
Conversation Errors in Web Service Coordination:

Run-time Detection and Repair

Warren Blanchet, Renée Elio, and Eleni Stroulia

Department of Computing Science

University of Alberta

{blanchet, ree, stroulia}@cs.ualberta.ca

Abstract

Organizations that own web services participating in a

workflow composition may evolve their components

independently. Service coordination can fail when

previously legal messages between independently

changing, distributed components become illegal because

their respective workflow models are no longer

synchronized. This paper presents an intelligent-agent

framework that wraps a web service in a conversation

layer and a simple workflow-adaptation function. The

conversation layer implements protocols and consults

globally shared, declarative policy specifications to

resolve interaction failures. The framework allows agents

to resolves various model mismatches that cause

interaction errors, including changes to required

preconditions, partners, and expected message ordering.

Implications of this distributed approach to web service

coordination are also discussed.

1. Introduction

One of the appealing elements of web service

composition is its distributed conceptualization:

functional components of a system are implemented as

network-accessible “services” declaratively specified (in

WSDL) and declaratively composed (in BPEL4WS).

However, most of the available middleware environments

that support this composition assume that the coordination

specification, which defines conversation controllers, is

interpreted by a central middleware node. This poses

some interesting issues for bottom-up Enterprise

Application Integration, in which the various

organizations that own the services participating in the

workflow may evolve their services independently. The

question then becomes “how should a composition evolve

with its independently changing, constituent services?”.

For example, suppose that Organization A adds new

preconditions that must be satisfied for it to contribute its

services to a workflow. To do this, it updates the original

BPEL process x that specifies its contribution, thus

creating x', a new version of the process which reflects the

change. It also updates the BPEL process that specifies

how to interact with its service, xclient, creating x'client.

However, Organization B, which relies on Organization

A’s services to provide its own services, still has the old

BPEL process xclient. The result is that Organization B will

invoke Organization A’s service by sending an initial

message without the necessary precondition being

satisfied. The workflow composition itself will fail, since

the message sent by B is not the message that A expects

or defines as legal.

Specifically, our research examines the avoidance of

workflow failures that result from out-of-sync workflow

models and that are detectable through certain types of

conversation errors. We view service composition and

coordination as a conversation among intelligent agents,

where each agent is responsible for delivering the services

of a participating organization. In this context, an agent is

a layer wrapping each peer organization, and is able to

communicate with the other agents responsible for partner

services, recognize mismatches between its own

conversation model and the models of other agents (as

these are revealed by conversation failures), and adapt the

models as necessary to eliminate these errors.

Much of our approach is inspired by the agent

communication community, which has long grappled with

the matter of defining and supporting declarative

specifications for the syntax and semantics of extended

message exchanges (e.g., [11]). Within this community,

some work argues that normative conversation behavior

for agents is situated within (or defined by) a specific task

model and the state of the coordinating agents in the

execution of these models [3][9]. These task-situated

perspectives are well suited to the convergence on a

standardization language, such as BPEL [2], that supports

the specifications of both composition schemas and

coordination protocols.

Our approach defines an agent layer that wraps each

web service, operating with a conversation layer that

defines normative message exchange based on the

underlying workflow model. Deviations from this

normative message exchange triggers a conversation

error, which is regarded by both agents as a symptom of

mismatching workflow models. The agents consult

policies to resolve whose model is to be used as the

correct one, and then restart their interaction.

The rest of this paper is organized as follows. Sections

2 and 3 discuss how workflow and conversation models

can define conversation errors as symptoms of

mismatched workflow models. In section 4, we discuss

Renee Elio
Text Box
Warren Blanchet, Renée Elio, Eleni Stroulia. "Conversation Errors in Web Service Coordination: Run-time Detection and Repair." Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI 05), September 19-22 2005, Compiègne University of Technology, France.

the role of declarative policies, indexed to error and

workflow types, for identifying which agent has the

correct workflow model. Sections 5 and 6, respectively,

describe our implemented architecture for workflow

failure avoidance and two illustrative case studies. Section

7 discusses related research. We conclude with a

discussion of open issues and directions.

