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Abstract

Many applications in computational science can be expressed as batch workloads, sets of jobs that

communicate via a file system. Users are often concerned with makespan, the total time required to

complete a workload. During workload execution, failures or slowness in one resource may prolong

makespan while many alternative resources are idle: the long tail problem.

We address the long tail problem by extending the Trellis metacomputing system to redundantly

execute jobs while isolating redundant executions from each other. For example, a job may be

redundantly executed on two nodes, both independently computing the job’s output, but only one

node’s copy of this output is saved.

Our system maintains high performance in the face of slow or failed nodes, even in cases where

manual intervention was previously required to make forward progress. We evaluate our system

with workloads from Proteome Analyst, a bioinformatics application developed at the University of

Alberta.
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Chapter 1

Introduction

Computational science is the use of computers to solve scientific problems. One natural division

in computational science arises between capability and capacity computing [28]. Capability com-

puting is focused on systems that can solve problems other systems cannot. In pursuit of this goal,

such systems might include many processors and large memories connected by a high-performance

interconnect. In contrast, capacity computing is focused on solving problems by aggregating large

numbers of general purpose computing resources. It is reasonable for these resources to be heteroge-

neous and loosely connected across a wide area. An important subset of problems in computational

science can be efficiently addressed by capacity computing systems. For example, parameter stud-

ies, where the same computation is independently repeated many times with different parameter

choices, are a natural fit. The capability / capacity distinction is not entirely black and white; in

hybrid approaches, collections of highly capable systems cooperate over a wide area.

Trellis [31] is a collection of software which allows users to create overlay metacomputers, ag-

gregations of computing resources that function cohesively as a single system. As a capacity com-

puting system, Trellis is able to leverage heterogeneous computing resources across a wide area; a

Trellis metacomputer can be constructed entirely at user level and include computers from multi-

ple administrative domains. Work is submitted to Trellis in the form of jobs which are scheduled

concurrently onto different systems while respecting dependencies. Jobs typically access their input

and output data via a distributed file system. Computational resources can be dynamically added

and removed while the metacomputer is executing jobs. Trellis was originally created to explore al-

ternative choices in the metacomputing design space. A key goal was to allow unprivileged users to

aggregate computing resources without the need for administrative support or special infrastructure.

The Trellis project is working towards the goal of supporting arbitrary applications across multiple

administrative domains [15]. In a series of experiments known as the Canadian Internetworked Sci-

entific Supercomputer (CISS; see Appendix A.1 for a list acronyms), Trellis has been used to solve

large problems in chemistry, physics, and molecular dynamics [20, 34, 14].

Without the extensions described in this work, a Trellis metacomputer’s performance is very

sensitive to performance variations and failures in its constituent nodes. For example, if one of
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the last jobs in a workload is assigned to a node that subsequently fails, the scheduler will wait

indefinitely for the failed node to complete the job, even if there are idle nodes that could complete it

as well. Only after the user intervenes will the job be reassigned, allowing the workload to complete.

Similarly, if this job is assigned to a node that executes very slowly, the scheduler will wait for the

slow execution to complete, even if another node becomes available that could complete the job

sooner. In both cases, makespan (the total time to complete a workload) is drawn out while many

nodes are idle. When this happens, we say the workload has a long tail. In contrast, if one of many

independent jobs is delayed at the beginning of a workload, the impact of the delay is minimal as

long as the job completes before other nodes run out of work.

Failures and performance variation are the norm in large distributed systems. Computers and

networks can fail, become temporarily unavailable, or suffer from degraded performance. As more

and more resources are aggregated, the overall exposure to failure increases, as there are more

components to fail. To a certain extent it is possible to identify and eliminate slow nodes and those

with unpredictable performance or stability, but this is undesirable for two reasons. First, failures

or performance degradation can occur suddenly and unpredictably on otherwise healthy nodes for

a variety of reasons, including resource contention, misconfiguration, or failing hard disks [7, 22].

Second, even slow or unstable nodes – when functional – can make meaningful contributions to

completing an overall workload.

To mitigate the effect of failures on the workload tail, we extend the Trellis scheduler [19, 18]

to execute jobs redundantly when there are idle nodes. In this way, failed or pathologically slow job

executions are eventually bypassed by successful executions on other nodes, ultimately resulting in

reduced makespan.

In the following illustrative examples we use a hypothetical workload from Proteome Analyst

[29] (a bioinformatics application developed at the University of Alberta) consisting of ten indepen-

dent jobs. Each job analyzes two protein sequences to determine some of their biological properties.

This workload is executed on a Trellis metacomputer with four CPUs (e.g., four nodes with one

CPU each). A placeholder runs on each of the CPUs and pulls work from the scheduler to execute

locally. We are interested in two cases:

1. Node or network failure. Figure 1.1 illustrates how Trellis behaves, with and without our

extensions, when a placeholder that is running a job stops communicating with the scheduler.

Typically, this happens because the node hosting the placeholder fails or because the network

between the scheduler and placeholder becomes unavailable. Without redundant execution,

the workload cannot be completed until the failure is resolved. In the case of node failure, res-

olution requires user intervention. With redundant execution, the workload completes before

the failure is resolved because the stranded job is redundantly executed on another placeholder.

2. Slow job executions. Figure 1.2 demonstrates the impact of redundant execution when one

2



(a) Fault Tolerance without Redundant Execution

(b) Fault Tolerance with Redundant Execution. The redundant execution is shown in dark gray.

Figure 1.1: The Impact of Redundant Execution on Fault Tolerance. Example job schedules
are shown with and without redundant execution. Each job takes three time units to complete,
during which two proteins are analyzed. Four placeholders collectively provide a maximum degree
of concurrency of four. At time t = 5, Placeholder PH 4 becomes unreachable due to a network
interruption or node failure. At time t = 11, the failure is resolved; in the case of node failure, this
requires manual intervention. In this example, redundant execution reduces makespan from 11 time
units to 9 time units.

3



(a) Slow Nodes without Redundant Execution

(b) Slow Nodes with Redundant Execution. The redundant execution is shown in dark gray.

(c) Slow Nodes Unused

Figure 1.2: The Impact of Redundant Execution with Slow Nodes. Here, Placeholder PH 4 takes
5 time units to complete jobs; the other placeholders complete jobs in only 3 time units. Example
job schedules are shown (a) without redundant execution, (b) with redundant execution, and (c)
with Placeholder PH 4 left unused. Without redundant execution, the workload completes in 10
time units. Redundant execution reduces this to 9 time units, while removing the slow placeholder
increases makespan to 12 time units. Slow placeholders provide some benefit during the main part
of the workload, but without redundant execution can be a liability at the end of the workload.
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of the four placeholders is slower than the others. Redundant execution reduces makespan by

bypassing a slow execution at the end of the workload. In contrast, removing the slow place-

holder from the metacomputer altogether (Figure 1.2c) increases makespan. This is because

the slow placeholder is a benefit during the main part of the workload, and a liability at the

end; redundant execution mitigates the liability without compromising the benefit.

One significant challenge for redundant execution is interaction between job executions. Jobs

access input, output, and intermediate data via a file system, and redundant executions may result in

failures or corrupt output. For example, imagine that Job A reads from the file A.in, creates a direc-

tory called A.out, and writes the files A.out/1 and A.out/2. Two concurrent executions of Job

A may interfere with each other. Depending on implementation, perhaps only one execution will be

able to create the output directory A.out, or perhaps one execution will write A.out/1 while the

other writes an inconsistent A.out/2. To overcome this challenge, there is a need for redundant

executions of the same job to be isolated from each other. Specifically, redundant executions of the

same job must not be able to observe file-system modifications made by each other.

To provide the necessary isolation, we extend the Trellis File System [25] and scheduler [19, 18]

to isolate file-system changes made during job execution. While a job executes, file-system changes

are not immediately persisted (i.e., saved to disk so that the user and other jobs can observe them)

but rather cached locally. After a job execution completes, all of its changes are either persisted

together (if it was the first successful execution for the job) or discarded. In this way, redundant

executions of jobs are prevented from observing each other’s file-system changes. The integration

between file system and scheduler is lightweight; the scheduler notifies the file system when each

job begins, associates all file-system requests with specific jobs, and notifies the file system when

to apply or discard pending changes for a given job. A consequence of this approach is that for

applications to benefit from the redundant execution feature, they must use the Trellis File System

to access their input and output data.

1.1 Contributions

This thesis makes the following contributions:

1. The Trellis File System (TFS) library is extended to support multiple write-back policies,

including the explicit write-back policy, which provides a transaction-style interface to the

file system. When the explicit write-back policy is in use, metadata and data are aggressively

cached, and all file-system modifications are buffered locally. After a series of file-system

modifications have been made, these changes may be persisted together or abandoned.

Further, a module for the Samba file server is created allowing unmodified applications to

access the Trellis File System library indirectly via a CIFS file-system mount. This provides

an alternative to modifying and relinking user applications to access the TFS library directly.
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2. The Trellis scheduler is extended to redundantly execute jobs when the available concurrency

exceeds the number of ready jobs. This mechanism is integrated with the file system, using

the explicit write-back policy, such that redundant executions of jobs do not see each other’s

file-system modifications, and only one set of these modifications is persisted. While jobs are

running, aggressive file-system caching is possible because the scheduler is aware of depen-

dencies between jobs and does not concurrently schedule jobs with read/write or write/write

conflicts for the same paths.

3. We provide a detailed, quantitative analysis of the impact of redundant execution on real

workloads driven by Proteome Analyst. We show that for medium- or large-grain, CPU-

intensive workloads, redundant execution introduces negligible overheads and allows the sys-

tem to transparently recover from failed or slow placeholders. For fine-grain workloads, the

scheduling system, the Trellis File System, and redundant execution all introduce significant

overheads.

6



Chapter 2

Background

In the first chapter, we discussed how the overall performance of capacity computing systems can

be vulnerable to performance variations and failures in their constituent resources, using the Trellis

system as an example. We motivate redundant job execution as one way to address this challenge,

proposing specific file-system and scheduling extensions to make this possible. In this chapter, we

explore relevant concepts in more detail and survey related work.

2.1 Background Concepts

Here, we introduce background concepts that provide a basis for the architecture and implementation

details to follow: the Trellis system, typical workloads, the long tail problem, and different classes

of failure.

2.1.1 The Trellis System

A Trellis metacomputer is a distributed system that contains some or all of the following compo-

nents. One possible topology is shown in Figure 2.1.

1. Users. Users and external systems submit jobs to the Trellis metacomputer and monitor the

jobs’ progress. For example, a job could be a request to execute the BLAST [1] program with

a specific set of parameters and input and output files. Trellis Driver [13] is an example of

external software that submits and monitors jobs on behalf of Java applications (e.g., Proteome

Analyst).

2. Command Line Server (CLS, scheduler) [19, 18]. The CLS is the central scheduler and

repository for job information. It stores jobs, and the dependencies between jobs, in a database;

together these form a directed acyclic graph [10]. Jobs are represented simply as command

lines.

3. Placeholders [19, 18]. Placeholders, software entities that run on available computational

resources, request (pull) jobs from the scheduler, and notify the scheduler when these jobs
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complete. The most simple form of a placeholder – the zero-infrastructure placeholder – is a

script that loops indefinitely requesting jobs, executing them, and notifying the scheduler of

the results. More complicated placeholders can work with batch scheduling systems, execut-

ing one job each time a placeholder reaches the top of a job queue.

4. Home nodes [25]. Home nodes are backing file servers that store all data accessed via the

Trellis File System. The TFS library can access homes nodes with a variety of protocols,

including secure shell. Secure shell is a suite of tools (including ssh; see Appendix A.2

for a list of programs) and a protocol that allows for secure remote command invocation, file

transfer, and interactive login.

5. Distributed File System [25, 6, 14]. Programs executed by placeholders access data stored on

home nodes in one of two ways. Either they link directly to the Trellis File System library (not

shown), or they access bridging file servers, which internally use the TFS library to provide

home-node access.

2.1.2 Typical Workloads

In Trellis, a workload is a set of jobs, potentially with interdependencies, that access input, output,

and intermediate data via the file system. More generally, this type of workload is called a batch

workload. In Trellis, jobs are simply command lines (i.e., invocations of existing programs). A wide

variety of scientific computations can be expressed in this way [30].

In Chapter 1, we motivated the use of redundant execution by showing how a hypothetical Pro-

teome Analyst workload is affected by different kinds of faults with and without redundant execu-

tion. Figure 2.2 shows this same workload from the perspective of file access. Jobs access all of

their input and output data via the file system. Prior to submitting the workload, Proteome Analyst

produces one small input file per protein, and after the workload completes, Proteome Analyst reads

each of the corresponding output files.

2.1.3 The Long Tail Problem

In the scheduling literature, makespan is the duration of time between the submission of the first job

in a workload and the completion of the last job in the workload. Makespan is relative to the system

under discussion. For example, Proteome Analyst’s makespan is measured from the moment a user

submits a proteome for analysis to the moment results are available, even though PA might complete

part of this task by submitting jobs to a Trellis metacomputer. For batch workloads, makespan is

arguably the most important performance metric: “How long will my workload take to complete?”

A workload execution is long tailed if most placeholders run out of work long before the last

few jobs complete. In the example from Figure 1.1a, as a result of a node or network failure,

Placeholder PH 4 finishes the last job long (5 time units) after the other jobs have completed. A
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1. Users connect to the CLS to submit jobs or query for status.

2. Placeholders connect to the CLS to request work and to report the ensuing success or failure.

3. Programs executed by placeholders connect to home nodes for file-system access.

4. As an alternate to (3), programs executed by placeholders access the distributed file system
via bridging file servers within their local networks. In turn, these servers communicate with
the home nodes on the programs’ behalf.

5. Placeholders, which never need to be contacted, may reside on nodes without unique IP ad-
dresses.

Figure 2.1: Sample Trellis Metacomputer Topology. Arrows (1) though (4) indicate communica-
tion paths between components.
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Figure 2.2: Hypothetical Proteome Analyst Workload Continued: Jobs Access Input and Out-
put Data via the File System. Rectangles represent files, and circles represent jobs. Here, we show
the workload from Figures 1.1 and 1.2 in terms of file access. The individual input and output files
are very small, but the common input file (database of protein properties) is large. Proteome Analyst
can be used to determine many different properties of proteins. Some of these properties can be
computed in parallel by submitting workloads to Trellis, which typically follow the pattern shown
here. Two concrete workloads are shown later in Figure 5.2.
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long-tailed workload can arise because of failures (e.g., Figure 1.1a), slowly executing placeholders

(e.g., Figure 1.2a), or poor load balancing, among other causes.

