
Learning Rewrite rules versus search control

rules to improve plan quality

M. Afzal Upal1 and Renee Elio2

1 Faculty of Computer Science
Dalhousie University, Halifax

afzal.upal@dal.ca

2 Department of Computing Science
University of Alberta, Edmonton

ree@cs.ualberta.ca

Abstract. Domain independent planners can produce better-quality

plans through the use of domain-speci�c knowledge, typically encoded as

search control rules. The planning-by-rewriting approach has been pro-

posed as an alternative technique for improving plan quality. We present

a system that automatically learns plan rewriting rules and compare it

with a system that automatically learns search control rules for partial

order planners. Our results indicate that learning search control rules is

a better choice than learning rewrite rules.

1 Introduction

AI planners must be able to produce high quality plans, and do so e�ciently,

if they are to be widely deployed in the real-world planning situations. Vari-

ous approaches have shown that incorporating domain knowledge into domain-

independent planners can improve both the e�ciency of those planners [6, 4,?]

and as well as quality of the plans they produce [12, 5]. Traditionally, this knowl-

edge is encoded as search control rules to limit the search for generation of the

�rst viable plan. Recently, Ambite and Knoblock have suggested an alternative

approach called planning by rewriting [1]. Under this approach, a partial-order

planner generates an initial plan, and then a set of rewrite rules are used to

transform this plan into a higher-quality plan. Unlike the search control rules

for partial order planners (such as those learned by UCPOP+EBL [6] and PIPP

[14]) that are de�ned on the space of partial plans, rewrite rules are de�ned on

the space of complete plans. In addition, it has been argued that plan-rewrite

rules are easier to state than search control rules, because they do not require

any knowledge of the inner workings of the planning algorithm [1]. That may

partially explain why most of the search-control systems have been designed to

automatically acquire search-control rules, whereas existing planning by rewrit-

ing systems use manually generated rewrite-rules. To date, there has been no

comparison of these two techniques to study their strengths and weaknesses.

This paper presents an empirical comparison of how the two techniques (search

control rules vs rewrite rules) improve plan quality within a partial-order plan-

ning framework. Our focus, however, assumes that both rewrite rules as well as

search control rules are to be learned as a function of planning experience.

We designed two systems, Sys-REWRITE and Sys-SEARCH-CONTROL,

that automatically learn to improve quality of the plans produced by the partial

order planners. Both systems have the same overall structure, shown in Figure

1, and only di�er in their implementation of the last step. For Step 1, both

systems use a partial order planning algorithm, POP, of the sort described in [9].

The learning algorithm, ISL (Intra-Solution Learning algorithm), that the two

systems use for Step 2 is similar to that used in [14] and is described in the section

that follows. In Step 3, Sys-REWRITE uses the output of Step 2 to create plan-

rewrite rules, while Sys-SEARCH-CONTROL uses that information to create

search-control rules. The performance component of the two systems necessarily

di�ers, by de�nition: Sys-SEARCH-CONTROL uses its rules during its planning

process, whereas Sys-REWRITE uses the rules after it has completed what we

might think of as its draft partial plan.

Input: - Problem description in terms of initial state I and goal G

Output: - A set of rules

1- Use a causal-link partial-order planner to generate a plan P for

 this problem.

3- Learn a rule from each learning opportunity and store it.

2- Identify learning opportunities by comparing the plan episode for

 - An model plan Q for this problem

P with the inferred plan episode for Q

Fig. 1. High level Algorithm

2 Overview of Approach

Our approach to plan quality representation and the underlying learning algo-

rithm may be briey described as follows1. We assume that complex quality

tradeo�s among a number of competing factors can be mapped to a quantitative

statement. Methodological work in operations research indicates that a large set

of quality-tradeo�s (of the form \prefer to maximize X rather than minimize Y")

can be encoded into a value function, as long as certain rationality criteria are

met [3]. We also assume that a quality function de�ned on resources consumed

in a plan exists for a given domain and use a modi�ed version of R-STRIPS [16]

to represent resource attributes and the e�ects of actions on those resources.

Given the knowledge about how to measure the quality of a complete plan,

the learning problem then is how to translate this global quality knowledge into

1 For details the reader is referred to [14].

knowledge that allows the planner to discriminate between di�erent re�nement

decisions at a \local" level, i.e., to learn search control knowledge. It is this

general approach that we will contrast with learning rewrite rules.

