
Normative Communication Models for Agent

Error Messages

RENÉE ELIO AND ANITA PETRINJAK

Department of Computing Science, University of Alberta, 221 Athabasca Hall, Edmonton, Alberta, Canada,

T6G 2E8

Abstract. An agent message is an attempted action upon the information state of the receiver that, if

successful, would cause the receiver to move to a new information state. A model of normative com-

munication can define when messages are not merely unsuccessful but instead are illegal or impossible

actions upon the receiver’s internal state. The model uses the preconditions of the other core message

types, coupled with a model of task interdependencies, agent roles, and belief-desire-intention elements, to

define the preconditions for sending a canonical not-understood error message. By defining the space of

messages that are legal actions on an agent’s internal state, a normative communication model also defines

a set of ‘reasons’ that can accompany the error message. A not-understood error message signals a mis-

match between agent interaction models and the accompanying reason opens the possibility for agents to

realign their respective models. The paper discusses the matters arising from this possibility. This approach

assumes that normative communication behavior reflects normative domain behavior. It also assumes that

each agent accesses the normative model, in contrast with more centralized frameworks for defining

normative interaction among agents and identifying interaction errors.

Keywords: agent communication, communication errors, interaction protocols, agent-based software

engineering, cooperative problem-solving.

1. Introduction

Defining and standardizing a high level language for agent communication has been
a cornerstone of the intelligent software agent paradigm. Indeed, Genesereth and
Ketchpel [18] define software agents as ‘‘application programs which communicate
with peers by exchanging messages in an expressive agent communication language.’’
This definition is not as circular as it might first seem, for it implies the adoption of
an agent theory that would enable such an ability. From a software engineering
perspective, the adoption of a strongly typed agent communication language (ACL)
is often driven by a need to have strong peer-to-peer communication among inde-
pendent software entities, which in turn have some degree of autonomy in how they
accomplish their respective tasks [34].
KQML (see [28]) and the Federation for Intelligent Physical Agents (FIPA)’s ACL

[17] are two proposed ACL standards that have been widely adopted in agent re-
search and development initiatives.1 Agent systems can be developed with their own
custom-designed ACL or with application-driven extensions of these two standards.
An ACL specification defines a message syntax as well as set of core or primitive
message types (e.g., inform, request, query), with reserved meanings. These primitive
message types are often called the ACL’s ‘outer language.’ Messages commonly use a
keyword-value syntactic form, such as (query :sender agent-i :receiver agent-j

Autonomous Agents and Multi-Agent Systems, 11, 273–305, 2005

� 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

:conversation-id c12 :content a), where a field such as :conversation-id is used to
associate independent messages with a conversation thread. The value a that follows
the :content keyword is unconstrained by the ACL specification. Keywords such as
:ontology and :language (e.g., Prolog, SQL) can designate the representational
commitments that the sending agent followed when it constructed the :content value.
Thus, in practice, the use of an ACL is a commitment to both an outer language of
message primitives, and an inner language for expressing content.
For standards like KQML and FIPA’s ACL, the semantics for message primitives

are often defined as a set of pre- and post-conditions (loosely speaking) that refer-
ence the internal state of both the sending agent and the receiving agent. For
example, the preconditions under which agent i can send agent j a query message
concerning the truth value of proposition p might be defined as (a) agent i desires to
know if p is true and (b) agent i believes that agent j knows the truth value of p. The
post-conditions for query might be that agent i knows p, or alternatively, that agent j
knows that agent i ‘desires’ to know p. Different ACLs embrace different semantics
for seemingly very similar primitive message types (see [29] for a discussion of
KQML’s tell vs. FIPA’s inform). The semantic commitments, of course, reflect the
adopted agent theory, and this in turn influences the implemented agent architecture:
terms like ‘believe’ and ‘desire’ must correspond to distinct internal states that
determine behavior in some particular way.
Notions like ‘believe’ and ‘desire’ reflect two theoretical perspectives that have

strongly influenced ACL semantics: (a) speech act theory and computational
approaches to dialogue as planned actions (e.g., [1, 7, 39, 40]) and (b) Bratman’s [3]
theory of intention and rational action. A core idea is that an agent plans and selects
an utterance (message) to have a particular, intended effect on the world, just as it
would select any operator to achieve any goal in the traditional AI sense. In the case
of communication, however, the ‘world’ that the agent aims to affect by sending a
message is, at least in the first instance, the internal state of the receiving agent. And
that world is not directly accessible. For example, an agent cannot directly observe if
its inform message had its intended effects on the internal state of the receiving agent,
no matter how those effects are defined. And as the semantics for the query example
above illustrate, even the pre-conditions for sending a message are couched in terms
of beliefs about the inaccessible world that defines the receiver’s internal state. Be-
cause of the inherent uncertainty in communication from this perspective, philo-
sophical analyses and formal semantics for communication employ notions such as
success conditions [40], feasibility conditions and intended rational effects [17], and
attempts [6]. One simple example of a success condition (although quite important in
implemented systems) is that the receiving agent actually receives the sent message;
another is that that receiving agent can interpret the :content of the message.
Our point of departure here is this core premise about agent communication:

that a message is an attempted action upon the information state of the receiver
that, if successful, would cause the receiver to move to a new information state.
This is consistent with the perspective of update semantics [44] and dynamic
semantics [20] that the meaning of a sentence is the change in the receiver’s
information state that the utterance of that sentence brings about. From this, we
explore a fairly simple idea. Namely, it should be possible for a given agent system

RENÉE ELIO AND ANITA PETRINJAK274

to define a model of normative communication, such that deviations from this model
are not merely unsuccessful actions in the world, but are rather, in some basic
sense, illegal or impossible actions upon this world. A normative communication
model would specify the set of legal computational actions upon elements of the
receiving agent’s internal state, realized as messages from a sender to that receiver.2

Any communication outside that space would be an illegal or impossible action
that the sender is attempting on an element of the receiver’s internal state. A
familiar example is an attempt to divide a number by zero: division is a legal
operation, but not when its denominator is zero. An attempt to do the latter will
generate a run-time error. For a particular agent application, we could imagine
analogous cases, namely that it is legal – in principle – for agent i to inform agent j
about proposition p, but not about proposition q. Or that it is legal for agent i to
inform agent k about p, but not agent j. Upon receiving an inform message about
proposition p, agent j might still not adopt belief in proposition p for various
reasons. But this is different from the case where it was illegal – by some model –
for i to attempt an update on j’s belief state with an inform message, for a par-
ticular proposition p or perhaps for any proposition.
The issues here are two-fold. First, what are the components of normative com-

munication model that would define a space of useful communication behavior and
errors for multi-agent systems? Second, what is a pragmatic and structured way to
represent and use such a model in a multi-agent system? A normative communica-
tion model enforces good software engineering principles for multi-agent systems,
particularly those that depend heavily on communication for planning or decision-
making. Both KQML and FIPA’s ACL anticipated the need for an error message
type that an agent could send in response to a message that it received but could not
(for some reason) successfully process. We examine those message types in more
detail shortly. However, there has been little consideration of possible models for
generating communication error messages and for guiding agent behavior, when a
communication error message is received.
The work we describe here presents some core elements for a normative com-

munication model that defines the preconditions for sending an error message, using
task interdependencies, agent roles, and belief-desire-intention elements in a unified
fashion. In doing so, we identify a number of issues that emerge in committing to
such a model and using it to govern agent behavior. We first begin with a closer look
at the error primitives in both KQML and FIPA’s ACLs. This will clarify the
character of a normative communication model and why it is pragmatically and
theoretically important for agent systems. We then present the elements of the
normative communication model we have tested in a multi-agent system. Next, we
describe the model’s declarative and procedural representations, which delimit and
validate agent communication actions. We then consider how such a model defines
cases for generating error messages and in particular, how the same model can
constrain how an agent responds to a received error message. This brings us back to
the view that communication acts are attempted accesses, updates, or revisions on
elements of another agent’s state. We conclude by considering how other frame-
works have approached communication error handling and the relation of this work
with some software engineering issues.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 275

2. Message primitives for error conditions

To clarify and motivate the role we see for a normative communication model, we
first consider the error message primitives in KQML and FIPA’s ACL. KQML has
two such primitives. The first is called error and has the syntactic form (error :sender i
:receiver j :in-reply-to cid1 :reply-with cid2), where i and j are agents, and cid1 and
cid2 are unique identifiers to designate particular messages. Here, agent i might be
sending this error message as a response to agent j’s message cid1, which (for
example) might have been a request to insert some new content into a database.
According to KQML specifications, the occasion for an agent to send an error
message is described as follows:

This [error] performative suggests that the :sender received a message that it
does not comprehend. The cause for an error might be: (1) a syntactically
ill-formed message, (2) the message has wrong performative parameter val-
ues, or (3) it does not comply with the conversation protocols [27, p. 22].

Protocols are predefined multi-message sequences (e.g., an auction protocol, a bid-
ding protocol) which specify which message primitives are allowed to follow each
other [46]. In this sense, a protocol constitutes a normative communication model,
albeit a shallow one from our perspective.
KQML also defines a sorry message, with the same syntactic form as error, but

with a subtle and important difference:

This [sorry] performative indicates that the :sender comprehends the message
[designated with cid1], which is correct in every syntactic and semantic sense,
but has nothing to provide as a response…when an agent uses sorry as a
response to [some received message] this means that the agent did not process
till the end the message to which it is responding to, e.g., an agent that re-
sponds with a sorry to insert never inserted the :content into its KB [27, p. 24].

The sorry message, unlike the error message, implies a kind of operator legality for
the original message (e.g., the original request to do some database operation) but
indicates failure insofar as the intended world change did not, for some reason,
occur.
In FIPA’s ACL, there is a single error message primitive called not-understood.

The form of this message is (not-understood :sender j :receiver i :content c), where i
and j are agents. Like the sorry and error messages, the not-understood message is j’s
response to i in the context of some previous message from i to j. The message
content c is defined as a tuple consisting of two parts. The first part is the entire
message that triggered the not-understood reply (e.g., an entire, just-received inform
message from i to j) and the second part is a ‘reason.’ The occasion for sending
not-understood is described as follows:

The sender of the not-understood communicative act has received a com-
munication act it did not understand. There may be several reasons. [The

RENÉE ELIO AND ANITA PETRINJAK276

agent] may not have been designed to process a certain act or class of acts, or
it may have been expecting a different message. For example, it may have
been strictly following a predefined protocol, in which the possible message
sequences are predetermined. The not-understood message indicates to the
receiver that nothing has been done as a result of the message.... The second
term of the [content] tuple is a proposition representing the reason for the
failure to understand. There is no guarantee that the reason is represented in
a way that the receiving agent will understand. However, a cooperative agent
will attempt to explain the misunderstanding constructively [17].

