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Abstract
In metacomputing and grid computing, a computa-

tional job may execute on a node that is geographically
far away from its data files. In such a situation, some
of the issues to be resolved are: First, how can the job
access its data? Second, how can the high latency and
low bandwidth bottlenecks of typical wide-area networks
(WANs) be tolerated? Third, how can the deployment of
distributed file systems be made easier?

The Trellis Network File System (Trellis NFS) uses a
simple, global namespace to provide basic remote data
access. Data from any node accessible by Secure Copy
can be opened like a file. Aggressive caching strategies
for file data and metadata can greatly improve perfor-
mance across WANs. And, by using a bridging strat-
egy between the well-known Network File System (NFS)
and wide-area protocols, the deployment is greatly sim-
plified.

As part of the Third Canadian Internetworked Scien-
tific Supercomputer (CISS-3) experiment, Trellis NFS
was used as a distributed file system between high-
performance computing (HPC) sites across Canada.
CISS-3 ramped up over several months, ran in produc-
tion mode for over 48 hours, and at its peak, had over
4,000 jobs running concurrently. Typically, there were
about 180 concurrent jobs using Trellis NFS. We dis-
cuss the functionality, scalability, and benchmarked per-
formance of Trellis NFS. Our hands-on experience with
CISS and Trellis NFS has reinforced our design philoso-
phy of layering, overlaying, and bridging systems to pro-
vide new functionality.

1 Introduction

When should a system be significantly redesigned? Or,
should a more evolutionary approach be taken? Our ex-
perience with the Trellis Network File System (Trellis
NFS) contributes a data point in support of an evolution-
ary and layered approach to distributed file systems.

In metacomputing and grid computing, a computa-
tional job may execute on a node that is geographically
far away from its data files. For proper virtualization and
transparency, some kind of remote data access system
or distributed file system is required to provide the jobs
with access to their data. Historically, the solutions have
ranged from explicit stage-in and stage-out of the data
[19, 1], to full-fledged distributed file systems [17].

Although it is quite common with batch schedulers
(and other systems) to expect the user to explicitly move
the data before the job is started (i.e., stage-in) and after
the job is completed (i.e., stage-out), it is a substantial
burden on the user. In particular, the user has to know
in advance all of the data required by the job, which is
error-prone. Also, depending on the specific application,
the user has to know the algorithm for how the appli-
cation maps command-line arguments and configuration
files to job-specific names for input files and (even more
problematically) for output files. Of course, one of the
advantages of a real file system is that the application
itself can generate, name, and gain access to files as it
needs to. Admittedly, when things are perfect, thede
factostage-in/stage-out model does work, but a file sys-
tem is more transparent and more functional.

Full-fledged distributed file systems, including the An-
drew File System (AFS), are powerful systems. But, al-
though AFS, and other systems, have many features to
deal with performance issues across wide-area networks
(WANs), it is not common to see any distributed file sys-
tem deployed across WANs. The reasons include: First,
not every site necessarily uses the same distributed file
system. Second, not every site uses the same security
model or system. Third, it can be difficult to arrange and
maintain a common administrative policy across inde-
pendent sites. Even when the technical difficulties can be
solved, the social issues can veto a common distributed
file system across administrative domains.

In the context of metacomputing (and grid comput-
ing), the common case scenario is a virtualized compu-



tational resource (aka metacomputer or grid) that spans
different administrative domains as well as different ge-
ographical locations. The common case scenario is that
all sites will not be running the same distributed file sys-
tem nor the same security system. One solution to the
problem of different administrative domains is to require
that all participating sites must adopt a new infrastruc-
ture, such as the Grid Security Infrastructure (GSI) [5]
for security. GSI has functionality, scalability, and ro-
bustness advantages. But, there are significant social
(and political) reasons why imposing a common infras-
tructure might be difficult.