As Figure 1 indicates, the training data for both Sys-REWRITE and Sys-

SEARCH-CONTROL consists of the description of a problem in terms of the

initial state and goals, and a completed high-quality plan (a set of totally ordered

steps) that serves as a kind of model. The higher quality model plan can be

generated by the planner itself through a more exhaustive search of the plan

space or supplied by an external agent (as is done in apprenticeship learning

systems [8]). The learning step (Step 2) is triggered if the model plan is of

higher quality (as per the quality metric) than the the system's default plan

for the same problem. Learning occurs in the context of considering di�erences

between higher-quality model plan with the lower-quality default plan produced

by the system. But because the planner is a partial-order planner, what it must

learn is how to make better plan-re�nement decisions, i.e., the form of knowledge

to be acquired must a�ect the partial-order planning process, at least when the

rules to be learned are search control rules. Thus, learning occurs by considering

di�erences in the planning re�nement trace that produced the partial order plan

and elements of an inferred planning re�nement trace that is consistent with the

model plan, Q. This is the heart of the ISL algorithm that is described in more

detail in Section 3.2, and that identi�es the knowledge that will be turned into

either search control rules or rewrite rules.

3 System Architecture

We describe the architecture in terms of the three steps outlined in Figure 1.

3.1 Step 1: The Planning Component

The planning element is a causal-link partial-order planner (POP) that, given an

initial state and some goals, produces a linearized plan that is consistent with

the partial ordering constraints on steps that it identi�ed during its planning

process.

3.2 Step 2: Learning from Plan Re�nement Traces

We will use the transportation problem shown in Figure 3 to illustrate the work-

ings of the ISL algorithm. The ISL algorithm, shown in Figure 2 looks for di�er-

ences between two solutions to a planning problem that di�er in overall quality.

It has both the default plan and the default planning trace produced from Step 1,

plus the model plan Q. We do not assume that the planning trace that produced

the model higher-quality plan is available�just the model plan itself. Therefore,

ISL's �rst step is to reconstruct the causal-link and ordering constraints that

are consistent with the step sequence that de�nes the model plan. The model

Output:

- for each conflicting choice point

- the plan obtained by making the better-choice

- the trace of the better plan

 at this point and then letting the system refine

 it completely and the trace of this plan

 - A set of conflicting choice points C

 - the better plan Q

 Input: - trace for system’s plan Ptr={d1, d2,..., dn}

2.1- Analyse Q to determine the set of better-plan-constraints QC

2.3- While not empty(Ptr) do

resolves the current flaw

- i <- i+1
 - add C to the current partial plan P0

2.2- di <- d1

2.3.1- mark this decision point as a conflicting choice point

2.3.2- examine QC to compute the constraint BC that

2.3.3 - add BC to P0

 a plan Pc and its trace Trc.

2.3.5- Ptr <- Trc

- i <- i+1

 - If the constraint C added by the decision di is in QC then

-else

2.3.4- invoke POP to refine P0 and produce

Fig. 2. The Intra-Solution Learning (ISL) Algorithm (Step 2 of Algorithm 1).

constraint set inferred by ISL from the model plan presented earlier in Figure 3

is shown in Figure 5.

The next step is to retrace the default planning-trace (from step 1), looking

for plan-re�nement decisions that added a constraint that is absent in the model

plan's constraint set. We call such a decision point a conicting choice point.

Each conicting choice point indicates a possible opportunity to learn a plan-

re�nement decision that contributes to producing a better quality plan.

Given the default planning trace and the model constraint-set shown in Fig-

ure 5, ISL retraces the default planning trace (shown in Figure 4) looking for

a planning decision that adds a constraint not present in the model constraint-

set. Node 1 in Figure 4 is one such node where the default planner resolves

the open-condition aw at-object(o1,ap2)end by performing add-action: unload-

truck(o1,TR,ap2), which adds the causal-link unload-truck(o1; TR; ap2)
at-obj(o1;ap2)

�!

end to the partial plan. But this causal-link is not in the model constraint-set for

this problem shown in Figure 5. The model constraint-set contains a causal link

unload-plane(o1; pl1; ap2)
at-object(o1;ap2)

�! end: In other words, the model planner

resolved the precondition at-object(o1,ap2)end by add-action: unload-plane(o1,

pl1, ap2). Hence, Node 1 is labeled as a conicting choice point. Simply put, the

two plans di�ered in the way they achieved an open condition.