2. Workflows, Conversations, Models, and

Scripts

A workflow is a process that accomplishes some

(business) objective and that requires more than a single

participant. Therefore, it involves routing information

among participants so that the objective can be

accomplished. A workflow model is a conceptualization of

a workflow, typically represented as a state space in

which the edges represent actions taken by the workflow's

participants. These actions include both private (agent

internal) computations and message exchanges between

participants. We assume that a workflow model includes

partner definitions and roles. (This is important for the

conversation error types we detect). We use the term

workflow script to mean the states and state transitions

(steps) of a particular participant p in a workflow w, from

p's perspective, including message exchanges with other

participants. Each workflow script is stored as a BPEL

specification extended by partner bindings and roles. A

workflow model that involves n participants will be

realized as n workflow scripts, one for each participant.

We use the term conversation to denote the exchange

of messages between a sender and receiver, initiated by

the sender to bring about a particular state change. A

conversation script is just that portion of a workflow

script w that specifies message exchanges between the

process modeled in w and some particular partner process.

Thus, if an agent has multiple partners, there will be a

number of corresponding conversation scripts that, when

combined with the agent’s internal work activities,

constitute the workflow script of the agent; the workflow

scripts of all collaborating agents together correspond to

the workflow model. To create conversation scripts, we

map the web-service primitive message interaction types

(one-way, request response) from the workflow script to a

small set of protocols that use higher-order message

primitives (see Table 1).

The structure of these higher-order messages is

(:message-primitive :receiver r :sender s :conversationID

cid :content c). We use three message primitives, inform,

request, and not-understood, adapted from [10]. Inform is

used by a sender agent to communicate information to a

receiver agent, when the sender's state indicates that the

receiver expects or requires that information. Request is

sent by the sender to request that the receiver perform

some action. Not-understood is our interaction error

primitive. The receiver and sender fields hold unique

agent ID's, specified as URI’s. The conversation id is

dynamically set by the initiator of the conversation script,

and designates a unique conversation thread. The

structure of the content depends on the message primitive

used. For inform, it is a tuple consisting of an operation

ID and the message content proper. The operation ID

identifies a WSDL-level operation. It subsumes the

service, port, and operation identifiers present in WSDL.

The message content for not-understood consists of a

‘reason’ for regarding message m as an error in the

context of conversation cid with sender s. We discuss the

taxonomy of reasons and the not-understood message in

more detail later.

BPEL Activity Message Protocol

Asynchronous Invoke Send inform

Asynchronous Receive Receive inform

Synchronous Invoke Send inform

Send request

Receive inform

Synchronous Receive Receive inform

Receive request

Synchronous Reply Send inform

Table 1: Mapping BPEL Activity to
Conversation Protocols

We interpret any message sent between web services

as information of one kind or another, and thus for these

we use inform. Consider the case of a synchronous BPEL

invoke activity (the type that invokes a WSDL request-

response operation). The invoker initiates the sequence by

sending a message to the receiving process. Due to the

nature of the WSDL operation, the receiving process must

reply with a message sent to the invoker, who is waiting

for the reply. Following Table 1, this exchange is

translated to the following protocol: the requester sends

an inform message (with the WSDL input message as

content) immediately followed by a request message

(requesting the WSDL output message). The invoker of

the operation is actively soliciting a response, as is clear

from the semantics of the WSDL request-response

operation, and thus we use a request for action (the

request for the action of sending back a response). The

receiver sends an inform message (with this message as

content) as a reply.

Our reason for moving to this higher level of message

protocol is to enable a more flexible layer that recognizes

conversation errors as symptomatic of mismatched

workflow models.

3. Conversation Failures and Errors

A conversation failure is the failure of a conversation

to result in the state change c, for which it was selected.

Conversation failures arise from conversation errors:

deviations from the normative behavior specified by a

given conversation script. A conversation error (if

unresolved) typically results in conversation failure,

which in turn leads to a workflow failure. A conversation

error is defined from a particular participant's

viewpoint—it is a deviation from the normative message

exchange as defined by its conversation script, which is

derived from its workflow script. When this occurs, the

participant constructs and sends a not-understood

message.

4. Policies for Conversation Error Recovery

There are four components relevant to our approach to

conversation error recovery: (a) the error symptom (a

conversation error observable through message

exchange); (b) the cause for the error (model mismatch);

(c) a way to fix the underlying models, so that the

conversation error does not reoccur; (d) a selection policy:

a method of determining which underlying model to

adjust and how. There might be more than one cause for a

given conversation error, but our current approach does

not require these be diagnosed and treated differently. If

an agent A receives a message m, it would generate a not-

understood in response to the following error symptoms:

1. A cannot interpret m 's content. C a u s e s: The

workflow scripts of A and m’s sender differ on the

schema specifying constraints for m's content or on

the form of the information provided in m, or the

inner message primitive is not known to A.