Long-tailed workloads are bad for makespan. In general, if there are idle resources at the end

of a computation, is it often possible to leverage them to help the workload complete sooner. In the

case of poor load balancing, this could mean spending more effort to balance or re-balance work. In

the case of a failed node or a pathologically slow job execution, redundantly executing the job on an

idle placeholder may provide a large benefit.

The long-tail effect is not only important at the end of a workload, but also before barriers

[5] or jobs that many other jobs depend on. For example, imagine a workload consisting of 1000

independent jobs, followed by a barrier, and then another 1000 independent jobs. If a pathologically

slow placeholder leaves the other placeholders waiting idle at the barrier for an hour, this is just as

serious as the same delay at the end of the workload.

2.1.4 Faults and Redundancy

From the perspective of the Trellis scheduler, there are two failure cases to consider for which

redundant execution can help with the long tail problem. Note that these two cases do not map

exactly to the two motivating examples from Chapter 1; both of those examples correspond to the

first case shown below. Addressing many different kinds of failures and performance issues in a

consistent way makes the system more robust; recovery does not depend on determining the specific

underlying problems.

1. A placeholder requests a job from the scheduler, and then does not send a “job com-

pleted” or “job failed” message to the scheduler for a long or indefinite time. This can

occur because the placeholder node failed, the network between the placeholder and the sched-

uler failed, or the job is taking pathologically long to complete, among other causes.

Redundant execution handles all of these cases in the same way. Eventually, the outstanding

job is redundantly assigned to another placeholder, and the first placeholder to complete the

job is notified that it may persist the job’s output. After the persistence step is done, the

placeholder notifies the scheduler and the job is considered complete. Failure during the

persistence step is detected promptly via a lease mechanism (i.e., the placeholder periodically

pings the scheduler and if communication is lost, the placeholder aborts and the scheduler

moves the job back to the ready state).

2. A placeholder requests a job from the scheduler, and then returns a “job failed” message

within a reasonable time. This can occur because the job was specified incorrectly, the

placeholder does not have access to necessary programs or data, or there was a network failure

between the placeholder and the relevant home nodes, among other causes.
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Without redundant execution, failed jobs are retried a user-specified number of times. Redun-

dant execution extends this naturally: If one redundant execution experiences a job failure,

the job’s retry count is reduced and the other executions continue uninterrupted.

While the redundant execution approach can work around most types of failures in placeholder

nodes and the networks that connect them to the rest of the metacomputer, we assume that place-

holder nodes do not act maliciously or fail in such a way as to return incorrect or corrupt output.

Also, the scheduler and home nodes are single points of failure in the system – forward progress can

not be made while they are unavailable.

2.2 Related Work

We present related work in two parts. First, we highlight key similarities and differences with

four diverse distributed systems designed to execute computational workloads: Charlotte [2], Satin

[33], BAD-FS [3], and MapReduce [7]. Second, we discuss existing file systems with transactional

interfaces.

2.2.1 Charlotte

Like our system, Charlotte [2] uses redundant execution to mask the effects of slow or failed nodes

participating in a computation. Both systems schedule work using a pull model (i.e., nodes request

work; the scheduler does not unilaterally assign it), with web browsers in Charlotte playing an

analogous role to Trellis’ placeholders. Both systems use a write-back strategy for modified data;

computational nodes cache data locally and propagate updates for exactly one successful invocation

of each job. Our system distinguishes itself from Charlotte by supporting batch workloads, using a

distributed file system for communication between jobs in lieu of shared memory.

2.2.2 Satin

Like Trellis and Charlotte, Satin [33] schedules work with a pull model. However, it is distributed:

nodes pull work from other nodes. Satin addresses the issues of slow or failed nodes without using

redundant execution. Failed nodes are detected in the communications layer, and slow nodes are

handled by subdividing and reassigning work until only a trivially small computation is left for the

slow node. Satin is able to subdivide work in this way because it is designed specifically for divide-

and-conquer problems, where most of a computation’s work is finely split between the leaves of a

computation tree. In contrast, our system is not restricted to workloads which can be decomposed

into small pieces, and is able to work around faults without explicitly detecting them.
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2.2.3 BAD-FS

BAD-FS [3] is an integrated file system and scheduler which helps execute IO-intensive workloads

on clusters connected by a wide area network. It leverages unprivileged user accounts and existing

batch scheduling systems on these clusters. In these respects, it is very similar to Trellis and the

extensions described in this work; we also integrate file system and scheduler to efficiently execute

workloads across hosts with ordinary user accounts or clusters with existing batch schedulers. In

both systems, jobs access their input and output exclusively via the file system. While Trellis and

BAD-FS can both include unmodified applications in their workloads, our system achieves this via

bridging file servers (see Figure 2.1 and Section 2.1.1), and thus can not do so without some elevated

privilege. BAD-FS avoids this restriction by using an interposition agent to intercept system calls

used by jobs to access the file system. Both systems gracefully handle the dynamic addition or

removal of resources (hosts, clusters) from the metacomputer.

The most significant difference between BAD-FS and Trellis is that BAD-FS requires detailed

dataflow information for a workload in order to execute it. With the exception of the ultimate output

files, which must be specified individually, shared input and intermediate data is specified with a

volume abstraction. Volumes have a type and size, and are associated with the jobs that access them.

BAD-FS leverages this information to (a) provide fault tolerance, (b) minimize the WAN traffic

associated with shared input and intermediate data, and (c) manage disk capacity on cluster nodes,

which may become scarce as the system tries to avoid communicating over the WAN.

Both systems leverage workflow knowledge to ease file-system consistency. In our work, if the

scheduler knows that two jobs are executing concurrently, it assumes they do not make conflicting

file-system accesses. Therefore, metadata and data observed by a job may be cached for the duration

of that job. BAD-FS makes a similar assumption, but instead of caching, it schedules the concurrent

job onto a node in the same cluster where it can access the same storage volume over the cluster

LAN. Also, BAD-FS caches input data for the duration of the entire workload, provided there is

enough space.

To achieve fault tolerance, BAD-FS re-executes jobs when jobs, nodes executing jobs, or storage

servers fail. Failed nodes are detected by heartbeat messages [27] from a catalog server. A volume

is considered lost if either the node hosting it becomes inaccessible or a job that can write to the

volume fails. In this way, failure in one job can trigger re-execution of previous jobs. To mitigate

this effect, BAD-FS replicates volumes between jobs when it is statistically cheaper to copy data

than re-execute completed jobs after a future failure. Trellis does not re-execute complete jobs, as

their output is already stored on the home nodes, which Trellis does not protect. Similarly, once

BAD-FS has extracted output data for a pipeline and copied it to the home file system, the data is

no longer protected against loss by re-execution. In contrast to our work, BAD-FS does not protect

against slow job executions, and therefore these executions can needlessly prolong makespan (the

long tail effect, see Section 2.1.3). For example, this contributes to the reduced job completion rate
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in the last hour of workload execution in Figure 9 of the BAD-FS paper [3].

BAD-FS takes advantage of dataflow information to reduce WAN traffic. Input data is cached

cooperatively by nodes in each cluster, and intermediate data is never transferred over the WAN. The

scheduler works with the file system to ensure potentially limited cluster storage is used efficiently.

In this work, we manually copy shared input data to placeholder nodes before computation begins,

and do not optimize for locality of intermediate data (but this was explored elsewhere [12]). Trellis

uses per-placeholder, whole-file caching for all data. BAD-FS uses per-cluster, block-level caching

for read-only input data.

2.2.4 MapReduce

MapReduce [7] is a programming model and system which allows an interesting class of problems

to be specified simply and efficiently executed on a cluster. MapReduce scales very well; one

computation can process terabytes of data on a cluster with thousands of nodes. It is expressive and

efficient enough to be used for many computational tasks at Google, including maintaining their

production web index.

A MapReduce program consists primarily of two functions. The map function reads input

key/value pairs and maps them to intermediate key/value pairs. The reduce function reads the values

associated with each intermediate key, and produces output key/value pairs. The map operation is

1:n (i.e., zero or more key/value pairs are produced for every input key/value pair), and the reduce

operation is n:m (i.e., the set of values associated with each intermediate key is replaced with a

new set of values, typically of size zero or one). As with Satin, this functional programming model

has the nice property that function invocations are independent of each other and can be executed

concurrently or repeatedly, without interfering with each other.

In the MapReduce system, input and intermediate data are partitioned and a single master man-

ages the assignment of the associated map and reduce tasks to a set of nodes. Load balancing is

simple; each task is reasonably fine grain, and tasks are assigned to nodes as previous tasks com-

plete. To provide fault tolerance, the master periodically pings each worker node, and reassigns

affected tasks when nodes fail (a failed node requires the re-execution of that node’s in-progress

tasks, as well as all of the map tasks the node previously completed). As with our system, MapRe-

duce contains a single point of failure: If the master fails, the entire computation aborts.

As in Charlotte and our work, as a MapReduce computation nears completion, outstanding map

and reduce tasks are redundantly executed; one “backup task” is initiated for each outstanding task.

A given task is considered complete when either the original task execution or the backup task

execution completes. The authors observe that task executions can unexpectedly become extremely

slow for a number of reasons, including failing disks, resource contention with other jobs, or faulty

configuration. One slow task execution can dramatically delay workload completion. In one case,

disabling the “backup task” mechanism increased makespan by 44% [7].

14



When tasks are redundantly executed, it is important to ensure only one execution persists its

output. MapReduce achieves this by writing output atomically, using a different strategy for inter-

mediate (map) output and final (reduce) output. When a map task completes, its output is stored

in a set of unique temporary files. The paths to these files are communicated to the master, which

updates its data structures atomically before passing the information to reduce tasks. If a redundant

execution for the same map task later completes, the master ignores it. Similarly, each reduce task

outputs its data to a single temporary file. On completion, this output file is atomically renamed [9]

to the final output file path. In our extended version of Trellis, a job’s output can not be atomically

persisted. This is because we use unmodified file systems to store data on home nodes, and jobs are

allowed to make arbitrary changes to these file systems. Most file systems do not provide an inter-

face to perform a set of operations atomically, and we do not assume Trellis has exclusive access to

them. To work around this limitation, jobs are executed in two phases. In the first phase, redundant

executions of a job cache all file-system modifications locally. In the second phase, one execution is

selected by the scheduler to persist its output. Failure during the second phase is detected by a lease

mechanism, and results in the job being re-executed from scratch.

One weakness of Charlotte’s eager-scheduling strategy, which both MapReduce and our system

build upon, is that if some task consistently fails (e.g., due to a deterministic bug), the workload will

never complete [7]. MapReduce overcomes this issue by suppressing records that repeatedly lead to

program crashes. Trellis simply gives up executing a job after a user-specified number of retries.

2.2.5 Transactional File Systems

In this work, we use transaction-style semantics to control file-system caches associated with each

placeholder. As a job runs, reads and writes of file-system metadata and data are cached locally.

A rollback command clears the local cache, and a commit command persists pending modifications

to home nodes. This allows for isolation between redundant executions of the same job, which

will likely access the same file-system paths. However, full ACID [26] semantics (i.e., atomic-

ity, consistency, isolation, and durability) are not provided. In particular, updates are not atomic,

and concurrent executions of different jobs are not isolated – they can see each other’s updates in

arbitrary order.

A number of existing systems provide transactional interfaces to file systems including Quick-

Silver [24], Inversion [17], and Amino [32]. Inversion and Amino can be configured to provide full

ACID semantics. QuickSilver extends the transaction concept across many services in a distributed

operating system, but does not use this capability for redundant execution of jobs.

2.3 Concluding Remarks

Components of a distributed system can fail or suddenly become slow at any time. We have shown

how a variety of systems attempt to mitigate the resulting performance and availability challenges. In
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this work, we combine redundant execution with a transaction-style file-system interface to mitigate

the effect of failed or slow nodes while executing batch workloads.
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Chapter 3

Architecture

In the previous chapter, we explored performance challenges faced by metacomputing systems when

participating nodes fail or become slow. We then described how a variety of systems address these

challenges. In particular, we introduced the long tail problem, and showed how redundant execution

works well to overcome it and compares favorably to other approaches. In this chapter, we present

the new system architecture and the design of the new features.

3.1 Three Deployment Strategies for PA/Trellis

We present the Trellis architecture in the context of Proteome Analyst (PA); the combined system

is called PA/Trellis. This allows us to discuss the architecture in terms of a concrete workload, and

sets the stage for the evaluation in Chapter 5. Focusing on alternatives for providing distributed file-

system services, three variations of the architecture are presented: one using NFS (Figure 3.1), one

using the Trellis File System library (Figure 3.2), and one using the Trellis Samba (Figure 3.3). The

first and third approaches work with unmodified applications, and the last two approaches support

redundant execution and work across administrative domains. Observe that Trellis is effectively two

distributed systems working in tandem: a scheduling system and a distributed file system. These

systems are loosely coupled to provide redundant execution. In the following sections, we provide

a brief overview of the components from Figures 3.1, 3.2, and 3.3.

3.1.1 Proteome Analyst

Proteome Analyst [29] is a web-based application which annotates user-supplied proteomes with

biological properties. A proteome is the set of proteins encoded by an organism’s DNA. Proteins

in the set are expressed as sequences of amino acids, each of which are denoted by letters of the

alphabet. PA uses various databases and tools to gather information about each protein, and then

leverages this information to make higher-level classifications, including subcellular location and

function.