Initial-state: {at-object(o1, ap1), at-object(o2, ap2), at-truck(tr1, ap1),
at-truck(tr2, ap2), at-plane(pl1, ap1), same-city(ap1, po1),

position(ap1, 10), position(po1, 15), position(ap2, 100),

position(po2, 110), money(1000), time(0)}

same-city(po1,ap1), same-city(ap2,po2),same-city(po2,ap2),

Goals: {at-object(o1, ap2), at-object(o2, po2)}

System’s Plan Model Plan

load-truck(o1, tr1, ap1)
drive-truck-acities(tr1, ap1, ap2)
unload-truck(o1, tr1, ap2)

unload-truck(o2, tr2, po2)

load-plane(o1, pl1, ap1)
fly-plane(pl1, ap1, ap2)
unload-plane(o1, pl1, ap2)
load-truck(o2, tr2, ap2)
drive-truck(tr2, ap2, po2)
unload-truck(o2, tr2, po2)

load-truck(o2, tr2, ap2)
drive-truck(tr2, ap2, po2)

Fig. 3. Problem 1: A Transportation planning problem.

Learning a single search control rule that ensures the application of the model

planning decision at this point may turn a low-quality plan into a higher-quality

plan, but it is rather unlikely that this was the only reason for the di�erence

in quality between the default plan and the model plan. There may be more

opportunities to learn what other decisions lead to a better quality plan for

the same problem. To identify the other planning decisions whose rationale the

existing planer lacks, ISL adds the constraint added by the model plan at this

point to the partial plan being re�ned. Once the higher-quality plan's planning

decision has been applied to the partial plan being re�ned, ISL calls the existing

planner again to re-plan from that point on (Step 2.3.4 of ISL). A new plan

and a new trace (that is the same as the initial trace up to the now-replaced

conicting choice point, and possibly di�erent thereafter) is returned for this

same problem, and the process of analyzing this new trace against the constraints

of the higher-quality model plan is done again. This analysis may lead to more

conicting choice points (as indeed is the case with the example scenario shown

in Figure 4: at Node 10 the system's new plan makes a di�erent choice than the

model plan). Eventually, the default planner will generate a planning trace that

is consistent with the constraint set inferred for the higher-quality model plan.

That ends the learning about plan quality that can be accomplished from that

single training problem.

For any conicting choice point, there are two di�erent planning decision

sequences that can be applied to a partial plan: the one added by the existing

planner, and the other added by the model planner. The application of one set of

planning decisions leads to a higher quality plan and the other to a lower quality

plan. It would be possible to construct a rule that indicates that the planning

decision associated with the better-quality plan should be taken if that same

aw is ever encountered again. However, this would ensure a higher-quality plan

only if that decision's impact on quality was not contingent on other planning

decisions that are \downstream" in the re�nement process, i.e., further along the

search path. Thus, some e�ort must be expended to identify the dependencies

between a particular planning decision and other planning decisions that follow

it.

To identify what downstream planning decisions are relevant to the decision

at a given conicting choice point, the following method is used. The open-

conditions at the conicting choice point and the two di�erent planning decisions

(i.e., the ones associated with the high quality model plan and the lower quality

Start End

at-object(o1, ap2)
at-object(o2, po2)

Start End
at-object(o1, ap2)at-object(o1,ap1)

at-object(o2, po2)

in(o2,TR2)

unload-truck(o2,Tr2, po2)

at-truck(Tr2,From3)
at-object(o2,From3)

load-truck(o2,Tr2,From3)

load-plane(o1,pl1,ap1)
in(o1,pl1)

at-plane(pl1,ap1)

at-plane(pl1,ap2)
at-truck(Tr2,po2)

at-truck(Tr2,From4)fly-plane(pl1,ap1,ap2)

unload-plane(o1,pl1, ap2)
at-plane(pl1,ap1)