2. A does not expect m at this point. Either m is

routable to an ongoing conversation c, but is not the

next legal message given c's state, or belongs to no

open conversation and is not a legal conversation-

starting message. Causes: The message exchange

involving m was deleted from the receiver's

conversation model, a new message exchange was

added to the receiver's conversation model before m,

the message exchange involving m was reordered in

the receiver's conversation model, or a message

exchange has been substituted for m ’s in the

receiver's conversation model.

3. m is sent by a wrong party: m's message type and

content are expected and interpretable in an on-

going conversation c, but the sender is not the

partner expected by A . Causes: the roles of the

partners have evolved; partners have delegated their

responsibilities to other agents.

A not-understood message, with a reason as its content,

constitutes a kind of run-time error about the nature of a

model mismatch. The reason identifies one of these error

categories. To recover from this potential workflow

failure, then either the receiver’s workflow model must be

modified or the sender’s workflow model must be

modified, so that either m is not regenerated by the

sender, or m is regarded as legal by the receiver.

A policy is a means by which one of two different

workflow models for accomplishing some objective will

be regarded as correct, and adopted by the agent with the

incorrect model, so that the interaction can continue. Our

policies are either general defaults that apply to multiple

workflows, or are indexed to particular error types within

particular workflows. A general default policy, for

example, might be a kind of virtual 'organization chart', in

which hierarchical position defines authority relationships

among agents. The need for workflow and error-type

specific policies for designating authority will be

illustrated in case studies, discussed below.

5. WRABBIT System Implementation

We have implemented this approach to interaction-

failure recovery in a system called “Workflow

Reconfiguration with Agent- and BPEL-Based

Intercommunication Technology”, or WRABBIT. Figure

1 illustrates the software architecture of each WRABBIT

agent. Our focus here is on the agent layer and the way it

recognizes conversation errors, as well as the way it

supports dynamic adjustment of workflow scripts to avoid

such errors so that the workflow can continue.

There are three key elements to how the agent layer

attempts to re-synchronize workflow models: an

algorithm for composing workflow scripts into executable

meta-scripts, the recognition and classification of a

conversation script error (generating a not-understood),

and the use of declarative correction policies associated

with the workflow and error type (resolving a not-

understood).

Peer
Agent

Agent Peer
Agent

Message exchange

Conversation Management

Workow Execution Problem Resoution

PolicyWorkow
script

Workow
script

Workow
script

Policy
le

BPEL
Process

Partner
Bindings

Policy Policy

Figure 1: The WRABBIT Architecture

WRABBIT agents are designed to achieve objectives

of two general types: objectives to bring about a state s

and objectives to execute action a. Agents create an

objective of the first type to obtain the value of a

particular information type (currently, specified as a

WSDL message type) and this leads to creating a

workflow script. As soon as it has created a workflow

script, the agent creates the objective to execute it – an

objective of the second type. Setting an objective means

creating an instance of one of these objective types and

allocating resources until it is achieved or determined to

be impossible.

Essentially, the agent layer operates as a loop, setting

objectives, selecting one objective, and then advancing

work on that objective. It halts when all objectives are

satisfied. The three most important kinds of objectives are

those concerned with processing received messages,

generating workflow scripts, and executing workflow

scripts. Message handling takes precedence: the message

queue is examined first for unprocessed messages and a

message-dispatch objective is set to determine whether m

is legal and expected for some currently open

conversation with m's sender, or whether m is a legal start

to a new conversation with m's sender. If neither is the

case, then the agent generates a not-understood message

as a reply to m, with a reason that corresponds to one of

the error categories described above.

Finally, m itself could be not-understood, sent as a

reply to some previous message the agent sent. When an

agent receives a not-understood, and also when it

generates one, it sets a not-unders tood-resolution

objective, aimed at resolving the not-understood message

associated with some particular conversation and some

particular partner.

Since the workflow composition algorithm is used in

resolving not-understood messages, we describe it first.