A different approach, taken by the Trellis Project [16],
is to layer new functionality over selected, existing in-
frastructure. Whenever possible, the most common wide
area and local area protocols and systems should be
bridged and overlayed instead of replaced with new sys-
tems. We use the term “overlay” to refer to a layering
of new functionality without significantly changing the
semantics or implementation of the lower layers. On the
one hand, maintaining the existing infrastructure makes
it harder to make radical changes and gain (hopefully)
commensurate radical improvements in functionality and
performance. On the other hand, layering and overlay-
ing are classic strategies that allow for easier deployment
(especially across administrative domains) and compati-
bility with existing systems and applications.

However, the experience of the Trellis Project is that
the overlay strategy works in practice. Our design ob-
jectives have been reinforced by our experience with the
system, especially:

1. As much as possible, new functionality should be
implemented at the user-level, instead of requir-
ing superuser privileges and administrative inter-
vention. When deploying systems across adminis-
trative domains, the need for superuser intervention
is a significant liability. When unavoidable, supe-
ruser intervention should be as minimal and famil-
iar as possible. For example, Trellis NFS does re-
quire a superuser to create the per-NFS-client ma-
chine mount point.

2. Existing systems, such as Secure Shell/Secure Copy
and the Network File System (NFS), are flexible and
robust enough to form the basis for new WAN-based
systems.

3. The challenge lies in how to integrate the different
components of an overlay system without having
to replace the components. Interfaces and mech-
anisms for cooperation between systems can solve
most problems.

2 The Trellis Project

The Trellis Project is attempting to create a software
infrastructure to supportoverlay metacomputing: user-
level aggregations of computing resources from differ-
ent administrative domains. The research problems ad-
dressed by Trellis include scheduling policies [18, 14],
wide area security [13], file system design [6], and new
interfaces between different metacomputing components
and applications.

In contrast to grid computing [9], overlay metacom-
puting requires minimal support from systems adminis-
trators. Trellis is implemented at the user-level and adds
a thin layer of software over widely-deployed systems
such as Secure Shell, Secure Copy, and NFS. It is an open
research question as to whether a radical redesign of
client-server (and peer-to-peer) computing (e.g., service-
oriented architecture, new application programming in-
terfaces (API), new software toolkits), as advocated by
grid computing, is required or if an evolutionary and
overlay approach will work equally well.

At least in the focused application domain of high-
performance computing (HPC), Trellis and the over-
lay metacomputing approach has had some significant
demonstrations of functionality and scalability. A se-
ries of experiments, dubbed the Canadian Internetworked
Scientific Supercomputer (CISS), have used the Trel-
lis system to solve real scientific problems, and aggre-
gate thousands of processors and many administrative
domains. With each subsequent experiment, the Trellis
system has evolved with new functionality and redesigns
based on the lessons learned. From 2002 to 2004, the
experiments were:

1. CISS-1 [19]: November 4, 2002. The Trellis sys-
tem aggregated 1,376 processors, within 18 admin-
istrative domains, at 16 different institutions across
Canada, from the West Coast to the East Coast. A
computational chemistry experiment (using MOL-
PRO) involving chiral molecules was computed
over a continuous 24-hour production run. Over
7,500 jobs and over 3 CPU-years worth of compu-
tation were completed.

CISS-1 proved that a global HPC job scheduler
could be implemented entirely at the user-level,
without the need for a job broker or resource discov-
ery, via a pull-based model known asplaceholder
scheduling[18]. The most significant achievement
of CISS-1 was the ability to aggregate 18 admin-
istrative domains, where each domain was only
required to provide a normal, user-level account.
When relying on the cooperation of different institu-
tions, the fewer the requirements to participate, the
more likely it is for them to agree.
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Figure 1: Trellis NFS. These components are (a) the NFS client(s), (b) the NFS server and (c) remote data storage
server.

2. CISS-2: December 23, 2002 to January 2, 2003.
The Trellis system aggregated hundreds of proces-
sors to complete two application workloads. A
molecular dynamics problem was computed using
GROMACS and a physics problem was computed
using custom software.