This ‘reason’ could, in principle, cover both situations that define KQML’s error
and sorry messages. The specification of a reason invites an approach to handling a
communication error based upon the interpretation of this reason, either by the
agent system designer or (more challenging) by the agents themselves.
Message types like error, sorry and not-understood are quite important for agent

interaction. As we noted above, an agent who sends a message is aiming to change an
aspect of a non-deterministic world that is not directly accessible, namely the internal
state of the receiving agent. Hence, a message like not-understood is quite a pointed
response back from that inaccessible world, signaling that the action was not merely
unsuccessful but – by some model – illegal or undefined in the first place. Even if a
particular application called for its own custom-designed ACL, rather than the
adoption of one of these standards, it seems likely that it would include some
message primitive to serve the same role of error or not-understood. This would just
be good software engineering. With this in mind, we use FIPA’s not-understood
message as a canonical error message because its inclusion of a reason opens up a
number of theoretically interesting avenues, which we explore in more detail below.
There are other reasons why we think it is theoretically and pragmatically useful

to take a serious look at explicitly defining the preconditions for sending a not-
understoodmessage. First, thinking about when to send a not-understoodmessage is a
different way of thinking about what it means to understand, i.e., for an agent to
proceed with assimilating amessage.We can think of understanding as the success of a
message’s ‘extended perlocutionary effects,’ i.e., how a message alters an agent’s state,
such that the agent behaves differently for having received and assimilated the message
[13, 36]. This is consistent with the view of a sentence’s meaning as a function on
information states [20, 44]: if an agent is in a new information state, then that agent has
the potential to behave differently. Second, it is generally acknowledged that an ACL
specification does not, by its very nature, address the matter of what agents actually
exchange messages about, i.e., what fills the :content field of a message [14, 21]. Neither
do shared ontologies and shared content languages. For a wide range of applications,
particularly those that are cooperative or coordinated in nature, it seems that what
agents must exchange messages about is their progress on interdependent tasks. The
abstract specification of task interdependencies and task progress can serve as part of a
jointly held conversation ‘policy’ about goal achievement [13, 19]. Such a policy can
serve the same role as a protocol, by defining whether it is normative to send a
particular message type at a particular point in time and by defining the normative
content of a message in different contexts. That is the approach we incorporate into

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 277

the normative communicationmodel framework that we describe here, which requires
a declarative approach to modeling tasks and agent interdependencies.
Finally, if we seriously regard the notion of agent as a kind of programming

abstraction [41], then not-understood can be viewed as signaling a ‘run-time error’ for
a particular class of computations (message generation) upon some object (an ele-
ment in the internal state of the receiver). The ‘constructive reason’ that is part of the
not-understood message can be viewed as an error code (e.g., ‘division by zero’).
Shoham [41] proposed that agents be programmed in terms of their mentalistic,
internal states: their commitments, their desires, and their beliefs. Since communi-
cation is an action attempt on those elements, we are proposing to define commu-
nication error conditions in the same fashion: as illegal action attempts upon the
beliefs that (partially) define an agent.
In addition to the software engineering mileage that a declaratively specified

normative communication model offers, some interesting theoretical issues also arise.
If a not-understood message is regarded as a run-time error, then at the very least, the
agent system should halt. Ideally, the system designer ought to be able to use the
‘constructive reason’ to debug the system. But it is natural to ask if there are nor-
mative reactions and responses an agent can make, when it receives a not-understood
message. This is closer to the spirit implied by the FIPA specification that appeals to
a ‘cooperative agent’ that attempts to ‘explain misunderstanding constructively.’
From our perspective, if agent j asserts that message m is not-understood, it does so
by appeal to some model. The sending agent i, by virtue of having generated the
message m, must be following some other model – otherwise it would not have
sent message m in the first place. What are the minimal effects of receiving a not-
understood on agent i? At the very least, agent i ought not to send message m to agent
j all over again. Agent j’s ‘constructive reason’ opens the possibility for agent i to
modify its model, so that this does not happen. Of course, it may instead be the case
that agent j’s model is ‘wrong’ – agent j ought to regard message m as legal – and
agent j should revise its communication model so that it accepts message m. The
issue we are hinting at here is, crudely put, whose model is taken to be the correct
one. We have no general solution for this, but we discuss some preliminary ways that
the communication model itself can define policies for this decision.
Before embarking on the design of normative communication model, there must be

a commitment to some particular agent theory, for it is the assumptions of that theory
that dictate key aspects of the model. For this work, an agent is defined by an internal
information state (belief state) and by its functional capabilities within some appli-
cation domain. We assume that a portion of the internal belief state is propositional in
nature, stated in an abstract, domain independent vocabulary. This vocabulary will
serve as the inner content language. An agent’s functional capabilities are (a) the
ability to solve the task to which it has been assigned, or to determine it is not
solvable, and (b) the ability to generate and assimilate messages specified in a high-
level ACL. An agent is autonomous, in the sense it has whatever domain-level
capabilities it needs to transform its task from an initial state to a final state (suc-
ceeded or failed) and to determine if its task is relevant or impossible (again, concepts
defined by the abstract inner language). We also assume agents can be proactive,
initiating their own problem solving work rather than waiting to be invoked by a

RENÉE ELIO AND ANITA PETRINJAK278

centralized authority. Both these assumptions create a need for peer-to-peer com-
munication, as an agent attempts to acquire or provide information so that the overall
task can proceed. We also use simple elements of belief-desire-intention theory (see
[49]) to relate agent state to agent behavior. With this view of agency in mind, we next
examine the kinds of normative communication errors our model aims to define.

3. Occasions for not-understanding

To illustrate the general intuitions behind our approach, the top portion of Table 1
presents our choice for an inform schema, which is based on FIPA’s feasibility
preconditions and intended rational effects for inform. We also include what might
be called contextual relevance conditions, e.g., that the receiver of the inform wishes
to know a [4, 26, 39]. Finally, we specify certain success conditions [40] that stipulate
(some) conditions that must hold for the inform action to be successful. The resulting
schema is a blend of the pragmatic conditions from the semantics proposed for
KQML and the feasibility conditions of FIPA that describe the minimal require-
ments on the state of the sender to send such a message. In this schema, the intended
effect of an inform action is that the receiver adopts belief in a i.e., that the receiver’s
internal state includes an element that corresponds to belief in a.3

Table 1 shows six preconditions for this particular inform schema. Although these
are classified as feasibility, relevance, or success conditions, we regard them as jointly
defining a normative inform action. An inform is legal to sendwhen all these conditions
are holding. More precisely, it is normative for agent i to send agent j an inform
message when agent i’s internal state includes all the beliefs listed in the inform schema.

Table 1. An inform schema that defines six cases for not-understood.

<inform i, j, a>
Success conditions: i. a is interpretable by j

ii. j’s state concerning a can be updated

iii. j’s state concerning a can be updated by i

Feasibility preconditions: iv. i knows a
v. i believes j has no position on a

Contextual relevance conditions: vi. i believes j desires to know a
Intended effect j adopts belief in a

<inform i, j, a> is not-understandable to j wrt a normative communication model if

(i) a’s predicate is not in a commonly shared ontology

The intuition: ‘‘I don’t know what a means.’’

(ii) j’s position on a cannot be updated/revised

The intuition: ‘‘My belief about a cannot be changed.’’

(iii) j’s position on a cannot be updated/revised by a communication act from i

The intuition: ‘‘You cannot change my belief about a’’
(iv) j cannot explain why i would know a

The intuition: ‘‘How is it that you know a?’’
(v) j cannot explain why i believes j has no position on a.

The intuition: ‘‘Why do you believe I do not already know a?’’
(vi) j does not desire to know a

The intuition: ‘‘Why are you telling me a? It would have no impact on my behavior.’’

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 279

Conversely, an informmessage is not-understood if, from the receiver’s perspective, one
or more of these conditions is not holding. By defining these as the conditions for a
normative inform action on the receiver’s internal state, we can reverse them and define
deviations from them as occasions for sending a not-understood.
The lower portion of Table 1 presents six occasions for sending a not-understood.

These occasions are derived from the six preconditions in the inform schema. The
first three are concerned with the propositional content of the message itself, the
particular illocutionary force (message primitive) applied to the content, and the role
of the sender to the receiver. In structuring these cases, we use the idea of predicate
classes, agent interdependencies, and agent roles.
Case (i) concerns whether it is normative to make the propositional content a the

object of any communication action, i.e., to use it in the :content field of any message.
To cover this case, our model defines predicates as belonging to one of two classes:
‘public’ or ‘private.’ Only propositions involving public predicates can appear as
:content. In our current model we use this distinction in a simple sense, to cover the
notion of a shared ontology. In traditional programming, this loosely corresponds to
private and public methods, or global variables vs. local variables. More generally,
the private–public distinction might be used to implement privacy constraints about
the exchange of particular information among particular agents.
Case (ii) can be viewed as loosely mapping to the distinction between constants

and variables in traditional programming. Our adopted agent theory defines an
agent, in part, by an internal state populated by propositional beliefs. We assume
that some of those elements can change their truth status during run time, while
others may not. Our communication model puts the former type in a class it calls
‘dynamic’ and the latter type in a class it calls ‘static.’ For example, the propositional
belief element (agent-for agent-j task-12) represents the belief that agent j is the
assigned agent for task-12. If agent-for is a member of the dynamic predicate class,
then, in principle, the assignment of agents to particular tasks can change during run
time and one agent might inform another agent about such a re-assignment. This
would be a legal belief update or belief revision operation upon the receiving agent’s
state. If agents do not change their tasks during run time, then agent-for must be in
the class of static predicates, and such an inform would be an illegal operation.
Our model further classifies dynamic predicates into two subtypes: ‘internal’ and

‘external’. The intuition here is captured in Case (iii), which corresponds to whether
agent i can ‘change its mind’ about the truth status of a only through its own internal
reasoning, or whether that truth status can be changed as a direct result of an external
communication action taken by another agent. For example, our model classifies
predicates such as desire and intend as internal dynamic predicates and in doing so,
prohibits them from appearing in the content of certain message primitives. By such a
model, agent i may not inform agent j what agent j believes, intends or desires. This
embodies the constraint that revisions to j’s mental attitudes are the province of
agent j. (These cases loosely correspond to canonical examples such as ‘‘I insult you.’’
‘‘I convince you of a.’’ [1]). But this distinction applies more generally to other
propositions in j’s belief state, namely any proposition for which only j can determine
a truth status. This distinction maps loosely to the programming distinction between a
procedure’s locally defined variables and the values passed to it as parameters.

