
Supporting Adaptive Web-Service Orchestration with

an Agent Conversation Framework

Warren Blanchet

University of Alberta

blanchet@cs.ualberta.ca

Eleni Stroulia

University of Alberta

stroulia@cs.ualberta.ca

Renée Elio

University of Alberta

ree@cs.ualberta.ca

Abstract

Service-oriented architecture is emerging as a

compelling paradigm for developing web-based software

applications. In this style, the functional components of

the system are implemented in various programming

languages as network-accessible “services” declaratively

specified (in WSDL) and declaratively composed in

workflows (using BPEL4WS). Despite this fundamentally

distributed conceptualization of service composition, most

current middleware assumes that the specification of the

service composition is interpreted at run time by a central

middleware node. This implies inflexible composition

evolution: all parties must be updated concurrently to

avoid interaction failures. This paper introduces an

intelligent-agent framework that wraps web services in a

conversation layer and is capable of a simple workflow-

adaptation function. The conversation layer implements

protocols and consults globally shared, declarative policy

specifications to resolve conversation failures. Two case

studies illustrate this approach.

1. Introduction

Service-oriented architecture is the emerging paradigm

for developing web-based software applications. This new

style dictates that the functional components of the system

are implemented as network-accessible “services”

declaratively specified (in WSDL) and declaratively

composed (in BPEL4WS).

In principle, this paradigm applies equally well to

designing and developing new applications (top down

“green-field” application development) and to integrating

modules of existing applications (bottom up Enterprise

Application Integration). In practice, several available

middleware environments are capable of using web

services, interpreting the specifications of their interface

and composition, and choreographing their execution,

though the actual implementations of the services may

exist anywhere on the web.

Despi te th is fundamenta l ly d is t r ibuted

conceptualization of web-service composition, most

current middleware assumes that although the services are

distributed, the specification of their composition at run

time is interpreted by a central middleware node. Such

centralized execution models constrain the original vision

of the paradigm. More importantly, they result in fragile

systems (for example, when the central node becomes

unavailable, the composition breaks down) and imply

heavy network traffic and poor performance. These last

two shortcomings have already been the subject of study:

Chafle et al. [6] proposed a technique for partitioning a

composite web service specified as a single BPEL process

into an equivalent set of decentralized processes. Their

partitioning algorithm aims at minimizing the

communication costs and maximizing the throughput.

There is another, even more insidious problem with the

centralized-orchestration assumption. It implies that any

changes to the composition should be made to the single

copy of the declarative composition specification

maintained by the orchestrating node. This is

fundamentally unrealistic for bottom-up Enterprise

Application Integration, where the various organizations

that own the services and sub-workflows participating in

the composition are likely to evolve these services

independently, changing the type or sequence of messages

sent and received. The effects of these changes would

likely be limited to some subset of the available services.

However, any change would need to be implemented as a

modification of the centrally managed specification. As a

result, for a sufficiently complex workflow, the

specification would act as a bottleneck for the

implementation of these otherwise localized changes.

Although there are ongoing standards-development efforts

to specify how to manage service versioning, these do not

address how compositions established with a set of

services might evolve with their components. Some

alternative is necessary, as uncontrolled independent

evolution will lead to interaction failures if a workflow’s

participants have different expectations regarding the

sequence and type of messages to be exchanged.

Our work focuses on the distributed detection of

conversation failures that arise from independently

changed workflow models and on specifying policies and

procedures for eliminating the cause of the failure. When

an agent receives a message that is illegal by its own

communication model, an exception-handling

conversation is triggered. This event establishes that the

two agents have mismatched workflow models, and the

goal of the exception-handling conversation is to re-

Renee Elio
Text Box
Blanchet, W., Stroulia, E., & Elio, R. (2005) Supporting adaptive web-service orchestration with an agent conversation framework. In Proceedings of the 2005 IEEE International Conference on Web Services, 541-549. July 11-15, Orlando, USA.

synchronize these models. This policy allows automatic

repair of workflow model mismatch at the infrastructure

level, allowing applications and their designers to focus

their efforts on application-specific problems.

