
Petrinjak, A., & Elio, R. (2003). Understanding "not-understood": Towards an ontology of error conditions
for agent communication. In Y. Xiang and B. Chaib-draa (Eds.) Advances in Artificial Intelligence: 16th
Conference of the Canadian Society for Computational Studies of Intelligence, LNAI 2671, Halifax, Can-
ada, June 11-13. pp. 383 - 399. Springer-Verlag, Berlin.

Understanding “Not-Understood”: Towards an
Ontology of Error Conditions for Agent Communication

Anita Petrinjak and Renée Elio

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
T6G 2H1

{anita,ree}@cs.ualberta.ca

Abstract. This paper presents the notion of an agent interaction model,
from which error conditions for agent communication can be defined—cases
in which an agent generates a not-understood message. Such a model speci-
fies task and agent interdependencies, agent roles, and predicate properties
at a domain-independent level of abstraction. It also defines which agent be-
liefs may be updated, revised, or accessed through a communication act from
another agent in a particular role. An agent generates a not-understood mes-
sage when it fails to explain elements of a received message in terms of this
underlying interaction model. The reason included as content for the not-
understood message is the specific model violation. As such, not-understood
messages constitute a kind of ‘run-time error’ that signals mismatches be-
tween agents' respective belief states, in terms of the general interaction
model that defines legal and pragmatic communication actions. The interac-
tion model can also set policies for belief revision as a response to a not-
understood message, which may be necessary when task allocation or coor-
dination relationships change during run time.

1 Introduction

One cornerstone of the software agent paradigm has been the effort to define and
standardize a high-level language for agent communication. The Federation for Intelli-
gent Physical Agents (FIPA) offers one such standard for an agent communication
language (ACL) [9]. This standard defines core message types (e.g., inform, request,
and query) with associated semantics based on an underlying theory of communication
as rational action [3, 20]. To be compliant with this standard, an agent need not be
able to process all the predefined core messages. But there is a single core message
that all agents must be able to generate and interpret. This message is not-understood.
The form of this message is (not-understood :sender j :receiver i :content c), where i
and j are agents. The not-understood message is j's response to i in the context of
some previous message from i to j. The message content c is defined as a tuple con-
sisting of an action or event (e.g., a just-received inform message from i to j) and a
‘reason.’ The occasion for sending not-understood is described as follows:

The sender of the not-understood communicative act has received a communi-
cation act it did not understand. There may be several reasons. [An agent] may
not have been designed to process a certain act or class of acts, or it may have
been expecting a different message. For example, it may have been strictly
following a predefined protocol, in which the possible message sequences are
predetermined. The not-understood message indicates to the receiver that noth-
ing has been done as a result of the message....The second term of the [con-
tent] tuple is a proposition representing the reason for the failure to under-
stand. There is no guarantee that the reason is represented in a way that the re-
ceiving agent will understand. However, a cooperative agent will attempt to
explain the misunderstanding constructively. [9]

The not-understood message is pragmatically quite important for agent communica-
tion. The basic premise of speech act theory [1,21], and its adoption in computational
accounts of communication as planning [3,4] is that communication acts are actions
upon a world. By FIPA's formal semantics, if agent i informs agent j of some propo-
sition a, agent i’s intended effect is that j adopt belief in a. Agent j may not do so for
a number of reasons, and hence the intended effect is just that—intended but not guar-
anteed. Thus, in making a communication act, a speaker is aiming to change an aspect
of a non-deterministic world that is not directly accessible, namely the mental state of
the hearer or receiving agent. Hence, not-understood is a quite pointed response back to
agent i from that inaccessible world, indicating that the action was not (merely) un-
successful but, to put it crudely, dead on arrival for some other reason. Our interest
here is in defining those conditions that must be met before j would even attempt to
assimilate a into its informational state.

The work we describe here proposes the notion of an interaction model for defining
and structuring reasons for generating a not-understood message type, and also for
defining possible responses to receiving a not-understood message. Our approach is to
use an interaction model to define expected, legal, and pragmatic messages in ways
that are more general than predefined protocols. Deviations from this interaction model
are occasions for generating a not-understood. An ontology of error conditions for
agent communication flows directly from an interaction model and the different ways
in which messages might constitute deviations from this model.

There are several reasons why we think it is theoretically and pragmatically useful
to take a serious look at not-understood. First, thinking about not-understood is a
different way of thinking about what it means to understand. We can think of under-
standing as the message’s extended perlocutionary effects, i.e., how that message
affects an agent’s internal state, such that it behaves differently for having received and
assimilated the message [see 8, 18]. Second, the considerable effort in specifying the
syntax and semantics for agent communication languages does not address the matter
of what agents actually communicate about, i.e., what fills the :content field of a
message, even when there is a shared ontology and a shared content language. It seems
that, for some applications, what cooperating or coordinating agents ‘talk about’ is
their problem-solving progress. The abstract specification of task interdependencies

and what constitutes task progress can serve as part of a jointly held conversation
policy [8, 10]. Finally, if we seriously regard the notion of agent as a kind of pro-
gramming abstraction [22], then not-understood can be viewed as signaling a ‘run-time
error.’ The analogy is this: a communication action generates an error when its effect
would constitute an illegal or impossible action on the receiving agent’s internal
(mental) state. The matter at hand, then, is to define that set of illegal or impossible
actions, and for that some kind of model is needed.