RENÉE ELIO AND ANITA PETRINJAK280

Cases (iv)–(vi) focus on not-understanding as violations of agent models – beliefs
about other agents, their capabilities, their responsibilities, their realm of knowledge,
and so forth. Systems of coordinating or cooperating agents often implicitly or
explicitly rely on such acquaintance models, derived from either a global or a partial
model of interdependencies among tasks and the agents assigned to those tasks
[9, 11, 22, 32]. Using such information, a not-understood message signals a mismatch
between agent i and j ’s respective models of each other. For example, cases (iv) and
(v) correspond to j ’s inability to explain why – given its beliefs about agent i and
what agent i ought to know about agent j – the feasibility conditions for inform are
holding for i.
Finally, case (vi) covers an important pragmatic case concerning a message’s

extended perlocutionary effects. Presumably, i intends that j adopt belief in a so that
j’s behavior will change. If believing a would not impact any of j’s behaviors, there is
no consequence of adopting it. In this instance, j ’s not-understood signals a mismatch
between j’s own model of contextual relevance, and agent i’s model of what is
contextually relevant to j. In some situations, it will be quite important for agent i to
learn that the inform message that it sent to agent j would have no impact on
anything that agent j does. Agent j might not coordinate its activities with i any
differently, release resources any differently, and so on, if j cannot process the inform
message in terms of the models it has about tasks and agents. This could lead to a
domain-level error situation, brought about because an inform action did not have its
intended effect. This reflects the spirit of KQML’s sorry primitive – a syntactically
correct message with no consequence. FIPA’s ACL has a similar primitive called
refuse, which also signal’s that the intended effect – typically a request for some
action – did not occur. We see the not-understood message as serving a qualitatively
different role than refuse, namely to indicate that the attempted communication or
domain action violates some underlying model.
We wish to make a few additional points at this juncture. First, we have not

explicitly included the case of protocol violation, which is a typical situation used to
motivate or define a not-understood scenario. A predefined protocol can be viewed as
a special instance of case (vi). We readily acknowledge that protocol violations can
be more easily recognized as syntactic violations at a shallow level of processing (i.e.,
a particular message sequence is not permitted), without complicated models of
agent relationships or message content. In our framework, a normative communi-
cation model that is derived from task and agent interdependencies can yield
protocol-like behavior, to the extent that it defines what message is legal or plausible
for an agent to send to another agent at any point in time.
Second, we use the term ‘explain’ in Table 1 to signify that a received message

must be consistent with the receiver’s model of normative communication, based on
a model of task and agent interdependencies. We have no particular investment in
how simple or complex this consistency-checking process might be nor do we expect
that agents will necessarily discover a discrepancy by means of some theorem
proving procedure applied to formulas in the semantic language that represents their
mental states. However, we do return to the matter of just how much reasoning an
agent must or might do, in formulating not-understood reasons and in responding to
not-understood messages that it receives.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 281

Third, Table 1 is not intended as a statement of what is complete or necessary as
semantics for an inform message. We use the inform preconditions in Table 1 to
define the corresponding preconditions for a not-understood response. An ACL de-
signer might have different preconditions for this message type, in which case the
occasions for not-understood would be different. The idea is that an ACL designer
can exploit the preconditions of the ACL’s core messages as a starting point for
defining not-understood occasions.
Finally, it is natural at this point to speculate whether agent i, having received a

not-understood message from agent j, would itself generate a not-understood message
back to agent j. And on ad infinitum. This is the matter we noted earlier, concerning
which agent model is going to be taken as correct. In a later section, we show how
the underlying normative communication model can be used to avoid this.
In our work to date, we focus on message types that take propositions as message

content, namely inform and disconfirm.4 We also handle a form of query (namely,
query-ref), whose semantics under the FIPA specification correspond to a request for
an inform action. FIPA includes refuse as a possible response to a request for an
action, although a query generates a not-understood by our analysis in Table 1. For
brevity’s sake, we limit our discussions and examples in the remainder of this paper
to inform, expanding to cases of query and disconfirm when appropriate.

4. Elements of a normative communication model

There are three main components to a normative communication model that support
the generation of not-understoodmessages for the cases listed in Table 1. The first is a
language to describe tasks and interdependencies among tasks, from which inter-
dependencies among agents assigned to those tasks can be derived. TÆMS [11] is an
example of such a task modeling language and we adopt several of its distinctions.
The second component is the definition of predicate classes that constrain what inner
message content can legally appear with particular outer message primitives (inform,
query, disconfirm) in various contexts. The third is a set of axioms and inference rules
that agents can use, together with a model of task dependencies, to derive initial and
run-time propositional beliefs about other agents and their tasks. It is these prop-
ositions that agents will access, update, or revise through communication actions
during their interactions. Particular exchanges, revisions, and updates are then
defined as legal, given this normative communication model. The remainder of this
section aims to present just enough detail about the framework model to ground our
intuitive examples from Section 3 and to support our later analysis of responding to
not-understood messages during run time.

4.1. Task models

As a motivating example, Figure 1 presents the conceptual decomposition of a
simple airline reservation application. Our main concern is the communication
patterns that arise when subtasks in such a decomposition are distributed among
independent agents. The accomplishment of any particular subtask will likely require

RENÉE ELIO AND ANITA PETRINJAK282

various resources. Here, we consider only informational resources, which is sufficient
for the communication model we construct. For example, an agent responsible for
displaying the information about the airplane tickets (‘Obtain Customer Informa-
tion’) needs information as a sort of resource, otherwise it is not able to successfully
perform its task of displaying it.
The task structure in Figure 1(a) is modeled at a more abstract level, illustrated in

Figure 1(b). Following [11, 42, 43], the solution method for a task is specified either
as a directly executable method or via the achievement of a set of subtasks. A
(sub)task is related to another task through either an and-decomposition or an or-
decomposition. Tasks may also be related to each other via an enables/enabled-by
relationship: if task i enables task j, then task i must be completed before task j can
begin. A task-structure specifies a hierarchical decomposition of a task into a set of
subtasks whose leaf nodes are executable methods. In our modeling assumptions,
each task (and method) in a task structure is assigned to exactly one agent, although
a given agent may be responsible for more than one task or method. Every task and
method definition includes pre- and post-conditions, stated as Boolean constraints
on domain-specific variables. These specify when a task can be initiated and deemed
successful, respectively. For example, in the airline ticket application, one of the
preconditions for initiating the task of obtaining user information is that at least one

AirfareTicket

Reservation

Query One SiteQuery All Sites

or

Access

ITN

Access

LowestFare

Access

Expedia

Access

ITN

Access

LowestFare

Access

Expedia

Execute Query
Obtain Customer

Information

or

task 2

task 21

method 21a

task 3

method 31a

task 31

and

and

enables

agent k

agent m

agent i

agent nagent j

agent j

delegator subtask

(a)

(b)

Figure 1. (a) Partial decomposition of a domain task and (b) abstract task structure elements.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 283

of the departure and return dates is unknown; a post-condition is that both dates are
known and that the former occurs before the latter. Any kind of domain-dependent
check can be specified in this way; we assume that agents have the domain-dependent
code to determine if a constraint is satisfied. In our domain-independent language,
the preconditions are regarded as resources that an agent requires to begin work on
its task.
The task structure is a declarative element of the normative communication model

and we assume that all agents have access to the entire model. This is not strictly
required, e.g., agents might have access to just those portions of the task structure
that involve agents with whom they must or may communicate. Agents use the task
model (coupled with certain axioms, described in Section 4.3) to derive what other
agents must know or need to know. The completeness of this model therefore plays
an important role in accurately defining the range of legal or plausible messages
exchanges.

4.2. Predicate classes

As we noted earlier, our normative communication model assumes that an agent has
some internal state, which includes a belief state with propositional elements. Mes-
sages are attempted operations on this state, and we consider a limited set of such
operations. An inform message can be viewed as an attempted belief update, a
disconfirm as an attempted belief revision, and a query as an attempted access
operation. Each message type takes a proposition a as its content. Earlier we
introduced a classification scheme for the predicates that appear in these proposi-
tions. This scheme, coupled with other elements of the communication model, serves
as a first step in defining the legal communication actions that can be performed on
propositional beliefs.
Table 2 lists a set of predicates that are part of our domain-independent inner

language. Having outlined the intuition behind these predicate classes earlier, we
recap only a few key distinctions here. The private–public property distinguishes the
propositions that may appear within a message’s content from those propositions
that may not appear as message content. The static–dynamic property specifies which
propositions can have their truth value changed during run time. The internal–
external property – as a further classification of dynamic predicates – designates how
a proposition’s truth value can be revised or updated, either through an agent’s own
computations (internal) or as a consequence of a communication received from
another agent (external). Predicates are classified according to each of these prop-
erties. For example, the predicate relevant is classed as public–dynamic–external
(Table 2a): a proposition that some task is relevant can appear as message content,
can be updated or revised during the course of agent interaction, and such a revision
or update may be the consequence of a communication action. Private–dynamic–
internal predicates (Table 2b) appear in propositions that correspond to whatever
internal information an agent maintains for its task computations. The intend,
desire, and belief modality predicates constitute a subclass under public–dynamic–
internal (Table 2c), indicating that they can appear in message content propositions,
(public), belief state propositions with these predicates change during run-time

RENÉE ELIO AND ANITA PETRINJAK284

(dynamic), but not through an inform or disconfirm message (internal). The imple-
mentation of the dynamic–internal vs. dynamic–external distinction cannot be a
table look-up. Agent i may inform agent j about what agent i’s intends (for this is
knowledge agent i must have). But agent i cannot inform agent j about what agent j
intends. We have not done a formal logical axiomitization of these kinds of con-
straints, but it could be done in the proper modal logic.5 There are many possible
implementations of such constraints; our own approach takes the form of a context-
sensitive grammar that validates incoming messages, which we present in a later
section. Finally, Table 2d indicates that propositions corresponding to beliefs de-
rived from the task model (e.g., enables, agent-for) can serve as message content
(public), but that the truth value of such propositions cannot change during run-time
(static). Again, a different model might well indicate that such propositions are open
to revision during agent interaction.

4.3. Semantics and inference rules

The semantics of these predicates must be reflected in some coded interpretation or
set of explicit reasoning rules. Such rules unite task properties with agent properties.
Some examples of these rules from our current model (stated in English) are: ‘‘Every
task has an assigned agent and only one such agent.’’ ‘‘Only the agent assigned to a task
can intend it.’’ ‘‘An agent desires resources for its assigned task iff the agent intends it.’’
‘‘If the agent a is responsible for task t, then it knows the status of t.’’ ‘‘If task x is
irrelevant or failed or not-possible, and task y is a subtask of that task, then task y is
irrelevant.’’ The role of agent i to agent j in Figure 1 as delegator is derived from such
inference rules applied to the jointly held task model. Similarly, the belief that agent
n desires the results from task-21 is derived from beliefs that agent n is the agent
assigned to that task, and that task-21 enables agent n’s task. The derived beliefs

Table 2. Classification of core predicates for a sample communication model.

(a) public/dynamic/external

relevant(t): task t is to be performed

resource(r, v): resource r has the assigned value v

(b) private/dynamic/internal

class = processing

done(t): a succeeded task t is in its final state and its post processing is finished

valid-result(a, t, r), have-resource(a, t, r), have-all-resources(a, t): a is an agent who has the

beliefs that r is a valid result for task t, r is a resource for task t, and all resources are

available for task t, respectively

(c) public/dynamic/internal

status(t, s): the status of task t is s, s= {not-attempted | possible | not-possible | failed | succeeded}

result(r, v): result r has the assigned value v

class = modality (see text)

intend(a, a), desire(a, a), believe (a, a)
(d) public/static/—

class = predicate class (see text)

private(p), public(p), static(p), dynamic(p), internal(p), external(p)

class = task-structure

has-subtask(t, s), subtask-of(t, s), agent-for(a, t), enables(t, s), enabled-by(t, s)

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 285

from these axioms create propositions that serve as preconditions for sending mes-
sages. Hence, they are central to the specification of a normative communication
model.
Further discussion of our axioms and inference rules is outside the scope of this

paper and not central to the main points we examine here. The general character of
these rules is that they define and constrain task properties on the one hand and
agent properties (e.g., roles, attitudinal states) on the other. Any implementation
must ensure that, during execution, agent belief states and behavior are consistent
with the axioms that define the agent semantics.