The PA web application is written in Java and is hosted by a Tomcat application server (Fig-
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Figure 3.1: Architecture of PA/Trellis with NFS. Communication paths between subsystems are
annotated with light gray circles. File-system components are shaded dark gray. (1) Proteome
Analyst writes input files to a shared directory on the NFS server. (2) Proteome Analyst, via Trellis
Driver, submits a set of jobs for the placeholders to execute. (3) Placeholder scripts poll the scheduler
for work. (4) A placeholder invokes hmmpfam or hmmsearch as per a job description (command
line). (5) This program accesses input and output files via the shared directory on the NFS server.
(6) The placeholder notifies the scheduler that the job is complete. (7) The job submission script
completes, returning control to a Trellis Driver thread. (8) Once all of the jobs have completed,
PA reads the output files from the shared directory, transforming them to hmmpfam-style output if
hmmsearch was used. (9) PA writes the final output to its database.
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Figure 3.2: Architecture of PA/Trellis with the Trellis File System Library. Communication
paths between subsystems are annotated with light gray circles. File-system components are shaded
dark gray. (1) Proteome Analyst writes input files to a local directory. (2) Proteome Analyst, via
Trellis Driver, submits a set of jobs for the placeholders to execute. (3) Placeholder scripts poll the
scheduler for work. (4) A placeholder invokes the TFS wrapper program as per a job description
(command line). (5) The TFS wrapper determines the input and output file paths from its command-
line arguments. To query metadata about these paths, the embedded Trellis File System library
starts an instance of the TFS RPC agent on the primary node, and sends it requests via the ssh
channel. (6) The input file is copied, via scp, from the primary node to the Trellis cache. (7) The
TFS wrapper invokes hmmpfam or hmmsearch, as per its arguments, redirecting standard input
from the input file in the Trellis cache, and standard output to a new file in the Trellis cache. (8)
The output file is copied, via scp, to the primary node. (9) The placeholder notifies the scheduler
that the job is complete. (10) The job submission script completes, returning control to a Trellis
Driver thread. (11) Once all of the jobs have completed, PA reads the output files from the local
directory, transforming them to hmmpfam-style output if hmmsearch was used. (12) PA writes the
final output to its database.
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Figure 3.3: Architecture of PA/Trellis with Trellis Samba. Communication paths between sub-
systems are annotated with light gray circles. File-system components are shaded dark gray. (1)
Proteome Analyst writes input files to a local directory. (2) Proteome Analyst, via Trellis Driver,
submits a set of jobs for the placeholders to execute. (3) Placeholder scripts poll the scheduler for
work. (4) A placeholder invokes hmmpfam or hmmsearch as per a job description (command
line). (5) This program accesses input and output files via the Samba server. (6) The Samba server
accesses the “PA Temporary Files” directory on the primary node by sending requests to the Trellis
RPC Agent and by copying files with scp. The Trellis RPC Agent is started once, via ssh, on the
first request. (7) The placeholder notifies the scheduler that the job is complete. (8) The job sub-
mission script completes, returning control to a Trellis Driver thread. (9) Once all of the jobs have
completed, PA reads the output files from the local directory, transforming them to hmmpfam-style
output if hmmsearch was used. (10) PA writes the final output to its database.
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ure 3.1, top center). However, it spends most of its computation time in command-line tools. Often,

input and output data are passed between the web application and the command-line tools via files.

This makes PA a nice fit for Trellis, and it was previously extended to use Trellis to execute the

BLAST [1] and HMMER [11] components of its workload, using NFS to access input and output

data over a local network [12, 4]. In this work, we focus on the HMMER tool, extending support to

allow it to work with the Trellis File System (directly, or indirectly via Samba) in addition to NFS.

PA uses the Trellis Driver [13] package to submit jobs to a Trellis metacomputer and await

their completion. When a user submits a proteome, PA creates a set of input files, submits a set

of HMMER jobs to Trellis, waits for all of these jobs to complete, reads the corresponding set of

output files, updates its database, and continues with its other computations (Figure 3.1, Steps 1, 2,

7, 8, and 9, respectively).

3.1.2 Trellis Driver

Trellis Driver [13] is a Java package which allows arbitrary Java programs to submit jobs to a Trellis

metacomputer, and then wait for individual jobs or groups of jobs to complete. Submitting work

(Figure 3.4) is easy and follows the same paradigm as Java’s Runtime.exec() method. Trellis

Driver communicates with the Trellis scheduler by executing the mqsub job submission script in

blocking mode and waiting for its completion (Figure 3.1, Steps 2 and 7). In this mode, mqsub

does not return until the submitted job is complete, which it determines by polling. As mqsub is

executed locally, applications using Trellis Driver must be on the same host as the Trellis scheduler.

The maximum number of outstanding jobs is configurable, and one thread is created for each. Most

of the time, these threads are waiting for a monitor or are blocked on mqsub. Trellis Driver can be

configured to batch jobs together before submitting them, which helps amortize overheads when the

jobs are fine grain.

3.1.3 Placeholder Scheduling System

With placeholder scheduling [19, 18], users submit jobs along with dependencies to a central sched-

uler, and may subsequently query for job status. Placeholders periodically pull work from the sched-

uler and notify it when the work is done. In PA/Trellis, Trellis Driver plays the role of user, submit-

ting jobs and querying for their status.

The scheduler consists of a job database and a set of scripts (Figure 3.1, top right), which users

and placeholders invoke to interact with the scheduler. Placeholders consist of scripts that sequen-

tially query for an available job, execute that job, and report the job’s exit code (Figure 3.1, Steps 3,

4, and 6, respectively).
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Figure 3.4: Code Fragment: Submitting Work to a Trellis Metacomputer with Trellis Driver.
Java programs (here, PA) use Trellis Driver to submit work to a Trellis metacomputer in the form of
command lines. In this example, calcId identifies a workload so that a subsequent barrier waits
only for jobs from the appropriate workload, and the string “HMMER” allows parameters, such as
batching factor, to be configured differently for different types of workloads.

3.1.4 HMMER

Profile hidden Markov models (HMMs) can be used to capture common patterns from families of

proteins that share a common property. If a new protein matches the HMM, then it may also share

the property (i.e., belong to the protein family the HMM was created from). It is useful to aggregate

these HMMs into large databases of protein families (e.g., Pfam [8]), so that unknown proteins can

be classified by comparison with a database. HMMER [11] is a suite of tools that can do exactly

this comparison. PA uses HMMER with Pfam to classify unknown proteins by protein family.

Specifically, it uses the hmmpfam tool to compare individual proteins with all HMMs in Pfam, or

the hmmsearch tool to compare individual HMMs with all proteins in a given proteome [4].

In PA/Trellis, HMMER accesses its input and output data via a file system. The database is static

and large, and is therefore manually copied to each machine and accessed locally. The other input

and output files may be accessed via NFS or the Trellis File System (via a wrapper program linked

to the TFS library or a suitably extended Samba server).

3.1.5 NFS

For the NFS configuration (Figure 3.1) we use the standard Linux NFS server. The NFS server

exports local directories, which are mounted by all participating nodes (the primary node with PA

and the Trellis scheduler, as well as all of the placeholder nodes). All clients can transparently use

the same paths to access input and output files, which are stored on the NFS server.

3.1.6 Trellis File System

The Trellis File System [25] is a user-level, overlay distributed file system, targeted at executing

high-performance-computing (HPC) workloads efficiently. The core component of TFS is the TFS
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library. This library provides a file-system API similar to POSIX; applications written or modified

to use this API may be linked with the TFS library to access the file system. In Figure 3.2, a wrapper

program allows the unmodified HMMER tools to access data via TFS. In Figure 3.3, the unmodified

HMMER tools access data via a Samba server extended to mediate access to the TFS library (see

Section 3.1.7).

In TFS, files are named by secure copy locators (SCLs). Each SCL includes a protocol, user-

name, host, and local path, essentially naming a path on a remote file system. For example, the

SCL scp:theuser@thehost:/directory/file names the file directory/file on

host thehost when accessed by the user theuser via ssh. The remote host is called a home

node. TFS uses whole-file caching; the cache is labeled “Trellis Cache” in Figures 3.2 and 3.3. TFS

currently includes support for three home-node protocols: secure shell with SFTP, secure shell with

Trellis RPC (a custom protocol), and CIFS.

3.1.7 Trellis Samba

Samba [23] is an open-source CIFS file server. Typically, the CIFS protocol is used for file sharing

between Windows clients and servers, but support is available on Linux and other systems as well.

Samba has a Virtual File System (VFS) layer which allows custom file systems to be exported. A

new Samba VFS module (Trellis VFS Module, Figure 3.3) was created to provide indirect access to

the Trellis File System. Standard CIFS clients (here, the smbfs Linux kernel module) can mount a

Samba share allowing unmodified applications access to TFS.

The extended Samba server, Trellis Samba, is an example of a bridging file server [14]. LAN

protocols (i.e., CIFS) are used between the client and the file server, and WAN protocols (e.g., secure

shell) are used between the file server and the home node.

3.2 A Framework for Multiple Write-back Policies in the Trellis
File System Library

The TFS library has been extended to support multiple write-back policies. The implicit write-

back policy provides traditional TFS semantics: metadata changes are propagated to home nodes

as they are made and data changes are propagated when files are closed. The explicit write-back

policy provides support for the redundant execution feature; all changes are cached locally and

propagation is explicitly controlled. The scheduling system leverages the explicit write-back policy

to isolate redundant executions of the same job from each other.

3.2.1 Deviation from POSIX Semantics

TFS does not support the complete POSIX API or all of its semantics. Other commonly used

distributed file systems (e.g., NFS) deviate from POSIX as well. Some limitations result from the

fact that TFS is an overlay distributed file system, using other file systems as its backing store. Other
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limitations result from our focus on HPC workloads; our primary goal is to execute these workloads

efficiently. The following are three key deviations from the POSIX standard:

1. For performance and simplicity, TFS uses whole-file caching, and performs all operations on

open files and directories in the local cache. Updated versions are propagated back to home

nodes when files are closed. This results in close-to-open consistency. One consequence is

that if two concurrent writers update the same file, the second writer to close the file will

overwrite the changes made by the first. A related consequence is that external changes to a

file are not visible while that file is open.

2. TFS addresses files and directories on home nodes with paths, not inodes. Therefore, it can not

detect certain kinds of external changes, including moves or deletions of open files, and may

function incorrectly in these cases. Also, TFS may communicate with a home node multiple

times in order to satisfy one request (e.g., determining that a path is a file and then copying it

to the cache in response to an open request). Together, these design decisions lead to intrinsic

race conditions.

3. Only regular files and directories are supported. Symbolic and hard links are not. Symbolic

links on home nodes appear as regular files and directories. This has the consequence that

two paths may point to the same underlying file, and these paths will be cached and updated

independently. Symbolic link support is planned for a future version of TFS.

3.2.2 Interaction with the New Cache Manager

The TFS library is composed of three components:

1. TFS Layer. The TFS layer provides the client-facing file-system API. This API is modeled

after the POSIX file-system API and consists of functions with similar names, arguments, and

semantics. Most operations are performed indirectly on the Trellis cache, which mirrors por-

tions of home-node file systems. TFS notifies the cache manager before it reads any metadata

or data from the cache (so that the cache manager has a chance to bring it up-to-date) and

after it modifies any metadata or data in the cache (so that the cache manager has a chance to

propagate the changes to home nodes).

2. Cache Manager. The cache manager keeps track of files and directories in the cache, and

decides when to copy metadata and data to or from home nodes. Communication with home

nodes is handled through the RPC (remote procedure call) layer. By centralizing control of

the cache in one place, it becomes possible to introduce multiple cache policies.

3. RPC Layer. The RPC layer provides an abstract interface to query for metadata on home

nodes, copy files between the local cache and home nodes, and to perform remote metadata

operations. It encapsulates support for a variety of home-node protocols.
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When metadata When data When a file When a commit
is changed is changed is closed is requested
e.g., mkdir() e.g., write() i.e., close()

Implicit Write-back X X N/A
Explicit Write-back X

Table 3.1: Write-back Policies. Check marks indicate when associated changes are propagated to
home nodes. Implicit write-back propagates metadata changes immediately and data changes when
associated files are closed. Explicit write-back propagates all changes on commit.

When client code invokes a function in the TFS layer, the TFS layer does the following:

1. Update Metadata. The TFS layer asks the cache manager to ensure that the relevant cache

paths have up-to-date metadata. The cache manager returns the state of these paths, which

indicates their type, whether the corresponding data is also current, and whether the paths are

open.

2. Validate Metadata. The TFS layer validates that the paths are in legal states. For example,

for the rename(a,b) operation, b must be non-existent or a closed file.

3. Update data. If necessary, the TFS layer asks the cache manager to bring the paths’ data up

to date. For example, rmdir() requires the directory to be synchronized in order to verify

that it is empty, and open() requires that the contents of an existing file are current if the

O TRUNC flag is not specified.

4. Perform operation in cache. The TFS layer performs the requested operation (e.g., stat(),

open(), close(), unlink(), rename(), etc.) on the cache path(s).

5. Signal changes. If the operation results in a change to the file system, the TFS layer notifies

the cache manager so that the change may be reflected on the corresponding home node, as

appropriate.

3.2.3 Write-back Policies

The following write-back policies are summarized in Table 3.1:

Implicit Write-back

The implicit write-back policy is intended for situations where the home node must be updated

before a file-system operation can be considered complete, and concurrent changes to home-node

file systems must be visible. This policy is similar to the classic TFS behavior and is a conservative

default.

With the exception of operations on open files or directories, home nodes are accessed for every

file-system operation. An optional metadata cache allows metadata reads to be cached locally for a

configurable amount of time.
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Explicit Write-back

The explicit write-back policy is intended for situations where a series of file-system reads and

writes are guaranteed not to conflict with any other client, and it is desirable to explicitly control

when changes are persisted to home nodes. Reads of metadata and data are indefinitely cached,

avoiding redundant requests. Writes of metadata and data are also cached, and are not immediately

propagated to home nodes. After a series of file-system changes have been made, the changes may

be discarded (rollback) or persisted together (commit).

The explicit write-back policy works well in the context of batch scheduling because the user is

already required to tell the scheduler about dependencies between jobs. For example, imagine that

there are three jobs – A, B, and C – and Job A writes a file which Job B subsequently reads. In this

case, the user specifies that Job A must run before Job B. By implication, Jobs A and C may run

concurrently, and do not access the file system in conflicting ways.

In spite of dependency information, it may happen that one job will observe file-system paths

modified by a concurrently executing job. For example, one job might list the contents of a directory

that a concurrently running job creates a file in, even if the first job does not care about the presence

of that file. In these cases, due to caching, concurrently running jobs may see only a subset of each

other’s updates. If the dependency information has been incorrectly specified, the resulting race

conditions may lead to failures or incorrect output, but this is true even without explicit write-back.

3.3 Scheduling for Isolated, Redundant Execution

The Trellis scheduler has been extended to support redundant execution. Jobs are redundantly

executed whenever placeholders would otherwise go idle. The scheduler leverages TFS’ explicit

write-back policy to ensure that concurrent executions of the same job do not observe each other’s

file-system changes, and that only one of these executions persists its output.