CISS-2 proved the usability of the Trellis software
over an extended run and for multiple workloads.

3. CISS-3: September 15 to 17, 2004. Thousands
of jobs were completed in the ramp-up to CISS-
3 from April to September 2004. Then, in a 48-
hour production run, over 15 CPU-years of compu-
tation were completed, using over 4,100 processors,
from 19 universities and institutions. At its peak,
over 4,000 jobs were running concurrently, includ-
ing 180 jobs using the new distributed file system,
Trellis NFS. Two different, unmodified binary ap-
plications were used: GROMACS and CHARMM.

CISS-3 demonstrated the functionality and scalabil-
ity of the Trellis NFS system. CISS-3 was also a
proof-of-concept for the new Trellis Security Infras-
tructure (TSI) [13]. For CISS-3, TSI was developed
to provide user-level, secure, scalable, single sign-
on functionality for both interactive and background
jobs.

3 Trellis NFS

The focus of this paper is the Trellis NFS file system. In
providing a file system, the Trellis metacomputing sys-
tem has specific advantages over the stage-in/stage-out
approach. First, the application itself can name and ac-
cess files on demand (e.g., generate filenames by adding
suffixes to command-line arguments). Second, the sys-
tem (and not the user) is responsible for data movement.

Third, aggressive caching strategies can be implemented
in a transparent manner.

The basic architecture of Trellis NFS is shown in Fig-
ure 1. Note that the NFS client is unmodified. There-
fore, unmodified binary applications can use Trellis NFS.
A similar strategy was used by the PUNCH Virtual
File System [8], although with different WAN transport
strategies, different mapping strategies between users
and accounts, and different security mechanisms.

Running plain NFS over a WAN is not practical for
several reasons. One reason is that the NFS protocol
uses short, synchronous messages. Due to this, WAN
latency renders NFS unsuitable. We traced the execu-
tion of a single invocation of the MAB60 (Modified An-
drew Benchmark) [11] benchmark over NFS and counted
106,181 RPC calls which averaged 889 bytes in length
for requests and 156 bytes in length for responses. Us-
ing the netperf [12] tool we measured a request-
response rate of 4,537 transactions per second (TPS) for
a 100Mbps Ethernet and 17 TPS for the optical network
between the University of Alberta and the University of
New Brunswick.

The Trellis NFS server is based on Linux’s UNFSD
server [20]. The server runs at the user-level, but a sys-
tems administrator must create the volume mount points
on the NFS clients. The mount points can be shared
among all processes running on the NFS client. This
system administrator involvement is a small but unavoid-
able violation of Trellis’ user-level strategy. By integrat-
ing the UNFSD server with the Trellis File System li-
brary [21], the modified UNFSD server can access files
on any WAN node accessible by Secure Copy and serve
the files to unmodified NFS clients with NFS seman-
tics. The global names used by Trellis NFS (see Fig-
ure 1, NFS Client), such as/tfs/scp:blackhole.
westgrid.ca:/data/file1 , are recognizable as
Secure Copy inspired names, and are known as Secure
Copy Locators (SCL).



The Trellis NFS server uses aggressive data caching
to overcome the effects of running a file system over a
high-latency network. A local disk (or file system) is
used as a cache, called the Trellis cache, in a manner
similar to Web caches, although the data in Trellis can
be read-write files. Files are copied into the Trellis cache
on demand. Because an NFS server cannot know when a
client has closed a file, a timeout feature is used to sched-
ule the copy-back of the file to the home node, but we
are experimenting with the Trellis scheduler telling Trel-
lis NFS when the copy-back should occur. Thus, Secure
Copy is the WAN protocol for accessing files and the nor-
mal NFS RPC protocol is what Trellis NFS uses to serve
NFS clients on the LAN.

For HPC workloads, the common case is whole-file
access and caching, and thus Secure Copy is used. For
sparse updates of files, it is also possible to transparently
use rsync -over-ssh to move the data in an efficient
way, but our HPC workloads do not (in general) bene-
fit from rsync ’s optimizations.