Our approach views service orchestration as a

conversation among intelligent agents, each one

responsible for delivering the services of a participating

organization. In this context, an agent is essentially a layer

wrapping each peer organization. This agent is able to

communicate with the other agents responsible for partner

services, recognize mismatches between its own

workflow model and the models of other agents revealed

by conversation failures, and adapt the models as

necessary to eliminate these errors. In this paper, we

explore a small class of conversation errors that arise due

to mismatching workflow models between two or more

interacting services, and illustrate our approach for

handling such errors and allowing continued operation.

The rest of the paper is organized as follows. Section 2

argues that workflows based on web-service composition

can be viewed as conversation models among intelligent

agents. Section 3 describes the software architecture of

our framework, WRABBIT, for web-service

orchestration. Section 4 illustrates the capabilities of the

WRABBIT agents with two examples. Section 5 places

this work in the context of related research and Section 6

concludes with an overview of the lessons we have

learned to date and our plans for future work.

2. Workflows as Conversation Models

The purpose of a workflow is to deliver a work

product. The reason that messages are exchanged between

entities during the execution of workflows is that the

entities have different abilities, such that no single entity

can complete the workflow alone. Therefore, the reason

that any entity sends a message m to another entity is that

the workflow requires that some step s be performed, and

the receiver of m will perform s as a result. In this

manner, the conversation between the entities is tied to

the advancement of the workflow. In the rest of this

section, we consider how this basic concept applies to

web-service composition.

2.1. Agent Conversation Models

Agents are aware of the purpose of the workflow they

are executing, and thus their conversations are directly

tied to the workflow’s advancement. When discussing

agents, we use the term “conversation” to denote an agent

interaction that is initiated by a sending agent to satisfy

some purpose; these messages follow the syntax and

semantics of some implementation-independent agent

communication language (ACL). Abstractly, a message is

an action that is attempted by the sender on the internal

state of the receiver in order to satisfy this purpose. A

normative conversation model specifies the conventions

shared by agents when exchanging messages. A simple

example of one element of such a model is a protocol,

which captures the message-sequencing constraints

between a sender and a receiver. Communication models

are actually portions of a workflow model (which also

includes the non-communicative work performed by the

agents), but are interesting enough to study alone.

The agent-communication community has long

grappled with what should or could go into such

normative conversation models, under the general theme

of conversation policies [9]. Such policies were

envisioned to be public, declaratively specified

constraints on the “nature and exchange of semantically

coherent … messages,” existing separately from the agent

implementation, but presumably interpretable by all

interacting agents. In [9], the authors note that any

particular conversation will be governed by several

policies (e.g., policies for interpreting a timeout or a

missing acknowledgement; termination policies;

exception-handling policies; and specific goal-

coordination policies, such as requesting or providing

services within particular time constraints). This kind of

policy specification would outline all elements of a

normative conversation model. Deviation from the model

is a reason to throw an exception, i.e., indicate that a

particular message is illegal, “unexpected,” or “not

understandable” at some particular point in the

conversation. Robust and flexible methods are required to

address these conversation failures, so that designers do

not have to anticipate them and accommodate for their

presence in the set of pre-defined, fixed protocols. Some

frameworks take a building-blocks approach, in which

agents glue together small protocol units dynamically

during run time (e.g., [14]); others reply on common

representations of the joint task to define an error

space [7]. Generally speaking, the aim is to delegate some

portion of the error-recovery effort from the agent

designer to the agent itself, in an application independent

manner.

2.2. Web-Service Workflows

In the current standards used for web service

composition, the perspective of a workflow as a

conversation is implicit, albeit weak. For example, at the

BPEL process-specification level, the workflow partners

are not explicitly coordinating or cooperating: each

partner process invokes its constituent services in the

appropriate order and sends (receives) the messages that

its partners expect (produce). The organizational

workflow advances without the participants being aware

of it.

Another weak point is that BPEL process

specifications capture the workflow model from the

perspective of one partner only: if there are n interacting

partners, there will be n BPEL specifications, each one

modeling only the conversations that involve that partner

and the message exchanges from this partner’s viewpoint.

Collectively, however, these partial workflow models do

contain the elements that one would find in a global

workflow model. In this work, we refer to the portion of a

workflow model that specifies one partner’s contribution

as a workflow script. The corresponding fraction of the

conversation model is called a conversation script.

