O’Reilly, 2001.

[6] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message-passing
parallel molecular dynamics implementation. Comp. Phys. Comm., 91:43–56, 1995).

[7] J. C. Bowman. Secure nfs. http://www.math.ualberta.ca/imaging/snfs/.

[8] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calcula-
tions. Journal of Computational Chemistry, 4:187–217, 1983.

[9] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. A national-
scale authentication infrastructure. IEEE Computer, 33(12):60–66, 2000.

[10] B. Callaghan. NFS Illustrated. Addison-Wesley, 2000.

[11] R. Coker. The Bonnie++ benchmark. http://www.coker.com.au/bonnie++/.

[12] M. Ding and P. Lu. Trellis-SDP: A Simple Data-Parallel Programming Interface. In 3rd
Workshop on Compile and Runtime Techniques for Parallel Computing (CRTPC) held with
the 33rd International Conference on Parallel Processing (ICPP-04), pages 498–505, August
2004.

[13] R. Figueiredo, N. Kapadia, and J. Fortes. The PUNCH Virtual File System: Seamless access
to decentralized storage services in a computational grid, 2001.

[14] A. S. Grimshaw, Wm. A. Wulf, and the Legion Team. The Legion vision of a worldwide virtual
computer. Communications of the ACM, 40(1), January 1997.

[15] D. Hitz and A. Watson. The Evolution of NFS. Technical report, Network Appliance, Inc.,
2002.

[16] R. Jones. Netperf. http://www.netperf.org/netperf/NetperfPage.html.

[17] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson, M. Ding, M. Goldenberg, N. Lamb,
R. Senda, E. Sumbar, and Y. Wang. The Trellis Security Infrastructure: A Layered Approach
to Overlay Metacomputers. In The 18th International Symposium on High Performance Com-
puting Systems and Applications, 2004.

[18] E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: A package for molecular simula-
tion and trajectory analysis. J. Mol. Mod., 7:306–317, 2001.

74

[19] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A Read/Write Peer-to-Peer File
System. In Proceedings of 5th Symposium on Operating Systems Design and Implementation,
2002.

[20] C. Pinchak, P. Lu, and M. Goldenberg. Practical Heterogeneous Placeholder Scheduling in
Overlay Metacomputers: Early Experiences. In Proceedings of the 8th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), pages 85–105, Edinburgh, Scotland,
UK, July 24 2002. Also published as Springer-Verlag LNCS 2537 (2003), pages 205–228.
Available at http://www.cs.ualberta.ca/˜paullu/.

[21] C. Pinchak, P. Lu, J. Schaeffer, and M. Goldenberg. The Canadian Internetworked Scientific
Supercomputer. In 17th International Symposium on High Performance Computing Systems
and Applications (HPCS), pages 193–199, Sherbrooke, Quebec, Canada, May 11–14 2003.
Available at http://www.cs.ualberta.ca/˜paullu/.

[22] R. Rivest. RFC1321: The MD5 Message-Digest Algorithm. Network Working Group of the
IETF, April 1992.

[23] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation
of the Sun Network Filesystem. In Proceedings of the Summer 1985 USENIX Conf., pages
119–130, Portland OR (USA), 1985.

[24] M. Shand, D. Becker, R. Sladkey, O. Zborowski, F. van Kempen, and O. Kirch. The Linux
UNFSD Server. ftp://linux.mathematik.tu-darmstadt.de/pub/linux/people/okir/.

[25] J. Siegel and P. Lu. User-Level Remote Data Access in Overlay Metacomputers. In
Proceedings of the 4th IEEE International Conference on Cluster Computing (Cluster
2002), pages 480–483, Chicago, Illinois, USA, September 23–36 2002. Available at
http://www.cs.ualberta.ca/˜paullu/.

[26] H. Stern. Managing NFS and NIS. O’Reilly, 1991.

[27] Sun Microsystems and others. The Connectathon NFS Testsuite. http://www.connectathon.org.

[28] Sun Microsystems, Inc. RFC1094: NFS: Network File System Protocol Specification. Network
Working Group of the IETF, March 1989.

[29] B. S. White, A. S. Grimshaw, and A. Nguyen-Tuong. Grid-based File Access: The Legion
I/O Model. In IEEE International Symposium on High-Performance Distributed Computing,
pages 165–174, 2000.

[30] T. Ylonen. SSH - Secure login connections over the internet. Proceedings of the 6th Security
Symposium) (USENIX Association: Berkeley, CA), 1996.

75

