
Learning Rationales to Improve Plan Quality for Partial Order
Planners

Muhammad Afzal Upal Ren�ee Elio
Department of Computing Science
University of Alberta, Edmonton

Canada, T6G 2H1
fupal,reeg@cs.ualberta.ca

Abstract

Plan rationale has been variously de�ned as \why the
plan is the way it is", and as \the reason as to why
the planning decisions were taken" (PT98). The use-
fulness of storing plan rationale to help future plan-
ning has been demonstrated by several types of case-
based planners. However, the existing techniques are
unable to distinguish between planning decisions that,
while leading to successful plans, may produce plans
that di�er in overall quality, as de�ned by some qual-
ity metric. We outline a planning and learning sys-
tem, PIPP, that applies analytic techniques to learn
plan-re�nement control rules that partial-order plan-
ners can use to produce better quality plans. Quality
metrics are assumed to be variant: whether a particular
plan re�nement decision contributes to a better plan is
a function of contextual factors that PIPP identi�es.
Preliminary evaluation results indicate that the over-
head for applying these techniques to store and then
use planning-re�nement rules is not very large, and the
outcome is the ability to produce better quality plans
within a domain. Techniques like these are useful in
those domains in which knowledge about how to mea-
sure quality is available and the quality of the �nal plan
is more important than the time taken to produce it.

According to Hammond (Ham90), case-based plan-
ning involves remembering past planning solutions so
that they can be reused, remembering past planning
failures so that they can be avoided, and remember-
ing repairs to plans that once failed but got \�xed" so
that they can be re-applied. Early work on derivational
analogy (Car83a; Car83b) proposed that each planning
decision within a plan be annotated with the rationale
for making that planning decision. An example of a
rationale for taking a particular action A might be \it
achieves goal g." Both state-space planners (Vel94) and
partial-order planners (IK97) make use of such annota-
tions in building a case library. State-space planners
move through a search space of possible worlds, where
each operator is a possible action to take in the world.
Partial-order planners move through a space of possible
plans, where each operator is a plan-re�nement decision
that typically adds additional steps or constraints to an
evolving plan description. In the partial-order planning
paradigm, a re�nement decision such as \add-step A to

partial plan P" might be annotated with the rationale
\A's e�ects match an open (unsatis�ed) condition of
partial plan p." The idea behind storing rationales is
that a previously-made and retrieved planning decision
will only be applied in context of the current planning
problem if the rationale for it also holds in the current
problem.

DerSNLP+EBL (IK97) is a partial-order planner
that uses explanation-based learning to avoid decisions
that lead to planning failures as well as rationales for
good planning decisions. DerSNLP+EBL, however, is
unable to distinguish among planning decisions that
lead to plans that are qualitatively di�erent from one
another. Thus, if two actions A and B are applicable
at some choice point in re�ning a plan, then the justi-
�cation for both decisions would be the same (namely,
each action supplies an e�ect that satis�es a currently
unsatis�ed condition). While both plans might ulti-
mately succeed, one may be better than the other by
some criterion, such as plan quality.

The concern with plan quality is the focus of this
work. Most conventional planning systems, including
derivational analogy systems, use plan length as a mea-
sure of plan quality. This metric can su�ce, if each pos-
sible action has the same unit cost and there is no sense
in which the plan's execution uses or impacts other do-
main resources. However, it has been widely acknowl-
edged in both the theoretical and practical planning
camps that plan-quality for most real-world problems
depends on a number of (possibly competing) factors
(KR93; Wil96).

What makes reasoning about plan quality di�cult is
that two di�erent plans can both succeed in achieving a
goal, but they can have di�erent overall qualities. Be-
cause they both succeed, there is no sense in which a
\planning failure" can be reasoned about and remem-
bered. Instead, the challenges are (a) to analyze how
plan re�nement decisions that yielded two successful
plans lead to di�erences in overall quality and (b) store
that analysis in a form that is usable to produce better
quality plans for new problems.