Generally speaking, our view is that an interaction model defines what agents can,
must, or might talk about during their joint problem solving, and how this may be
further constrained through the specification of agent roles. A not-understood is the
detection of a discrepancy between the messages that are allowed by that model and
what messages are encountered. The ‘constructive reason’ used in the :content field is a
specific type of violation, stated at the same abstract level as the interaction model.
Now, if agent i receives a not-understood concerning one of its messages, it would be
good if agent i’s internal state changed, so that it did not send that very same message
again. The inclusion of a ‘constructive reason’ that is interpretable by agent i opens
the possibility for belief revision, and this is a complicated matter. We discuss our
initial ideas about how an interaction model might set some policies for this as well.

2 Occasions for not-understanding an inform

Our current interaction model has three main elements: (a) the ontology of predicates
that are interpretable by the agents, (b) what kinds of propositions using those predi-
cates can be used in the :content field of particular message types (i.e., the object of
particular illocutionary forces); and (c) which agents are permitted to send particular
message types, with particular content, to which other agents. Together, (a) and (b)
define what kinds of beliefs in agent j's mental state could be updated, revised, or
accessed through an external communication action from agent i. Element (c) further
constrains these operations to be legal only when agent i holds a particular role to
agent j, in the context of some cooperative or coordinated behavior.

To illustrate the general intuitions behind our approach, the top portion of Table 1
presents a schema for inform, which takes a proposition a as its content. The schema
includes FIPA's feasibility preconditions and rational effects for inform. We also in-
clude contextual relevance conditions, i.e., that the receiver of the inform wishes to
know a [3, 13, 21]. Finally, we specify certain success conditions [21] that stipulate
(some) conditions that must hold for the inform action to be successful. There are six
conditions in total for our inform schema. An inform is legal to send—and under-
standable to receive— when these conditions are holding. Conversely, an inform is
not-understood if, from the receiver’s perspective, one or more of these conditions
ought not to be holding in the sender’s internal state. This is what the lower part of
Table 1 shows.

Specifically, the lower portion of Table 1 illustrates six types of not-understood
that are defined by the six conditions in the upper part of the table. The first three are

concerned with the propositional content of the message itself, the particular illocu-
tionary force applied to the content, and the role of the sender to the receiver. Case (i)

Table 1. An inform schema that defines six cases for not-understood
<inform i, j, a>
success conditions: i. a is interpretable by j

ii. j's state concerning a can be updated
iii. j's state concerning a can be updated by i

feasibility preconditions: iv. i knows a
v. i believes j has no position on a

contextual relevance conditions: vi. i believes j desires to know a

intended effect j adopts belief in a

<inform i, j, a> is not-understandable to j wrt an interaction model m if by
that model
i) a's predicate is not in a commonly shared ontology

the intuition: “I don’t know what a means.”
model component: public vs. private predicates

ii) j's position on a cannot be updated/revised
the intuition: “My belief about a cannot be changed.”
model component: static vs. defeasible predicates

iii) j’s position on a cannot be updated/revised by a communication act from i
the intuition: “You cannot change my belief about a.”
model component: external vs. internally defeasible predicates;

agent roles derived from shared task model
iv) j cannot explain why i would know a

the intuition: “How is it that you know a?”
model component: agent models derived from shared task model

v) j cannot explain why i believes j has no position on a.
the intuition: “Why do you believe I do not already know a?”
model component: agent models from shared task model and

run-time updating
vi) j does not desire to know a

the intuition: “Why are you telling me a? It would have no
impact on my behavior.”

model component: agent models derived from shared task model

is a simple matter of whether the predicate of proposition a is in the shared ontology
of the agents. Such predicates are classed as public and are allowable in the proposi-
tional content of a message. The interaction model designates private predicates as
those used to construct belief state propositions that might be idiosyncratic to particu-
lar agents, or that ought not to be exchanged. Case (ii) stipulates what propositions
that involve public predicates are defeasible, and which are not, by classifying public
predicates as either static or defeasible. Case (iii) covers which defeasible beliefs are

changed through internal reasoning actions only or through an external communicative
act of another agent. For example, an interaction model could specify that agent i may
not inform agent j what agent j believes, intends or desires, to embody the constraint
that revisions to j’s mental attitudes are the province of agent j. (These cases loosely
correspond to canonical examples such as “I insult you.” “I convince you of a.” [1]).
But this distinction can apply more widely to other propositions in j’s belief state,
namely any proposition for which only j can determine a truth status.