Start End
at-object(o1, ap2)at-object(o1,ap1)

at-object(o2, po2)

in(o2,TR2)

unload-truck(o2,Tr2, po2)

at-truck(Tr2,From3)
at-object(o2,From3)

load-truck(o2,Tr2,From3)

load-plane(o1,pl1,ap1)
in(o1,pl1)

at-plane(pl1,ap1)

at-plane(pl1,ap2)
at-truck(Tr2,po2)

at-truck(Tr2,From4)fly-plane(pl1,ap1,ap2)

at-truck(pl1,ap1)
unload-plane(o1,pl1, ap2)

at-truck(Tr2,po2)

drive-truck(Tr2,From4, po2)
at-truck(Tr2,From4)

add-step drive-truck
Node 11 (a)

Start End
at-object(o1, ap2)at-object(o1,ap1)

at-object(o2, po2)

in(o2,TR2)

unload-truck(o2,Tr2, po2)

at-truck(Tr2,From3)
at-object(o2,From3)

load-truck(o2,Tr2,From3)

load-plane(o1,pl1,ap1)
in(o1,pl1)

at-plane(pl1,ap1)

at-plane(pl1,ap2)
at-truck(Tr2,po2)

at-truck(Tr2,From4)fly-plane(pl1,ap1,ap2)

at-truck(pl1,ap1)
unload-plane(o1,pl1, ap2)

add-step unload-truck

2nd conflicting choice point

Node 10

at-object(o1, ap2) End
at-object(o2, po2)

add-step load-truck

Start
at-object(o1, ap2) End

at-object(o2, po2)

at-object(o1, ap2)
End

at-object(o2, po2)
Start

add-step unload-plane

in(o1,Pl)

in(o1,Pl)
load-plane(o1,Pl,From1)

Node 1

Node 2

Node 3

unload-plane(o1,Pl, ap2)

1st conflicting choice point
at-plane(Pl,ap2)

unload-plane(o1,Pl, ap2)

at-plane(Pl,ap2)

Start

unload-truck(o1,Tr, ap2)
in(o1,Tr)
at-truck(Tr,ap2)

at-truck(Tr2,po2)at-truck(Tr2,From4)
drive-truck-acities(Tr2,From4, po2)

add-step drive-truck-acities

Path B

Node 11(b)

Path A

Fig. 4. Conicting choice point that leads to Path A (left), from the higher-quality
plan, and to Path B (right), the lower-quality plan. We use italics to represent open

preconditions which are treated as subgoals. When these preconditions are still open

(i.e., have not been satis�ed), they are displayed next to the action that requires them.
Arrows between actions denote causal-links showing which subgoals of an action have

been satis�ed. The arrow direction is from producer to the consumer of a condition.

at-object(o1, ap2)

at-object(o1, ap1)

at-object(o2, po2)

at-truck(tr2, po2)

at-object(o2, ap2)

at-truck(o2, ap2)

start load-truck(o2, tr2, ap2)

start load-truck(o2, tr2, ap2)

start fly-plane(pl1, ap1, ap2)

start load-plane(o1, pl1, ap1)

in(o1, pl1)

unload-plane(o1, pl1, ap2) end

unload-truck(o2, tr2, po2) end

load-plane(o1, pl1, ap1) unload-plane(o1, pl1, ap2)

fly-plane(pl1, ap1, ap2) unload-plane(o1, pl1, ap2)

load-truck(o2, tr2, ap2) unload-truck(o2, tr2, po2)

drive-truck(tr2, ap2, po2) unload-truck(o2, tr2, po2)

at-plane(pl1,ap2)

at-plane(pl1, ap1)

in(o1, tr2)

Fig. 5. Constraints inferred from the model plan of Problem 1.

default plan) are labeled as relevant. The rest of the better-plan's trace and the

rest of the worse-plan's trace are then examined, with the goal of labeling a

subsequent planning decision q relevant if

{ there exists a causal-link q
c
�! p such that p is a relevant action, or

{ q binds an uninstantiated variable of a relevant open-condition.

For instance, consider again the �rst conicting choice point at Node 1 shown

in Figure 4. There are two open-conditions aws in the partial plan, but the aw

selected to be removed at this point is the open-condition at-object(o1, ap2).