In this article, we describe a partial-order planning
system, PIPP, that employs a more complex represen-
tation of plan quality than plan length, and uses that

representation to learn to discriminate between plan-
re�nement decisions that lead to better or worse qual-
ity plans. The assumption underlying this work is that
complex quality tradeo�s can be mapped to a quantita-
tive statement. There is a long history of methodologi-
cal work in operations research that guarantees that a
set of quality-tradeo�s (of the form \prefer to maximize
X rather than minimize Y") can be encoded into a value
function, as long as certain rationality criteria are met
(Fis70; KR93). We assume that a quality function de-
�ned on the resource levels for a plan exists. PIPP uses
a modi�ed version of the R-STRIPS (Wil96) that allows
it to represent resource attributes and the e�ects of ac-
tions on those resources. The learning problem then is
that of translating this global quality knowledge into
knowledge that allows the planner to discriminate be-
tween di�erent re�nement decisions at a local level that
impact the �nal overall plan quality.

Architecture and Algorithm Overview

Architecture

PIPP has three main components. The �rst is a partial-
order planner (POP) of the sort described in (MR91).
The second component does the analytic work of iden-
tifying plan re�nement decisions that may a�ect the
overall plan quality. The third component is a case li-
brary of plan-re�nement rules.

The Planning Component

POP is a causal-link partial-order planner that, given
an initial state and a goal state, produces a linearized
plan that is consistent with the partial ordering con-
straints on steps that it identi�ed during its planning
process. Partial-order planners move through a search
space of partially-speci�ed plan descriptions. These
speci�cations include the steps to be included in the
plan, partial-ordering constraints on these steps, causal
link relationships between the steps, and variable bind-
ing decisions. Causal link relationships record the inter-
dependencies between steps and themselves are a kind
of rationale. The operators that move the planner from
one plan description to another by adding these sorts of
constraints or additional speci�cations are called plan-

ning re�nement operators.
Partial-order planners begin with a null plan, that

includes a start-step constrained to occur before a �nal-
step. The solution is a set of steps, variable bindings for
the steps, and partial-ordering constraints. The �nal
plan can be any linearization of those steps that are
consistent with the partial ordering constraints.

The Analytical Learning Component

The input to PIPP's analytic component is (a) a prob-
lem described as an initial state and a goal state, (b) the
plan and planning trace produced by the partial order
planner for this problem, and (c) a better plan for the
same problem that serves as a kind of model. The bet-
ter plan is one that has a higher quality rating than the

one produced by the underlying partial-order planner,
as per the quality function that assesses how resources
are impacted by each plan. This model plan might be
provided by some oracle, by a user, or by some other
planner. PIPP's algorithm is summarized in Figure 1.

Input: - Problem description in terms of initial state I and goal G
 - An optimal quality plan for this problem Q

Output: - A set of rules

1- Use a causal-link partial-order planner to generate a plan P for

 this problem.

2- Identify learning opportunities by comparing the two plannings

episodes.

3- Learn a rule from each learning opportunity and store it.

Figure 1: Algorithm 1

Identifying the learning opportunities We as-
sume that the planning trace that produced the model
plan is not available to PIPP. Therefore, PIPP's ana-
lytic component �rst reconstructs a set of causal link
relationships between the steps in the better plan and
a set of required ordering constraints. The second step
is to retrace its own planning-trace, looking for plan-
re�nement decisions that added a constraint that is not
present in the better-plan's constraint set. We call such
a decision point a conicting choice point. Each con-
icting choice point indicates a gap in PIPP's control
knowledge and hence a possible opportunity to learn
something about producing a better quality plan. Iden-
ti�cation of the conicting choice point is Step 2 in Al-
gorithm 1 which is further detailed in Figure 2.
Having found a conicting choice point, PIPP re-

places its plan re�nement decision with a decision that
adds the relevant constraint from the higher-quality
plan. Figure 3 illustrates the idea of a conicting
choice point, using a problem from the transportation
logistics domain. At Node 1 in the plan-tree shown
in Figure 3, the default POP algorithm removes the
open-condition aw at-obj(o1,ap2) by performing add-
action unload-truck(o1,X2,ap2), which adds the causal-

link unload-tr(o1; X2; ap2)
at-obj(o1;ap2)