5.1 The workflow composition algorithm

Our workflow composition algorithm works iteratively

to construct a meta-workflow script that matches a set of

conditions. Complex semantics-based matching for web-

services has been explored by Aggarwal et al. [1], and is

not the focus of our work. Therefore, the current

implementation features a simple composition algorithm,

which performs elementary matching using information

types (currently specified as WSDL message types). In

addition to the information types required, our algorithm

is provided with the set of workflow scripts known to the

agent. Some workflow scripts are primitive actions (or in

BPEL parlance, are executable), in that they can be

directly executed without further variable binding. Other

scripts are not primitive (or in BPEL parlance, are abstract

or protocols), in that they require values for information

types for their execution. The workflow composition

algorithm constructs an executable meta-workflow script

that consists of any number of these abstract or primitive

scripts, in a particular order. The ordering ensures that,

when the meta-script is executed, all the information

requirements and control dependencies of the constituent

scripts are satisfied.

The algorithm takes a standard problem

decomposition approach, searching its collection of

workflow scripts for one that provides the desired value.

The executable scripts are preferred and hence are

searched first. If a suitable executable script is not found,

the abstract scripts are then searched. Since values of

other information types are required to construct an

executable meta-script that contains an abstract script s,

the algorithm is re-invoked with script s's information

types as input. The algorithm halts when it has found or

constructed executable scripts that satisfy each

information type identified, or after its search has failed.

The algorithm uses a script-ranking method to ensure that

only one copy of a given script (that resolves some

dependency) is inserted at the right place in the execution

order.

5.2 Resolving not-understoods

Having created a workflow meta-script, the agent

layer extracts one or more conversation scripts from it,

using the mapping from BPEL message interaction types

to higher-order protocols, described earlier. Agents

consult these conversation scripts to determine if a

message is legal, within the current context of a workflow

execution. If it is not, a not-understood is generated with a

reason that corresponds to one of the error categories

described earlier.

To resolve a not-understood, both agents consult a

commonly-held declaratively specified correction policy,

indexed by workflow and conversation error types within

workflows. As noted earlier, a policy is some means by

which one or the other of the two differing workflow

models will be used as the current, correct one. This

reduces to specifying a source for new workflow files.

(There could be more complex policies that require an

even longer message exchange, but we ignore those here).

From either agent's perspective, if the source of the

correct workflow is itself, then it does nothing, as all

agents have an objective to send workflow scripts when

asked; if the source is the partner, then it requests new

scripts from that partner; if the source is a third party, then

both agents send requests to that third party for new

workflow scripts. Note that not-understood and its

subsequent resolution constitutes a new conversation, and

the protocol for that conversation is implicit in the policy

(this is why both the generation and the receipt of a not-

understood triggers an objective to resolve it: both the

sender and receiver are prepared to exchange further

messages aimed at its resolution). If new scripts have

been received, the agent layer again uses the workflow

composition algorithm to generate a new meta-script,

resolving any new dependencies. The agent that initiated

the conversation that led to the not-understood message

will re-initiate the conversation, and the same

conversation error will not occur.

6. Case Studies

We have run various case studies that exercise our

approach and identify issues for further investigation. We

present three cases here, inspired from intuitive scenarios

of workflow reconfiguration as it might happen in

academic departments. They involve four agents: a

DepartmentAgent performs the functions of a member of

the department’s administration, a PayrollAgent

accomplishes tasks that are handled by a university’s

payroll group, as well as an InstructorAgent and a

TeachingAssistantAgent that carry out the activities of

these faculty members. Our concerns, generally speaking,

revolve around the failures that occur when a service

provider’s workflow is redefined, but the service’s client

continues to operate under the old model, or vice versa.

6.1 Missing Preconditions

For the first case study, the InstructorAgent’s objective

is to obtain a value of the student transcript type. It thus

selects an executable workflow script that produces a

student transcript message (composition is not necessary

at this point), and sets an objective to execute this script.

This script contains a conversation script with the

DepartmentAgent and the InstructorAgent, and the

messages exchanged are depicted in Figure 2.

In this scenario, however, the DepartmentAgent's

workflow for releasing transcripts has been redefined to

require an authorization token (which it provides with a

separate service) prior to releasing transcripts (e.g., as per

some new university regulations). The initial message

from the InstructorAgent, which requests the transcripts

before providing an authorization token, causes a

conversation failure (Figure 2(a)).