4.4. Unifying problem solving and communication

Anagent’s computations on its domain-specific information states canbe carried out in
any fashion, as long as they ultimately produce propositions that use the abstraction
vocabulary (e.g., propositions based on predicates appearing in Table 2 a, c and d).
Such propositions are the possible objects of communication acts. In our particular
system, agents do this by using operators such as the following (in English gloss):

If I intend task t
& status of task t is currently not-attempted
& I have all the resources and information specified for task t’s initial state
& all semantic constraints on those preconditions are satisfied

then change task t’s status to possible.

Such operators need not be the same for all agents. We also assume that each agent
has a communication plan module that handles the generation and assimilation of
the message types. Communication plans are triggered in two ways in our system.
First, an agent may select a particular communication plan as the means for satis-
fying the preconditions of an abstract task operator. For example, an agent may
execute a query plan to obtain information about resources that it requires for taking
its task from a not-attempted to a possible state(see [32]). Second, an agent may
proactively generate an inform or a disconfirm message to exchange information it
believes will be useful to other agents. For example, an agent that determines its own
task has failed may immediately inform other agents who require its results or
resources. This latter assumption is important for applications in which agents are
not invoked under some strict calling hierarchy, but have some autonomy in initi-
ating their tasks and optimizing their interactions.
The communication plans in our system implement message schemas, such as the

one shown in Table 1. An agent’s communication module also creates the necessary
data structures for maintaining conversations with other agents. Incoming messages
are recognized either as completing or continuing an on-going conversation, or as
initiating a new conversation, provided that such messages pass the not-understood
filters (described below). Our focus is not on the details of this communication layer
per se, but rather on how the communication model allows it to assimilate or gen-
erate not-understood messages.

RENÉE ELIO AND ANITA PETRINJAK286

5. Representing a normative communication model

Agents must be able to access and interpret a declarative representation of the
normative communication model. We use XML for this representation and the
model divides into two conceptual parts. The first is the task structure. Table 3
shows a portion of the XML representation for the task ‘‘Execute Query’’ from
Figure 1. The notation indicates that this is a subtask (‘‘component’’) of a single
parent (task T011, the unique task identifier for the root node task ‘‘Airline Ticket
Reservation’’ in Figure 1a). Its assigned agent is ‘‘ag3.’’ This task is accomplished
through the successful completion of either of its two sub-tasks (an ‘‘or’’ decom-
position). These are tasks T035 and T036, which correspond to ‘‘query all sites’’ and
‘‘query one site’’ in Figure 1. The remaining notation expresses pre- and post-
conditions that define whether the task can, in principle, be initiated and when the
task can be declared done. Here, one of the postconditions for successful completion
indicates that a data structure for holding ticket information has at least one entry (is
not null).
The second part of the XML representation is what we call the explicit commu-

nication ontology. This is a representation of the remaining elements that define the
normative communication model: (a) all predicates that can appear in an agent’s
belief state, classified along the public–private, dynamic–static, and internal–external
dimensions; (b) all agent roles derivable from axioms relating task properties to

Table 3. Excerpt from the XML representation for ‘‘Execute Query’’ task.

<Task>

<property id=‘‘T022’’/>

<property name=‘‘Execute Query’’/>

<property component_of= ‘‘T011’’/>

<property parent_list=‘‘T011’’/>

<property children_list=‘‘T035, T036’’/>

<property agent=‘‘ag3’’/>

<Decomposition>

<property child_type=‘‘task’’/>

<property cardinality=‘‘2’’/>

<property choice=‘‘or’’/>

</Decomposition>

<Precondition>

<property id=‘‘origin’’/>

<property expression=‘‘origin!=null’’/>

</Precondition>

<Precondition>

<property id= ‘‘destination’’/>

<property expression= ‘‘destination!=null’’/>

<!— remaining preconditions removed for brevity—>

<Postcondition>

<property id=‘‘ticket_table’’/>

<property expression=‘‘ticket_table!=null’’/>

</Postcondition>

<!— remaining postconditions removed for brevity—>

</Task>

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 287

agent properties, (c) modalities (agent attitudes towards propositions), and (d) the
allowable outer message types (here restricted to inform, disconfirm, query-ref, 6 and
not-understood). Our reason for classifying our modality predicates (intend, believe,
desire) separately will become clear shortly.
With these elements in place, it is possible to define a grammar that corresponds to

the declarative representation of this model. Table 4 shows a context sensitive
grammar for an inform message (for convenience, we have defined two versions of
inform messages, inform-1 and inform-2, in this grammar).
An example of a schematic inform-1 that this grammar accepts as valid is: (inform

sender receiver delegator (task-ofsender relevant)). This message is consistent with the
model specifications that it is normative for an agent i (as sender) to inform agent j
(as receiver) of agent i’s task relevance, if agent j is performing a subtask for agent i
(i.e., i has the relationship of delegator to j). Using Figure 1b task structure as an
example, the grammar allows i to inform j that task-2 is not relevant. Such a message
is legal, because agent i can send messages with propositional content about task
relevance (the relevant predicate is classed as public) and propositions about task
relevance can be updated via communication acts (relevant is also dynamic-external).
This inform message is also pragmatic, because agent j might infer its own task
should be initiated (or stopped) by receiving messages about agent i’s task relevance.
This grammar would not generate or accept the following inform-1: ðinform sender

receiver delegatee (task-ofreceiver relevant)). Given the Figure 1b task structure, agent j
cannot inform agent i about the relevance of agent i’s task (task-2): agent j’s role to
agent i is delegatee, not delegator. More generally, this grammar specifies it is invalid
for an agent to inform another agent about its own task relevance, if those agents do
not have some kind of interdependency (although a different model, and corre-
sponding grammar, might permit this).
An example of a schematic inform-2 that this grammar generates is: (inform sender

receiver delegatee (sender believes)). This second type of inform message captures the
notion that a sender can inform a receiver about the sender’s attitudes towards
propositions, but not about the receiver’s attitudes about propositions. Again, the

Table 4. A grammar for legal inform messages (s-to-r = sender-to-receiver).

Terminal symbols: inform, sender, receiver, task-ofsender, task-ofreceiver, delegator,

delegatee , enabler , enablee, intend, believe , desire,

relevant, resource, result, status

Non-terminal symbols: inform-message, inform-1, inform-2, role-ofs-to-r, content, external, modality

Rules:

inform-message � inform-1 | inform-2

inform-1 � (inform sender receiver role-ofs-to-r content)

role-ofs-to-r � delegator | delegatee | enabler | enablee

content � task-ofsender | task-ofreceiver
role-ofs-to-r task-ofsender � role-ofs-to-rtask-ofsender status

delegatee task-ofsender � delegatee task-ofsender result

delegator content � delegator content external

external � relevant | resource

inform-2 � (inform sender receiver roles-to-r (sender modality))

modality � intend | believe | desire

RENÉE ELIO AND ANITA PETRINJAK288

communication model that corresponds to this notion requires that some direct role
exist between the sender and receiver (e.g., the grammar would not generate this
message from agent i to agent m in Figure 1). A different normative communication
model might allow any agent to tell any other agent what it intends or desires,
whether they have an interdependency or not.
The grammar in Table 4 essentially defines four valid types of informs and it is

straightforward to represent a context-free version of this grammar in XML. When a
message arrives, agents parse it to extract the core elements defined by the grammar,
and use the XML rules to determine if the parsed message fits one of the prescribed
formats. The grammar embodies constraints about public, dynamic, and external
predicates as well as pragmatic considerations about what constitute plausible
informs from one agent to another. The latter are captured through reference to the
role that the sender plays to the receiver. We define grammars like the one in Table 4
for disconfirm (similar to inform) and query-ref.
The declarative representation of the grammar coupled with a general interpre-

tative routine allows an agent (a) to generate all legal and pragmatic messages
between itself and another agent, and (b) to validate whether the general form of an
incoming message passes various types of understandability filters. The validation
process serves as the general run time check on the communication operations that
agents attempt on each other’s belief states. The grammars also serve an important
function as well – they constrain the kind of responses that an agent can make to a
not-understood message.

6. Not-understood messages and mismatched agent models

Given these declarative and procedural representations for a normative communi-
cation model, a message validation and assimilation routine can be designed to parse
an incoming message and determine whether the preconditions for a not-understood
response have been met. Essentially, the routine checks these four cases, which cover
the six intuitive cases outlined in Table 1:

1. Is the predicate in the :content proposition a public predicate?
2. Is the illocutionary force (message primitive) applied to the :content proposition

allowed?
3. Does the sender hold the proper role relative to the hearer, in order to apply this

illocutionary force to the propositional content?
4. Are the feasibility, relevance, and success preconditions (assumed to hold on the

speaker’s part) consistent with the receiver’s interaction model and its current
belief state about the sender and the task?

Recall that the form of a not-understood is (not-understood :sender j :receiver i
:content (m reason)), where the m is the original message. The not-understood reason
that we generate takes one of the following forms:

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 289

(not-understood: sender j :receiver i
:content ðm (not (public hpredicate p of m’s contentiÞÞÞ j

ðm (not (dynamic hpredicate p of m’s contentiÞÞÞ j
ðm (not (external-dynamichpredicate p of m’s contentiÞÞÞ j
ðm (not (permissible-role sender receiver))) j
ðm (not aÞÞÞ

The first three reasons correspond to violations of what agent j’s normative com-
munication model defines as legal combinations of outer message primitives with
inner message content (i.e., what agent i attempted on a particular propositional
element within j ’s state). The fourth reason asserts that agent i did not have the
correct interaction role relative to j in order to send message m with its given prop-
ositional content. The last reason is a proposition a that corresponds to one of the
preconditions that the receiver believes ought not to be holding on the part of the
sender. For example, this case might correspond to ‘‘It is false that I desire the result of
task-23.’’ This proposition must be stated in the abstraction language for representing
beliefs, be part of the finite set of propositional beliefs that any agent can have, and
directly or indirectly correspond to one of the preconditions for the original message.
At this point, we could consider the matter of generating and structuring not-

understood messages as done. With this sort of normative communication model,
agents have well-defined preconditions, grounded in an interaction model, for gener-
ating not-understood messages. If we regard not-understood messages as true run-time
errors, then such a message would bring an agent system to a halt, or at least stop
further interaction between two particular agents. In principle, if all agents are fol-
lowing the same normative communication model, then not-understood messages
should not occur. If andwhen it happens, a not-understoodmessage would reflect a bug
in agent design or implementation, or a change in some agent’s normative communi-
cation model, that renders it inconsistent with another agent’s model. This might
happen if agents couldbe reassigned to tasks during run-time (thus supportingdifferent
beliefs about what are legal and plausible messages to send among each other).
What happens when agent i receives a not-understood ? Minimally, we want its

internal state to change in some way, so that it does not resend message m over again
to agent j, forever causing agent j to send back not-understood. Recall that the reason
included with a not-understood is intended to be a ‘constructive explanation’ about
why the original message m was not understood. A not-understood message from
agent j to agent i can be viewed as a composite of two primitive messages: an inform
that the intended effect of message m has not occurred and an inform (or disconfirm)
from agent j to agent i of some additional proposition a, where a is the one of the
preconditions of a normative inform schema that j believes to be false. This is the
‘constructive explanation.’ But there are a few matters to consider here. Just how
much diagnosis must agent j perform to determine the core error in agent i’s model,
so that the right or most constructive reason is sent along with the not-understood ? If
there is more than a single possible reason, should they all be sent? And what must or
might agent i do with the reason it receives? It could adopt it and thereby update or
revise its global interaction model, revise its particular model for interacting with j,