The shift in interest from web-service composition to

orchestration brings with it an explicit element of

coordination, particularly when the services are

distributed. The belief is that a robust, dynamic

composition of distributed services will entail extended

message exchanges with more complex content to support

that coordination [15]. We note that a web-services

choreography specification [16] is under development,

with the goal of providing a common abstract language

for describing legal and expected communication. The

draft specification provides an example list of

conversation failures, ranging from syntactic errors in

message construction to “application failures” (e.g.,

failure to complete an order because the ordered goods

were out of stock). In this regard, the web-services

choreography specification provides, essentially, the high-

level language for defining a conversation policy of the

sort envisioned by Greaves et al. [9] for distributed agents

whose domain-level task requires a robust coordination

and composition of web services. Given that such a

language is being developed, we focus our work on the

mismatches of the global communication model that

includes all partners and that is reflected in the per-partner

BPEL specifications.

We use the term conversation failure for the case

where an agent receives an unexpected message type,

message content, or message parameters from another

agent, as part of a conversation. How could this occur?

We assume that the owner of a web service is the

authority on how any conversation should include this

service. Sometimes, due to internal policy evolution, the

owner of a particular service may wish to change its

conversation model, e.g., change the preconditions for its

invocations. Such a change would imply, as a side effect,

that previously composed processes involving the service

in question now communicate with it in an illegal manner

(as per the new model) and thus generate exceptions or

cause undefined behavior.

3. The WRABBIT Workflow

Reconfiguration Architecture

Our approach to conversation failure recovery through

workflow resynchronization is implemented in the

“Workflow Reconfiguration with Agent- and BPEL-

Based Intercommunication Technology” (WRABBIT)

framework. Figure 1 illustrates the software architecture

of each WRABBIT agent.

Peer
Agent

Agent Peer
Agent

Message exchange

Conversation Management

Workflow Execution Problem Resoution

PolicyWorkflow
script

Workflow
script

Workflow
script

Policy
file

BPEL
Process

Partner
Bindings

Policy Policy

Figure 1: The agent architecture

As noted above, the execution of a workflow is

directly linked to communication between the partners in

that workflow. As in BPEL, the work that falls outside the

agent’s conversation-management role is accomplished

by traditional web services. Inter-agent conversations, on

the other hand, use an ACL1. For this work, we have

adapted a subset of ACL messaging primitives defined by

FIPA [8]. FIPA also provides an XML encoding for ACL

messages, allowing these to be exchanged using web-

service technologies. Some middleware for web-service

deployment and execution is thus required by the

WRABBIT architecture, and we have selected AXIS [2]

to fill this need.

On top of this core layer rest a suite of capabilities

enabling the agent to

1. interpret BPEL process specifications and use them

to construct workflow scripts, from which it extracts

conversation scripts that define message sequences

with its partners;

2. execute these workflow scripts at run time;

3. recognize conversation failures from discrepancies

between the sequence of ACL messages it expected

according to its conversation script and the actual

sequence of ACL messages it has received, and

making the other agents in the conversation aware of

the failure

1 We use the term agent communication language (ACL) in a

generic sense to denote a small set of high-level message

primitives, described below, and not a full implementation of an

ACL standard, such as [8], [11]

4. diagnose the cause of the failure as a fault in the

workflow script followed by itself or the other

agents;

5. engage in conversations to obtain the correct

workflow script, and

6. adapt its state as appropriate.

The remainder of this section provides implementation

details on these capabilities.

3.1. BPEL-to-ACL translation

As noted earlier, our fundamental methodological

assumption is that distributed workflow orchestration

requires a conversation among a set of collaborating

agents, where each agent is capable of delivering some of

the services included in the workflow. We have defined a

method for translating a BPEL process into a conversation

script that specifies the expected ACL message exchange

sequences.