Cases (iv) through (vi) focus on not-understanding as violations of agent models—
beliefs about other agents, their capabilities, their responsibilities, their realm of
knowledge, and so forth. Systems of coordinating or cooperating agents often implic-
itly or explicitly rely on such acquaintance models, derived from a global or partial
model of interdependencies among tasks and the agents assigned to those tasks [6,11,
14]. In these cases, a not-understood message signals a mismatch between agent i and
j's respective models of each other. For example, cases (iv) and (v) correspond to j's
inability to explain why—given its beliefs about agent i and what agent i ought to
know about agent j— the feasibility conditions for inform are holding for i. Finally,
case (vi) covers an important pragmatic case, from the viewpoint of a message's ex-
tended perlocutionary effects. Presumably, i intends that j adopt belief a so that j's
behavior will change. If belief in a would not impact any of j's behaviors, there is no
consequence of adopting it. In this instance, j's not-understood signals a mismatch
between j's own model of contextual relevance, and agent i's model of what is contex-
tually relevant to j. In some situations, it might be quite important for agent i to learn
that the inform it sent to agent j would have no impact on anything that agent j does.
Agent j might not coordinate its activities with i any differently, release resources any
differently, and so on, if j cannot understand the inform message in terms of its task or
agent models. This could result in a domain-level error situation, brought about be-
cause an inform action did not have its intended effect.

We wish to make a few additional points at this juncture. First, we have not ex-
plicitly included the case of protocol violation, which is the typical situation used to
motivate or define a not-understood scenario. A predefined protocol can be viewed as a
special instance of case (vi). We readily acknowledge that protocol violations are more
easily recognized as syntactic violations, but that is a matter of processing conven-
ience. Second, we use the term ‘explain’ in Table 1 to emphasize that a received mes-
sage must be consistent with the receiver’s model. We have no particular investment
in how simple or complex this consistency-checking process might be nor do we
expect that agents will necessarily discover a discrepancy by means of some theorem
proving procedure applied to formulas in the semantic language that represents their
mental states. Finally, it is natural at this juncture to speculate whether agent i, hav-
ing received a not-understood message from agent j , would itself generate a not-
understood message back to agent j. And on infinitum. This can be a difficult issue.
Our initial approach for avoiding this is to appeal again to the interaction model, and
we address this in a later section.

We have focused to date on FIPA message types that take propositions as message
content, namely inform and disconfirm. Our treatment also handles a variation of
query (namely, query-ref), whose semantics under the FIPA specification are (com-

posed of) a request for an inform action. FIPA includes refuse as a possible response
to a request for an action, although a query might generate a not-understood by our
analysis in Table 1. For brevity's sake, we limit our discussions and examples to
inform in the remainder of this paper.

3 Elements of An Interaction Model

One purpose of an interaction model is to define the space of possible intentions that
cooperating or coordinating agents can have. A second purpose is to define the occa-
sions on which it is expected or likely that those intentions would arise. A third pur-
pose, related to these first two, is to delimit message content, i.e., what appears in the
:content field of a particular message.

There are three main components to defining an interaction model that would sup-
port the generation of not-understood messages illustrated in Table 1. The first is a
language to describe tasks and interdependencies among tasks, and hence interdepend-
encies among agents assigned to those tasks. TÆMS [7] is an example of such a
language and we adopted several of its distinctions. The second is a set of axioms and
inference rules that agents can use, together with a model of task dependencies, to
derive initial and run-time propositional beliefs about other agents and other tasks. It
is these propositions that agents will exchange, update, or revise through communica-
tion actions during a problem solving episode. Particular exchanges, revisions, and
updates are then understood as required, expected or plausible, given these task and
agent models. The third component concerns definitions of particular predicate classes,
that define what types of message content can be exchanged under various circum-
stances (e.g., the static vs. defeasible, internal vs. external distinctions described in
Section 2). The remainder of this section aims to present just enough detail about our
current interaction model framework, to ground our examples from Section 2 and our
later discussion about replies to receiving a not-understood.

3.1 Task Structures

We model a task as an abstract specification of a problem to be solved that has a
number of defining properties. Following [7], the solution method for a task is speci-
fied as either a directly executable method or via the achievement of a set of subtasks.
A (sub)task is related to another task through either an and-decomposition or an or-
decomposition. Tasks may also be related to each other via an enables/enabled-by
relationship: if task i enables task j, then task i must be completed before task j can
begin. A task-structure specifies a hierarchical decomposition of a task into a set of
subtasks whose leaf nodes are executable methods. In our modeling assumptions, each
task and method in a task structure is assigned to exactly one agent, although a given
agent may be responsible for more than one task or method. Figure 1 shows a frag-
ment of an (abstract) task structure to illustrate these properties.

A task definition also includes pre and post conditions, which are used to define its
initial state and its goal state. Pre and post conditions are stated as Boolean constraints
on domain-specific variables relevant to initiating a task and deeming it successful,
respectively. In our airline ticket reservation application, a simple precondition to the
task of obtaining user information would include that the departure and return dates are
unknown; a post condition is that both such dates are known and that the former oc-
curs before the latter. Any kind of domain-dependent check can be specified in this
way; we assume that agents have the domain-dependent code to determine if the con-
straint is holding. In our more abstract domain-independent language, the precondi-
tions are regarded as resources that an agent requires to begin work on a task. Simi-
larly, to declare that a task is completed and successful, an agent must acquire beliefs
that a task’s results have been achieved (i.e., that the post condition constraints are
holding). That brings us to the matter of abstract task operators.