As jobs proceed through the scheduling process, they normally transition through the following

states: waiting, ready, running, and done. To enable redundant execution, a new exiting state has

been created between running and done. A job in the running state may be executing redundantly

on multiple placeholders. After the first of these placeholders completes, the job moves into the

exiting state, and the corresponding file-system changes are propagated to the home nodes. Other

placeholders executing the same job continue uninterrupted, but their output is not used. After

propagation is complete, the job moves into the done state. Jobs executed without isolation are not

redundantly executed and follow the original state transitions. Figure 3.5 illustrates the new states

and transitions.
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New States

waiting

submit

ready

dependencies satisfied

deleted

delete

running (non-isolated)

get workdelete

running (isolated)

get work

disassociate
job from

placeholder
(various cases)

done

successful
completion

OR last
retry failed

restore

restore

expunge

disassociate
job from

placeholder
(various cases)

add or remove
redundant
execution

(various cases)

exiting

successful
completion

OR last
retry failed

failed to apply
file-system changes
OR lease expired

file-system changes
successfully applied

Figure 3.5: Job State Transitions. The two new states are shaded and boxed. The other states and
transitions have not changed.
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3.3.1 Job Selection Policy

The Trellis scheduler works on a pull model. Periodically, placeholders request work (command

lines) to execute. At these times, the scheduler may select a ready job for execution, select a running

job for redundant execution, ask the placeholder to come back later, or ask the placeholder to exit.

Thus, there is an opportunity to evaluate different policies for job selection.

We use a simple policy to control job selection. Ready jobs are selected first, with preference

given to jobs with higher priority or earlier submission time. Once there are no more ready jobs to

chose from, the running jobs are redundantly executed in the same preferential order. This pattern

continues to an arbitrary level of redundancy: if all jobs are executing redundantly on two placehold-

ers, and another placeholder asks for work, its assigned job will be running with triple redundancy.

Redundantly executing a job has the potential to reduce the time for that job to complete, if the

new execution has a chance of completing before the original one. This is the case if the original

placeholder has silently failed (e.g., due to network failure) or if the original placeholder is exe-

cuting the job slowly relative to the new placeholder. If redundant execution is able to reduce the

completion time for a job, it may lead to reduced makespan. This is the case if the workload is

almost complete (or similarly, if there are few jobs remaining before a barrier), or if the selected

job is on the critical path. Therefore, redundant execution is attractive for jobs which are taking

pathologically long to complete (perhaps due to placeholder failure) near the end of the workload.

Opposing this potential benefit is a decrease in efficiency. Redundantly executed jobs consume

computing resources that could be used for something else: other Trellis jobs or work external to the

metacomputer. The current implementation does not include a way to abort redundant executions

when they are no longer useful (i.e., when another execution finishes before them), which adds to

the significance of this issue.

Nonetheless, the overall opportunity can be large. In one example with MapReduce, makespan

was 44% longer without redundant execution, with redundant execution tuned to increase the total

resource consumption by only a few percent [7].

3.3.2 Scheduler and File System Integration

Placeholders drive the interaction between the file system and scheduler. To communicate with

the scheduler, placeholders use ssh to invoke scripts remotely. To communicate with the Trellis

File System, placeholders open special files (in the Samba case, as in Figure 3.3) or locally invoke

TFS utilities (in the TFS case, as in Figure 3.2). For each job execution, a placeholder follows the

following steps:

1. Request a job from the scheduler. The job is now in the running state.

2. Run the job. As the job accesses the file system, reads and writes of metadata and data are

cached.

28



3. Notify the scheduler that the job is complete. The scheduler decides whether the associated

output should be persisted or not.

4. If the scheduler says no, tell TFS to abort. The job is now in the ready state. Pending

file-system modifications are discarded, and cached metadata and data are marked potentially

invalid. The home-node file systems remain unchanged. Execution continues from Step 1.

5. Or, if the scheduler says yes, tell TFS to commit. The job is now in the exiting state. TFS

propagates the file-system modifications to the home nodes, moving data as required. At this

point, failures are not protected by redundant execution. As an alternative, the placeholder

passes information to TFS so that it can coordinate a lease with the scheduler.

6. Tell the scheduler whether or not the output was persisted successfully. The job is now in

the done state (for success) or the ready state (for failure).

In the CISS [20] experiments, occasionally failures to transfer data would result in only a subset

of a job’s output files being persisted on home nodes. Without redundant execution and the explicit

write-back policy, these failures are reported to user programs as failures in the close() system

call, which are often ignored. One of the advantages of our approach is that failure to copy output

data or make changes on home nodes is detected during the commit step and reported to the place-

holder, which then notifies the scheduler (Step 6, above). This reduces the chance that a job will be

considered complete while its output is only partially persisted. This difference arises because with

explicit write-back, placeholders are responsible for propagating file-system modifications to home

nodes, and can therefore detect associated failures and abort job execution.

3.4 Concluding Remarks

In this chapter, we have presented our extensions to the Trellis File System and scheduler to support

redundant execution, in the context of PA/Trellis. Redundant execution requires isolation between

executions of the same job, which we achieve through a lightweight integration of file system and

scheduler. The PA/Trellis configurations presented here (Figures 3.1, 3.2, and 3.3) are reused in

Chapter 5 for quantitative evaluation.

For some workloads, or with large metacomputers, our simple job selection policy may be overly

aggressive. The following are some alternate policies that could be explored as part of future work:

1. Bound the degree of redundancy. For example, do not execute any job with more than

double redundancy, or limit the total number of redundant executions that may be ongoing at

any one time.

2. Only redundantly execute jobs in the tail of the workload. The tail region could be defined

based on the number of jobs remaining in the workload or before a barrier. The simple policy
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behaves this way when the number of jobs in a workload is much larger than the available

degree of concurrency, which is common.

As an extension to this strategy, file-system isolation could be disabled in the non-tail region

of the workload, which would eliminate overheads caused by the extra transition to the exiting

state, as well as any overheads caused by the explicit write-back policy. However, redundant

execution could not be used to recover from failures in this case, and some other mechanism

would be required.

3. Use a heartbeat to detect failed or unreachable placeholders. In this case, the placeholder

would drive the heartbeat, connecting the scheduler, as the reverse connection might not be

possible (see Figure 2.1). If the heartbeat mechanism detected a failure, the placeholder could

abort its job, and the scheduler could reassign it.

30



Chapter 4

Implementation

In the previous chapter, we presented the design of our extensions to the Trellis File System and

scheduler in the context of PA/Trellis. In this chapter, we present the implementation of these

extensions, as well as other modifications to the overall PA/Trellis system. In the next chapter, we

leverage this system to quantitatively evaluate the performance impact of redundant execution.

4.1 Extensions to the Trellis File System

In Section 3.2.2, we described how the TFS layer communicates with the cache manager in the TFS

library at a high level. In Table 4.1, we list the calls that comprise the cache manager interface.

Implementations of this interface are provided for the implicit and explicit write-back policies.

The two calls specific to the explicit write-back policy, to rollback or commit pending changes,

are exposed to placeholders via a command-line utility (in the case of applications linked directly to

the TFS library), and via special files (in the case of applications accessing data via Trellis Samba).

The command-line utility can be configured to periodically renew a lease (by calling an arbitrary

command) while performing a commit, aborting should the lease expire.

4.2 Extensions to the Placeholder Scheduling System

In this section, we discuss changes to the Trellis scheduler and placeholders to support redundant

execution of jobs.

4.2.1 Database Schema

The scheduler maintains all of its state in a database, which we extend slightly to support redundant

execution. In the database schema (Figure 4.1), there is one table for each job state, among other

tables. Three changes were made to the schema:

1. A boolean, isolated, was added to the running table. Each job in the running state may

be executing with or without file-system isolation, corresponding to the “running (isolated)”
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Figure 4.1: Scheduler Database Schema (original)
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Call Purpose
sync meta() Ensure the metadata for a cache path is up-to-date.
sync file() Ensure the contents of a file in the cache are up-to-date.
cache file opened() Notify the cache manager that a file has been opened in the cache.
cache file closed() Notify the cache manager that a cache file has been closed.
sync directory() Ensure the metadata for a directory and all of its immediate children

are up-to-date.
cache directory opened() Notify the cache manager that a directory has been opened in the

cache.
cache directory closed() Notify the cache manager that a cache directory has been closed.
cache mkdir() Notify the cache manager that a directory has been created in the

cache.
cache rmdir() Notify the cache manager that a directory has been deleted in the

cache.
cache unlink() Notify the cache manager that a file has been deleted in the cache.
cache rename() Notify the cache manager that a path has been moved or renamed in

the cache.
tcmgr de reset() Rollback. For the explicit write-back policy only, discard pending

file-system modifications and mark all cache paths as potentially in-
valid.

tcmgr de commit() Commit. For the explicit write-back policy only, persist pending
file-system modifications to home nodes, moving data as required.

Table 4.1: Cache Manager Interface

and “running (non-isolated)” states in Figure 3.5, and this flag distinguishes the two cases.

Only jobs executing with file-system isolation may be redundantly executed.

2. A new table, exiting, was added with the same fields as the existing done table. This

corresponds to the new “exiting” state in Figure 3.5. The extra fields, retval and ph id,

previously unique to the done table, store the job’s exit code and the id of the placeholder

which completed the work; once file-system modifications are successfully propagated to

home nodes, these values are copied to the done table.

3. The meaning of the started timestamp has changed slightly. In the presence of redundant

execution, this timestamp refers to the moment the job most recently entered the running state,

which may be different than the moment when the successful execution began.

4.2.2 Placeholder-facing Interface

The scheduler’s placeholder-facing interface is the set of scripts, along with their input, output,

and parameters, invoked by placeholders to communicate with the scheduler. The protocol used

to communicate between placeholders and the scheduler has been extended to support the requests

outlined in Section 3.3.2 for redundant execution. The zero-infrastructure placeholder uses this

extended protocol, and supports redundant execution, while the other placeholder types continue to

use the existing protocol, and do not support redundant execution.
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Interface Script getNextJob.py
Purpose request a work item (command line)

Original
Arguments <placeholder id> <server-side Trellis directory>

<queue>
Exit Code 0 = job returned; 1 = retry later; 2 = exit
Output command line, if applicable

Extended
Arguments optional fourth argument: 0 = does not support iso-

lated execution (default); 1 = does support isolated ex-
ecution

Exit Code no change
Output If the placeholder does not support isolated execution,

the output is the same as above (i.e., the command line
when there is available work). If the placeholder does
support isolated execution, a 0 or 1 is prepended to this
command line to indicate whether or not the job should
be executed in isolation (1=yes).

Table 4.2: Placeholder Interface: Request Job

Scheduler interface changes are detailed in Tables 4.2 (request job), 4.3 (job done), 4.4 (renew

lease), and 4.5 (commit done). Placeholders communicate with the scheduler by connecting to it

with secure shell and invoking scripts. Input is provided via command-line arguments, and results

are returned via exit codes and standard output. This communication mechanism between place-

holders and the scheduler was discussed in Figure 4, Section 4 of our journal article on the Trellis

Security Infrastructure [15].

4.2.3 User Interface

Similar to the placeholder-facing interface, the scheduler exposes a user interface via a set of scripts.

For example, the mqsub command (introduced in Section 3.1.2) submits a job, and the mqstat

command displays job status. This interface has been extended naturally; jobs in the exiting state

are reported as such, and natural operations (e.g., selecting or restarting jobs) have been extended to

support the new states.

4.3 TFS Wrapper

As a middle ground between modifying applications to access data via the TFS library, and support-

ing unmodified applications via Trellis Samba, a new wrapper program was created. The program

takes an input SCL (secure copy locator; see Section 3.1.6), an output SCL, and a command line.

The command line is run, with the contents of the first SCL piped into standard input, and standard

output redirected into the second SCL. In this way, unmodified applications that can access their

input and output data exclusively via standard input and standard output can work with the TFS
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Interface Script jobDone.py
Purpose notify scheduler that work item is done

Original
Arguments <placeholder id> <server-side Trellis directory>

<queue> <job’s exit code>
Exit Code 0 = success; anything else = retry
Output None

Extended
Arguments no change
Exit Code no change
Output If the associated job was executed in isolated mode,

a boolean (0/1) may be written to indicate whether or
not the associated file-system changes should be ap-
plied. If it is omitted, file-system changes should not
be applied. (This is an asymmetry in the current im-
plementation due to the way redundant executions are
marked when they lose the race to complete first.)

Table 4.3: Placeholder Interface: Job Done

Interface Script renewExitingLease.py (new)
Purpose notify scheduler that the commit step is ongoing
Arguments <placeholder id> <server-side Trellis directory>

<queue>
Exit Code 0 = success; anything else = lease was not renewed
Output None

Table 4.4: Placeholder Interface: Renew Lease. The timing parameters are hard coded: The
scheduler considers the lease expired 6 minutes after the last successful renewal, and the placeholder
attempts to renew the lease every 60 seconds for 4.5 minutes before giving up.

Interface Script applyDone.py (new)
Purpose notify scheduler that file-system changes have been

persisted to home nodes
Arguments <placeholder id> <server-side Trellis directory>

<queue> <exit code (0=success)>
Exit Code 0 = success; anything else = retry
Output None

Table 4.5: Placeholder Interface: Commit Done
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library transparently.

4.4 Concluding Remarks

We have described the implementation of the redundant execution feature, as designed in Chapter 3.

The Trellis File System library has been modified to use a new cache manager interface, with implicit

and explicit write-back policies. The scheduler scripts and database schema, along with the zero-

infrastructure placeholder, have been extended to support the new job states and state transitions.

The zero-infrastructure placeholder leverages TFS’ explicit write-back policy to control when file-

system modifications are propagated to home nodes. Additionally, we have created two new indirect

ways of accessing the Trellis File System: Trellis Samba (described in Section 3.1.7), and the TFS

Wrapper. In the following chapter, we leverage this implementation to quantify the performance

impact of redundant execution.

In the future, it would be beneficial to extend support for redundant execution to other place-

holder types (not just zero infrastructure), allowing the feature to work with batch scheduling sys-

tems.
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Chapter 5

Empirical Evaluation

Having described our prototype system, we proceed to measure its performance and fault tolerance

in the context of the Proteome Analyst application. Empirical evaluation provides evidence that

redundant execution improves performance and fault tolerance and introduces negligible overheads

for an important class of workloads. Following this evaluation, the final section concludes. We

show:

1. Redundant execution allows Trellis to transparently recover from placeholder failures without

the need for user intervention (Section 5.3).

2. Redundant execution allows Trellis to maintain high performance when some nodes are slow

(Section 5.4).

3. Our system introduces negligible overheads for medium- or large-grain CPU-intensive work-

loads (Section 5.5.1). For fine-grain CPU-intensive workloads, overheads become significant

(Section 5.5.2), but may be partially mitigated by reducing secure-shell connection overheads

(Section 5.5.3) or by batching jobs together (Section 5.5.4).