�! final-step to
the partial plan. But this causal-link is not in the
causal-link set that PIPP inferred from the higher-
quality model plan. In that constraint set, the pre-
condition at-obj(o1,ap2) of the �nal-step is supplied by
the action unload-pl(o1, pl1, ap2). This sort of con-
ict in how a re�nement decision is made o�ers PIPP
a learning opportunity.
Learning a single search control rule that would en-

sure the addition of this alternative action at this point
may turn the low-quality plan into a higher-quality
plan, but it is rather unlikely that this was the only
planning decision accounting for the di�erence in qual-
ity between the POP produced plan and the model

Output:

- for each conflicting choice point

- the plan obtained by making the better-choice

- the trace of the better plan

 at this point and then letting the system refine

 it completely and the trace of this plan

 - A set of conflicting choice points C

 - the better plan Q

 Input: - trace for system’s plan Ptr={d1, d2,..., dn}

2.1- Analyse Q to determine the set of better-plan-constraints QC

2.3- While not empty(Ptr) do

resolves the current flaw

- i <- i+1
 - add C to the current partial plan P0

2.2- di <- d1

2.3.1- mark this decision point as a conflicting choice point

2.3.2- examine QC to compute the constraint BC that

2.3.3 - add BC to P0

 a plan Pc and its trace Trc.

2.3.5- Ptr <- Trc

- i <- i+1

 - If the constraint C added by the decision di is in QC then

-else

2.3.4- invoke POP to refine P0 and produce

Figure 2: Identi�cation of learning opportunities (Step
2 of Algorithm 1).

plan. There may be more opportunities to learn what
other decisions contributed to the generation of a better
quality plan. Once the higher-quality plan's re�nement
decision has been spliced into the plan produced by the
default planner, PIPP calls the default planner again
to re-plan from that point on. A new plan and a new
trace (that is the same as the initial trace up to the
now-replaced conicting choice point, and possibly dif-
ferent thereafter) is returned for this same problem, and
the process of analyzing this new trace against the con-
straints of the higher-quality model plan is done again.
This process repeats until the POP algorithm has pro-
duced a set of plan-re�nement decisions that are con-
sistent with the inferred plan re�nement decisions asso-
ciated with the better plan.

We now describe what is learned from the analysis of
any given conicting choice point. For any conicting
choice point, there are two di�erent plan-re�nement de-
cision sequences that can be applied to a partial plan:
the one added by the default POP algorithm, and the
other inferred from the better-quality plan. The appli-
cation of one set of plan-re�nement decisions leads to
a higher quality plan and the other to a lower quality
plan. It would be possible to construct a rule that indi-
cates that the re�nement decision associated with the
better-quality plan should be taken if that same plan

aw is ever encountered again. However, this would
ensure a higher-quality plan only if that decision's im-
pact on quality was not contingent on other re�nement
decisions that are \downstream" in the re�nement pro-
cess, i.e., further along the re�nement path. Thus, some
e�ort must be expended to identify the dependencies
between a particular re�nement decision and other re-
�nement decisions that follow it.

To identify what downstream re�nement decisions
are relevant to the decision at a given conicting
choice point, the following method is used. The open-
conditions at the conicting choice point and the two
di�erent re�nement decisions (i.e., the ones associated
with the high quality model plan and the lower quality
plan produced by the default planner) are labelled as
relevant. The rest of the better-plan's trace and the rest
of the worse-plan's trace are then examined, with the
goal of labeling a subsequent plan-re�nement decision
q relevant if

� there exists a causal-link q
c

�! p such that p is a
relevant action, or

� q binds an uninstantiated variable of a relevant open-
condition.

For instance, consider again the conicting choice
point shown in Figure 3. There are two open-conditions
aws in the partial plan, but the aw selected to
be removed at this point is the open-condition at-

obj(o1,ap2). Clearly, the decision add-step unload-

pl(o1,X1,ap2) on path A (left path) is relevant. Simi-
larly, the decision to add steps load-pl(o1,X2,Y1) and
y-pl(X1,Y1,ap2) are relevant because they supply pre-
conditions to the relevant action unload-pl(o1,X1,ap2).
Further along path A, the decision establish at-obj(o1,

Y1) is relevant because it supplies a precondition to the
relevant step y-pl(X1,Y1,ap2).

In sum, the PIPP algorithm identi�es the subsequent
re�nement decisions which have a dependency relation
with the re�nement decision at the conicting choice
point, for both the path associated with the higher-
quality model plan and the path associated with the
(lower quality) plan produced by the default POP al-
gorithm.