RENÉE ELIO AND ANITA PETRINJAK290

or instead send another message to j in an attempt change agent j’s model and
thereby make the original message m legal for j. But this immediately raises the
question of whose model will carry the day – the model of agent i, who generated
message m, or the model of agent j, who received it?
We do not have a general answers for these, but there are simple ways in which the

underlying communication model can constrain what agent i is allowed to do, having
received a not-understood message. The more complicated issues require a position
on just how much reasoning the individual agents can – or ought to – perform, in
order to align their mismatched models. The cases below illustrate how our current
framework controls and resolves not-understood conversations and how some of
these more thorny issues arise.

6.1. Allowable message content

One of the basic not-understood cases is when an agent sends message content that
cannot be resolved within the shared ontology. This means that the intended oper-
ation on the receiver’s internal state cannot occur and the receiver’s behavior cannot
be affected by the message. Consider this possible message conversation (for pre-
sentation purposes, we do not repeat the entire message in the not-understood content
tuple, but designate it by a label):

Case A
message A1 ðinform i j ðhave-resource ði . . .ÞÞÞ
message A2 ðnot-understood j i ðhmessage A1i ðnot ðpublic have-resourceÞÞÞÞ

X message A3 ðnot-understood i j ðhmessage A2i ðpublic have-resourceÞÞÞÞ
X message A30 ðdisconfirm i j ðnot ðpublic have-resourceÞÞÞ

In message A2, j’s reason is that j believes that propositions involving the predicate
have-resource cannot be exchanged. Now, there are two possible responses that i
could make. The first is message A3, in which i informs j that j’s not-understood
message is not understandable to i. However, the model prevents i from generating
A3, because A3 is equivalent to i informing j that i believes a, where a is (public have-
resource). However, i already knows (from message A2) that j believes ~a. So a
feasibility condition for the implicit inform within A3 is not satisfied, and this dis-
allows A3.
Can i instead disconfirm j’s belief about whether or not have-resource is in the class

of public predicates by sending message A30? That depends on whether the predicate
public itself can appear in propositions used as direct inform or disconfirm message
content, and by Table 2d, it cannot (it is not classed as dynamic-external). So agent i
is prevented from generating A30. Instead, it must instead adopt the belief have-
resource is not a public predicate – at least for interactions with agent j – and this
prevents it from resending A1 again.
Suppose that, according to i’s model, the predicate public is in fact classed as a

dynamic–external predicate. Then it might send message A30, and thereby attempt to
change how agent j classifies the predicate have-resource. If it did, agent j would send
a not-understood back to A30, indicating that by its own model, the predicate public is

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 291

neither dynamic nor external. Agent i could not ‘argue’ further on this point, since
there are no other legal informs or disconfirms that it could generate. Alternatively,
agent j could respond to A30 with a primitive such as refuse or sorry, to indicate that
it will not perform the revision to its model that A30 entails.

6.2. Outer message primitives and inner message content

We next turn to the case in which the normative model prohibits a particular illo-
cutionary force applied to a particular proposition, i.e., an outer message primitive in
combination with a particular proposition type in the :content field. One intuitive
example is when agent i attempts to inform agent j of what agent j desires:

Case B
message B1 ðinform i j ðdesire ðj . . .ÞÞÞ
message B2 ðnot-understood j i ðhmessage B1i ðnot ðexternal desireÞÞÞÞ

X message B3 ðnot-understood i j ðhmessage B2i ðexternal desireÞÞÞÞ
? message B30 ðdisconfirm i j ðnot ðexternal desireÞÞÞ

Informally, agent i is telling agent j ‘‘Here’s something you need to know.’’ In
message B2, j’s not-understood reason is that j believes that desire-propositions which
take j as an argument cannot be updated by a communication action from another
agent. Now, there are two possible responses that i could make. Message B3 cannot
be sent for the same reasons outlined for message A2 in Case A (and is embodied in
the context-sensitive grammar in Table 4). In message B30, i aims to revise j’s model
about whether the intend predicate is external. Will message B30 be generated? It
depends on whether, by agent i’s model, the predicate external is itself classed as
dynamic-external and can be used in propositional message content. Agent j will
accept message B3 as legal if its own model concurs and thereby process the original
message B1; otherwise, it can respond with a not-understood or a refuse primitive, as
in Case A.
Similarly, we can consider whether agent i can ask agent j to tell agent i what agent

i desires. (‘‘Tell me what you think I need to know.’’). This is not allowed by our
particular grammar for query-ref (although a different grammar could allow this).
This situation is not limited to modality predicates. The same case holds if agent i
attempts to query another agent about any property than only agent i can know (as
bizarre as that might be), such as the status of agent i’s own task. Assume that
task-23 belongs to agent i, but agent i asks agent j for the task’s status:

Case C
message C1 ðquery-ref i j ðstatus task-23ÞÞ
message C2 ðnot-understood j i ðhmessage C1i ðnot ðexternal statusÞÞÞÞ

The grammar in Table 4 prevents agent j from formulating an inform as a response
to C1. There is no allowable response that agent j can formulate, except message C2.

RENÉE ELIO AND ANITA PETRINJAK292

6.3. Agent roles for normative communication

The next case adds one additional feature to the preceding one. An outer message
primitive combined with some particular propositional content might be legal only
for agents that have particular roles or interdependencies. Our intuitive example
from Table 1 was ‘‘According to my model of you, you cannot know p’’ or
‘‘According to my model of our dependencies, you cannot ask me about p.’’
Suppose that i proactively sends an inform message to agent j about the result of

task-23. And suppose further that agent j does not believe that an inform feasibility
precondition holds for agent i: If only the agent assigned to a particular task can know
the results of that task, and j does not believe i is the agent assigned to task-23, then j
would believe that an inform feasibility precondition ought not to be holding for i.

Case D
message D1 ðinform i j ðresult-of ðtask-23 . . .ÞÞÞ
message D2 ðnot-understood j i ðhmessage D1i ðnot ðagent-for ði task-23ÞÞÞÞÞ

? message D3 ðdisconfirm i j ðnot ðagent-for ði task-23ÞÞÞÞ

It might be quite pragmatic for agent j to send the not-understood in such a case, if
agent i were assuming that agent j was going to do something of consequence with
task-23’s result. Message D3 could be a legal continuation of this exchange, if the
interaction model defines agent-for to be a dynamic-external predicate. Now, should
agent j change its belief about whether agent i is responsible for task-23, just because
agent i says so? That has to be determined by the policies that govern how agents
may or must change their interaction models during run time. There could be an
axiom that says ‘‘Any agent is the final authority on what tasks it has responsibility
for.’’ or one that states ‘‘There is no reassignment of agents to the ‘password security
task’ during run time.’’ We note, however, that this puts the burden back on the
system designer to ensure that the model correction policy does not yield different
outcomes, as these two axioms might.
In this example (and others), j’ s reason could also simply be the equivalent of ‘‘I

do not believe you know the result of task-23,’’ without further appeal to a model-
based reason. We return to the issue of selecting a reason in Section 6.5.

6.4. Mismatched models for agent roles and dependencies

The next message exchange illustrates a case where agent i’s model of task and agent
interdependencies is incorrect, and i informs j of some result j does not need:

Case E
message E1 ðinform i j ðresult-of ðtask-23 . . .ÞÞÞ
message E2 ðnot-understood j i ðhmessage E1i

ðnot ðdesire ð j; result-of ðtask-23ÞÞÞÞÞÞ
? message E3 ðdisconfirm i j ðdesire ð j; result-of ðtask-23ÞÞÞÞ

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 293

According to the interaction model, message E1 is not understood because, from
j’s viewpoint, the contextual relevance conditions for this inform are not holding for
i: j does not need to know the result of task-23 and i apparently believes otherwise.
The not-understood reason in message E2, taken as a disconfirm from j to i about i’s
beliefs, is legal under the interaction model. This causes agent i to update its model of
agent j’s responsibilities. Agent i cannot try to revise agent j’s belief state with
message E3, because by the interaction model, i cannot change j’s state about what j
desires. Here, it is agent i’s model that is revised to align with j’s model.
There could be a different (or additional) reason why agent j does not understand

message E1. It might not believe that agent i has any reason to know the results of
task-23, because it believes that agent i is not assigned to task-23. This corresponds
to case D.
Now, Case E presents an interesting twist, if we consider that message m can

become understandable once message m+1 is received. For example, I might first tell
you the result of task-23, and then inform you that you are assigned a task that needs
that result (hence, providing the contextual relevance in the second message). This
situation can be problematic if there seems to be no order of messages that can make
matters understandable to the receiver (given some particular model), e.g., I cannot
inform you that you are the agent for task-23 because you will say you don’t know
how to do task-23, and I cannot tell you how to do task-23 because you will say you
believe you have no reason to know that.7

These are still cases of mismatched models between the sender and the receiver. No
matter which order is chosen by the sender, a not-understood is still warranted as the
first message back from the receiver, precisely because it signals mismatching models
and its reason gives a hook into the approximate cause of the mismatch. The sending
agent can send the follow-up message that (potentially) initiates some model
adjustment, e.g., ‘‘you are assigned to task-23.’’ This case is logically problematic,
only if the underlying axioms that relate agent properties and task properties are
circular, e.g., agent a is assigned to task t iff it desires the resource associated with task
t. Admittedly, this puts the burden back on the agent designer to think carefully about
the underlying inference rules. Assuming just the simple axioms given in Section 4.3,
this sort of circularity would not occur. Thus, agent i can inform agent j that j is the
assigned agent for some task, so that the first message about results or resources can
be understood, within such an adjusted model. From a processing viewpoint, this
requires a feature in the conversation layer that holds belief revisions or updates (that
come via an inform or disconfirm) in abeyance, pending the closure of the conversa-
tion. This too raises issues in practice, e.g., x becomes understandable upon receipt of
y, which becomes understandable upon receipt of w, and so forth, within a given
conversation between two agents. In thinking about these more complicated cases, it’s
important to separate the matter of grounding the conditions for not-understood
messages in some normative communication model – our main concern here – from
the matter of dynamically changing models so that such messages become legal. The
second matter requires a decision about just how much real-time model adjustment it
is desirable and plausible to have for a given agent-application during run time, and
the specification of policies to govern that. We return to this issue below.