Fig. 1: Elements of task structure and derived agent roles

3.2 Task Progress and Agent Beliefs

Our interaction model also uses a domain-independent vocabulary for task progress.
A task can be in one of these states: not-attempted, possible, not-possible, irrelevant,
failed, or succeeded. An agent is designed to move its task from its initial state (not-
attempted) to a final state (irrelevant, failed, or succeeded). It does so by applying
what we call abstract task operators. An example abstract task operator, using English
gloss, is:

If I intend task t, and status of task t is currently not-attempted
& I have all the resources and information specified for task t’s initial state
& all semantic constraints on those preconditions are satisfied

then change task t’s status to possible

agent i

agent j

agent k

agent n

task 2 task 3

task 21

subtask

enables

subtask

and or

method 21a method 31a agent m

delegator

agent j

task 31

This operator essentially captures the notion that problem solving on a task can
commence, i.e., the constraints that constitute its preconditions have been met and
therefore progress on the task can commence. Application-specific code is used to
instantiate the preconditions in these operators. These operators thus serve to bridge
task dependent constraints with a task independent ontology that agents can use in
their communication acts.

All agents have access to the entire task structure (the complete decomposition of a
root task and the assignment of subtasks and methods to other agents), although this
is not strictly necessary for our purposes. An agent’s belief state is initialized and
modified during run time by the agent’s use of the shared task structure coupled with
a set of axioms and inference rules. This is the second, major component of the inter-
action model, which serves to unite a model of task interdependencies with a tradi-
tional belief-desire-intention perspective for modeling an agent’s internal state. Some
examples of these rules (stated in English) are: “Every task has an assigned agent and
only one such agent.” “Only the agent assigned to a task can intend it”. “An agent
desires resources for its assigned task iff the agent intends it.” The further explication
of our axioms and inference rules is outside the scope of this short paper and not cen-
tral to our concern. However, the general character of these rules is that they define and
constrain task properties on the one hand and agent properties (e.g., roles, attitudinal
states) on the other. The role of agent i to agent j in Figure 1 as delegator is derived
from such inference rules applied to the jointly held task model. Similarly, the belief
that agent n desires the results from task-21 is derived from beliefs that agent n is the
agent assigned to that task, and that task-21 enables agent n’s task. These ultimately
serve as the states that correspond to preconditions for communication acts. Table 2
shows a subset of the beliefs that would follow from these sorts of inference rules,
coupled with the task structure in Figure 1.

 Table 2. Illustrative belief state elements for agent j, Fig. 1

beliefs about self (agent-for j task-21) (relevant task-21) (intend j task-21)
(agent-for j method-21a)
(desire (j (result-for (task-21 result-a)))
(enables task-21 task-31) (subtask-of task-21 task-2) ...

beliefs about others (agent-for n task-31) (agent-for i task-2)
(intend n task-31) (relevant task-31)
(desire (n (result-of (task-21 result-b))))....

beliefs about tasks (relevant task-21) (status task-21 possible)
(have-all-resources task-21) (valid-all-resources task-21)
(decomposition task-21 method-21) ...
(status method-21 not-attempted)

At the implementation level, we allow one level of nesting for belief propositions,
and drop the outer most believe. (Desire agent a) is used to signify that an agent will
aim to achieve a belief state in which proposition a is true. The intend predicate sig-

nifies an attitude towards a task by an agent; intend (agent-i task-23) is shorthand for
signifying a behavioral commitment on agent i's part to bring task-23 to a final state.
In using this kind of vocabulary, it is important to specify axioms to define the se-
mantics of these concepts. From our viewpoint, domain-specific computations on
domain-specific information states can be carried out in any fashion, as long as they
ultimately create beliefs in the agent that are represented using this (or some other)
abstraction vocabulary. The implementation must ensure that, during execution, agent
belief states are internally consistent with the axioms defining the semantics.

3.2 Communication plans

Within each agent, a communication plan module handles the generation and assimila-
tion of inform, disconfirm or query messages. Communication plans are triggered in
two ways. First, an agent may select a particular communication plan as the means
for satisfying the preconditions of an abstract task operator. For example, an agent
may execute a query plan to receive information about resources that are necessary to
move its task from not-attempted to possible. Second, an agent may proactively gen-
erate an inform or a disconfirm message to exchange information it believes will be
useful to other agents. For example, an agent that determines its own task has failed
may immediately inform other agents who require its results or resources. The com-
munication plans implement the kind of schema illustrated in the top panel of Table
1. An agent’s communication module also creates the necessary data structures for
maintaining conversations between itself and several agents. Incoming messages are
recognized as either completing or continuing an on-going conversation or as initiat-
ing a new conversation, provided that such messages pass the not-understood filters
(described below).