We map the web-service primitive message interaction

types (one-way, request response) from the workflow

script to a small set of protocols that use higher-

ordermessage primitives. The structure of these higher-

order messages is (:message-primitive :receiver r :sender

s :conversationID cid :content c). We use three message

primitives, inform, request, and not-understood, adapted

from [8]. Inform is used by a sender agent to

communicate information to a receiver agent, when the

sender's state indicates that the receiver expects or

requires that information. Request is sent by the sender to

request that the receiver perform some action. Not-

understood is our interaction error primitive. The receiver

and sender fields hold unique agent ID's, specified as

URI’s. The conversation id is dynamically set by the

initiator of the conversation script, and designates a

unique conversation thread. The structure of the content

depends on the message primitive used. For inform, it is a

tuple consisting of an operation ID and the message

content proper. The operation ID identifies a WSDL-level

operation. It subsumes the service, port-type, and

operations identifiers present in WSDL. The message

content for not-understood consists of a ‘reason’ for

regarding message m as an error in the context of

conversation cid with sender s. We discuss the taxonomy

of reasons and the not-understood message in more detail

later. The mapping is summarized in Table 1.

Consider the case of a synchronous BPEL invoke

activity (the type that invokes a WSDL request-response

operation, as described in section 11.3 of the BPEL

specification [3]). In this interaction, the invoker initiates

the exchange by sending a message to the receiving

process. Due to the nature of the WSDL operation, the

receiving process must reply with a message sent to the

invoker, who is waiting for the reply. This exchange is

translated into the following message sequence: the

requester sends an inform message (with the WSDL input

message as content) immediately followed by a request

message (requesting the WSDL output message) and the

receiver sends an inform message (with this WSDL

message as content) as a reply. We interpret any message

sent between web services as information of one kind or

another, and thus for these we use inform. In this example,

the invoker of the operation is actively soliciting a

response, as is clear from the semantics of the WSDL

request-response operation, and thus a request is also part

of the communication model.

Our reason for moving to this higher level of message

protocol is support a more flexible agent layer that

recognizes conversation errors as symptomatic of

mismatched workflow models.

BPEL Activity Message Sequence

Asynchronous Invoke Send inform

Asynchronous Receive Receive inform

Synchronous Invoke Send inform

Send request

Receive inform

Synchronous Receive Receive inform

Receive request

Synchronous Reply Send inform

Table 1: Mapping from BPEL activity to

ACL message sequence

3.2. Workflow Reconfiguration Support

The agent’s ability to dynamically re-synchronize

workflow models relies on the abilities to (a) initiate or

respond to conversations with other agents, (b) recognize

and relate conversation failures to workflow mismatches,

and (c) compose simple workflow scripts

3.2.1. Conversation Layer

Each agent participating in a workflow composition

reads in the BPEL process specification corresponding to

its role and creates a workflow script. If an agent

participates in more than one workflow, then it has a

corresponding workflow script for each one. At run time,

as soon as the agent receives a message initiating a

particular type of conversation, it instantiates an instance

of the workflow script that encompasses the

corresponding conversation script. It uses this instance to

formulate expectations for subsequent message

exchanges. Each script serves as a detailed protocol for an

interacting agent that specifies not only the order in which

the ACL message types can occur, but also their required

content. The conversation script elements enable the agent

to formulate expectations of what messages these agents

will be sending in the future, until the conversation

concludes.

WRABBIT agents are designed to achieve objectives

of two general types: objectives to bring about a state s

and objectives to execute action a . Workflow script

instantiation is an example of the latter type. The

algorithm that WRABBIT agents use to process their

objectives is outlined in Figure 2.

3.2.2. Conversation Errors and Correction Policies

 Consider the case where a workflow is unilaterally

modified, causing the participating agents’ workflow

scripts (and thus conversation scripts) to become out-of-

sync. Suppose that Organization A adopts a new policy,

adding to the preconditions that must be satisfied for it to

contribute its services to the workflow. To do this, it

updates the original BPEL process x that specifies its

contribution, thus creating x', a new version of the process

which reflects the change. It also updates the BPEL

process that specifies how to interact with its service,

xclient, creating x 'client. However, Organization B, which

relies on Organization A’s services, still has the old BPEL

process xclient and uses it as the basis for constructing its

respective workflow script. As a result, Organization B’s

agent will invoke Organization A’s service, sending the

initial message without the necessary precondition being

satisfied. From Organization A’s perspective, this

message is “unexpected.” The agent perceives such

failures as symptoms of out-of-sync conversation models.

The discrepancies can be recognized as being in one of

the following categories:

1. message m ’s content invalid, i.e., the message

payload is foreign to the receiving agent;

2. message m, received from the sender, constitutes an

illegal interaction (the receiving agent’s conversation

script does not include the receipt of this message

from this particular sender);

3. message m is out-of-order (according to its

conversation script, the receiving agent is not

expecting this message at this time).