RENÉE ELIO AND ANITA PETRINJAK294

As a final case, we consider not-understood responses to query-refs. Reconsider
Case C, in which agent i asks agent j for information on the status of agent i’s own
task. Suppose that task-23 were assigned to neither agent i nor agent j, and agent i
issues the same query.

Case F
message F1 ðquery-ref i j ðstatus task-23ÞÞ
message F2 ðnot-understood j i ðhmessage F2iðnot ðagent-for ð j task-23ÞÞÞÞÞ

From j’s viewpoint, one of the preconditions for i’s query-ref is not correct, namely
agent j does not know the status of task-23. The reason is because agent j is not the
assigned to task-23. We can imagine other cases in which a not-understood is the
normative response to a query if some privacy constraints must be upheld, and such
constraints must be specified in the interaction model. For example, by some nor-
mative communication model, agent j can believe that agent i has no access to the
information it is querying about. Again, exactly whose model ought to carry the day
in these dialogues is not a matter of normative communication, but rather policies
for normative model alignment.

6.5. From not-understood messages to model realignment

These little not-understood conversations underscore the difference between a nor-
mative communication model and policies for model alignment. The former defines
preconditions and reasons for not-understood messages, grounding them as illegal
update, revision, or access operations by agents on each other’s belief states. The
latter defines which of two mismatched models is going to be taken as correct and
raises the topic of complex agent reasoning.
Specifying whose model ought to win the day in these not-understood message

exchanges – and how the losing model is to be revised – can be kept simple or it can
become complicated. The simple solution is that the recipient of the not-understood
just ‘accepts’ that its model is wrong by incorporating the reason within the
not-understood message into its belief state, and perhaps tries the same message to a
different agent. This is the minimal model adjustment that is required to prevent that
very same message from being sent again to the very same agent. The safest way to
do this adjustment is to associate the reason with an agent-specific model, e.g.,
‘‘Agent j believes that it is not the agent for task-23’’ or ‘‘Agent j believes that
predicate p is not in such-and-so predicate class.’’ By this approach, a single mis-
programmed agent cannot cause widespread model adjustment about, say, what
kinds of operations are in fact legal or illegal on each other’s internal states.
The more complicated approach allows the sender of the original message to send

a follow-up to the not-understand, with the intent to change the model of the other
agent so that the original message can be accepted as legal. This complicated ap-
proach requires policies for how a normative communication model can be modified
and a consideration of just how much reasoning it is practical or necessary for an
agent system to do with respect to model adjustment. This also bears on the matter

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 295

of how to select which of several possible reasons to give for a not-understood. For
example, suppose there were an axiom that only the agent assigned to task t knows
the status of the task t. If there were only one such axiom, there would be only one
reason to give when an agent asserts it does not understand a query concerning the
status of task t (see Scenario F above). But suppose there were a second axiom: If an
agent has the feature ‘‘omniscient’’, then it knows the status of all tasks within the
system. If the goal is to correct agent i’s model, then agent j might send all possible
reasons (‘‘It is false that I am the agent for that task.’’ and ‘‘It is false that I am
omniscient’’) without needing to diagnosis which one might be at play for agent i.
It is also unclear whether the reason sent with a not-understood ought to be the

‘deepest’ or ‘shallowest’ reason possible (see case D). If agent i asks agent j for the
result of a task to which j is not assigned, j’s not-understood reason could either be ‘‘it
is false that I know that result’’ or ‘‘It is false that I am the agent assigned to that
task.’’ The latter would reduce the likelihood of other illegal messages going from i
to j, but this would amount to diagnostic reasoning on j’s part. The former is the
simplest fix to agent i’s model of agent j; whether i ought to do any further reasoning
about the root cause is a different matter. If there is going to be ‘deep’ diagnosis, then
either the sender of the not-understood will do it, to alleviate reasoning on the part of
the receiver, or the receiver of the not-understood will do it, to make sense of the
shallow reason it receives. If the interaction models are complicated, then ensuring
that the model adjustment is correct can require still more message exchanges, and
this might not be pragmatic for agent systems. This is a common feature in so-called
dialogue repair models of human conversation, which we touch upon briefly below.

7. Related work and themes

If ‘agent’ is regarded as the next level of abstraction in programming and large-scale
system design, then it is natural to ask how the agent paradigm can import elements
of software engineering, or vice versa. To this end, various extensions have been
proposed to the Unified Modeling Language (UML) to model agent-based inter-
action via protocols (e.g., [5]). By other accounts [24, 34, 47, 48], what the agent
paradigm offers the software system designer is some relief from the need to antic-
ipate all possible interactions among software modules. The vision is to off-load
some decision making about unanticipated events during run time to software
modules that have some decision making capability and autonomy. This requires a
commitment to some kind of agent theory. But with that commitment comes some
uncertainty about how agent-like software modules will behave and interact during
run time [24]. We believe that some of this uncertainty can be reduced through a
clear specification of normative behavior and interaction. In this work, we use
normative communication behavior as a reflection of normative domain behavior.
Other approaches have focused on frameworks for defining normative domain
behavior directly.
The REDUX project management architecture uses the specifications of agent

roles and permissions as it monitors the state of a design solution that is being
planned and executed [35]. REDUX generates a KQML sorry message along with a

RENÉE ELIO AND ANITA PETRINJAK296

reason (as per FIPA’s not-understood) when an agent attempts a domain action for
which it does not have the proper role or permission (e.g., changing a deadline). It
also monitors how a change to the evolving solution can impact the decisions still to
be made by other agents. In these senses, the architecture serves as a central
authority for normative domain behavior and to some extent, for promoting more
efficient domain behavior among the interacting agents. Petrie et al. [35] make a
cogent case for the ways in which a strongly-typed agent language is not merely a
convenience for agent message passing, but is also central for system design and
debugging, when it is coupled with a strong agent theory and domain behavior
model.
Klein and Dellarocus [25] propose a framework in which agents ‘register’ their

normative behavior with a general exception handling module. This general excep-
tion detection model serves as a central authority for recognizing deviations from
normative behavior. An example exception might be that agent i cannot – contrary
to the registered expectations – produce a result in time to be used by agent j during
run-time. It is the exception-handling module (not agent i or j) that recognizes this
event as an error and then recommends some alternative course of action for agent j.
To employ this approach, agents must share a common language for describing their
behavior to the central exception-handling module. Like REDUX, this approach
focuses on normative domain behavior directly and makes recognition of illegal
interactions the responsibility of a central mechanism. In contrast, our work assumes
that attempted communication actions reflect intended domain behavior and we
distribute that model of normative communication to all agents. The generation of a
not-understood can be viewed as throwing an exception.
The GAIA framework [50] supports normative agent behavior principally through

the specification of an agent role, defined as a 4-tuple of responsibilities, permissions,
activities, and protocols. Responsibilities define functionality, i.e., domain states that
an agent brings about or maintains. Permissions correspond to the resources that
agents have, in order to execute their responsibilities. These would include access to
information (in the same sense as we have used the notion of resource here).
Activities correspond to whatever domain actions an agent does privately, without
involving other agents. This corresponds loosely to what we denote as methods in
the task structure model here, as well as to the results of other internal computations
an agent does that are not part of the shared abstraction language. Finally, a role’s
protocol is much like an interface specification, defined by a sender, a receiver, the
inputs used by the sender, and the outputs supplied by the receiver. The GAIA
framework takes agents as the starting point for modeling, whereas our approach
starts first with modeling the task, the interaction ontology, and the elements that
populate an agent’s internal state as possible objects or arguments for communi-
cation actions. This is the overarching structure, and agent roles (permissions,
responsibilities, and communication interfaces) are derived via the axioms that relate
task properties to agent properties. The axioms correspond to the adoption of a
particular agent theory; a different set of axioms would constitute a different agent
theory. So although our approach may appear more task-centric than agent-centric,
there is an underlying agent theory that determines certain agent properties, given
their assigned responsibilities within a distributed task.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 297

This task-centric approach characterizes much of the distributed AI and multi-
agent paradigm, which emerged from the notion that a solution to a task within
some resource or time constraints might be done more effectively if that task were
decomposed and distributed to independent but interacting problem-solving entities.
The TÆMS task modeling system [9, 10] and the GPGP coordination mechanisms
[11] evolved from this kind of perspective. The GPGP approach coordinates com-
mitments (and communications about commitments) concerning task results,
deadlines, and resources in a multi-agent system. Message passing ensues among
agents prior to problem solving, with the aim of developing local scheduling com-
mitments that enable or optimize the interactions that will occur during run time.
Wagner et al. [45] note that this message passing itself is a kind of coordination
mechanism and they consider how GPGP-like mechanisms can control and coor-
dinate conversations. They propose extending the GPGP framework to encompass
conversations about task allocation, global goals, and task progress. Such an
extension would require a vocabulary for such conversations, much like the abstract
task vocabulary we have adopted here. Our use of a task structure coupled with
axioms to derive agent states and intentions is one way to accomplish their proposal
for a belief-desire-intention style representation of shared tasks.
In contrast to the task-centric approach, there are more conversation-centric

approaches to defining normative communication for multi-agent systems. Agentis
[12] uses simplified agent task models coupled with protocol specifications in the
domain of registering, providing, and requesting services. Most protocol specifica-
tions define normative message exchange simply as a sequence of message types (e.g.,
query followed by inform); transitions between conversation states are defined solely
by a required outer message type. The Agentis framework allows protocol state
transitions to be defined as a particular message type coupled with particular mes-
sage content. This is important because a protocol or conversation state acts as a
proxy for an agent state. The more detailed the transition test can be specified, the
more detailed the constraint becomes between agent state transitions. For example,
an agent might signal the cancellation of a service, by sending a decline message type,
with one of several predefined reason types. Those different elaborations of a decline
put the receiving agent into different states, at least with respect to its subsequent
decisions and interactions. This is similar to our use of a restricted predicate set for
constructing propositional content, particularly the processing propositions.
Protocol-like behavior emerges from our task structure and the agent theory that
derives agent properties from the tasks to which agents are assigned.
A conversation-centric perspective could also define agents in terms of the con-

versational interfaces they have with other agents. The GAIA’s agent role includes
an interface specification to other agents. COOL [2] makes agent responsibilities,
activities, and protocols part of the agent programming language. The normative
conversation topics and message sequences between two agents are the only ones
that such agents are defined and programmed to have. Our work puts these speci-
fications in a declarative representation; the presumption, of course, is that agents
are designed to interpret this representation and that they adhere to the same
underlying agent theory.