3.4 Declarative and Procedural Forms of the Interaction Model

In our framework, agents share a declarative form of the interaction model represented
in XML, with document type definitions for the key components that follow. The
first component is the definition of a task structure using the general task description
language, with agents assigned to specific tasks and methods within this structure.
The second component is the set of allowable message types. In our sample model,
this set has the members inform, disconfirm, query-ref, and not-understood. The third
component is the set of allowable predicates that can comprise a proposition in an
agent's belief set. Each of these predicates must be classified along three dimensions,
defined generally in Section 2: public or private, static or defeasible, internal or exter-
nal. Only propositions that involve public predicates may appear in any message
content. Propositions involving defeasible predicates may be revised during run-time;
those involving static predicates may not. External predicates may appear in the pro-
positional content of inform or disconfirm messages; internal predicates may not. The
fourth component is a specification of agent roles. In our current interaction model,
there are two types of agent roles which are isomorphic to task dependencies: delega-

tor—delegatee (isomorphic to task—subtask) and enabler-enablee (isomorphic to task
dependencies of enables—enabled-by). However, an interaction model could include
agent roles that are not isomorphic to task structure. The fifth component of the inter-
action model defines what combinations of message type, agent-role, and predicate
type are allowable, i.e., which illocutionary forces can be applied to particular public,
external, defeasible predicates by an agent having a particular role relative to another
agent. Here is a portion of model that captures these last two components:

public: { resource task-status task-relevance intend agent-for...}
defeasible: { resource task-status task-relevance intend ...}
external: { task-relevance resource}
inform [sender-role: delegator] [predicate-class: external] [object: task-of(receiver)]
query [sender-role: any] [predicate-class: public] [object: task-of(receiver)]

This model fragment indicates that agent j’s beliefs about the relevance of its task
can be updated via an inform act from agent i, if agent i had delegated that task to
agent j. (This is just one specification for inform—the model would specify several of
these.) This particular specification also permits any public predicate to be the content
of a query, regardless of the respective roles of the sender and receiver. A different
specification could constrain queries as a function of agent roles. We have mentioned
the importance of axioms and inference rules that unite these abstract interaction ele-
ments; these are not in our XML representation, although a more expressive modeling
language [e.g. 5] might allow such axioms to be part of a declarative representation.

inform-messages fi inform-1 | inform-2
inform-1 fi (inform sender receiver role-ofs-to-r (task-subject))

task-subject fi task-ofsender | task-ofreceiver
role-ofs-to-r fi delegator | delegatee | enabler | enablee

external fi relevant | resource
modality fi intend | believe | desire

[delegator] [task-subject] fi [delegator] [task-subject] [external]
 [delegatee] [task-ofsender]fi [delegatee][task-ofsender][result]

[role-ofs-to-r][task-ofsender]fi [role-ofs-to-r][task-ofsender][status]

inform-2 fi (inform sender receiver roles-to-r (sender modality)

Fig. 2. A grammar for legal inform messages allowable by an interaction model (s-to-r =
sender-to-receiver)

Upon reflection, it is clear that the interaction model could be used to enumerate
the set of all messages that adhere to its constraints. Indeed, the point of the model is
to define a finite set of intentions and hence a finite set of messages that could (in
principle) be sent between agents. It is convenient and useful to re-represent this func-
tionality as a grammar that an agent can use to generate (or validate) messages. Figure
2 shows such a grammar for generating schematic versions of an inform message,
created (by hand) from an interaction model specification.

In Figure 2, Task-of is a function that takes a particular agent as an argument and
returns the task(s) to which that agent is assigned. For convenience, we defined two
types of informs and the grammar generates schematic templates for each type. An
example of an inform-1 that this grammar generates is:

 (inform sender receiver delegator (task-ofsender relevant))

This inform is consistent with the interaction constraints that it is legal and prag-
matic for an agent i (as sender) to inform agent j (as receiver) of agent i’s own task
relevance, if agent j is performing a subtask for agent i (i.e., i stands as delegator to j).
Using the Figure 1 task structure, the grammar allows i to inform j that task-2 is, for
example, not relevant. It is legal, because agent i can send messages with proposi-
tional content about task relevance (relevance is public) and relevance can be updated
via communication acts (it is defeasible and external). It is pragmatic, because agent j
might infer its own task should be initiated (or stopped) by receiving messages about
agent i’s task relevance. This grammar would not generate the following inform-1:

X (inform sender receiver delegatee (task-ofreceiver relevant))

Using the structure in Figure 1, agent j cannot inform agent i anything about the
relevance of agent i’s task (task-2): agent j’s role to agent i is delegatee, not delegator.
Such a communication act is disallowed by the interaction axioms and that is captured
in this grammar.

An example of a schematic inform-2 that this grammar generates is:

(inform sender receiver delegatee (sender believe))

This second type of inform captures the notion that a sender can inform a receiver
about (only) the sender’s attitudes towards propositions. Note that this particular
grammar is based on an interaction model that requires that some direct role exist
between the sender and receiver for such a message in the first place (e.g., the grammar
would not generate this message from agent i to agent m in Fig. 1).

Any agent in our system can run this grammar by first binding sender to itself and
receiver to some particular other agent. The grammar implicitly embodies constraints
about public, defeasible, and external predicates as well as pragmatic considerations
about what constitute plausible informs from one agent to another. The latter are
captured through reference to the role that the sender plays to the receiver. We imple-
ment grammars like this one for inform, disconfirm (similar to inform) and query.
This alternative representation of the interaction model is useful because it gives an
agent the procedural capability of (a) generating all legal and pragmatic messages
between itself and another agent, and (b) checking whether the general form of an
incoming message passes various types of understandability filters. The grammars
also serve an important function for us, namely to forbid certain kinds of replies to a
not-understood message. We discuss this in the next section.