Through TSI [13], Trellis NFS supports multiple
users. As with normal NFS, security on Trellis NFS’s
LAN-client side is based on the (implicit) security of
the local nodes and local user identities. For WAN se-
curity, TSI and Trellis NFS uses Secure Shell’s agents
and public-key authentication (and authorization). Trel-
lis NFS security over a WAN is as secure as using Secure
Shell to access remote accounts and, for example, using
the Concurrent Version System (CVS) over Secure Shell
to share a CVS repository between different users [3].
There are some practical and theoretical security prob-
lems with NFS, but NFS is still widely used. Rather than
try to replace NFS, Trellis tries to bridge NFS and the
WAN.

A newly developed Trellis SAMBA server provides
the same functionality as Trellis NFS, but with SAMBA’s
[2] per-user authentication and the ability to detect when
a file is closed. With both Trellis NFS and Trellis
SAMBA, the bridging strategy is the key design deci-
sion. We focus here on Trellis NFS because of its relative
maturity and track record with CISS-3.

3.1 Trellis NFS During CISS-3

As discussed above, we used the Trellis NFS server as
part of CISS-3. The CISS-3 experiment included two
applications: First, GROMACS [15] is a molecular dy-
namics simulator. Second, CHARMM [4] is a macro-
molecular simulator written in Fortran.

The Trellis NFSserverwas used in two administrative
domains participating in the CISS-3 experiment. Each
server handled multiple NFS clients on a local LAN. The
first site was a cluster at the University of Alberta; a 20-
node, 40-processor Linux cluster. The second site was

Statistic Average per Hour
Number of NFS Clients 68 to 73
(2 jobs per client)
LAN Data Written 200 MB
LAN Data Read 75 MB
LAN RPCs 40,000

Table 1: Trellis NFS Summary for New Brunswick site
during CISS-3. All statistics are per-hour.

a cluster at the University of New Brunswick; an 80-
node, 160-processor Linux cluster (Table 1). Between
the two domains, 200 jobs were using Trellis NFS at the
peak, but the average was 180 jobs. The input and out-
put data for the GROMACS application (i.e., first home
node) were stored on a server at the University of Cal-
gary. The input and output data for the CHARMM appli-
cation were stored on a server at Simon Fraser University
(i.e., second home node). Thus, for CISS-3, Trellis NFS
was running across nodes in a total of four administrative
domains, in three Canadian provinces, and separated by
thousands of kilometres of WAN.

We are analyzing our trace data from CISS-3. Ta-
ble 1 is based on an initial analysis of the LAN traffic
at the New Brunswick site. The Trellis NFS traffic is de-
termined by the workload and applications themselves.
Both applications, like many scientific applications, have
a burst of read-only activity at job start-up time and a
burst of write-only activity at job exit time. Very few
of the LAN RPCs, which are mostly NFSgetattr
RPCs, result in WAN RPCs due to Trellis NFS’s cache
[6]. Trace data from the New Brunswick site shows one
WAN getattr RPC for every 360 cache-served LAN
getattr RPCs. For these workloads, the WAN read
and write statistics are likely very similar to the LAN
statistics, given the read-only, write-only patterns.

3.2 Micro-benchmark: Bonnie++

The Bonnie++ micro-benchmark [7] is normally used to
evaluate local disk subsystem performance. We use Bon-
nie++ primarily as a standardized workload to do an on-
line measurement of Trellis NFS’s performance. There
are 3 stages in the Bonnie++ benchmark: write, read,
and re-write. First, three 1 gigabyte files are created and
written using thewrite() system call. Second, the 3
gigabytes of data is read back using theread() system
call. Third, the 3 gigabytes of data is split into 16 KB
pages; each page is read, modified and re-written (using
lseek() ).