Clearly, the decision add-action: unload-plane(o1,Pl,ap2) on Path A (left path)

is relevant. Similarly, the decisions to add-action: load-plane(o1,pl1,ap1) and add-

action: y-plane(pl1,ap1,ap2) are relevant because they supply preconditions to

the relevant action unload-plane(o1,Pl,ap2). Further along Path A, the decision

establish: at-object(o1, ap1) is relevant because it supplies an precondition to

the relevant action y-plane(pl1,ap1,ap2). However, the planning decisions add-

action: unload-truck(o2, Tr2, po2), and add-action: drive-truck(Tr2, From4, po2)

are not relevant because the open conditions they resolve are not relevant. The

labeling process stops on reaching the leaf nodes and the two relevant planning

decision sequences (for each conicting choice point) are out put. ISL outputs

the two planning decision sequences shown in Figure 3.2 for the �rst conicting

choice point.

3.3 Step 3: Learning search-control rules

Once ISL identi�es the relevant re�nement decisions associated with the way

in which a given choice point was resolved di�erently for the the higher-quality

Lower quality sequence

add-action: unload-truck(o1,Tr,ap2) to resolve at-object(O, Y)End
add-action: load-truck(o1,Tr,From2) to resolve in(o1,Tr)unload mbox�truck

add-action: drive-truck-acities(Tr,From2,ap2) to resolve

at-truck(Tr,ap2)unload-truck
establish: at-object(o1, From2)load-truck with at-object t(O, X)Start

establish: at-truck(Tr,From2)drive-truck-acities with at-truck(Tr, X)0

establish: neq(ap1,ap2)drive-truck-acities with neq(X, Y)0

Better quality sequence:

add-action: unload-plane(o1,Pl,ap2) to resolve at-object(o1, ap2)End
add-action: load-plane(o1,Pl,From1) to resolve in(o1, Pl)unload-plane
add-action: fly-plane(Pl,From1,ap2) to resolve

at-plane(Pl,From1))unload-plane
establish: at-object(o1, From)load-plane with at-object (O, X)Start

establish: at-plane(Pl,X))fly-plane with at-plane(Pl, X)Start

establish: neq(ap1,ap2)fly-plane with neq(X, Y)Start

Fig. 6. Two planning decision sequences identi�ed by ISL for the �rst conicting choice

point shown in Figure 4. The notation PreAct indicates that Pre is a precondition of
Action Act and the notation EffAct indicates that Eff is an e�ect supplied by the

action Act.

plan and the worse plan, a search control rule can be created. To do this, Sys-

SEARCH-CONTROL computes (a) the open-condition aws present in its par-

tial plan that the relevant decision sequence removes, (b) the e�ects present in

its partial plan that are required by the relevant decision sequence, and (c) the

quality value of the new subplan produced by the relevant decision sequence.

Sys-SEARCH-CONTROL then use this information to store the rationale (the

pre-conditions) for applying each re�nement decision sequence. For the example

shown in Figure 3, the rationale learned for the re�nement sequence associated

with the higher-quality plan is:2

open-conditions: f at-object(O, Y)Act1 g

e�ects: f at-object(O, X)Act2, at-plane(Pl, X)Act3, neq(X, Y)Act4 g.

quality: 170 - 3 * distance(Y, X)/200.

trace: add-action: unload-plane(O,Pl,Y) to resolve

at-object(O, Y)Act1
add-action: load-plane(O,Pl,X) to resolve in(O, L)unload-plane
add-action: fly-plane(Pl,X,Y) to resolve at-plane(Pl,Y))unload-plane
establish: at-object(O, X) with at-object(O, X)Act2

establish: at-plane(Pl,X) with at-plane(Pl, X)Act3

establish: neq(X,Y) with neq(X, Y)Act4

Rules such as these are then consulted by the default planner in Step 1.

When re�ning a partial plan P , Sys-SEARCH-CONTROL's planner checks to

2 In the Prolog tradition, we use capital letters to show variables throughout the paper.

see if a rule exists whose preconditions and e�ects are subsets of P 's precon-

ditions and e�ects respectively. If more than one such rule is available, then

the rule that has the largest precondition set (i.e., it resolves the largest num-

ber of preconditions) is selected. If more than one such rule is available, then

Sys-SEARCH-CONTROL's planner uses the rule whose quality-formula has the

highest value when evaluated in context of P . A rule is guaranteed to guide

the planner towards applying re�nements that result in a higher-quality plan

unless the partial plan has some yet unseen open-conditions that negatively in-

teract with the preconditions in the antecedent of the rule. A negative inter-

action occurs if the application of a rule leads to a qualitatively lower plan.