4 Not-Understood Responses and Conversations

Having both declarative and procedural specifications for an agent interaction model, it
is possible to define a general message assimilation routine. Such a routine parses an
incoming message and determines whether a not-understood response is warranted, by
essentially asking these four questions:

1. Is the predicate in the content proposition a public predicate?
2. Is the illocutionary force applied to this predicate allowed?
3. Does the sender hold the proper role relative to the hearer, in order to ap-

ply this illocutionary force to the proposition?
4. Are the feasibility, relevance, and success preconditions (assumed to hold

on the speaker's part) consistent with the receiver’s interaction model and
its current belief state about the sender and the task?

Recall that the general form of not-understood is (not-understood :sender j :receiver i
:content (m reason)), where m is a just-received message from i. Any of the four
checks listed above could generate a not-understood with a reason that takes one of
four possible corresponding forms:

 (not-understood :sender :receiver
 :content (m (not (public <predicate p of m’s content>)) |

(m (not (external <predicate p of m’s content >)) |
(m (not (permissible-role sender receiver)) |
(m (not a)))

The first three of these cases can be handled by using the grammar. The last case
includes a proposition a that will describes the mismatch between the receiver’s
model and the sender’s model of what feasibility and relevance conditions are thought
to be holding. For example, this case might correspond to “It is false that I desire the
result of task-23.” This could occur if tasks are dynamically reallocated and agent
models about task responsibilities are out of sync.

At this point, we could consider the matter of generating and structuring not-
understood messages as done. This is especially true if we regard not-understood mes-
sages as true run-time errors, i.e., errors that would bring an agent system to a halt, or
at least stop further interaction between two agents.

However, things become more interesting, and complicated, if we try to allow
some further resolution of a not-understood through additional message exchange.
Recall that the reason included with not-understood is supposed to be a ‘constructive
explanation’ about the matter. It would be most constructive if it caused some change
to the internal state of the agent who sent the original message m, such that the agent
would not simply regenerate message m all over again. In this sense, we can interpret
the reason in a not-understood as an opportunity to bring two disparate models into
alignment: the reason constitutes the content of an inform.

But this immediately raises the question of whose model is to be taken as true—the
sender who generated message m or the receiver who asserts it is not understandable?
We do not, of course, have a general answer for this, but we believe that the underly-

ing interaction model could be used to represent application-specific policies about
this. Consider this possible message exchange scenario:

message 1 (inform i j (intend (j)))
message 2 (not-understood j i (<message 1> (not (external intend))))

? message 3 (disconfirm i j (not (external intend)))
X message 3' (not-understood i j (<message 2> (external intend))))

In message 2, j’s reason is that j believes that intend is not an external defeasible
predicate, i.e., one whose truth status can be updated by a communication action from
another agent. Hence i’s message 1 is not allowed under j’s interaction model. Now,
there are two possible responses that i could make. In message 3, i aims to revise j’s
model about whether the intend predicate is external. Is message 3 allowable? It de-
pends solely on the underlying interaction model: if the predicate external is itself an
external, defeasible predicate, then message 3 is allowed. Otherwise, it is not. (This
does not settle the more general matter of whose model should be taken as correct, but
perhaps that can be stipulated via agent roles that make sense within the realm of a
given application). The second possible response is message 3', namely that i tells j
that j’s not-understood message is not understandable to i. Within our framework, this
cannot happen, because to do so is tantamount to i informing j what j already knows
from message 1 (that i believes that intend was an external predicate). This would
violate a feasibility precondition for inform (again regarding the reason as the content
of an inform) and would not be allowed by the model.

The next message exchange illustrates a case where agent i’s model of task and
agent interdependencies is incorrect, and i informs j of some result j does not need:

message 4 (inform i j (result-of (task-23)))
message 5 (not-understood j i (<message 4>

(not (desire (j, result-of (task-23...))))
X message 6 (disconfirm i j (desire (j, result-of (task-23)))

According to the interaction model, message 4 is not understood because, from j’s
viewpoint, the contextual relevance conditions for this inform should not be holding
for i: j does not need to know the result of task-23 and i apparently believes otherwise.
The not-understood reason, taken as an inform from j to i about j’s beliefs, is legal
under the interaction model. This can cause agent i to update its model of agent j’s
responsibilities. But agent i cannot try to revise agent j’s belief state with message 6,
because by the interaction model, i cannot change j’s state about what j desires.

In this last scenario, there could be a different reason why agent j does not under-
stand message 4. It might not (according to its own model of agent i) believe that an
inform feasibility precondition holds for agent i, e.g., that agent i has reason to know
the results of task-23. If only agents assigned to a task can know task results and j
does not believe i is the agent assigned to task-23, then it might generate message 5'
in response to message 4:

message 5' (not-understood j i (<message 4> (not (agent-for (i task-23)))

? message 6' (disconfirm i j (not (agent-for (i task-23)))

Message 6' could be a legal continuation of this exchange, iff the interaction model
defines agent-for to be an external, defeasible predicate and (by the associated axioms)
that an agent is the final authority on its task assignments (i.e., it can update beliefs
held by others about its task assignments).