Department's
WRABBIT Agent

Instructor's
WRABBIT Agent

(a)
Failed
Transcript
Retrieval

(b)
Process
Version
Retrieval

(d)
Successful
Transcript
Retrieval

(c)
Authorization
Descriptor
Retrieval performative: request

operation: provideAuthorization

performative: inform
operation: provideAuthorization

performative: inform
operation: provideAuthorization

performative: inform
operation: requestRecords

performative: not-understood
failure-type: unexpectedMessage

performative: inform
operation: authorizeRequestForRecords

performative: inform
operation: requestRecords

performative: inform
operation: receiveRequestedRecords

Figure 2: Scenario 1 Message Exchange

The error symptom here is that InstructorAgent’s

message is unexpected, as it no longer initiates a legal

conversation, from the DepartmentAgent’s viewpoint.

The DepartmentAgent sends a not-understood message to

the instructor’s agent identifying this failure symptom,

and both processes are terminated. The InstructorAgent,

using the content of the not-understood message,

determines that its “Student Transcript Retrieval”

workflow script does not match the “Student Transcript

Disbursement” workflow script of the department’s agent.

The policy dictates that the DepartmentAgent is the

authority for this type of error (unexpected message) for

this particular workflow (“Student Transcript Exchange”).

The InstructorAgent initiates a message exchange with

the DepartmentAgent to obtain an updated set of the files

that define its workflow script (Figure 2(b)). (Note that it

is a requirement for all agents who may act as an

authority to provide scripts when requested. Thus, they

are configured to execute conversations with other agents

to provide any scripts for which they serve as authority.)

Once this is done, the InstructorAgent uses the workflow

composition algorithm to construct a new workflow

script. When the algorithm selects the (new) "Student

Transcript Retrieval" script, it identifies the new

precondition of obtaining the authorization descriptor. In

this scenario, the InstructorAgent was configured with a

workflow script that retrieves this descriptor from the

DepartmentAgent , and the workflow composition

algorithm inserts it into the meta-script such that it will

execute prior to the "Student Transcript Retrieval" script.

Because the respective conversation scripts for the

DepartmentAgent and the InstructorAgent now match, the

conversation completes successfully (Figure 2(d)).

6.2 Changes to Partners

The next case study has a similar theme: the

DepartmentAgent provides a student transcript provision

service to the InstructorAgent. The difference here is that

the InstructorAgent modifies the service to additionally

allow access to the TeachingAssistantAgent. After this

service modification, the InstructorAgent’s BPEL

specifications and support files are copied to the

TeachingAssistantAgent, enabling it to create workflows

to obtain student transcripts. Thus, the

TeachingAssistantAgent becomes configured to operate as

a legitimate partner in the transcript provision service.

The ca se s t udy beg ins w i th t he

TeachingAssistantAgent intending to obtain student

transcripts. It selects an executable workflow script that

produces a student transcript message (further

composition is not necessary in this scenario), and sets an

objective to execute this script. This script is the one

containing a conversation script with the

DepartmentAgent to obtain a transcript. However, the

DepartmentAgent expects the requester of transcripts to

be one of a set of agents, and according to its

specifications, only the InstructorAgent is a member of

that set. The InstructorAgent’s addition of the

TeachingAssistantAgent to this list has created an updated

workflow model that is not synchronized with the

DepartmentAgent’s model.

The conversation error occurs when the

Teach ingAss i s tan tAgen t sends a request to the

D e p a r t m e n t A g e n t for the transcripts. The

DepartmentAgent consults its workflow script, and finds

that TeachingAssistantAgent is not on the list of allowed

partners for this operation. It replies with a not-

understood message identifying the reason as “message

from wrong party”.

The resolution of this mismatch requires all three

agents, even though the InstructorAgent was not part of

the original conversation. In this scenario, the default

policy specifies that the DepartmentAgent is the authority

on the student transcript workflow. However, an error-

specific policy associated with "message from wrong

party" within this workflow indicates that the

InstructorAgent is the authority on the allowed agents for

the workflow. This allows the InstructorAgent to delegate

roles and responsibilities to other agents. For our case

study, this corresponds intuitively to a course instructor

delegating certain responsibilities to a student acting as a

course TA, who would not otherwise be able to request

transcripts.