Sys-SEARCH-CONTROL detects these cases and learns a more speci�c rule.

The reader is directed to previous publications [14] that provide the details of

this algorithm.

3.4 Step 3: Learning rewrite rules

As noted earlier, Sys-SEARCH-CONTROL and Sys-REWRITE di�er in the use

they make of the output of Step 2. Rather than making a search-control rule

that will be applied during the partial-order planning process, Sys-REWRITE

computes (a) the actions that are added by the worse plan's relevant decision se-

quence. These become the action sequence to-be-replaced, (b) The actions that

are added by the better plan's relevant decision sequence. These become the

replacing action sequence, and (c) The preconditions and e�ects of the replacing

and the to-be-replaced action sequence. Sys-REWRITE then stores this infor-

mation as a rewrite rule. For instance, the rule learned for the example shown

in Figure 3 is:

:replace

:actions {load-tr(O,T,X),drive-tr-acities(T,X,Y),unload-tr(O,T,Y)}

:causal-links {

load-tr(O,T,X)
in�tr(O;T)
�! unload-tr(O,T,Y),

drive-tr-acities(T,X,Y)
at�tr(T;Y)
�! unload-tr(O,T,Y) g

:with

:actions {load-pl(O,L,X),fly-plane(L,X,Y),unload-pl(O,L,Y)}

Sys-REWRITE uses a POP algorithm to generate an initial plan Pi, the set

of casual links Clp, ordering constraints Op and the set of e�ects Ep. It then

checks to see if a rule exists whose to-be-replaced sequence S1 is a subset of P

and whose causal-link constraints Cls1 are a subset of P 's causal-links set. If

any such rule R = (S1; P res1; Effs1; Cls1; S2; P res2; Effs2) is retrieved, then

all ordering constraints from Op that involve an action from S1 are deleted. It

also deletes all causal links from Clp whose producer is a members of S. All

those conditions in the casual-links that have a producer in S1 and a consumer

in P �S1 are added to the set of open conditions. The replacing action sequence

is appended to the set of actions. The new partial plan is then re�ned. If all its

aws can be removed without adding any actions and the resulting plan PN has

a higher quality value than Pi then it is returned, otherwise Pi is returned.

As Ambite and Knoblock [1] point out, the performance of a rule-rewriting

system depends on a number of factors: (1) the algorithm used to produce the

initial plan, (2) the search algorithm used for plan-rewriting. Two search strate-

gies are (a) �rst improvement generates the neighborhood incrementally and

selects the �rst solution of better quality than the current one, and (b) Best

improvement generates the complete neighborhood and selects the best solution

within this neighborhood.

To provide a fair comparison of the two approaches, we used the derivational-

analogy algorithm of [4] to speed-up the generation of the initial plans for Sys-

REWRITE. Therefore, Sys-REWRITE not only learns rewrite rules on Step 3,

but also caches entire planning episodes.

4 Experiments and Results

Three domains were used for the experiments reported here: Softbot [16], modi-

�ed transportation logistics domain [14], and Minton's process planning domain

[10]. For the Softbot domain, plan quality is a function of the sum of all the

resources consumed [16]. For the logistics domain the quality function depends

on the resources of time and money and is described in [14]. Each action had a

�xed cost associated with it in the process planning domain.

Dependent measures were planning e�ort, as a function of the number of

partial-plans searched, and plan quality. One hundred and twenty 2-goal prob-

lems were randomly generated for logistics and Softbot domain. For the process

planning problems, the number of goals for each problem was randomly ranged

between 2 and 5. The process planning domain had two objects and the goal

was to shape them. For the logistics domain, each problem had two objects to

deliver, three cities, three trucks and two planes. Softbot problems contained

two persons about whom some information was sought.