This evaluation is targeted towards a specific class of applications: high-performance-computing

workloads comprised of independent, CPU-dominated jobs that communicate via the file system. A

discussion of other types of workloads follows in Section 5.6.

5.1 Evaluation Methodology

The Proteome Analyst application was used to run HMMER (introduced in Section 3.1.4) against

subsets of the Mycoplasma pneumoniae proteome. This proteome consists of the 687 proteins in

Mycoplasma pneumoniae which have Uniprot entries [16]. By varying experimental parameters

and measuring the resulting overheads and overall execution time (makespan), we characterize the

performance of five file-system access strategies.

Unless otherwise noted, all data points are averages of at least five runs, the± values are standard

deviation, secure-shell connection sharing is used (see Section 5.5.3 for details), and the batching
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Figure 5.1: Execution Time Breakdown – PA Analyzes a Proteome

factor (i.e., the number of hmmpfam or hmmsearch commands per job) is two. Performance

comparisons are validated via the t test at the 5% confidence level.

Tables 5.1, 5.2, and 5.3 detail the various overheads and how they are measured. As PA is used

to analyze proteomes, execution time is measured and divided into four categories, shown visually

in Figure 5.1:

1. PA Overhead. Time spent in PA before jobs are submitted to the scheduler and after those

jobs complete.

2. Polling and Trellis Driver (TD) Overhead. Time PA spends submitting jobs and waiting for

their completion while no placeholder has assigned work.

3. Placeholder Overheads. Average time a placeholder spends on tasks other than job execu-

tion. These overheads are further broken down in Tables 5.2 and 5.3.

4. Job Time. Average time a placeholder spends executing jobs.

Performance data is gathered from three sources:

1. PA Log File. PA’s log file includes overall makespan as well as the time spent in the job

submission loop and subsequent barrier.

2. Scheduler’s Job Database. The job database includes a timestamped event for each time a

placeholder is assigned or completes a job.

3. Placeholder Log Files. The placeholder log files are most detailed of all, having been ex-

tended to include a start and stop timestamp for each logical operation.
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Overhead Description How to Compute
PA Pre- and post-processing in Proteome

Analyst:

1. input file creation

2. output file parsing

3. database access to store results

4. transformation of hmmsearch
output to the hmmpfam format,
if applicable

1. “PA Overhead” = “makespan [PA
log]”− “duration of job submission
loop and barrier [PA log]”

Polling and TD Communication delays between PA
and placeholders:

1. Trellis Driver overheads (be-
lieved negligible)

2. polling delay for first place-
holder to request work

3. polling delay to detect comple-
tion of last job

1. “duration where placeholders are
doing useful work” = “time when
last job is marked complete [job
database]” − “time when first job
is assigned to a placeholder [job
database]”

2. “Polling and TD Overhead” = “du-
ration of job submission loop and
barrier [PA log]”− “duration where
placeholders are doing useful work”

Placeholder Placeholder time not spent on job ex-
ecution. See Tables 5.2 and 5.3 for a
detailed breakdown.

1. “average placeholder job time” =∑
i∈PH ( “time placeholder i spent

executing jobs [PH log]” ) / “num-
ber of placeholders”

Note: Job time does not include re-
dundant executions of jobs at the
end of the workload. It does include
redundant executions in the middle
of the workload as well as execu-
tions that fail; these are not signif-
icant for the benchmarks under test.

2. “Placeholder Overhead” = “dura-
tion where placeholders are doing
useful work” − “average place-
holder job time”

Table 5.1: High-level Overheads. Execution time is divided between job time and these categories
in the high-level performance graphs. Variables in the “How to Compute” column are expressed as
“textual description [data source]”.
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Overhead Description How to Compute
Get Job Average time placeholders spend requesting work.

For each job execution:

1. synchronous message to scheduler

2. database access

“Get Job Overhead” =
∑

i∈PH (
“time placeholder i spent re-
questing work [PH log]” ) /
“number of placeholders”

Notify Job
Complete

Average time placeholders spend notifying the sched-
uler that jobs are complete. For each job execution:

1. synchronous message to scheduler

2. database access

“Notify Job Complete Over-
head” =

∑
i∈PH ( “time place-

holder i spent notifying the
scheduler that jobs are complete
[PH log]” ) / “number of place-
holders”

Commit
Changes

Average time placeholders spend committing file-
system changes (TFS-EXPL and SAMBA-EXPL
only). Each job execution is either committed or
rolled back. For commits:

1. data transfer to home nodes

2. file-system metadata changes on home nodes

Other strategies include these steps in job execution.

“Commit Changes Overhead”
=

∑
i∈PH ( “time placeholder

i spent committing file-system
changes [PH log]” ) / “number
of placeholders”

Notify
Commit
Complete

Average time placeholders spend notifying the sched-
uler that commits are complete (TFS-EXPL and
SAMBA-EXPL only). Following a commit:

1. synchronous message to scheduler

2. database access

“Notify Commit Complete Over-
head” =

∑
i∈PH ( “time place-

holder i spent notifying the
scheduler that commits are com-
plete [PH log]” ) / “number of
placeholders”

Rollback
Changes

Average time placeholders spend rolling back file-
system changes (TFS-EXPL and SAMBA-EXPL
only). When a job execution completes after a redun-
dant one, the local store of pending changes is dis-
carded.

“Rollback Changes Overhead”
=

∑
i∈PH ( “time placeholder

i spent rolling back file-system
changes [PH log]” ) / “number
of placeholders”

Sleep (Work
Starvation)

Average time placeholders spend sleeping when there
is no available work. Causes include:

1. Slow producer. The job producer (PA, Trellis
Driver) falls behind.

2. Dependencies. All remaining jobs depend on
running ones. This is not relevant to the work-
loads presented here.

“Sleep Overhead” =
∑

i∈PH (
“time placeholder i spent sleep-
ing [PH log]” ) / “number of
placeholders”

Placeholder
Script

Average time placeholders spend on everything not
accounted for above (e.g., flow control or writing de-
bug output).

“Placeholder Script Overhead”
=

∑
i∈PH ( “time placeholder i

spent between timed operations
[PH log]” ) / “number of place-
holders”

Table 5.2: Placeholder Overheads Part I: Overheads Based on the Placeholder Logs. Place-
holder overhead is divided into these categories (and those from Table 5.3) in the placeholder over-
head graphs. Variables in the “How to Compute” column are expressed as “textual description [data
source]”.
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Overhead Description How to Compute
Staggered
Placeholder
Start Times

Average time placeholders are idle at
the beginning of the workload. It is
influenced by:

1. differences in when placehold-
ers were launched

2. placeholder polling interval (60
seconds) before work is avail-
able

3. potential bottleneck adding
jobs to the job database at the
beginning of the workload

1. “placeholder i start time” = “time when
first job is assigned to placeholder i [job
database]”

2. “first placeholder start time” =
mini∈PH ( “placeholder i start time” )

3. “Staggered Placeholder Start Times
Overhead” =

∑
i∈PH ( “placeholder i

start time” − “first placeholder start
time” ) / “number of placeholders”

Staggered
Placeholder
End Times

Average time placeholders are idle at
the end of the workload, including:

1. waiting for other placehold-
ers to complete, either because
they are slow or simply due to
imperfect load balancing

2. redundantly executing jobs
which are ultimately com-
pleted by another placeholder
first

1. “placeholder i end time” = “time when
placeholder i last marks a job complete
[job database]”

2. “last placeholder end time” =
maxi∈PH ( “placeholder i end time” )

3. “Staggered Placeholder End Times
Overhead” =

∑
i∈PH ( “last placeholder

end time” − “placeholder i end time” )
/ “number of placeholders”

Placeholder
Correction

A small negative time to correct
for activities counted both from the
placeholder and scheduler perspec-
tives:

1. the average duration between
a placeholder initiating its first
successful work request and
that request being logged by the
scheduler

2. the average duration between
the scheduler logging the last
work completion notification
for a placeholder and control
returning to that placeholder

Clock skew between the scheduler
and placeholder nodes, if significant,
would also influence this value.

1. “placeholder i duration as seen by
scheduler” = “placeholder i end time”
− “placeholder i start time”

2. “placeholder i duration as seen by place-
holder” = “time placeholder i completes
notifying the scheduler about its last
complete job [PH log]” − “time im-
mediately preceding placeholder i’s first
successful request for work [PH log]”

3. “Placeholder Correction” =
∑

i∈PH (
“placeholder i duration as seen by
scheduler” − “placeholder i duration as
seen by placeholder” ) / “number of
placeholders”

Table 5.3: Placeholder Overheads Part II: Overheads Based on the Job Database. Placeholder
overhead is divided into these categories (and those from Table 5.2) in the placeholder overhead
graphs. Variables in the “How to Compute” column are expressed as “textual description [data
source]”.
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Figure 5.2 compares the two ways PA can compute HMMER results for a set of proteins [4].

HMMER tries to match proteins with protein families, which are modeled by hidden Markov models

(HMMs). In the context of PA, users provide whole or partial proteomes (groups of proteins) to be

analyzed together. In this case, HMMER needs to compare each protein with each HMM from a

static database. This task can be divided in many ways, but the simplest are as follows:

1. Use the hmmpfam tool to compare individual proteins with all HMMs (Figure 5.2a).

2. Use the hmmsearch tool to compare individual HMMs with all proteins (Figure 5.2b).

Each execution of hmmpfam or hmmsearch causes one input file to be read and one output file

to be written. In addition, one of a number of static read-only files is read, and these are replicated

so as to be local to each placeholder. The strategy for accessing files during job execution impacts

performance, deployment options, and effort required to port applications.

We compare five file-system access strategies: NFS, TFS-IMPL, TFS-EXPL, SAMBA-IMPL,

and SAMBA-EXPL. The NFS strategy stores shared data on a central NFS server. The other

four strategies indirect file-system access via the TFS library, with data ultimately residing on the

node where PA executes. Within these four strategies, there are two access mechanisms (TFS and

SAMBA, see Table 5.4) and two write-back policies (implicit and explicit, see Section 3.2.3); the

strategies are named by concatenating an access mechanism with a write-back policy.

We are interested in the performance of the explicit write-back strategies (TFS-EXPL and SAMBA-

EXPL) relative to the others in various scenarios. These strategies isolate file-system accesses during

job execution, allowing redundant execution, with the goal of reducing the impact of slow or failed

nodes. The NFS strategy is a good comparison point because NFS is a ubiquitous, simple, and

efficient way to share data in a LAN context. The implicit write-back strategies (TFS-IMPL and

SAMBA-IMPL) are good comparison points because (a) they allow sharing of data across wide area

networks and administrative domains, and (b) they are based on the same TFS library code, allow-

ing us to evaluate the impact of redundant execution in isolation. The NFS, SAMBA-IMPL, and

SAMBA-EXPL strategies generally allow the use of unmodified applications, while the TFS-IMPL

and TFS-EXPL strategies generally require applications to be modified to access the file system via

the TFS library.

5.2 Experimental Platform

There are three experimental platforms: one including two administrative domains (Experimental

Platform A, Table 5.5), another with two computers of different speeds (Experimental Platform B,

Table 5.6), and a homogeneous cluster (Experimental Platform C, Table 5.7). These platforms are

configured as described in Figures 3.1 (for NFS), 3.2 (for TFS-IMPL and TFS-EXPL), and 3.3 (for

SAMBA-IMPL and SAMBA-EXPL). Only Experimental Platform B supports Samba.
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(a) hmmpfam (b) hmmsearch

hmmpfam hmmsearch
strategy Compare individual proteins

against all protein families.
Compare individual protein fam-
ilies against all proteins.

granularity medium (minutes) small (seconds or less for hun-
dreds of proteins), grows linearly
with proteome size, highly vari-
able by protein family

number of jobs
(before batching),
input files, and
output files

same as the number of proteins same as the number of protein
families (7502)

post-processing Populate database with contents
of output files.

Transform hmmsearch-style out-
put to hmmpfam-style output.
Populate database with contents
of transformed output files.

(c) Comparison Points

Figure 5.2: Using HMMER to Match Proteins to Protein Families: hmmpfam versus hmm-
search. Figures (a) and (b) are based on RAMMER [21].
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Mechanism Description
TFS A wrapper program (Section 4.3) linked to the TFS library mediates ac-

cess to the input and output files; the input file is passed to the HMMER
executable on standard input and the output file is populated from stan-
dard output. This is representative of applications which are modified to
use the TFS library directly.

SAMBA An extended Samba server (Section 3.1.7) linked to the TFS library trans-
parently provides access to remote files; from the perspective of the HM-
MER executable, it is directly accessing the input and output files. In
general, this mechanism can be used to support unmodified applications.

Table 5.4: File-system Access Mechanisms

Host calais cleardale NotScout
CPU 2.2 GHz AMD 64 1 GHz Pentium III Dual 2.7 GHz G5
Memory 1 GB 256 MB 2 GB
OS Linux 2.6.9 Linux 2.4.20 Mac OS X 10.4
Role PA, scheduler, 1

placeholder
1 placeholder 2 placeholders

Location local remote, same city
Network 100 Mbit/s between local hosts; DSL between local and remote hosts

Table 5.5: Experimental Platform A – Three Nodes in Two Administrative Domains

Host lamont cleardale brule
CPU 2.2 GHz AMD 1 GHz Pentium III dual 1.8 GHz AMD
Memory 1 GB 256 MB 2 GB
OS Linux 2.4.25 Linux 2.4.20 Linux 2.6.11
Role PA, scheduler, Trel-

lis Samba, 1 place-
holder, CVS server
(shared)

1 placeholder NFS server (shared)

Location local
Network 100 Mbit/s

Table 5.6: Experimental Platform B – Two Heterogeneous Nodes with Samba

Host jasper-xx jasper-xx (4x or 8x) brule
CPU dual 1.5 GHz AMD dual 1.8 GHz AMD
Memory 1.5 GB 2 GB
OS Linux 2.4.18 Linux 2.6.11
Role PA, scheduler 2 placeholders each NFS server (shared)
Location local
Network 1 Gbit/s

Table 5.7: Experimental Platform C – Cluster
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5.3 Fault Tolerance and Multiple Administrative Domains

In the first experiment, we evaluate our system with placeholders spanning multiple administrative

domains, with and without artificial placeholder-node failure. Experimental Platform A was used

(Table 5.5), providing four placeholders in two administrative domains. File-system access was

mediated with the TFS wrapper, and secure-shell connection sharing (Section 5.5.3) was not used.

100% of the proteome (687 proteins) was analyzed with hmmpfam.