B o t h t h e DepartmentAgent a n d t h e

TeachingAssistantAgent retrieve the policy indexed to this

error type within this workflow. Each obtains the updated

scripts from the InstructorAgent. (As noted earlier, it is a

requirement for all agents who may act as an authority to

provide scripts when requested.) These updated scripts

include updated partner files that incorporate the

modification. The TeachingAssistantAgent reinitiates the

request for student transcripts (the DepartmentAgent

queues the request, if its updates have not arrived) and its

workflow executes successfully.

6.3 Message reordering

In this last case study, a service provider reorders two

message exchanges in the conversation with its service

consumer. The PayrollAgent provides a service to mail

paychecks to employees of the university. This service

requires the address of the employee, the employee’s

salary information, and a note to print on the paycheck

(e.g. a seasonal greeting, or a reminder). In return, the

estimated date of check arrival is returned. In the original

specification of the service, the address, salary

information, and note were to be provided in that order.

Suppose that that PayrollAgent modifies its service, so

that it requires the salary information first and the address

information second.

The DepartmentAgent, unaware of this service

modification, sets an objective to send a paycheck to an

employee, and initiates this interaction with the

PayrollAgent by sending the address information first.

The exchange is diagrammed in Figure 3. The

DepartmentAgent’s initial message is expected by the

Payrol lAgent as the second message, and so the

PayrollAgent responds to it with a not-understood

message (Figure 3(a)). The failure type here is

“unexpected message”, because the message was not

expected at the time it was received. However, before the

DepartmentAgent receives this not-understood, it

continues sending out messages according to its (out of

sync) conversation script. Upon receipt of the not-

understood from the PayrollAgent, the DepartmentAgent

closes its conversation thread and begins the error

resolution process. Meanwhile, the PayrollAgent

recognizes the DepartmentAgent’s second message as

starting a paycheck mailing conversation (as per its

updated service specification). Of course, the

DepartmentAgent’s third message in this stream is not the

correct second message, from the P a y rollAgent’s

viewpoint. Thus, the third and fourth messages also

receive replies of not-understood (see Figure 3).

Payroll's
WRABBIT Agent

Department's
WRABBIT Agent

(a)
Failed
Mailing
Request

(b)
Process
Version
Retrieval

(c)
Successful
Mailing
Request

performative: request
operation: provideNoteAndMailingRequest

performative: inform
operation: providePayInformation

performative: inform
operation: provideAddress

performative: inform
operation: provideNoteAndMailingRequest

performative: not-understood
failure-type: unexpectedMessage

performative: not-understood
failure-type: unexpectedMessage

performative: not-understood
failure-type: unexpectedMessage

performative: request
operation: provideNoteAndMailingRequest

performative: inform
operation: providePayInformation

performative: inform
operation: provideAddress

performative: inform
operation: provideNoteAndMailingRequest

performative: inform
operation: provideNoteAndMailingRequest

Figure 3: Scenario 3 Message Exchange

To resolve the conversation failure, the agents consult

the shared policy. For this type of error (unexpected

message) for this particular workflow (“Student

Transcript Exchange”), the PayrollAgent is the authority.

Thus, the DepartmentAgent obtains the necessary

documents from the PayrollAgent to construct an up-to-

date workflow script (Figure 3(b)). Once the

DepartmentAgent has the updated workflow script, it sets

the objective of mailing a paycheck again, and in this

instance will succeed, because the workflow scripts are

compatible (Figure 3(c)).

7. Related Work

This work is predicated on a distributed, bottom-up

approach to web service composition and coordination, in

contrast to centralized execution models. The community

is still debating the issue of centralized vs. distributed

coordination of web-service compositions [16]

Centralized execution models constrain the broad vision

of the web-service composition paradigm, sometimes

resulting in fragile systems (for example, when the central

node becomes unavailable, the composition breaks down)

and imply heavy network traffic and poor performance.

Although most mature middleware support for BPEL

process execution assumes a centralized view, distributed

environments are receiving increasing attention. The

Symphony project [14] aims to address the brittleness and

inefficiency shortcomings of centralized workflow-

execution engines: it uses an algorithm for analyzing a

BPEL workflow specification for data and control

dependences among the constituent services and

partitioning it into a set of simpler BPEL specifications,

each one corresponding to an individual service. These

components are then distributed to different locations and,

when deployed, cooperatively deliver the same semantics

as the original workflow. Symphony does not provide any

support for failures arising from workflow mismatches

since it assumes that the distributed processes will be

derived from a single complete BPEL process.