Training sets of 20, 30, 40, and 60 were randomly selected from the 120-

problem corpus, and for each training set, the remaining problems served as

the corresponding testing set. To identify the high quality model plan for each

training problem, POP was run in a depth-�rst search mode with a depth limit

of 15. The �rst 20 plan (or all possible solutions for a problem if this number

was less than 20) were generated and the highest quality plan from these was

used as a model plan for that problem. These were also the plans from which

the distance was measured to compute the plan quality metric. Planning e�ort

was measured by the number of new nodes expanded by each planner and plan

quality was measured by computing the average between the quality value of

the optimal quality plan and the quality of the plan produce by the planner

on the test problems. Rewrite module of Sys-REWRITE-�rst uses the �rst-

improvement search strategy and the rewrite module of Sys-REWRITE-best

uses the best-improvement search strategy.

number of

training 0 20 30 40 60

examples

number of Sys-REWRITE-�rst 24+0 9.8 + 6.7 8.3+ 6 7+ 7 7.8 + 5

new nodes Sys-REWRITE-best 24+0 9.8 + 36 8.9+ 44 8.5+ 75 7.9 + 95
expanded Sys-SEARCH-CONTROL 24 18.3 17.45 17.3 16.8

average

di�erence Sys-REWRITE-�rst 1 0.82 0.84 0.78 0.80

from optimal Sys-REWRITE-best 1 0.01 0 0 0

quality plans Sys-SEARCH-CONTROL 1 0.05 0.04 0.03 0
Table 1. Performance data for the process planning domain.

Tables 1, 2 and 3 show the performance of Sys-REWRITE and Sys-SEARCH-

CONTROL on Softbot, process-planning and transportation domains, respec-

tively. The new nodes expanded by Sys-REWRITE are shown as N +M , where

N is the number of nodes expanded by the default planner and M is the number

of nodes expanded by the rewrite-module (i.e., the number of nodes required to

re�ne the aws introduced by applying rewrite rules to the initial plan). The

two counts are represented separately because the rewrite nodes are slightly less

costly than the planning nodes.

number of

training 0 20 30 40 60
examples

number of Sys-REWRITE-�rst 36+0 14+132 14+156 13+124 12+127

new nodes Sys-REWRITE-best 36+0 14+14212 14+21518 13+22020 12+22788
expanded Sys-SEARCH-CONTROL 36 12.5 13 12 11

average
di�erence Sys-REWRITE-�rst 1 0.95 0.96 0.94 0.92

from optimal Sys-REWRITE-best 1 0.85 0.74 0.72 0.70

quality plans Sys-SEARCH-CONTROL 1 0.03 0.02 0.01 0
Table 2. Performance data for the transportation domain.

For all three domains, both rewrite and the search-control rules lead to sig-

ni�cant improvements in plan quality. As expected, the quality of the plans pro-

duced by Sys-REWRITE-best is higher than those produced by Sys-REWRITE-

�rst. It is interesting to note, however, that for all three domains quality im-

provements obtained by using search-control rules are comparable or better than

those obtained by rewrite rules. Recall that Sys-Rewrite-best does an exhaus-

number of

training 0 20 30 40 60

examples

number of Sys-REWRITE-�rst 10.4+0 3.4 + 21 3.0+ 22 2.5+25 2.1 + 24

new nodes Sys-REWRITE-best 10.4+0 3.4 + 86 3.0 +96 2.5+108 2.1 + 126

expanded Sys-SEARCH-CONTROL 10.4 3.03 3.0 2.44 2.1

average

di�erence Sys-REWRITE-�rst 1 0.67 0.65 0.59 0.60
from optimal Sys-REWRITE-best 1 0.22 0.18 0.14 0.13

quality plans Sys-SEARCH-CONTROL 1 0.55 0.47 0.14 0.12
Table 3. Performance data for the softbot domain.

tive consideration of the complete neighborhood, and that is reected in the

2 � 2000-fold increase in node expansion over Sys-SEARCH-CONTROL. For

Softbot, Sys-REWRITE-best expands about 30 times times more nodes than

Sys-SEARCH-CONTROL. For transportation domain, which is the most com-

plex one, planning by rewriting system need to search thousands of extra nodes

without �nding better quality plans than those produced by the search control

system. For all that work, no improvement in quality!

5 Related Work

The basic idea of learning search-control rules to speed-up problem solving can

be traced back to the early work on EBL [11, 10]. Minton's [10] PRODIGY/EBL

learned control rules by explaining why a search node leads to success or failure.