RENÉE ELIO AND ANITA PETRINJAK298

Our task-centric approach also reflects the influence of computational linguistics
research on modeling task-directed dialogues, either between two humans or
between a human and a software agent. That literature is too vast to review
adequately here, but a few key connections are worth acknowledging. A long-
standing element of computational and theoretical treatments of task-directed
conversation is that domain task intentions give rise to communication intentions,
and vice versa (e.g., [30, 31]). This is central to any agent theory that employs even
simplistic notions of beliefs, desires, and intentions. Common goals and theoretical
constructs such as ‘shared plans’ are foundational elements for a semantics for
cooperation [23] and for implementing complex, mixed initiative human-agent
cooperation systems [16, 38]. From our viewpoint, what this literature calls ‘mixed
initiative dialogue’ is what the software engineering literature might call ‘strong peer-
to-peer communication without a central calling hierarchy.’ Although the aims of
these two areas are different, their common concern is the resolution of non-ob-
servable agent states from observable behavior, e.g., an utterance or a message.
More directly related to our concern with the not-understood message is the matter of
‘dialogue repair.’ Within this area, McRoy and Hirst [33] distinguish between the
matter of ‘misunderstanding’ versus ‘misconceptions’ in a dialogue. The latter cor-
responds to errors in one agent’s model of the domain that is serving as the con-
versation topic (e.g., the belief that Toronto is the capital of Canada). Such errors
are usually recognized when an utterance is not interpretable by the receiving agent’s
model. In contrast, misunderstandings signal that the receiver’s assigned interpre-
tation of an utterance is not the one intended by the speaker; the recognition of this
case may take several further message exchanges to detect. The work we report here
is closer to the notion of misconceptions, since it centers primarily on errors arising
from mismatching interaction models. In [37] a general abduction framework is used
to identify and resolve dialogue misunderstandings. Such a general framework could
be similarly employed by agents to resolve an incoming message in terms of an
underlying normative communication model.
Finally, a critical element of our analysis is the view that communication acts are

attempted updates, revisions, or accesses to a portion of an agent’s internal state.
Our pragmatic approach to defining a model by which particular communications
can be classified ‘not understandable’ or ‘without meaning’ (i.e., illegal) is a simple
instance covered by the more general framework of dynamic semantics [20]. Simply
put, dynamic semantics views the meaning of a sentence (here, a message) as the
potential for change it can bring about in the information state of the hearer.
According to this theory, information states for an agent are a subset of all the
‘possibilities’, which in turn are defined by a reference system (a function from the
referential terms in the language to the domain of discourse) and a possible world. In
the ideal case, an agent’s information state consists of just one possibility, i.e., one
relation between the information that has been exchanged via communication about
the real world, and the real world itself. A sentence is ‘unacceptable’ or without
meaning if there is no accessible information state with which it is consistent.
Groenendijk, Stokhof, and Veltman [20] claim that ‘no hearer will be prepared to
update his information state with a sentence if the result would be the absurd state,’’
where the absurd state is one in which the possibilities are empty. If agent j holds a

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 299

normative communication model that is inconsistent with agent i’s (inform i j a), then
updating its information state with a would leave it in the absurd state, one with no
possibilities left. It is on this occasion that the (attempted) transition between
information states represented by a message exchange is illegal from agent j’s per-
spective, and which causes agent j to ‘‘argue with’’ agent i by sending a not-
understoodmessage. A nice feature of dynamic semantics is that it accommodates the
intuition that the order in which messages (sentences) are exchanged, matters. It also
offers the view that an agent engages in message exchange to reduce uncertainty
about what the state of the real world is. The essence of these ideas gives theoretical
clarity to the role that a normative communication model plays in defining the cases
under which a ‘not-understood’ message should be generated. The model serves to
completely circumscribe a set of possible worlds within the application domain,
including the internal states of all agents in that domain.

8. Discussion

We have presented the notion of a normative communication model that, in its
simplest use, defines well-grounded preconditions and reasons for not-understood
type error messages. The preconditions and reasons are leveraged off the implicit
preconditions for the core message types. The error messages signal mismatches
among agent models that are driving the agents’ domain-level interactions. In its
more complicated role, a normative communication model can serve as the foun-
dation for defining policies by which agents might re-align their models during
problem-solving. This approach can be employed in any agent system that makes a
strong commitment to task-modeling, defines axioms that relate task features to
agent features, and uses some kind of propositional representation for that portion
of agent beliefs that are exchanged during problem solving. It presumes that agents
would have access to the task model, the axioms, and either a partial or a global
model of their interacting work. But once a system designer makes the kinds of
semantic commitments of the sort we have presented here, and codifies those com-
mitments, then a normative communication model that structures not-understood
preconditions and reasons follows rather simply. The preconditions of the core
message types – however a system designer defines those core message types and
preconditions – implicitly define conditions for ‘‘understandability’’ and hence they
can be leveraged to define the conditions for ‘‘non-understandability.’’
This work presumes that an agent designer can impart a ‘deep model’ of joint

work and expected interactions to distributed agents, using a common abstract
language and a central declarative representation of the model. This is easy to do for
a closed system of homogeneous agents, because a single design team can adopt a
common agent theory and a common abstract language. But in such a system, one
can argue that there is no real need to employ a high level ACL in the first place, for
such agents can be programmed to communicate with each other in whatever way
the system designer deems appropriate. A good part of the motivation for a high
level standardized ACL was to support communication among heterogeneous
agents, who most likely have shallow models of each other. There are two

RENÉE ELIO AND ANITA PETRINJAK300

considerations to raise here. Even if a standard ACL is not employed, the prolif-
eration of strongly-typed agent languages for designing certain types of distributed
systems indicates a growing investment in the agent paradigm [34]. That investment
in turn requires explicit ways of defining normative communication interactions at
an agent level, and hence the investment in message protocols. The second consid-
eration is the matter of just what agents will ‘talk about’ via the inner language for
expressing the :content of their messages. So it is not merely a matter of what outer
message type is normative to exchange at a particular time, but also what inner
message content is normative to exchange at a particular time. Some of the inter-
action model components we have advocated here (e.g., predicate classes coupled
with agent roles) can be used without any kind of shared task model and still provide
a kind of context-sensitive semantic check on the legality of a communication action
like inform or query. Viewed another way, the normative communication model of
the sort we’ve described here is a richer representation of protocol-like behavior for
moving a distributed task to its solution state.
We have focused on not-understood as a canonical error message type that in-

cludes a structured reason, as inspired by the FIPA ACL specifications. As we
noted, the KQML error and sorry message types reflect an important distinction
between a message that is syntactically incorrect and a message that was inter-
pretable but did not have its intended effect, respectively. FIPA’s refuse message is
similar to sorry, provided as a possible response to a request for action that an
agent will not take. There can be any number of episode-specific reasons that a
request for action message is not honored. These reasons can fall outside a nor-
mative communication model and for them, something like sorry or refuse is
warranted instead of a not-understood (e.g., agent i refuses to schedule a task for
agent j, not because there are missing elements from the interaction model that
would render such a request illegal, but perhaps agent i has decided that agent j’s
requests have lower priority than usual). Not-understood is best regarded as a
response to make when a received message violates the underlying model that
governs message exchange between two agents, with the emphasis on the update,
revision, or access operations on the agent state that such message processing
entails. An agent may still send refuse or sorry to signal that it is not going to
update or revise its underlying model as part of a not-understood message exchange
(as per Case A in Section 5); such a message would signal that the agents’ policies
for model revision were not same. The matter of specifying theoretical and com-
putational models of belief revision and update is a complex matter in itself,
entailing assumptions about how contradictions are defined and recognized, whe-
ther newly arrived information ought in fact be integrated, and so forth. In this
work, we have very modest belief revision and update operations (via disconfirms
and informs) that are directed solely through the interaction model.
Even with these simplifications, several issues remain surrounding if and how

agents could use not-understood conversations as a means for aligning disparate
models of their possible or necessary interactions. These models could diverge during
problem solving, through lost messages or through task reallocation during
run-time. So it is not unreasonable to consider that simple belief revision might
actually be necessary. We touched on several of these matters in our consideration of

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 301

not-understoodmessage exchanges. We are exploring exactly these issues with the aim
of evaluating just how out-of-sync agent models can become during run time and
still be resolved through simple policies that govern model revision.
Another assumption of our approach is that agents have some model of the

belief states of other agents. Maintaining models of mutual belief presents difficult
theoretical and practical problems [15] and it is easy to get mired in some kind of
infinite regress in generating reasons for not-understood, i.e., ‘‘I do not understand
message m because I thought that you thought that I thought that you thought…’’
Here, we have simplified matters greatly by restricting an agent’s internal belief
state to simple propositional elements and implicitly allowing at most a three-level
model of mutual belief (I believe that you believe that I believe) based on the
shared task model and run-time information exchange. It remains to be seen how
well these assumptions hold up for more complex interactions and agent systems.
Finally, the axioms that we employed could be represented in agent markup lan-
guage such as DAML [8]. This would lift elements of the agent theory out of its
internal hard coding into a declarative representation as part of the overarching
model. Our current work makes such axioms part of a declarative specification of
constraints.
Agent message types have intended effects that are, in their first instance,

manipulations, updates, or revisions of the mental (informational) state of the
receiving agent. A canonical not-understood message constitutes an agent’s recog-
nition that an illegal action has been attempted on its internal state. These illegal
actions are defined in terms of a normative communication model, which references
agent properties derived from a task model. Our approach can be employed in any
agent system that uses a structured ACL, because the core elements of a normative
communication model are first leveraged off the preconditions that an ACL designer
associates with each message type. Other elements of our approach, such a predicate
classes for constraining message content in the context of particular senders and
receivers, apply to any system in which propositional beliefs constitute part of the
agent state. When these constraints are combined with agent roles, the interaction
model can become even richer and more complex (e.g., some agents may make some
kinds of operations on the internal state of other agents, depending on their
respective roles). Such elements define a principled approach to constraining message
content, message exchange patterns, and thereby a set of error conditions for agent
communication. By focusing on communication as actions upon internal agent state,
the model that defines the set of not-understood messages also constrains the possible
replies to not-understood messages and the allowable belief revisions and updates to
agent models.

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council
Discovery Grant to R. Elio. We thank Jeff Pelletier, Eleni Stroulia, and two anon-
ymous reviewers for their suggestions, questions, and commentary about this work
and its presentation.

RENÉE ELIO AND ANITA PETRINJAK302

Notes

1. We use the acronym ‘‘ACL’’ to mean agent communication language, in the generic sense.. To denote

FIPA’s specific proposal for an ACL, we use ‘‘FIPA’’ or ‘‘FIPA’s ACL.’’

2. To put this in more linguistic terms, such a model would define the cases in which it is proper for a

speaker to apply a particular illocutionary force to some propositional content, in conversation with a

particular hearer.

3. A normative communication model is silent on the matter of ensuring that the receiver’s internal state is

consistent with a. And as we noted earlier, a different semantics for inform could specify a different post

condition or intended effect.

4. The feasibility preconditions for disconfirm are that the sender believes ~a and believes that the receiver

is either uncertain about the truth of a or believes a. The intended rational effects are that the receiver

believes ~a.
5. For example, given a modal logic with a possibility operator �, we could express this constraint as

follows: if agent(a) and agent(b) and task(t) then � intend(a, (do (b, t))) and � intend(b, (do (b, t))) and �
inform(b, a, (intend (b, do(b, t)))) and ~ � inform(a, b, (intend (b, do(b, t)))).