The WARP environment [5] uses agents’ reflection

and tuple-space communication to coordinate a workflow

of component-based services. The COACHES approach

[4] investigates how to organize agents in groups in order

to enable their better collaboration during workflow

execution. Additionally, the COACHES agents can

invoke web services, providing an alternative to the web

services standards for workflow. However, this work does

not address the problem of misaligned workflows that we

have considered.

Buhler and Vidal have also used agents for the

execution of workflows specified in BPEL [6]. Once

again, however, the current focus of that work seems to be

distributing the execution of the business process among

agents. While they share our opinion that an agent

system’s adaptability is an asset, their implementation

efforts have yet to capitalize on this ability [7].

A web-services choreography specification [17] is

under development, with the goal of providing a common

abstract language for describing legal and expected

communication. Our work adopts this premise and

examines a specific consequence: how to support the

dynamic recovery from workflow coordination failures

due to mismatching workflow models.

In the area of general distributed workflow execution

and management — outside web services specifications

— there has been considerable work on workflow change

management. For example, [12] presents a distributed

workflow management system, in which agents both

execute the workflow and manage state information. The

agents in this system are of different types, where we

adopt a peer-to-peer approach, and their focus is on

recovering from application-level failures that result in

the inability to deliver a service, not from the

misalignment of independently evolving workflows.

There is similarly a substantial body of work on

intelligent-agent conversation and collaboration,

involving standardization proposals for agent

communication languages, protocols, and conversation

policies [10][11][13]. All these are different levels of

granularity in defining normative interaction behavior.

The use of dynamically initiated task-independent

conversation protocols to handle error conditions,

whenever necessary, has been explored in (e.g., [15]).

Other research [9] leverages a jointly held task model as a

means of defining normative interaction and hence

interaction errors, a concept this work has extended by

adding error correction policies. COOL [3] is a

programming language that defines agents first in terms

of their conversational interfaces. Both these approaches

view a conversation as just another action an agent selects

to accomplish some objective, and the legality or

plausibility of such an action is situated in the current

context of the coordination effort (e.g., what other

information has been exchanged so far, what each partner

expects the other partner to require or expect right now,

etc.). Finally, the view of web-service composition and

coordination as a distributed agent problem places it

squarely in the realm of multi-agent coordination and

cooperation research, which has a number of mature

methodologies to offer, particularly in the realm of

coordinated scheduling and commitments to perform

services [8].

8. Discussion and Future Directions

A robust web-service composition infrastructure will

have to entail extended message exchanges

(conversations) with more complex content, aimed at

dynamically recovering from coordination failures. This

work presents a design and implementation of a

framework for recognizing and resolving workflow

coordination failures, based on a taxonomy of

conversation error types. The framework wraps web

services in an agent layer that uses simple conversation

protocols (mapped from BPEL message exchange types)

and the error taxonomy to detect unexpected messages

and provide 'reasons' for the conversation error. This work

assumes that such failures occur through mismatching

workflow models, and that some agent is the source of

model information that, if adopted, will eliminate the

conversation error. Declarative policies, either general or

indexed to particular workflows and error types, are used

to identify which agent serves as the authority and source

for the correct model. The implemented framework has

been tested on a number of case studies.

A strongly distributed perspective on web service

composition and coordination entails, we think, the

possibility that some components of the composition will

evolve independently, leading to interaction errors. The

kind of approach presented here aims to recover

dynamically from such interaction errors and do so by

isolating the recovery effort. The error is detected and

resolved between two specific partners with the out-of-

sync models and other partners will not be affected. This

will aid distributed management, where the owners of

smaller workflows can evolve these fluidly, without

concerning themselves with the higher-level workflows in

which theirs are components. Our on-going work

concerns assessing the robustness of this approach when

applied to a larger number of coordination errors,

spanning a larger number of agents, which must consult

more complex policies for determining which agent is the

authority for correcting some particular workflow model.

A distributed agent approach, while solving some of

the problems associated with centralized approaches,

brings its own challenges. For one, it requires some

homogeneity of the distributed agents, who are attempting

to act as peers. As the agent communication community

has discovered, this homogeneity goes beyond

standardized message types and message-exchange

protocols, for there is no guarantee that the intended

semantics associated with messages and protocols are

actually implemented in each of distributed agents.