Any one of these failures triggers a not-understood

message, sent by the receiver of m to the sender of m. The

Agent objective achievement

Until all objectives are achieved, for each unachieved objective o:

1. If objective o is an objective to determine the value of an information type i, then:

a . call the composition algorithm with information-type i as input to generate a new composed

workflow-script

b. create a new objective to execute the script

2. else if objective o is an objective to pursue the execution of a workflow-script, then:

a. if the script requires a message in an open conversation, and the objective does not have the

message, then try again later

b. else continue the execution of the script

3. else if the objective o is an objective to route incoming messages to their destinations, and a new message m

has been received then:

a. if the message m is associated with open conversation c and is a not-understood message, then

resolve conversation failure

b. else if message m is associated with open conversation c and is legal/expected, process the message

within the objective that is executing the workflow script that defines c

c. else if message m starts a new legal conversation that is defined by some workflow script w that is

provided by this agent, then set an objective to execute w

d. else if message m does not legally continue an open conversation with this partner or does not

legally start a new conversation with this partner, then

 i. generate a not-understood as reply to message m with the appropriate reason

 ii. resolve conversation failure

Resolve conversation failure

1. interpret the "error reason" contained in the not-understood message or obtained during detection

2. identify the policy for dealing with this type of error

3. determine if the policy requires changing the workflow scripts of self or of some other agent x

4. if the source for the correct workflow scripts is self, then no further action necessary

5. else if the source of correct workflow scripts is agent x, then request new scripts from agent x

Figure 2: WRABBIT agent execution algorithm

content of this not-understood includes a ‘reason’ that

corresponds to one of these three failure categories. The

generation and receipt of a not-understood starts an

exception-handling conversation, in which the two agents

exchange messages that may allow them to recover from

the failure. The objective of this conversation is to

identify a possible adaptation of their corresponding

conversation scripts, which would (a) be acceptable

according to the agents’ shared policies, and (b) eliminate

the discrepancy that caused the failure. Simply put, one of

the two interacting agents has to change its conversation

script to fit the other’s. The question is, whose

conversation script will be used?

In principle, there may exist complex policies for

determining the answer. Some may depend on detailed

contractual agreements between the conversing agents’

organizations (for example, an organization might be

allowed to change the workflow only during a pre-

determined range of time, perhaps corresponding to off-

peak hours); others may depend simply on “authorities”

assigned for each particular conversation. Other policies

might associate authorities for different sorts of

functionalities. Agents have access to a declarative policy

that states which agent serves as the authority on the

currently legal conversation model governing some

particular conversation.

In our example, Organization A is the authority for this

workflow interaction. Its agent detects the failure, and

then would generate the not-understood message

described above. It would consult the shared declarative

policy, and determine that it has the correct model (which

was derived from x'). The receiver of the not-understood,

Organization B’s agent, consults the same policy and

identifies that the sender is the authority for the current

conversation. It then initiates a conversation with the

authority agent, with the intent of obtaining the up-to-date

workflow script, based on the BPEL process x'client, that

corresponds to its role as client. This engages the third

key element of the agent layer, a simple workflow script

composition algorithm.

3.2.3. Workflow Script Composition

While BPEL can be used to specify a complete,

executable implementation of any given process, it can

also be used to define abstract processes that leave some

details unspecified. We assume that an agent

(corresponding to an organization participating in the

workflow) would use a complete BPEL process to control

its own operation, and would specify how other

organizations should interact with it using an abstract

BPEL process. WRABBIT agents exchange abstract

workflow scripts based on these abstract processes to

repair their operation. These are then used together with a

simple workflow composition algorithm to create

executable workflow scripts (see Figure 3).

Complex semantics-based matching for web-services

has been explored by Aggarwal et al. [1], and is not the

focus of our work. Therefore, the current implementation

features a simple composition algorithm, which performs

elementary matching using (WSDL-level) message types.

In response to a need for the value of a particular

message, the algorithm searches the available workflow

scripts for one that satisfies this need. If the selected script

itself is abstract and needs additional values, the

algorithm seeks these out in the same manner. The

selected workflow scripts are ordered such that their

dependencies are satisfied, and the composed workflow

script can then be executed to obtain the initially needed

value.