6. Query-ref is a FIPA message primitive used to obtain a variable binding.

7. We thank one of our reviewers for raising this interesting case.

References

1. J. L. Austin, How to Do Things with Words, Harvard University Press: Cambridge, MA, 1962.

2. M. Barbuceanu and M. S. Fox, ‘‘COOL: A language for describing coordination in multi agent

systems,’’ in Proceedings of the First International Conference on Multi-Agent Systems, Holden-Day:

San Francisco, California, pp. 17–24, 1995.

3. M. E. Bratman, ‘‘What is intention?’’ in P. R. Cohen, J. L. Morgan, and M. E. Pollack, (eds.),

Intentions in Communication, MIT Press: Cambridge, Massachusetts, pp. 15–32, 1990.

4. P. Bretier and M. D. Sadek, ‘‘A rational agent as the kernel of a cooperative spoken dialogue system,’’

in J. P. Müller, M. Wooldridge, and N. R. Jennings, (eds.), Intelligent Agents III (LNAI Vol. 1193),

Springer-Verlag: Berlin, pp. 189–204, 1997.

5. B. Bryson, J. Müller, and J. Odell, ‘‘An extension of UML by protocols for multiagent interaction,’’ in

International Conference on Multiagent Systems, Hilger: Boston, Massachusetts, pp. 207–214, 2000.

6. P. R. Cohen and H. J. Levesque, ‘‘Intention is choice with commitment,’’ Art. Intell. vol. 42, no. 2–3,

pp. 213–261, 1990.

7. P. R. Cohen and C. R. Perrault, ‘‘Elements of a plan-based theory of speech acts,’’ Cognitive Sci. vol.

3, pp. 177–212, 1979.

8. DAML, ‘‘Agent Markup Language,’’ www.daml.org <http://www.daml.org>., 2003.

9. K. Decker, ‘‘Environment centered analysis and design of coordination mechanisms,’’ Technical

Report 1995-069, Department of Computer Science, University of Massachusetts, Amherst, Massa-

chusetts, 1995.

10. K. Decker and V. Lesser, ‘‘Quantitative modeling of complex computational task environments,’’ in

AAAI-93 – Proceedings of the Eleventh National Conference on Artificial Intelligence, Brookings

Institute Washington, DC, pp. 217–224, 1993.

11. K. Decker and V. Lesser, ‘‘Designing a family of coordination algorithms,’’ in Proceedings of the First

International Conference on Multi-agent Systems, Holden-Day: San Francisco, California, pp. 73–80,

1995.

12. M. d’Inverno, D. Kinny, and M. Luck, ‘‘Interaction protocols in Agentis,’’ in Proceedings of the Third

International Conference on Multi-agent Systems (ICMAS-98), Universiteires de Press: Paris, France,

pp. 112–119, 1998.

13. R. Elio and A. Haddadi, ‘‘On abstract models and conversation policies,’’ in F. Dignum and M.

Greaves, (eds.), Issues in Agent Communication (LNAI 1916), Springer-Verlag: Berlin, pp. 301–313,

2000.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 303

14. R. Elio, A. Haddadi, and A. Singh, ‘‘Task models, intentions, and agent communication,’’ in Pro-

ceedings of the Pacific Rim Conference on AI (LNAI 1886). CSIRO: Melbourne, Australia. pp. 394–

403, 2000.

15. R. Fagin, J. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge, MIT Press: Cambridge,

Massachusetts, 1995.

16. G. Ferguson, J. Allen, and B. Miller, ‘‘Trains-95: Towards a mixed-initiative planning assistant,’’ in

Proceedings of the Third Conference on Artificial Intelligence Planning Systems, Scottish Academic

Press: Edinburgh, Scotland, pp. 70–77, 1996.

17. FIPA, ‘‘Agent Communicative Act Library Specification,’’ www.fipa.org <http://www.fipa.org>,

2003.

18. M. R. Genesereth and S. P. Ketchpel, ‘‘Software agents,’’ Commun. ACM, vol. 37, pp. 48–53. 1994.

19. M. Greaves, H. Holmbeck, and J. Bradshaw, ‘‘What is a conversation policy?’’ in F. Dignum and M.

Greaves, (eds.), Issues in Agent Communication (LNAI 1916), Springer-Verlag: Berlin, pp. 118–131,

2000.

20. J. Groenendijk, M. Stokhof, and F. Veltman, ‘‘Coherence and modality,’’ in S. Lappin, The handbook

of Contemporary Semantic Theory, Blackwell: Oxford, pp. 179–213, 1996.

21. B. Grosof and Y. Labrou, ‘‘An Approach to using XML and a rule-based content language with an

agent communication language,’’ in F. Dignum andM. Greaves, (eds.), Issues in Agent Communication

(LNAI 1916), Springer-Verlag: Berlin, pp. 96–117, 2000.

22. B. Grosz and C. Sidner, ‘‘Attention, intentions and the structure of discourse,’’ Comput. Linguistics,

vol. 12, pp. 175–204, 1986.

23. B. J. Grosz and S. Kraus, ‘‘Collaborative plans for complex group action,’’ Artif. Intell., vol. 86,

pp. 269–357, 1996.

24. N. R. Jennings, ‘‘On agent-based software engineering,’’ Artif. Intell., 117, pp. 277–296, 2000.

25. M. Klein and C. Dellarocas, ‘‘Exception handling in agent systems,’’ in Proceedings of the Third

International Conference on Autonomous Agents (Agents ’99), Seattle, Washington, pp. 62–68, 1999.

26. Y. Labrou and T. Finin, ‘‘A semantics approach for KQML: A general purpose communication

language for software agents,’’ in Proceedings of the Third International Conference on Information and

Knowledge Management (CIKM’94), Gaithersburg, Maryland, 1994.

27. Y. Labrou and T. Finin, ‘‘A proposal for a new KQML specification,’’ Technical Report #CS-97-03,
Computer Science and Electrical Engineering Department, University of Maryland, Baltimore,

Maryland, 1997.

28. Y. Labrou and T. Finin, ‘‘Semantics and conversations for an agent communication language,’’ in

M. Huhns and M. Singh (eds.), Readings in Agents, Morgan Kaufmann, Holden-Day: San Francisco,

California, pp. 235–242, 1998.

29. Y. Labrou, T. Finin, and Y. Peng, ‘‘The current landscape of agent communication languages,’’ IEEE

Intell. Sys., vol. 14, pp. 45–52, 1999.

30. L. Lambert and S. Carberry, ‘‘A tripartite plan-based model of dialogue,’’ in Proceedings of the 29th

Annual Meeting of the Association for Computational Linguistics, University of California Press:

Berkeley, California, pp. 47–54, 1991.

31. D. Litman and J. Allen, ‘‘Discourse processing and commonsense plans,’’ in P. R. Cohen, J. L.

Morgan, and M. E. Pollack, (eds.), Intentions in Communication,MIT Press: Cambridge, Massachu-

setts, pp. 365–388, 1990.

32. K. Lochbaum, ‘‘The use of knowledge preconditions in language processing,’’ in Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, Lidee: Montreal, Canada, pp.

1260–1266, 1995.

33. S. W. McRoy and G. Hirst, ‘‘The repair of speech act misunderstandings by abductive inference,’’

Comput. Linguistics, vol. 21, pp. 435–478, 1995.

34. C. Petrie, ‘‘Agent-based software engineering,’’ in Agent-Oriented Software Engineering, First Inter-

national Workshop, AOSE, Limerick, Ireland, 2001.

35. C. Petrie, S. Goldman, and A. Raquet, ‘‘Agent-based project management,’’ in M. Wooldridge and.

M. M. Veloso, Artificial Intelligence Today: Recent Trends and Developments (LNAI #1600), Springer-
Verlag: Berlin, pp. 339–363, 1999.

RENÉE ELIO AND ANITA PETRINJAK304

36. J. Pitt and A. Mamdani, ‘‘Communication protocols in multi-agent systems,’’ in F. Dignum and M.

Greaves, Issues in Agent Communication (LNAI #1916), Springer-Verlag: Berlin, pp. 160–177, 2000.
37. D. Poole, R. Goebel, and R. Aleliunas, ‘‘Theorist: A logical reasoning system for defaults and

diagnosis,’’ in N. Cercone and G. McCalla, The Knowledge Frontier: Essays in the Representation of

Knowledge, Springer-Verlag: New York, pp. 331–352, 1987.

38. C. Rich, and C. L. Sidner, ‘‘COLLAGEN: When agents collaborate with people,’’ in Proceedings of

the First International Conference on Autonomous Agents, Marina del Rey, California, pp. 284–291,

1997.

39. M. D. Sadek, ‘‘A study in the logic of intention,’’ in Proceedings of the Third Conference on Principles

of Knowledge Representation and Reasoning, San Francisco, California, pp. 462–473, 1992.

40. J. R. Searle, ‘‘What is a speech act?’’ in M. Black, Philosophy in America, Cornell University Press,

New York, pp. 221–239, 1965.

41. Y. Shoham, ‘‘Agent oriented programming,’’ Artifi. Intell., vol. 60, pp. 51–92, 1993.

42. Q. Situ and E. Stroulia, ‘‘Task-structure based mediation: The travel-planning assistant example,’’ in

The Proceedings of the 13th Canadian Conference on Artificial Intelligence, Lidee: Montréal, Québec,

Canada, pp. 400–410, 2000.

43. E. Stroulia and A. Goel, ‘‘Functional representation and reasoning in reflective systems,’’ in J. Appl.

Intell., vol. 9, pp. 101–124, 1995.

44. F. Veltman, ‘‘Defaults in update semantics,’’ J. Philos. Logic, vol. 25, pp. 221–261, 1996.

45. T. Wagner, B. Benyo, V. Lesser, and P. Xuan, ‘‘Investigating interactions between agent conversations

and agent control components,’’ in F. Dignum and M. Greaves, Issues in Agent Communication

(LNAI 1916), Springer-Verlag: Berlin, pp. 314–330, 2000.

46. T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foundation for Design,

Ablex Publishing: New Jersey, 1986.

47. M. Wooldridge, ‘‘Agents and software engineering,’’ Artifi. Intell., vol. 11, no. 3: pp. 31–37, 1998.

48. M. Wooldridge and N.R. Jennings, ‘‘Software engineering with agents: Pitfalls and pratfalls,’’ IEEE

Internet Computing, vol. 3, pp. 20–27, 1999.

49. M. Wooldridge and N.R. Jennings, ‘‘Intelligent agents: Theory and practice,’’ Knowledge Eng. Review,

vol. 10, pp. 115–152, 1995.

50. M. Wooldridge, N. J. Jennings, and D. Kinny, ‘‘The Gaia Methodology for Agent-oriented analysis

and design,’’ J. Autonomous Agents and Multi-agent Sys. vol. 3, pp. 285–312, 2000.

COMMUNICATION MODELS FOR AGENT ERROR MESSAGES 305