Within the context of our own work, we acknowledge that

at least one thing must be centralized, namely the

declarative specification that associates particular policies

with particular conversation errors for (possibly)

particular workflow models. If this is achieved, then there

is the chance for some automatic repair of interaction

errors at the infrastructure level, allowing applications and

their designers to focus their efforts on application-

specific problems. The ability to dynamically recover

from mis-matched coordination models becomes more

complex if agents are not guaranteed (as we have

assumed so far) to be able to resolve any new

dependencies that emerge when working with update

workflow models. This will cause the workflow

composition algorithm to fail, and the worst case is that

an overall coordination failure has just been delayed, not

avoided. However, this is the sort of issue that will arise

repeatedly with any system predicated on distributed

intelligence: centralizing declarative policies or joint

coordination models written in a standardized language

still require that the distributed agents be implemented to

interpret them and behave consistently.

9. References

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor.
“Constraint Driven Web Service Composition in

METEOR-S.” In P roceedings of IEEE International

Conference on Services Computing, 2004.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.

Trickovic, and S. Weerawarana. “Business Process

Execution Language for Web Services, Version 1.1.”

Specification. BEA Systems, IBM Corp., Microsoft Corp.,
SAP AG, Siebel Systems (2003).

[3] M. Barbuceanu and M. S. Fox. COOL: A language for

describing coordination in multi agent systems. In

Proceedings of the First International Conference on

Multi-Agent Systems, pp. 17-24, San Francisco, California,

1995.
[4] M. B. Blake, “Forming Agents for Business Process

Orchestration.” In Proceedings of the 37th Annual Hawaii

International Conference on System Sciences (HICSS'04) -

Track 7. 2004. p. 70210a.
[5] M. B. Blake, “WARP: An Agent-Based Cross-

Organizational Workflow Architecture in Support of Web

Services.” In P roceedings of the 2000 International

Conference on Artificial Intelligence (IC'AI2000) Las
Vegas, NV: CSREA Press Science.

[6] Paul Buhler and José M. Vidal. “Towards Adaptive

Workflow Enactment Using Multiagent Systems.”

Information Technology and Management Journal, 6(1):61-
-87, 2005.

[7] Paul Buhler and José M. Vidal. “Enacting BPEL4WS

Specified Workflows with Multiagent Systems.” In

Proceedings of the Workshop on Web Services and Agent-
Based Engineering, 2004.

[8] Decker, K. and V. Lesser. 1995. Designing a family of

coordination algorithms. In P roceedings of the First

International Conference on Multi-agent Systems, pp. 73-
80, San Francisco, California.

[9] R. Elio and A. Petrinjak, “Normative communication

models for agent error messages”, Autonomous Agents and

Multi-Agent Systems, (in press).
[10] FIPA Agent Communicative Act Library Specification,

www.fipa.org.

[11] M. Greaves, H. Holmbeck, and J. Bradshaw, “What is a

conversation policy?” In Issues in Agent Communication
(LNAI 1916). Edited by F. Dignum and M. Greaves.

Springer-Verlag, Berlin. 2000. pp. 118-131.

[12] M. Kamath and K. Ramamritham, “Pragmatic Issues in

Coordinated Execution and Failure Handling of Workflows
in Distributed Workflow Control Architectures.” Univ. of

Mass. Computer Science Tech Rep 98-28, Aug, 1998.

[13] Y. Labrou and T. Finin, “A proposal for a new KQML

specification,” Technical Report #CS-97-03, Computer
Science and Electrical Engineering Department, University

of Maryland, Baltimore, Maryland. 1997.

[14] Mangala G. Nanda and Neeran M. Karnik. Synchronization

Analysis for Decentralizing Composite Web Services.
International Journal of Cooperative Information Systems,

vol. 13, no.1, March 2004, pp 91--119.

[15] M. H. Nodine and A. Unruh, “Constructing robust

conversation policies in dynamic agent communities”. In
Issues in Agent Communication (LNAI 1916). Edited by F.

Dignum and M. Greaves. Springer-Verlag, Berlin. 2000.

pp. 206-219.

[16] C. Peltz, “Web services orchestration.” Hewlett-Packard
Technical Whitepaper, J a n 2 0 0 3 . h t t p : / /

devresource.hp.com/drc/technical_white_papers/WSOrch/
WSOrchestration.pdf.

[17] Web Services Choreography Description Language Version

1.0, W3C Working Draft December 2004,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