Agent

Co
nf

ig
ur

at
io

n
Conversation

Model
Execution

Workflow
Management

Composition

Abstract
Workflow

Script

Executable
Workflow

Script

?

Dependancy

Composed
Workflow

Script

Figure 3: Conversation model composition

4. Case Studies

Our case studies are inspired from intuitive scenarios

of workflow reconfiguration as it often happens in

academic departments. Suppose that various people in a

department have wisely automated some of their day-to-

day activities as web-services. In particular, the

department’s administration has a service that provides

student transcripts to faculty members, one that allows

modifications to student grades, and another that provides

the electronic equivalent of stamping authorization forms

for faculty members. The faculty members use these

services in workflows such as displaying a student’s

transcript, or correcting mistyped grades.

The department’s student transcript service will be the

focus of our case studies. It is built using WSDL one-way

operations: it first requires a message containing the

student’s id and the address of a callback function, to

which it then provides a message containing the student

transcript. However, in response to new privacy

legislation, we suppose that the department now requires

that all access to student records be authorized. To enforce

this, the service is changed to require a new initial

message that contains an authorization descriptor.

The following case studies demonstrate how an agent

that encapsulates a faculty member’s workflows will

adapt to the new authorization requirement. The execution

details were gathered by examining the log files of the

WRABBIT agents after each scenario’s execution.

4.1. Case Study 1

The first case study examines what happens when the

instructor simply wishes to display a student’s transcript.

The messages exchanged during this scenario are depicted

in Figure 4.

In this case, the instructor’s WRABBIT agent is made

to locate or compose a workflow script that ends in the

production of a student transcript message. Since the

workflow script that retrieves the transcript from the

department’s agent produces this message, the system

selects the script for execution. However, as the

department’s agent has been configured with the updated

workflow script that requires the authorization token, the

initial message from the instructor agent causes a

conversation failure (Figure 4(a)). A sequence diagram of

how this initial message is handled is shown in Figure 5.

Department's
WRABBIT Agent

Instructor's
WRABBIT Agent

(a)
Failed
Transcript
Retrieval

(b)
Process
Version
Retrieval

(c)
Authorization
Descriptor
Retrieval

(d)
Successful
Transcript
Retrieval

performative: inform
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Student ID>

performative: not-understood"
receiver: "Instructor Agent"
sender: "Department Agent"
content: <Failure Description>

performative: inform
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Student Transcript Process Identifier>

performative: request
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Request for Process>

performative: inform
receiver: "Instructor Agent"
sender: "Department Agent"
content: <Student Transcript Process>

performative: inform
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Identification>

performative: request
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Request for Authorization Descriptor>

performative: inform
receiver: "Instructor Agent"
sender: "Department Agent"
content: <Authorization Descriptor>

performative: inform
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Authorization Descriptor>

performative: inform
receiver: "Department Agent"
sender: "Instructor Agent"
content: <Student ID>

performative: inform
receiver: "Instructor Agent"
sender: "Department Agent"
content: <Student Transcript>

Figure 4: Messages Exchanged

The department’s agent sends a not-understood

message to the instructor’s agent, and terminates the

execution of the script. Upon receipt of the no t -

understood message, the instructor’s agent knows that the

conversation associated with its “Student Transcript

Retrieval” workflow script has failed (step 3a of Figure

2). Using the failure reason included in the content of the

not-understood message, the agent selects the workflow

authority policy to use, which in this case identifies the

department’s agent as the authority for this workflow

script. The instructor’s agent initiates a sub-conversation

with the department’s agent to obtain an updated

workflow script (Figure 4(b)).

Once this is done, the instructor’s agent once again

composes a workflow script that produces a student

transcript (step 1 of Figure 2). The updated “Student

Transcript Retrieval” workflow script is abstract (i.e. has

a dependency), in that it does not specify how to obtain

the authorization descriptor. For this scenario, we have

provided the instructor’s agent with the workflow script

for obtaining an authorization descriptor from the

department’s agent. The composition algorithm includes

this script in the composite workflow script, and is

executed first (Figure 4(c)). The conversation is

reinitiated by the instructor agent and is now successful.