Kambhampati et al. [6] propose a technique based on EBL to learn control rules

for partial-order planners and apply it to SNLP and UCPOP to learn rejection-

rules. Ihrig et al. [4] extended SNLP+EBL to learn from planning successes as

well as failures. However, these systems only aim to improve planning e�ciency

and not plan quality. There has been some work on the PRODIGY project for

learning control rules to improve plan quality [12, 5]. However, such work has

been limited to state-space planners.

Zimmerman et al. [17] and Estlin and Mooney [2] present two inductive learn-

ing techniques to learn search control rules for partial order planners. SCOPE

[2] uses inductive logic programming techniques whereas Zimmerman's system

uses a neural network to acquire search control rules for UCPOP.

Ambite and Knoblock [1] coined the term planning by rewriting. Their sys-

tem, PBR, used a small number of hand-coded rewrite rules for the Block's

world, the process planning domain and the query planning domain to improve

the quality of the plan produced by SAGE [7], a partial-order planner.

6 Conclusion

Much work has been done to improve planning e�ciency. The work reported

here is concerned with methods to improve the quality of plans that work and

speci�cally. In previous work [14], we demonstrated a learning algorithm that can

identify search-control rules that can guide plan-re�nement decisions towards

producing higher-quality plans. Ambite and Knoblock [1] argue that it may

be more practical to generate a low-quality plan e�ciently, and then "�x" the

quality of the plan with some after-the-fact, hand-crafted rewrite rules. Thus,

it was natural for us to ask two questions: (a) can such hand-crafted rules for

improving plan quality be learned and (b) if so, how do such learned rules stack

up against search control rules in producing high-quality plans. In this paper,

we presented a method for learning rewrite rules based on the same framework

for learning search control rules. Our data indicates that higher quality plans

are produced by using the search control rules than those produced by using the

rewrite rules, and at a considerable e�ciency savings.

References

1. J. Ambite and C. Knoblock. Planning by rewriting: E�ciently generating high-

quality plans. In AAAI-97, Menlo Park, 1997. AAAI Press.

2. T. Estlin and R. Mooney. Learning to improve both e�ciency and quality of

planning. In Proceedings of the IJCAI. Morgan Kaufmann, 1997.
3. P. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.

4. L. Ihrig and S. Kambhampati. Storing and indexing plan derivations through
explanation-based analysis of retrieval failures. Journal of Arti�cial Intelligence

Research, 7:161{198, 1997.

5. M. Iwamoto. A planner with quality goal and its speed up learning for optimization
problems. In Proceedings of AIPS, pages 281{286, 1994.

6. S. Kambhampati, S. Katukam, and Y. Qu. Failure driven dynamic search control

for partial order planners. Arti�cial Intelligence, 88:253{316, 1996.
7. C. Knoblock. Building a planner for information gathering: A report from the

trenches. In Proceedings of AIPS, 1996.
8. S. Mahadevan, T. Mitchel, L Steinberg, and P. Tadepalli. An apprentince-based

approach to knowledge acquisition. Arti�cial Intelligence, 64:1{52, 1993.

9. D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In AAAI-91,
pages 634{639, Menlo Park, CA, 1991. AAAI Press.

10. S. Minton. Expalantion-based learning. Arti�cial Intelligence, 40:63{118, 1989.
11. T. Mitchell, R. Keller, and S. Keddar-Cabelli. Explanation based learning: A

unifying view. Machine Learning, 1:47{80, 1986.

12. A. Perez. Representing and learning quality-improving search control knowledge.
In L. Saitta, editor, Proceedings of ICML, Altos, CA, 1996. Morgan Kaufmann.

13. R. Quinlan. Learning logical de�nitions from relations. Machine Learning,

5(3):239{2666, 1990.
14. M. A. Upal. Learning to improve quality of the plans produced by partial-order

planners. PhD thesis, University of Alberta, 2000.
15. M. Veloso. Learning by Analogical Reasoning. Springer Verlag, Berlin, 1994.

16. M. Williamson. A value-directed approach to planning. Technical Report TR-96-

06-03, PhD thesis, University of Washington, 1996.
17. T. Zimmerman and S. Kambhampati. Neural network guided search control in

partial order planning. In AAAI-96, Menlo Park, CA, 1996. AAAI Press.