We have not considered message exchanges involving query, but many of the same
issues arise. In the simple scenarios considered here, an agent may reply with a refuse
to a query concerning a if it cannot resolve, by its underlying interaction model, that
the inquiring agent has reason to know a. In this way, an interaction model can be
used to enforce certain privacy constraints on information exchanged in a multi-agent
system. In general, many issues remain about if and how agents use not-understood as
a means for aligning disparate belief states. Belief states of cooperating agents could
diverge during problem solving, through lost messages or, say, through task realloca-
tion during run time. So it is not unreasonable to consider that this simple belief
revision—triggered through communication exchanges—might be necessary for agents
to adjust to a changing task environment.

5 Related Work and Themes

There has been general recognition that error conditions need to be specified for agent
communication [9]. However, to our knowledge, there has not been work done either
in defining such error conditions or in structuring not-understood messages through an
explicit interaction model for software agents. The framework we present here adopts
a number of the pragmatic assumptions that emerge from theoretical notions devel-
oped in the discourse understanding community [11, 14, 15, 19]. Explicit representa-
tions of tasks and task plans are used in such frameworks to define plausible or ex-
pected communication. As we have noted earlier, various approaches to coordinating
distributed agents employ rich task environment modeling languages [6, 7] and such
languages are central to specifying an interaction model. But the primary focus in that
work has not been the motivation and resolution of communication actions per se.
More recently, there is an effort to link conversation protocols directly to task interac-
tion patterns [23]. Our interaction model requires the specification of axioms that link
task interdependencies to agent properties. Such axioms provide the bridge from coor-
dination information to BDI approaches for agent behavior and communication that
support to abstract conversations about joint agent goals, envisioned in[23]. Our use
of agent roles in specifying interaction conventions is also related to models of social
problem solving. Such models describe agents in terms of the actions they are com-
mitted to executing, the resources they will need to meet those commitments, and
their expectations and beliefs about the actions, commitments, and resource needs of
others [2]. [24] uses roles for describing the expectations about individual behavior.
Here, we are using agent roles as part of an interaction model for defining the prag-
matic as well as legal communication actions that may be taken by one agent upon
another agent’s internal state.

Our working assumption is that understanding and hence not-understanding can
only be resolved through appeal to some sort of model. By our view, such a model
requires a shared task specification that describes task and agent interdependencies and a
set of axioms that relate these specifications to BDI elements for characterizing an
agent’s internal state. What this means is that a set of cooperating or coordinating
agents have a ‘deep model’ of their joint work and each other. This is easy to achieve
in a closed agent system, in which a system designer can impart such models to a set
of homogeneous and stable agents. But in such a system, one can argue that there is
no real need to adhere to a high level ACL in the first place, because the agents can be
programmed to communicate with each other in whatever way the system designer
decides is best. A good part of the motivation for a high level standardized ACL was
for communication among heterogeneous agents, who most likely have shallow mod-
els of each other. And that is where we come up against the matter of just what such
agents will ‘talk about’. There is considerable work on specifying ontologies that can
support certain web-motivated types of interactions (e.g., service brokering [16]), but
it still seems to us that such agents must subscribe to some kind of underlying inter-
action model. Fixed conversation protocols can certainly be regarded as a simple inter-
action model, but —as it is generally recognized — such protocols do not constrain
message content, only sequences of message types. Some of the interaction model
components we have advocated here (e.g., restrictions on whether particular beliefs can
be updated or revised through communication actions taken by agents in particular
roles) can add a level of semantic check, even without a deeper shared problem solving
model.

In either open or closed agent systems, we think that a case can be made for ex-
plicit interaction models of the kind we have considered here. It might seem that
providing such models is too much overhead. However, there has been increasing
interest in extending and applying software engineering methodologies to the agent
paradigm [12, 17, 25] and many of the interaction model components we have advo-
cated here emerge ‘for free’ in the course of specifying a system design in, say, UML.

6 Conclusions and Future Work

The main contribution of this work is the perspective that messages are not-
understood, and hence understood, with reference to a shared, declarative interaction
model. We have also outlined the kinds of elements that such an interaction model
might minimally include. A good portion of agent message types have intended effects
that are essentially manipulations, updates, or revisions of the mental (informational)
state of the receiving agent. We have considered here how not-understood messages can
be viewed as replies to illegal instances of such actions on an agent’s mental state.
The model is the means by which legality and illegality is defined. In our framework,
the model includes what feasibility preconditions, success conditions, and relevance
conditions ought to be holding for the sender, to take a particular communicative
action. We have also included the idea that some kinds of agent beliefs are not revis-
able by communicative acts, or indeed cannot even be the content of communication

acts. When these constraints are combined with agent roles, the interaction model can
become even richer and more complex (e.g., some agents get to revise some sorts of
beliefs held by other agents, depending on their relative roles). The general point is
that any and all such elements can be used to define a principled approach to constrain-
ing message content, message exchange patterns, and thereby a set of error conditions
for agent communication.