In a set of single runs, the system took 4 hours 53 minutes, and 4 hours 58 minutes to execute

with the TFS-IMPL and TFS-EXPL strategies, respectively. This demonstrates that the TFS-EXPL

strategy, which allows for redundant execution, has a similar performance to the traditional one. We

explore this result more thoroughly in Section 5.5.1. This experiment also demonstrates that the

system can do real work while accessing files across multiple administrative domains.

In a third run, using the TFS-EXPL strategy, NotScout was rebooted after two hours while

running jobs, leaving the computation at that point. The workload completed successfully after 9

hours 46 minutes. The fact that the workload completed at all demonstrates that redundant execution

allows the system to recover automatically from failed placeholders that are executing jobs. Based

on the job execution rates of each machine, we expect that the workload would take much longer to

complete than 9 hours 46 minutes without NotScout’s contribution during the first two hours. The

remainder of this chapter focuses on overheads introduced by our redundant execution approach.

5.4 Slow Nodes

To demonstrate that our system maintains high performance when faced with slow nodes, we arti-

ficially slow one of four cluster nodes by five or ten times. We use hmmpfam with the four node

cluster configuration to analyze 343 proteins. Figure 5.3 summarizes the results; for details, compare

Figures 5.4, 5.6, and 5.8 and Figures 5.5, 5.7, and 5.9.

When no nodes are slowed, all three strategies perform about the same; compare makespans

in Figure 5.4, e.g. 5592 ± 25 s for TFS-IMPL and 5622 ± 48 s for TFS-EXPL. When one node

is slowed by approximately five times, the TFS-EXPL strategy uses redundancy to avoid waiting

for the slow node at the end of the workload, and thus gains an advantage, e.g. 7604 ± 269 s for

TFS-IMPL versus 7031± 103 s for TFS-EXPL (Figure 5.6). This advantage grows when the node is

further slowed to a factor of approximately ten times. Although the TFS-EXPL strategy successfully

mitigates the slow node’s negative effect on the workload tail, makespan is still higher than when

the node was not slowed. This is because slowing the node reduces the overall throughput of the

cluster.
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Figure 5.3: Impact of Redundant Execution with Slow Nodes: hmmpfam, 343 proteins, 4×2
cluster CPUs. Smaller numbers are better. See Figures 5.4, 5.6, and 5.8 for details. When one
node is artificially slowed, the TFS-EXPL strategy outperforms the others because it can use redun-
dancy to avoid waiting for the slow node at the end of the workload. This effect is larger when the
node is slowed more. All strategies, including TFS-EXPL, decrease in performance as the node is
increasingly slowed. This is partly due to a reduction in the cluster’s overall throughput.

5.5 Overheads

In this section, we leverage the two HMMER execution strategies (Figure 5.2) to evaluate the perfor-

mance of our system for medium- and fine-grain workloads. When using hmmpfam, each job reads

and writes two small files (typically ≤2 kB input, ≤25 kB output), and spends minutes in CPU-

bound computation; this is an example of a medium-grain workload. When using hmmsearch

with 343 proteins, each job also reads and writes two small files (typically 150 kB input, ≤8 kB

output), but many jobs complete in less than a second; this is an example of a fine-grain workload.

The granularity of the hmmsearch workload can be increased by increasing the batching factor

(e.g., from 2 to 32), but the ratio of file accesses to computation time remains high. Another signif-

icant difference is that the process of converting hmmsearch-style output to hmmpfam-style output

– required for PA – is sequential, which suggests that the hmmpfam approach will scale better with

the number of CPUs.

Figure 5.10 shows the relative performance of using hmmpfam versus hmmsearch to com-

pute HMMER results for 343 proteins. In general, the medium-grain workload (i.e., hmmpfam) is

much less sensitive to file-system access strategy, where the fine-grain workload (i.e., hmmsearch)

highlights significant overheads imposed by the TFS library and the explicit write-back policy. In

previous work, using hmmsearch with PA was shown to be as much as three times more effi-

cient than hmmpfam for large proteomes with a high batching factor, four CPUs, and shared NFS

storage [4]. In the figure, we can see that even with a small proteome and small batching factor,

hmmsearch completes more quickly. In this work, we are more interested in the impact of the

explicit write-back strategies on medium- and fine-grain workloads than the relative advantages of

hmmpfam or hmmsearch. It is worth noting, however, that real problems often may be solved in

different ways, resulting in different workloads with different performance characteristics.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 13 11 10
PA Overhead (s) 33 ± 2 28 ± 1 28 ± 0
Placeholder Overhead (s) 247 ± 38 147 ± 19 140 ± 18
Polling and TD Overhead (s) 83 ± 11 48 ± 9 45 ± 15
Job (s) 5341 ± 1 5369 ± 11 5409 ± 48
Job + Commit (s) 5341 ± 1 5369 ± 11 5414 ± 49
Makespan (s) 5704 ± 41 5592 ± 25 5622 ± 48

(c) High-level Overheads in Context, Source Data

Figure 5.4: Performance Breakdown: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs. Smaller numbers are better. The medium-grain hmmpfam jobs and large workload result in
small overheads and similar performance for the three strategies. The slight disadvantage for NFS
can be traced to the “Staggered Placeholder Start Times” and “Sleep – Work Starvation” overheads
(see Figure 5.5f), which are believed to be caused by database contention during job submission.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 16 ± 10 7 ± 2 7 ± 2
Notify Job Complete (s) 7 ± 2 7 ± 2 8 ± 5
Commit Changes (s) 0 ± 0 0 ± 0 6 ± 1
Notify Commit Complete (s) 0 ± 0 0 ± 0 5 ± 1
Sleep – Work Starvation (s) 13 ± 9 0 ± 0 0 ± 0
Placeholder Script Overheads (s) 1 ± 0 0 ± 0 1 ± 0
Staggered Placeholder Start Times (s) 105 ± 39 19 ± 14 3 ± 5
Staggered Placeholder End Times (s) 114 ± 21 117 ± 15 112 ± 16
Placeholder Correction (s) -9 ± 8 -3 ± 2 -3 ± 2
Total (s) 247 ± 38 147 ± 19 140 ± 18

(f) Placeholder Overhead Detail, Source Data

Figure 5.5: Placeholder Overheads: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs. Smaller numbers are better. Overheads are minimal and dominated by staggered placeholder
start and end times. As mentioned in Figure 5.4, NFS experiences higher “Staggered Placeholder
Start Times” and “Sleep – Work Starvation” overheads.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 23 24 23
PA Overhead (s) 34 ± 1 28 ± 1 28 ± 0
Placeholder Overhead (s) 790 ± 261 737 ± 222 318 ± 84
Polling and TD Overhead (s) 71 ± 17 32 ± 19 32 ± 18
Job (s) 6779 ± 71 6807 ± 59 6652 ± 58
Job + Commit (s) 6779 ± 71 6807 ± 59 6659 ± 58
Makespan (s) 7675 ± 314 7604 ± 269 7031 ± 103

(c) High-level Overheads in Context, Source Data

Figure 5.6: Performance Breakdown: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs, one node slowed 5x. Smaller numbers are better. The TFS-EXPL case, which benefits from
redundant execution, completes sooner than the others due to reduced placeholder overheads.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 19 ± 10 8 ± 4 8 ± 5
Notify Job Complete (s) 8 ± 2 7 ± 2 8 ± 4
Commit Changes (s) 0 ± 0 0 ± 0 6 ± 1
Notify Commit Complete (s) 0 ± 0 0 ± 0 5 ± 1
Rollback Changes (s) 0 ± 0 0 ± 0 0 ± 0
Sleep – Work Starvation (s) 12 ± 11 0 ± 0 0 ± 0
Placeholder Script Overheads (s) 1 ± 0 1 ± 0 1 ± 0
Staggered Placeholder Start Times (s) 124 ± 43 27 ± 6 23 ± 7
Staggered Placeholder End Times (s) 639 ± 250 697 ± 222 270 ± 86
Placeholder Correction (s) -12 ± 8 -3 ± 3 -4 ± 5
Total (s) 790 ± 261 737 ± 222 318 ± 84

(f) Placeholder Overhead Detail, Source Data

Figure 5.7: Placeholder Overheads: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs, one node slowed 5x. Smaller numbers are better. Placeholder overheads are dominated
by the “Staggered Placeholder End Times” overhead; often, fast placeholders are forced to wait for
the slow ones at the end of the workload. The TFS-EXPL strategy uses redundant execution to
reduce this overhead. The large standard deviations for the NFS and TFS-IMPL strategies occur
because sometimes the slow placeholders complete at just the right time and the fast ones do not
have to wait.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 5 5 5
PA Overhead (s) 35 ± 2 28 ± 0 28 ± 1
Placeholder Overhead (s) 1360 ± 461 1161 ± 461 415 ± 159
Polling and TD Overhead (s) 66 ± 21 43 ± 37 62 ± 23
Job (s) 7167 ± 126 7165 ± 88 6697 ± 143
Job + Commit (s) 7167 ± 126 7165 ± 88 6704 ± 142
Makespan (s) 8627 ± 577 8398 ± 537 7202 ± 28

(c) High-level Overheads in Context, Source Data

Figure 5.8: Performance Breakdown: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs, one node slowed 10x. Smaller numbers are better. Compared with Figure 5.6 (one node
slowed only 5x), the TFS-EXPL strategy is a little bit slower (∼200s) and the others are a lot slower
(∼750s).
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).

 0

 0.2

 0.4

 0.6

 0.8

 1

NFS TFS-IMPL TFS-EXPL

N
or

m
al

iz
ed

 T
im

e

File-system Access Strategy

Get Job

Notify Job Complete

Commit Changes

Notify Commit Complete

Sleep -- Work Starvation

Placeholder Script Overheads

Staggered Placeholder Start Times

Staggered Placeholder End Times

(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 12 ± 10 8 ± 5 7 ± 1
Notify Job Complete (s) 8 ± 3 7 ± 1 7 ± 2
Commit Changes (s) 0 ± 0 0 ± 0 7 ± 1
Notify Commit Complete (s) 0 ± 0 0 ± 0 5 ± 1
Sleep – Work Starvation (s) 11 ± 4 0 ± 0 0 ± 0
Placeholder Script Overheads (s) 1 ± 0 1 ± 0 1 ± 0
Staggered Placeholder Start Times (s) 101 ± 56 32 ± 6 26 ± 15
Staggered Placeholder End Times (s) 1235 ± 515 1117 ± 462 364 ± 156
Placeholder Correction (s) -7 ± 8 -4 ± 6 -2 ± 2
Total (s) 1360 ± 461 1161 ± 461 415 ± 159

(f) Placeholder Overhead Detail, Source Data

Figure 5.9: Placeholder Overheads: hmmpfam (medium grain), 343 proteins, 4×2 cluster
CPUs, one node slowed 10x. Smaller numbers are better. As with Figure 5.7 (one node slowed
only 5x), the TFS-EXPL strategy is able to mitigate the “Staggered Placeholder End Times” over-
head resulting from slow nodes.
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(a) Two heterogeneous nodes. See Figures 5.11 and 5.15 for details.
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(b) 4×2 cluster CPUs. See Figures 5.4 and 5.17 for details.

Figure 5.10: Relative Performance: hmmpfam versus hmmsearch, 343 proteins. Smaller num-
bers are better. The TFS library and explicit write-back strategies introduce few overheads for the
medium-grain hmmpfam workload, and significant overheads for the fine-grain hmmsearch work-
load. The hmmsearch workload is more efficient overall.
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5.5.1 HMMER via hmmpfam (Medium-Grain Jobs)

Here, we use hmmpfam to show that the overhead of redundant execution is negligible for medium-

grain workloads. The following experiments evaluate 343 proteins with hmmpfam on Experimental

Platform B (two heterogeneous nodes) and Experimental Platform C (cluster with 4 or 8 placeholder

nodes).

The results for two heterogeneous nodes are shown in Figures 5.11 and 5.12. For this medium-

grain workload, overheads are small (1-2%), and the majority of the makespan is spent executing

jobs. For example, the SAMBA-IMPL strategy spends 21247 ± 379 s executing jobs out of a total

21610 ± 432 s (Figure 5.11c). More notably, makespans for the five strategies are statistically

indistinguishable; any overheads introduced by the TFS library or the explicit write-back policy are

negligible in this case.

The results for the four-node cluster configuration are shown in Figures 5.4 and 5.5. The results

for the eight-node cluster configuration are shown in Figures 5.13 and 5.14. Here, NFS performs

worse than the other strategies due to higher placeholder overheads. In particular, NFS has higher

“Staggered Placeholder Start Times” and “Sleep – Work Starvation” overheads, which are believed

to be caused by database contention during job submission. In the job submission loop, Trellis

Driver attempts to submit as many as 100 jobs concurrently, which can lead to deadlock / retry

loops as the database code is not optimized for this use. It is unclear why this issue is significantly

more pronounced for NFS than the other strategies, but it may be related to input-file accesses over

NFS just prior to the job-submission loop. The TFS-IMPL and TFS-EXPL makespans remain very

similar, e.g. 2935 ± 18 s for TFS-IMPL versus 2960 ± 40 s for TFS-EXPL in Figure 5.13c.

Comparing makespans for the four- and eight-node configurations, we see that hmmpfam scales

well with the number of nodes. When doubling the number of CPUs, makespan is reduced by 46%,

48%, and 47% for NFS, TFS-IMPL, and TFS-EXPL respectively, with 50% being the ideal value.

Although job time (including commit for TFS-EXPL) is reduced almost exactly to one half for each

strategy, placeholder overheads make up the difference. It is clear that for a very large number of

CPUs or a very small workload, placeholder overheads would become the dominant cost.

5.5.2 HMMER via hmmsearch (Fine-Grain Jobs)

Here, we use hmmsearch to evaluate the impact of redundant execution for fine-grain workloads.