Table 2 shows the throughput of the read, write and
re-write tests, including (in line (c)) the additional MD5
computation and data transfer overheads required when



Configuration Read Write Re-write
Local Disk 55.4 (2.8) 23.3 (0.36) 15.5 (0.32)
UNFSD (baseline) 24.1 (0.57) 22.1 (0.62) 7.6 (0.23)
(a) Trellis NFS over LAN 23.9 (0.79) 22.3 (0.54) 7.7 (0.13)
(b) Trellis NFS over WAN 24.4 (0.61) 22.5 (0.54) 7.6 (0.13)
(c) Trellis NFS over LAN;
cold cache, flush cache 7.0 (2.87) 5.3 (2.15) 3.1 (1.23)

Table 2: Bonnie++ throughput. All results are in megabytes per second, averaged over 10 runs, standard deviation is
in parentheses. Higher numbers are better. (a) and (b) are from NFS client’s point of view, with warm caches and no
data flush. (c) is for end-to-end performance, including a cache miss, flushing data to home node, and MD5 hash to
check data integrity.

moving data in and out of cache. Although the overheads
are a key part of Trellis NFS, the main bottleneck is the
WAN itself and all distributed file systems would expe-
rience similar overheads since they would have the same
WAN bottleneck. From the NFS client’s point of view,
the overheads can be overlapped with computation and
amortized over a multi-hour run, so it is useful to also
measure the performance from the NFS client’s point of
view (lines (a) and (b) of Table 2). The marginally better
performance of Trellis NFS over WAN (line (b)) as com-
pared to over a LAN (line (a)) is within measurement
noise. Not surprisingly, local disk read performance is
about 2.3 times faster then the NFS configurations. We
include the local disk for perspective. The write test
shows all four test configurations have almost equal per-
formance, when working out of cache, which is the com-
mon case after the initial start of most HPC applications.

The key conclusion is that, once Trellis NFS has the
file data in its cache, the performance of Trellis NFS is
comparable to UNFSD. But, when the cache is cold, the
performance is bottlenecked by the WAN for data move-
ment. Future work will look at reducing the number of
cold misses in the Trellis cache, but the current situation
is both functional and reasonable, especially when com-
pared to the UNFSD baseline.

4 Concluding Remarks

Trellis NFS bridges the LAN-based NFS protocol with
WAN-based protocols, like Secure Copy, to provide a
distributed file system that is relatively easy to deploy
because it is (mostly) at the user-level and it is overlayed
on top of existing systems. As with the other elements of
the Trellis Project, Trellis NFS has been tested in a va-
riety of Canada-wide experiments, known as CISS, that
serve to provide empirical evaluations and feedback to
the design of the Trellis system.

For future work, we plan to address some of the short-
comings of Trellis NFS and the Trellis system in gen-

eral. First, the cache consistency model of Trellis NFS
is, perhaps, too simple. Currently, there is no locking
mechanism for multiple writers of the same file to syn-
chronize their actions. The last job to “close” the file
will overwrite all of the updates made by previous jobs.
Fortunately, in the HPC application domain, it is rare for
applications to actively read-write the same file. Jobs
are often well-partitioned into independent, job-specific
input (e.g.,config.1-2-1.input ) and output (e.g.,
config.1-2-1.output ) files. However, other ap-
plication domains and file systems (e.g., the append oper-
ation of the Google File System [10]) may require some
form of file consistency control or multiple-writer se-
mantics.

Second, as previously mentioned, we are implement-
ing a version of the Trellis File System using SAMBA [2]
instead of NFS. Among the advantages of using SAMBA
include the ability to have per-user authentication to the
SAMBA server (instead of NFS’s per-client machine se-
curity model), avoiding superuser-created mount points
(since someSAMBA clients allow unprivileged users
to create mount points), and the ability of the SAMBA
server to see when files are closed, which will make it
easier to develop cache consistency strategies. SAMBA’s
stackable Virtual File System (VFS) mechanism is also a
cleaner implementation technique, as compared to mod-
ifying a user-level NFS server directly. Of course, the
Trellis SAMBA server is consistent with the bridging
strategy of the Trellis NFS implementation.
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