We have employed the interaction model in a multi-agent solution to a simple do-
main task (making airline reservations through different web sites) as our test applica-
tion. Our system framework instantiates and deploys agents that follow the interaction
model as they interact to execute this task. We test the framework’s ability to generate
and assimilate not-understood messages by perturbing the individual agent models and
generating messages to other agents that are illegal or non-pragmatic, from their
viewpoints. The not-understood message exchange scenarios described earlier are han-
dled within our implemented system. As we considered in Section 4, interesting issues
emerge when we move beyond the error ontology per se and consider not-understood
messages themselves as opportunities for belief revision during problem-solving.
Agent roles are crucial to our analysis, because they so strongly influence the legal
and pragmatically expected belief revision and updates that can take place through
informs and disconfirms. If agent task assignment (and roles) are permitted to change
during a problem solving episode, there must be consistent and reliable means for
synchronizing agents’ respective models of each other in the task context. This is an
important consideration, since it relaxes the assumption that agents systems are stable
and task allocation does not change during coordinated or cooperative problem solving.
Our on-going work is aimed at a more careful consideration of using the not-
understood conversations to synchronize mismatching agent models.

Acknowledgements

This work was supported by an NSERC research grant to R. Elio.

References

1 . Austin, J.: How to do Things with Words. Harvard University Press (1962)
2 . Bond, A. H.: Commitment: Some DAI Insights from Symbolic Interactionist Society.

In: Proceedings of 9th Workshop on Distributed Artificial Intelligence. (1989)
3 . Breiter, P., Sadek, M.: A Rational Agent as the Kernal of a Cooperative Spoken Dia-

logue System. In: Intelligent Agents III (LNAI Vol. 1193). Springer-Verlag (1997)
189-204

4 . Cohen, P., Pernault, R.: Elements of a Plan-Based Theory of Speech Acts. Cognitive
Science 3 (1979) 177-212

5 . DAML Agent Markup Language, www.daml.org
6 . Decker, K., Lesser, V.: Designing a Family of Coordination Algorithms. In: Proc. 5th

Intl. Conference on Multi-agent Systems. MIT Press (1995) 73-80

7 . Decker, K., Lesser, V.: Quantitative modeling of complex computational task envi-
ronments. In: Proc. of AAAI-93. AAAI Press (1993) 217-224

8 . Elio, R., Haddadi, A.: On abstract models and conversation protocols. In F. Dignum
and M. Greaves (eds.): Issues in Agent Communication. (LNAI 1916). Springer-Verlag
(2000) 301-313

9 . FIPA: “Agent Communicative Act Library Specification” available at
http://www.fipa.org/specs

10. Greaves, M., Holmback, H., Bradshaw, J.: What is a conversation policy? In F. Dig-
num and M. Greaves (eds.): Issues in Agent Communication. (LNAI 1916). Springer-
Verlag (2000) 118-131

11. Grosz, B. J., Sidner, C. L.: Plans for Discourse. In: P. R. Cohen, J. Morgan, & M. E.
Pollack (eds.): Intentions in Communication. MIT Press (1990) 417-444

12. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277-296

13. Labrou, Y., Finin, T.: A semantics approach for KQML. In: Proc. of the Third Interna-
tional Conference on Information and Knowledge Management, ACM Press (1994)
447-455

14. Lochbaum, K.E., Grosz, B. J., Sidner, C. L.: Models of Plans to Support Communica-
tion. In: Proc. 8th Nat. Conf. on Artificial Intelligence. AAAI Press (1990) 485-490

15. Lochbaum, K.E.: The use of knowledge preconditions in language processing. In Proc.
IJCAI-95 (1995) 1260-1266

16. Nodine. M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., Unruh, A.: Active Informa-
tion Gathering in InfoSleuth. Intl. Journal of Cooperative Information Systems 9
(2000) 3-28

17. Odell, J., Parnunak, H.V.D., Bauer, B.: Extending UML for Agents. In: Proc. Agent-
Oriented Information Systems Workshop at the 17th Natl. Conference on Artificial In-
telligence. AAAI Press (2000)

18. Pitt, J., Mamdani, A.: Communication protocols in multi-agent systems. In F. Dig-
num and M. Greaves (eds.): Issues in Agent Communication. (LNAI 1916). Springer-
Verlag (2000) 160 - 177

19. Rich, C., Sidner C. L.: COLLAGEN: When agents collaborate with people. In M. H.
Huhns & M. P. Singh (eds.): Readings in Agents. Morgan Kaufmann (1994) 814-819

20. Sadek, M. D.: A Study in the Logic of Intention. In Proc. 3r d Conf. on Principles of
Knowledge Representation and Reasoning. Morgan Kaufmann (1992) 462-473

21. Searle, J.: What is a Speech Act. In: Black, M. (ed.): Philosophy in America. Cornell
Univ Press (1965) 221-239

22. Shoham, Y.: Agent Oriented Programming. Artificial Intelligence (1993) 51-92
23. Wagner, T., Benyo, B., Lesser, V., Xuan, P.: Investigating Interactions between

Agent Conversations and Agent Control Components. In F. Dignum and M. Greaves
(eds.): Issues in Agent Communication. (LNAI 1916). Springer-Verlag (2000) 301-
314-330.

24. Werner, E.: Cooperating Agents: A Unified Theory of Communication and Social
Structure. In: L. Gasser and M. H. Huhns (eds.): Distributed Artificial Intelligence Vol
II. Pitnam Publishing (1989) 3-36

25. Wooldridge, M., Jennings, N.J., Kinny, D.: The Gaia Methodology for Agent-oriented
analysis and design. Autonomous Agents and Multi-agent Systems 3. Kluwer (2000)
285-312