Learning rationales Once PIPP identi�es the rel-
evant re�nement decisions associated with the way in
which a given choice point was resolved di�erently for
the higher-quality plan and the worse plan, a search
control rule can be created. To do this, PIPP com-
putes:

� the open-condition aws present in its partial plan
that the relevant decision sequence removes

� the e�ects present in its partial plan that are required
by any establishment decisions present in the relevant
decision sequence

� the quality value of the new subplan produced by the
relevant decision sequence.

load_pl(o1,X2,Y1)

at_obj(o1,ap2),at_obj(o2,po2)

remove at_obj(o1,ap2) by add_stepremove at-obj(o1,ap2) by add-step

unload_tr(o1, X2, ap2)

remove in-pl(o1,X1) by add-step

remove at-pl(X1,ap2) by add-step

remove at-obj(o1,Y1) by establish

at_obj(o1,ap1)

at_pl(pl1,ap1)
remove neq(ap1,ap2) by establish

neq(ap1,ap2)

remove at-obj(o1,ap2) by add-step

remove in-tr(o2,Z1) by add-step

load_tr(o1,X2,Y1)

remove in-tr(o1,X2) by add-step

remove at-tr(X2,ap2) by add-step

drive_tr_acities(X1,Y1,ap2)

remove at-obj(o1,X2) by establish

at_obj(o1,ap1)

remove at_tr(X2,ap1) by establish

at_tr(tr1,ap1)

remove neq(ap1,ap2) by establish

neq(ap1,ap2)
remove at-obj(o1,ap2) by add-step

unload_tr(o2, Z2, po2)

load_tr(o1,Z2,A2)
remove in-tr(o2,Z2) by add-step

remove at-tr(X2,ap2) by add-step

unload-tr(o2, Z1, po2)

drive-tr-acities(Z1, A1, po2) drive-tr(Z1, A1, po2)

remove at-tr(X2,ap2) by add-step

remove at-tr(Z1,A1) by establish
remove at-tr(Z1,A1) by establish

at_tr(tr1,ap1) at_tr(tr3,ap2)
remove at-obj(o2,ap1) by establish remove at-obj(o2,ap2) by establish

First conflicting
choice point

2nd cc-point

load-tr(o1,Z1,A1)

unload_pl(o1, pl1, ap2)

fly-pl(pl1,Y1,ap2)

remove at_pl(pl1,ap1) by establish

Figure 3: Conicting choice point that leads to Path
A (left), from the higher-quality plan, and to Path B
(right), the lower-quality plan produced by POP.

PIPP then use this information to store the rationale
for applying each re�nement decision sequence. For the
example shown in Figure 3, the rationale learned for the
re�nement sequence associated with the higher-quality
plan is:1

:preconditions [(at-obj(O,Y), A1)]

:effects [(at-obj(O,X),A2), (at-pl(L,X),A2)]

:quality-formula [distance(X,Y)*2]

:trace [add-step(unload-pl(O,L,Y)),

add-step(load-pl(O,L,X)),

add-step(fly-pl(L,X,Y)),

establish(at-obj(O, X)),

establish(at-pl(L,X)),

establish(neq(X,Y))].

This rule captures the rationale for applying the de-
cision sequence speci�ed by the trace �eld of the rule
to resolve the open-condition aws speci�ed by the pre-

1In the Prolog tradition, we use capital letters to show
variables throughout the paper.

conditions �eld.
Rules such as these are then consulted by the default

planner in Step 1. When re�ning a partial plan P ,
PIPP's planner checks to see if a rule exists whose pre-
conditions and e�ects are subsets of P 's preconditions
and e�ects respectively. If more than one such rule is
available, then the rule that has the largest precondition
set (i.e., it resolves the largest number of preconditions)
is selected. If more than one such rule is available, then
PIPP's planner uses the rule whose quality-formula has
the highest value when evaluated in context of P .