In contrast to the medium-grain workloads, overheads are larger, and in particular, the overhead

of redundant execution is not negligible. The following experiments evaluate 343 proteins with

hmmsearch on Experimental Platform B (two heterogeneous nodes) and Experimental Platform C

(cluster with 4 placeholder nodes). The results for two heterogeneous nodes are shown in Figures

5.15 and 5.16. The results for the four-node cluster configuration are shown in Figures 5.17 and

5.18. We make a number of observations:
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-
IMPL

TFS-
EXPL

SAMBA-
IMPL

SAMBA-
EXPL

Number of Samples 11 10 10 10 10
PA Overhead (s) 12 ± 2 12 ± 2 13 ± 1 14 ± 1 17 ± 6
Placeholder Overhead (s) 129 ± 40 139 ± 48 214 ± 23 209 ± 96 202 ± 38
Polling and TD Overhead (s) 134 ± 24 139 ± 27 120 ± 29 140 ± 19 143 ± 32
Job (s) 21125 ± 351 21208 ± 266 21213 ± 242 21247 ± 379 21214 ± 484
Job + Commit (s) 21125 ± 351 21208 ± 266 21269 ± 244 21247 ± 379 21259 ± 487
Makespan (s) 21401 ± 366 21498 ± 288 21561 ± 237 21610 ± 432 21576 ± 515

(c) High-level Overheads in Context, Source Data

Figure 5.11: Performance Breakdown: hmmpfam (medium grain), 343 proteins, two hetero-
geneous nodes. Smaller numbers are better. There are no statistically significant differences in
makespan between the five strategies. Neither the TFS library, the explicit write-back policy, nor
Trellis Samba introduce significant overheads or performance benefits versus NFS in this scenario.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-
IMPL

TFS-
EXPL

SAMBA-
IMPL

SAMBA-
EXPL

Get Job (s) 117 ± 14 107 ± 29 107 ± 19 143 ± 50 104 ± 27
Notify Job Complete (s) 41 ± 6 33 ± 2 39 ± 3 62 ± 45 41 ± 3
Commit Changes (s) 0 ± 0 0 ± 0 55 ± 4 0 ± 0 45 ± 4
Notify Commit Complete (s) 0 ± 0 0 ± 0 30 ± 2 0 ± 0 30 ± 2
Placeholder Script Overheads (s) 13 ± 1 12 ± 1 14 ± 1 15 ± 5 14 ± 1
Staggered Placeholder Start Times (s) 0 ± 0 3 ± 10 0 ± 0 0 ± 0 0 ± 0
Staggered Placeholder End Times (s) 42 ± 36 59 ± 42 45 ± 22 72 ± 41 42 ± 29
Placeholder Correction (s) -83 ± 14 -75 ± 29 -76 ± 19 -84 ± 11 -73 ± 27
Total (s) 129 ± 40 139 ± 48 214 ± 23 209 ± 96 202 ± 38

(f) Placeholder Overhead Detail, Source Data

Figure 5.12: Placeholder Overheads: hmmpfam (medium grain), 343 proteins, two heteroge-
neous nodes. Smaller numbers are better. The TFS-EXPL and SAMBA-EXPL strategies have a
separate step to copy data back to the home node (commit changes), and an extra step to notify the
scheduler when this is complete (notify commit complete).
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 5 6 5
PA Overhead (s) 34 ± 1 29 ± 1 29 ± 0
Placeholder Overhead (s) 321 ± 26 191 ± 17 178 ± 19
Polling and TD Overhead (s) 78 ± 15 34 ± 21 29 ± 9
Job (s) 2672 ± 0 2681 ± 0 2724 ± 44
Job + Commit (s) 2672 ± 0 2681 ± 0 2727 ± 44
Makespan (s) 3105 ± 36 2935 ± 18 2960 ± 40

(c) High-level Overheads in Context, Source Data

Figure 5.13: Performance Breakdown: hmmpfam (medium grain), 343 proteins, 8×2 cluster
CPUs. Smaller numbers are better. Compared with Figure 5.4 (half as many placeholder CPUs), job
time (including commit for TFS-EXPL) is reduced to almost exactly half for each strategy. However,
placeholder overheads are slightly higher. Overall, makespan is reduced by 46%, 48%, and 47% for
NFS, TFS-IMPL, and TFS-EXPL respectively.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 17 ± 15 4 ± 1 3 ± 1
Notify Job Complete (s) 3 ± 2 7 ± 3 5 ± 3
Commit Changes (s) 0 ± 0 0 ± 0 3 ± 0
Notify Commit Complete (s) 0 ± 0 0 ± 0 3 ± 0
Rollback Changes (s) 0 ± 0 0 ± 0 0 ± 0
Sleep – Work Starvation (s) 7 ± 5 2 ± 6 0 ± 0
Placeholder Script Overheads (s) 0 ± 0 0 ± 0 0 ± 0
Staggered Placeholder Start Times (s) 184 ± 45 42 ± 8 30 ± 1
Staggered Placeholder End Times (s) 123 ± 28 137 ± 19 134 ± 21
Placeholder Correction (s) -12 ± 14 -1 ± 0 -1 ± 0
Total (s) 321 ± 26 191 ± 17 178 ± 19

(f) Placeholder Overhead Detail, Source Data

Figure 5.14: Placeholder Overheads: hmmpfam (medium grain), 343 proteins, 8×2 cluster
CPUs. Smaller numbers are better. Compared with Figure 5.5 (half as many placeholder CPUs),
placeholder overheads are slightly higher.
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1. In contrast to the hmmpfam workloads, placeholder overheads are much larger; compare

Figures 5.4 (hmmpfam) and 5.17 (hmmsearch), e.g. 147 ± 19 s for TFS-IMPL in Figure

5.4 versus 623 ± 37 s for TFS-IMPL in Figure 5.17. This results from the much larger

number of hmmsearch jobs and their much shorter duration. Hence, more time is spent

communicating with the scheduler to request work or signal job completion, overheads which

are almost negligible with hmmpfam. This is a significant disadvantage for the explicit write-

back strategies (TFS-EXPL and SAMBA-EXPL) which have an extra synchronous message

to the scheduler for every job to signal completion of the commit step.

2. The NFS strategy performs much better than the others, primarily because it can transfer

small files more quickly than the TFS library, which uses scp. This difference shows up

in job time (including commit for TFS-EXPL and SAMBA-EXPL), where NFS has a clear

advantage, e.g. 1715 ± 5 s for NFS versus 2188 ± 11 s for TFS-IMPL in Figure 5.17. For

two heterogeneous nodes, the other strategies are as much as 42% slower overall, i.e. 13395

± 193 s for TFS-EXPL versus 9436± 122 s for NFS in Figure 5.15. For the four-node cluster

configuration, the other strategies are as much as 21% slower overall, i.e. 3394 ± 17 s for

TFS-EXPL versus 2808 ± 48 s for NFS in Figure 5.17.

3. The SAMBA strategies perform better than their non-SAMBA counterparts, i.e. 11787± 186

s for SAMBA-IMPL versus 12090 ± 280 s for TFS-IMPL and 12436 ± 837 s for SAMBA-

EXPL versus 13395 ± 193 s for TFS-EXPL in Figure 5.15. This is because Trellis Samba

only needs to connect to the home node once to start the Trellis RPC agent – required for

metadata operations – while the TFS-IMPL and TFS-EXPL strategies must do this for every

execution of hmmsearch.

4. The explicit write-back strategies, which enable redundant execution, perform slightly worse

than their implicit write-back counterparts; compare makespans for TFS-IMPL versus TFS-

EXPL and SAMBA-IMPL versus SAMBA-EXPL in Figures 5.15 and 5.17, e.g. 3015 ± 37 s

for TFS-IMPL versus 3394 ± 17 s for TFS-EXPL in Figure 5.17. This primarily results from

the extra synchronous messages to the scheduler to notify completion of the commit step (the

“Notify Commit Complete” overhead), e.g. 302 ± 8 s for TFS-EXPL in Figure 5.18.

5. The PA overhead is higher for NFS than for the other strategies because it has to access the

NFS server to create the input files and read the output files, e.g. 294 ± 4 s for NFS versus

164 ± 2 s for TFS-IMPL in Figure 5.17c. This effect was also visible for the hmmpfam

workloads, e.g. 33 ± 2 s for NFS versus 28 ± 1 s for TFS-IMPL in Figure 5.4c, but is more

noticeable here because there are more files to read and write.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-
IMPL

TFS-
EXPL

SAMBA-
IMPL

SAMBA-
EXPL

Number of Samples 18 18 17 16 16
PA Overhead (s) 169 ± 18 101 ± 2 102 ± 3 102 ± 3 103 ± 2
Placeholder Overhead (s) 1570 ± 71 1404 ± 80 3133 ± 128 1462 ± 57 3542 ± 426
Polling and TD Overhead (s) 139 ± 14 129 ± 15 135 ± 13 128 ± 14 128 ± 13
Job (s) 7559 ± 50 10457 ± 203 10025 ± 74 10094 ± 168 8663 ± 457
Job + Commit (s) 7559 ± 50 10457 ± 203 10988 ± 123 10094 ± 168 9883 ± 559
Makespan (s) 9436 ± 122 12090 ± 280 13395 ± 193 11787 ± 186 12436 ± 837

(c) High-level Overheads in Context, Source Data

Figure 5.15: Performance Breakdown: hmmsearch (fine grain), 343 proteins, two heteroge-
neous nodes. Smaller numbers are better. Placeholder overheads are large due to the fine-grain
hmmsearch jobs. NFS dominates the other strategies. The IMPL strategies beat the EXPL ones,
and the SAMBA strategies beat the TFS ones.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-
IMPL

TFS-
EXPL

SAMBA-
IMPL

SAMBA-
EXPL

Get Job (s) 851 ± 40 740 ± 38 762 ± 26 756 ± 35 793 ± 100
Notify Job Complete (s) 725 ± 33 645 ± 42 717 ± 30 686 ± 28 765 ± 109
Commit Changes (s) 0 ± 0 0 ± 0 963 ± 60 0 ± 0 1220 ± 146
Notify Commit Complete (s) 0 ± 0 0 ± 0 638 ± 23 0 ± 0 703 ± 82
Placeholder Script Overheads (s) 72 ± 1 75 ± 0 119 ± 1 76 ± 1 119 ± 7
Staggered Placeholder End Times (s) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
Placeholder Correction (s) -78 ± 14 -58 ± 13 -66 ± 9 -56 ± 15 -59 ± 14
Total (s) 1570 ± 71 1404 ± 80 3133 ± 128 1462 ± 57 3542 ± 426

(f) Placeholder Overhead Detail, Source Data

Figure 5.16: Placeholder Overheads: hmmsearch (fine grain), 343 proteins, two heterogeneous
nodes. Smaller numbers are better. All strategies spend a large amount of time requesting work from
the scheduler and signaling job completion. The explicit write-back strategies additionally include
a phase to copy output data to the home node (commit changes), which other strategies include in
job execution, and an extra message per job to signal completion of the commit step (notify commit
complete). Compared with Figure 5.12 (hmmpfam, different scale), placeholder overheads are much
larger.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 5 5 5
PA Overhead (s) 294 ± 4 164 ± 2 164 ± 1
Placeholder Overhead (s) 721 ± 50 623 ± 37 1114 ± 15
Polling and TD Overhead (s) 78 ± 21 39 ± 10 47 ± 12
Job (s) 1715 ± 5 2188 ± 11 2069 ± 5
Job + Commit (s) 1715 ± 5 2188 ± 11 2245 ± 4
Makespan (s) 2808 ± 48 3015 ± 37 3394 ± 17

(c) High-level Overheads in Context, Source Data

Figure 5.17: Performance Breakdown: hmmsearch (fine grain), 343 proteins, 4×2 cluster
CPUs. Smaller numbers are better. With the fine-grain hmmsearch jobs, overheads are a ma-
jor portion of overall makespan. TFS-IMPL is slower than NFS because it copies small files with
scp, impacting job time, and TFS-EXPL is slower yet because of the commit notification overhead
(see Figure 5.18). Some of the increase in placeholder overheads from TFS-IMPL to TFS-EXPL is
countered by a reduction in job time due to the different phase in which data is copied to the home
node.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 328 ± 7 299 ± 14 322 ± 9
Notify Job Complete (s) 318 ± 6 266 ± 17 288 ± 3
Commit Changes (s) 0 ± 0 0 ± 0 176 ± 5
Notify Commit Complete (s) 0 ± 0 0 ± 0 302 ± 8
Sleep – Work Starvation (s) 22 ± 15 2 ± 3 0 ± 0
Placeholder Script Overheads (s) 12 ± 1 12 ± 1 19 ± 1
Staggered Placeholder Start Times (s) 2 ± 0 32 ± 7 28 ± 8
Staggered Placeholder End Times (s) 39 ± 30 43 ± 67 1 ± 0
Placeholder Correction (s) -0 ± 0 -29 ± 14 -22 ± 6
Total (s) 721 ± 50 623 ± 37 1114 ± 15

(f) Placeholder Overhead Detail, Source Data

Figure 5.18: Placeholder Overheads: hmmsearch (fine grain), 343 proteins, 4×2 cluster CPUs.
Smaller numbers are better. As in Figure 5.16, the TFS-EXPL strategy has the extra commit changes
and notify commit complete overheads.
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5.5.3 Secure-shell Connection Sharing

One source of overheads for the fine-grain hmmsearch workloads is the large number of ssh

connections made. These overheads can be reduced with secure-shell connection sharing. An ssh

connection is made in the following scenarios:

1. Each time a placeholder requests a job from the scheduler or notifies the scheduler that a job

is complete, it invokes ssh to connect to the scheduler and execute a script. Each of these

invocations results in a new ssh connection. In addition, the explicit write-back strategies

use the same mechanism to send a message to the scheduler whenever a job completes the

commit step.

2. Each time the TFS library launches its RPC agent on the home node, a new ssh connection

is made. The RPC agent is required for file-system metadata operations (e.g., using stat()

to ensure a file exists before copying it with scp). With the NFS strategy, the RPC agent is

never used. With the TFS-IMPL and TFS-EXPL strategies, an RPC agent is launched once

per invocation of hmmpfam or hmmsearch (e.g., twice per job when the batching factor

is two). With the SAMBA-IMPL and SAMBA-EXPL strategies, the RPC agent is launched

once when Trellis Samba first services a request.

3. For all of the strategies other than NFS, each time an input or output file is copied to or from

the home node, scp is used. Each invocation of scp results in a new ssh connection.

With secure-shell connection sharing, ssh connections are held open and reused, reducing the

latency of these three operations. Figure 5.19 summarizes the impact of connection sharing when

using hmmsearch with 343 proteins on the four-node cluster configuration; for details, compare

Figure 5.20 with Figure 5.17 and Figure 5.21 with Figure 5.18. All strategies benefit from connection

sharing, with strategies that initiate more ssh connections benefiting more. Note that even the

NFS strategy, which uses neither redundancy nor the Trellis File System, benefits slightly from

connection sharing due to a reduction in scheduling overheads. Earlier, we saw that TFS-EXPL was

21% slower than NFS with connection sharing in this scenario; without connection sharing, this

increases to 33%, i.e. 3863 ± 31 s for TFS-EXPL versus 2911 ± 54 s for NFS in Figure 5.20c.