(Figure 4(d)).

4.2. Case Study 2

In the second case study, we demonstrate an

optimizing feature of a WRABBIT agent’s execution

process. When a workflow script is composed from

multiple sub-scripts, and a conversation failure occurs

during the execution of one of these scripts, only changed

or added sub-scripts are re-executed after the recovery

procedure.

In this case study, in order to satisfy its needs, the

instructor initially needs both a student’s transcript and an

authorization token. However, as before, the transcript

service as known to the instructor agent does not require

the authorization service. Rather, the authorization token

is required separately. Therefore, the instructor’s agent

composes a workflow that produces both an authorization

descriptor and a student transcript. This results in a

composite workflow script that features both the original

“Student Transcript Retrieval” workflow script and the

“Authorization Description Retrieval” workflow script.

Once the “Authorization Description Retrieval”

workflow script is executed and the authorization

descriptor obtained, the “Student Transcript Retrieval”

workflow script is attempted, but is subject to the same

conversation failure as in the previous case study. As

before, the instructor agent obtains the new “Student

Transcript Retrieval” workflow script and constructs a

new composite workflow. However, the authorization

script has already been executed successfully, and it has

not changed. Therefore, the WRABBIT agent simply uses

the result of the previous execution rather than re-

executing that sub-script. This limits the impact of

workflow script changes caused by conversation failure.

5. Related Work

Web services composition is an area of active research.

The community is still debating the issue of centralized

vs. distributed coordination of web-service

compositions [15].

Although most mature middleware support for BPEL

process execution assumes a centralized view, distributed

environments are receiving increasing attention. The

Symphony project ([6], [13]) has developed an algorithm

for analyzing a composite service specification for data

and control dependences and partitioning it into a set of

smaller components. These components are then

distributed to different locations and, when deployed,

cooperatively deliver the same semantics as the original

workflow. Symphony does not provide any support for

failures arising from workflow mismatches since it

assumes that the distributed processes will be derived

from a single complete BPEL process.

Blake has also conducted extensive research on how

agents could be used to support better workflow

execution. The WARP environment [5] uses agents’

reflection and tuple-space communication to coordinate a

workflow of component-based services. The COACHES

approach [4] investigates how to organize agents in

groups in order to enable their better collaboration during

workflow execution. Additionally, the COACHES agents

can invoke web services, providing an alternative to the

web services standards for workflow. However, this work

does not address the problem of misaligned workflows

that we have considered.

In the general distributed workflow execution and

management area — outside web services specifications

— there has been a lot of work on workflow change

management. We mention [10] as a representative

example. They present a distributed workflow

management system, in which agents both execute the

workflow and manage state information. The agents in

this system are of different types, where we adopt a peer-

to-peer model, and their focus is on recovering from

application-level failures that result in the inability to

deliver a service, not from the misalignment of

independently evolving workflows.

There is similarly a substantial body of work on

intelligent-agent conversation and collaboration. Some

frameworks dynamically combine small protocol units as

a way to respond to unexpected messages (e.g., [12],

[14]). This approach has agents engage in query, inform,

or error sub-conversations whenever necessary, returning

control to the ‘main’ conversation protocol as required.

Other research [7] derives the definition of normative

communication from an underlying distributed task model

from a more abstract normative communication model, a

concept this work has extended by adding error

resolution.

6. Conclusions and Future Work

This paper has presented the WRABBIT framework,

which examines a plausible solution to the problem of

adaptively maintaining workflows in the face of the

independent evolution of their constituent workflow

scripts. These scripts are derived from BPEL processes,

Department AgentInstructor Agent

Route
incoming
messages
objective

Resolve
conversation

failure
Policy

Resolve
conversation

failure

Route
incoming
messages
objective

Policy
Get scripts

from partner
objective

authority

authority

inform

not-
understood

reason:
out of order

getAuthority()
out-of order

getAuthority()
out-of order

create

Figure 5: WRABBIT message processing

which are used for orchestration in the web-services

arena.

When one agent’s workflow changes unilaterally, it

may incur conversation errors with other agents. We

presented a small set of such error types, such as formerly

required information that is no longer necessary, re-

ordered steps, or new preconditions. The symptom is an

illegal message at run time, which is identified using not-

understood messages. To date we have focused on “out of

order” illegal messages, caused by the addition of newly

required message exchanges introduced at the beginning

of the agent’s conversation model.