5.5.4 Batching

Our experiments show that batching is an effective way to reduce the overheads introduced by fine-

grain workloads. Figure 5.22 shows the impact of batching when hmmsearch is used to analyze

343 proteins on the four-node cluster configuration. Increased batching increases job granularity,

reduces placeholder overheads, and reduces overall makespan for all strategies. As for connection

sharing (Section 5.5.3), even the NFS strategy benefits from batching due to a reduction in schedul-

ing overheads. With the higher batching factor, TFS-EXPL is able to outperform TFS-IMPL due
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Figure 5.19: Impact of Secure-shell Connection Sharing: hmmsearch, 343 proteins, 4×2 cluster
CPUs. Smaller numbers are better. Connection sharing reduces overheads and improves makespan
across the board. See Figures 5.20 and 5.17 for details.

to increased opportunity for caching (each hmmsearch execution reuses the same input file) and

reduced overheads (due to increased job granularity). One limitation of batching with hmmsearch

in the current system is that there is one scp to the home node – the same node as the scheduler

– for every hmmsearch invocation. Without batching these as well, the separate scp invocations

may become a bottleneck when there are more placeholders.

5.6 Future Work: Alternative Workloads

As noted earlier, our evaluation is restricted to high-performance-computing workloads comprised

of independent, CPU-dominated jobs that communicate via the file system. Part of this focus derives

from Trellis: Executing jobs can not communicate directly with each other, and therefore must ac-

cess their input and output data via some intermediary (e.g., a distributed file system or a database).

Further, our support for redundant execution requires that this intermediary be the Trellis File Sys-

tem. Nonetheless, there are some classes of relevant workloads that we have not explored in our

application benchmark. For a subset of these, we speculate what the impact of redundant execution

via explicit write-back may be:

1. Wide Area Networks. If the application benchmarks were executed in a WAN context, we

expect that the latencies of remote operations (e.g., metadata requests) would be higher. To the

extent that jobs trigger redundant metadata requests, the explicit write-back strategies would

gain an advantage from aggressive caching. We also expect variation in job-completion times

to be larger in a WAN context, due to increased heterogeneity and dependence on the network.

If this variation is large enough, it might also give an advantage to the explicit write-back

strategies, which can mitigate the effect of very slow job executions in the tail.

2. Dependencies. In the PA workloads, all jobs are independent. Therefore, it is only at the

end of the workload where job-completion latency is more important than job-completion
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 6 5 5
PA Overhead (s) 295 ± 14 164 ± 1 166 ± 2
Placeholder Overhead (s) 830 ± 40 785 ± 128 1481 ± 19
Polling and TD Overhead (s) 70 ± 17 41 ± 6 55 ± 13
Job (s) 1715 ± 5 2464 ± 24 2161 ± 4
Job + Commit (s) 1715 ± 5 2464 ± 24 2508 ± 5
Makespan (s) 2911 ± 54 3453 ± 105 3863 ± 31

(c) High-level Overheads in Context, Source Data

Figure 5.20: Performance Breakdown: hmmsearch (fine grain), 343 proteins, 4×2 cluster
CPUs, without secure-shell connection sharing. Smaller numbers are better. In contrast to Figure
5.17 (with secure-shell connection sharing), all strategies perform worse. This is most evident for
placeholder overheads (each message to the scheduler has its own ssh connection) and job time for
non-NFS strategies (each file transfer and RPC agent launch has its own ssh connection).
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 386 ± 5 345 ± 28 374 ± 12
Notify Job Complete (s) 390 ± 9 335 ± 25 360 ± 7
Commit Changes (s) 0 ± 0 0 ± 0 346 ± 4
Notify Commit Complete (s) 0 ± 0 0 ± 0 366 ± 11
Sleep – Work Starvation (s) 9 ± 9 0 ± 0 0 ± 0
Placeholder Script Overheads (s) 12 ± 1 13 ± 1 19 ± 2
Staggered Placeholder Start Times (s) 3 ± 0 23 ± 6 27 ± 7
Staggered Placeholder End Times (s) 32 ± 25 80 ± 175 2 ± 1
Placeholder Correction (s) -1 ± 0 -11 ± 9 -12 ± 12
Total (s) 830 ± 40 785 ± 128 1481 ± 19

(f) Placeholder Overhead Detail, Source Data

Figure 5.21: Placeholder Overheads: hmmsearch (fine grain), 343 proteins, 4×2 cluster CPUs,
without secure-shell connection sharing. Smaller numbers are better. In contrast to Figure 5.18
(with secure-shell connection sharing), overheads are larger.
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Figure 5.22: Impact of Batching: hmmsearch, 343 proteins, 4×2 cluster CPUs. Smaller numbers
are better. See Figures 5.17 and 5.23 for details. In this scenario, increased batching significantly
reduces makespan for all strategies. With a batching factor of 2, TFS-IMPL outperforms TFS-EXPL;
with a batching factor of 32, TFS-EXPL outperforms TFS-IMPL.

throughput. However, for workloads with dependencies between jobs, there is an opportunity

for the explicit write-back strategies to improve makespan by ensuring jobs with dependencies

do not take excessively long to complete. However, one limitation of the current implemen-

tation is that redundant executions of jobs are not terminated when one of them completes.

This means that placeholders might be redundantly executing a completed job after new jobs

become available (due to satisfied dependencies). It is unclear how much of a net benefit or

liability redundant execution would be in this scenario.

3. Large Files. In the PA workloads, the files read and written are very small. The TFS library

synchronously copies whole files to and from the home nodes via scp, whether or not explicit

write-back is used; with explicit write-back, data transfer to the home node occurs later, but is

still synchronous. Whole-file data transfer is efficient from the network perspective, as long as

all of the data will be accessed, but does incur large latencies when files are large. In contrast,

distributed file systems that access data at the block granularity (e.g., NFS) can better overlap

data transfer with computation. Consequently, we expect TFS to perform worse than other

distributed file systems for very large files and IO-dominated workloads.

5.7 Concluding Remarks

By benchmarking our system with Proteome Analyst, we have shown that redundant execution

allows Trellis to mitigate the effects of slow or failed nodes while introducing negligible overheads

for medium- or large-grain CPU-intensive workloads. For fine-grain workloads, we have shown

how overheads can be reduced with connection sharing and batching. Specifically:

1. In Section 5.3, we rebooted a placeholder node during workload execution to show that re-

dundant execution allows workloads to complete when placeholders fail. Without redundant

execution, the scheduler waits indefinitely for failed placeholders.
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(a) High-level Overheads in Context. Legend shared with Figure (b).
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(b) High-level Overheads in Context, Normalized

NFS TFS-IMPL TFS-EXPL
Number of Samples 6 6 5
PA Overhead (s) 292 ± 12 165 ± 1 167 ± 2
Placeholder Overhead (s) 22 ± 3 54 ± 9 198 ± 11
Polling and TD Overhead (s) 96 ± 5 42 ± 9 51 ± 6
Job (s) 1712 ± 2 2158 ± 16 1957 ± 33
Job + Commit (s) 1712 ± 2 2158 ± 16 2088 ± 44
Makespan (s) 2121 ± 18 2419 ± 26 2373 ± 38

(c) High-level Overheads in Context, Source Data

Figure 5.23: Performance Breakdown: hmmsearch (fine grain), 343 proteins, 4×2 cluster
CPUs, batching factor 32. Smaller numbers are better. Compared with Figure 5.17 (batching
factor 2), the increased batching factor greatly reduces placeholder overheads, as well as overall
makespan. With the larger batching factor, TFS-EXPL is able to outperform TFS-IMPL due to
increased opportunity for caching and reduced overheads.
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(d) Placeholder Overhead Detail. Legend shared with Figure (e).
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(e) Placeholder Overhead Detail, Normalized

NFS TFS-IMPL TFS-EXPL
Get Job (s) 8 ± 2 16 ± 4 15 ± 2
Notify Job Complete (s) 8 ± 1 13 ± 2 11 ± 1
Commit Changes (s) 0 ± 0 0 ± 0 131 ± 12
Notify Commit Complete (s) 0 ± 0 0 ± 0 10 ± 1
Rollback Changes (s) 0 ± 0 0 ± 0 0 ± 0
Placeholder Script Overheads (s) 1 ± 0 1 ± 0 2 ± 1
Staggered Placeholder Start Times (s) 2 ± 0 21 ± 9 27 ± 3
Staggered Placeholder End Times (s) 3 ± 1 8 ± 2 7 ± 1
Placeholder Correction (s) -0 ± 0 -6 ± 4 -4 ± 3
Total (s) 22 ± 3 54 ± 9 198 ± 11

(f) Placeholder Overhead Detail, Source Data

Figure 5.24: Placeholder Overheads: hmmsearch (fine grain), 343 proteins, 4×2 cluster CPUs,
batching factor 32. Smaller numbers are better. Compared with Figure 5.18 (batching factor 2),
placeholder overheads are greatly reduced. The large commit changes overhead for TFS-EXPL
corresponds to the 32 output files copied to the home node for every job.
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2. In Section 5.4, we artificially slowed one of four cluster nodes by five or ten times to show

that redundant execution provides a performance benefit when some nodes are slow. With

redundant execution, the scheduler does not need to wait for slow nodes at the end of the

workload.

3. In Section 5.5.1, we used hmmpfam to demonstrate that for medium-grain CPU-intensive

workloads, the Trellis system as a whole introduces small overheads (≤2%), and the choice

of file system, support for redundant execution, or indirection via Trellis Samba makes no

significant difference to performance.

4. In Section 5.5.2, we used hmmsearch to demonstrate that for fine-grain CPU-intensive work-

loads, overheads are much larger than for the medium-grain workloads. The fine-grain work-

loads expose performance differences between the file-system access strategies which are not

visible for the medium-grain workloads: (a) NFS is the fastest overall (with some caveats),

(b) it is faster to use Trellis Samba than the TFS library directly, and (c) support for redundant

execution introduces new overheads.

5. In Section 5.5.3, we showed that ssh connection overheads are significant, and demonstrated

how secure-shell connection sharing can help reduce them.

6. In Section 5.5.4, we showed that batching jobs together can dramatically reduce overheads for

fine-grain workloads.
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Chapter 6

Conclusion

As researchers look to scientific computing to answer increasingly difficult questions, the demand

for computational resources grows. For batch workloads this means larger clusters, metacomputers,

or other aggregations of resources. As these systems become larger, the frequency of localized

failure or performance degradation increases. Left unchecked, failure and slowness can dramatically

increase makespan (e.g., as a Trellis metacomputer waits for the last job in a workload to complete

on a pathologically slow placeholder). This is the long tail problem.

We advocate redundant execution as a general solution to the long tail problem. By redundantly

executing jobs at the end of a workload, or before a dependency, the scheduler can transparently

bypass placeholders which are executing slowly or have silently failed, thereby reducing makespan.

If multiple placeholders are concurrently executing the same job, they must be protected from

interfering with each other; otherwise, they may produce corrupt or incorrect output. In our system

we provide the necessary isolation via the Trellis File System. Specifically, we extend TFS with a

modular interface for multiple cache policies, including the explicit write-back policy which defers

persisting file-system modifications until explicitly instructed by the scheduling system. The sched-

uler leverages this policy to ensure that concurrent executions of the same job defer persisting their

output until one execution successfully completes. Then, this successful execution persists its output

and the other executions discard theirs.

We introduce two new ways for user applications to interface with the Trellis File System: Trellis

Samba and the TFS Wrapper. Trellis Samba allows unmodified applications to access TFS via a

CIFS file-system mount. The TFS Wrapper allows unmodified applications to access TFS via the

standard input and output streams; the input stream is populated from an input file, and the output

stream is redirected to an output file.

To evaluate the performance impact of redundant execution, we benchmark application work-

loads from Proteome Analyst under various conditions. Redundant execution introduces negligible

overheads for medium- or large-grain CPU-intensive workloads, and enables the system to trans-

parently recover from failed placeholders and avoid waiting for slow ones. Ultimately, this leads to

improved performance and reduced administrative burden.
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In summary, as discussed in Chapter 1, this thesis makes the following contributions:

1. Extensions to the Trellis File System. The TFS library is extended to support the explicit

write-back policy, providing a transaction-style interface to the file system. We introduce

Trellis Samba and the TFS Wrapper, which provide new ways for user applications to access

TFS.

2. Extensions to the Placeholder Scheduling System. The scheduler leverages TFS’ explicit

write-back policy to execute jobs in two phases, first executing jobs redundantly but not per-

sisting their output, and then persisting output for exactly one successful execution of each

job.

3. Quantitative Analysis. We instrument and benchmark the PA/Trellis system, quantifying the

effect of redundant execution on medium- and fine-grain CPU-intensive batch workloads. We

also explore the trade-offs between NFS and TFS (accessed directly or via Trellis Samba),

along with the impact of secure-shell connection sharing and batching for fine-grain work-

loads.
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Appendix A

Acronyms and Programs

A.1 List of Acronyms

ACID atomicity, consistency, isolation, and durability
AMD Advanced Micro Devices, Inc.
API application programming interface
BLAST [1] Basic Local Alignment Search Tool
CIFS Common Internet File System
CISS [20] Canadian Internetworked Scientific Supercomputer
CLS [19, 18] Command Line Server
CPU central processing unit
DNA deoxyribonucleic acid
HMMER [11] a tool which compares protein sequences with hidden Markov models
HMM hidden Markov model
HPC high-performance computing
IO input, output
LAN local area network
NFS Network File System
PA/Trellis Proteome Analyst extended to use Trellis
PA [29] Proteome Analyst
POSIX Portable Operating System Interface
RAMMER [21] an accelerated variant of HMMER
RPC remote procedure call
SAMBA-EXPL denotes use of Trellis Samba with the explicit write-back policy
SAMBA-IMPL denotes use of Trellis Samba with the implicit write-back policy
SCL [25] secure copy locator
SFTP Secure File Transfer Protocol
TD Trellis Driver (used only to save space in figures and tables)
TFS-EXPL denotes use of the Trellis File System with the explicit write-back policy
TFS-IMPL denotes use of the Trellis File System with the implicit write-back policy
TFS [25] Trellis File System
VFS virtual file system
WAN wide area network
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A.2 List of Programs

hmmpfam part of HMMER; may be used to compare one protein with many HMMs
hmmsearch part of HMMER; may be used to compare one HMM with many proteins
ssh secure shell
scp secure copy
sshd secure shell daemon
mqsub job submission script
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