In response to a not-understood message, the agents

engage in a new conversation, where the authority agent –

as defined by the shared failure-recovery policy of the

workflow – dictates to the other agents the current, correct

workflow script. The subordinate agents adapt their own

workflows by reorganizing them so that they meet the

constraints of the prescribed workflow script. A further

benefit of this behavior is isolation of the recovery effort.

The error is detected and resolved between the two

partners; other partners are not affected. This will support

distributed management, where the owners of smaller

workflows can evolve these fluidly, without concerning

themselves with the orchestrated higher-level workflows

in which their smaller workflows are components. Our

ongoing efforts are directed at exercising our framework

on more complex workflow changes and policies that

govern the ensuing adaptations, and ensuring that the key

properties of the original workflow continue to be

preserved in the adaptations.

References

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor.

“Constraint Driven Web Service Composition in

METEOR-S.” Proceedings of IEEE International

Conference on Services Computing, 2004.

[2] Apache Axis http://ws.apache.org/axis/

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.

Trickovic, and S. Weerawarana. “Business Process

Execution Language for Web Services, Version 1.1.

Specification.” BEA Systems, IBM Corp., Microsoft Corp.,

SAP AG, Siebel Systems (2003).

[4] M. B. Blake. “Forming Agents for Business Process

Orchestration.” In Proceedings of the 37th Annual Hawaii

International Conference on System Sciences (HICSS'04) -

Track 7. 2004. p. 70210a.

[5] M. B. Blake. “WARP: An Agent-Based Cross-

Organizational Workflow Architecture in Support of Web

Services.” In Proceedings of the 2000 International

Conference on Artificial Intelligence (IC'AI2000) Las

Vegas, NV: CSREA Press Science.

[6] G. Chafle, S. Chandra, V. Mann and M. Nanda.

“Decentralized Orchestration of Composite Web Services.”

In Proceedings of the Alternate Track on Web Services at

the 13th International World Wide Web Conference (WWW

2004), New York, NY, May 2004.

[7] R. Elio and A. Petrinjak (in press). “Normative

communication models for agent error messages.”

Autonomous Agents and Multi-Agent Systems.

[8] FIPA Agent Communicative Act Library Specification,

www.fipa.org.

[9] M. Greaves, H. Holmbeck, and J. Bradshaw. “What is a

conversation policy?” In Issues in Agent Communication

(LNAI 1916). Edited by F. Dignum and M. Greaves.

Springer-Verlag, Berlin. 2000. pp. 118-131.

[10] M. Kamath and K. Ramamritham. “Pragmatic Issues in

Coordinated Execution and Failure Handling of Workflows

in Distributed Workflow Control Architectures.” Univ. of

Massachusetts Computer Science Technical Report 98-28,

August 1998.

[11] Y. Labrou and T. Finin. “A proposal for a new KQML

specification”. Technical Report #CS-97-03, Computer

Science and Electrical Engineering Department, University

of Maryland, Baltimore, Maryland. 1997.

[12] S. Moore. “On conversation policies and the need for

exceptions.” In Issues in Agent Communication (LNAI

1916). Edited by F. Dignum and M. Greaves. Springer-

Verlag, Berlin. 2000. pp. 144-159.

[13] Mangala G. Nanda and Neeran M. Karnik. Synchronization

Analysis for Decentralizing Composite Web Services.

International Journal of Cooperative Information Systems,

vol. 13, no.1, March 2004, pp 91--119.

[14] M. H. Nodine and A. Unruh. “Constructing robust

conversation policies in dynamic agent communities”. In

Issues in Agent Communication (LNAI 1916). Edited by F.

Dignum and M. Greaves. Springer-Verlag, Berlin. 2000.

pp. 206-219.

[15] C. Peltz, (2003). “Web services orchestration.” Hewlett-

Packard Technical Whitepaper, J a n 2 0 0 3 .

http://devresource.hp.com/drc/technical_white_papers/WS

Orch/WSOrchestration.pdf

[16] Web Services Choreography Description Language Version

1.0 , W3C Working Draft December 2004,

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