Evaluation
There are two main issues we address in the empirical
evaluations reported here. First, we can ask whether
the local re�nement rules that PIPP acquires do lead it
to produce better quality plans. Second, we can eval-
uate some of the overhead for using these control rules
to improve plan quality. There are a number of do-
mains in the planning literature that are often used to
evaluate planning systems. Previously, we used a mod-
i�ed version of Veloso's logistics-transportation domain
(Vel94). However, for the experiments reported here,
we followed Barett and Weld (BW94) and devised arti-
�cial domains in which we could vary various features.
We were particularly interested in evaluating PIPP's

performance in domains in which it is di�cult to cap-
ture the global knowledge about plan quality in local
rules. Notice that the di�culty of learning quality-
improving local rules is orthogonal to the complexity
of the value function as well as the planning complex-
ity. We call the target function that PIPP must learn
(and capture in its local rules) to discriminate between
qualitatively di�erent local planning decisions as the
discriminant function. The complexity of the discrimi-
nant function depends (among other things) on (a) the
number of conicting choice points and (b) the number
of local rules per conicting choice point required to
capture the discriminant function. For instance, a dis-
criminant function at a conicting choice point could be
trivially captured by one rule if all applicable operators
have the same preconditions and e�ects but di�erent
costs. This rule would say (essentially) \When given a
choice between two operators, choose the one with the
lower cost." A discriminant function is complex, how-
ever, if a single rule learned from one episode guides the
planner to a lower quality path for another problem. In
such domains, PIPP is forced to learn more rules to
capture this complexity. We designed two domains, as
described below, to evaluate PIPP's acquisition of more
complex discriminant functions.

General Methodology

We devised two domains that di�ered in the complex-
ity of the plan space and therefore in the complexity of
discriminant function that characterized what contex-
tual features map to what sorts of re�nement decisions
that impact plan quality. For both domains,the quality
function was Q(X;Y; Z) = X + Y � 2� Z:

Domain I Domain I had three types of operators:

for i=1,...,10.

(defoperator :action Ai :params {X,Y,Z}

:preconds {Pj|j<i}

:add {gi}

:delete{}

:metric-effects {(X, add(2)),

(Y, add(2)), (Z, add(1))})

for i=1,...,10.

(defoperator :action Bi :params {X,Y,Z}

:preconds {I}

:add {Pi}

:delete{I1}

:metric-effects {even(i) -> (X, add(4)),

(Y, add(4)), (Z, add(1))

odd(i) -> (X, add(1)),

(Y, add(1)), (Z, add(4))})

(defoperator :action C1 :params {X,Y,Z}

:preconds {Qi|0< i <6}

:add {Pj| 0< j <11}

:delete{I}

:metric-effects {(X, add(1)),

(Y, add(2)), (Z, add(1))})

for i=2,...,5.

(defoperator :action Ci :params {X,Y,Z}

:preconds {Q(i-1)}

:add {Qi}

:delete{I1}

:metric-effects {(X, add(1)),

(Y, add(2)), (Z, add(1))}

In this domain, for every goal gi there exist exactly
two viable plans: P 1

i = fC1; C2; C3; C4; C5; Aig and
P 2

i = fB1; : : : ; Bi; Aig. If i is odd then P 1
i has a

higher quality, otherwise P 2
i has a higher quality.

There is only one conicting choice point between
the lower and higher quality plan during plan re�ne-
ment, namely, the choice of operator C or B1. If an
unseen problem with a goal gi; i > j is presented to
PIPP when the highest goal value it has learned so far
is gj then the rule learned form the jth episode would
provide PIPP with wrong guidance and another more
speci�c rule would have to be learned for the ith prob-
lem. Hence, we expected PIPP to sometimes produce
lower quality plans than POP, but we wanted to see how
PIPP's performance was a�ected in such a domain.
We performed a 15-, 30-, and 45-fold cross-

validations, using a 90 2-goal problem set that was
randomly-generated and guaranteed to have no re-
peated problems. Thus, for the 15-fold cross-validation,
each of 6 distinct sets of 15 problems served as the
training set, and the remaining 5 sets were used for
testing, with the results averaged. The dependent mea-
sures were (a) planning e�ort, de�ned as the number
of nodes expanded by the planner, (b) plan quality, de-
�ned as the percentage of optimal quality plans gen-
erated by PIPP for the test problems, (c) number of
rules learned, (d) number of rules retrieved during test-

number of
training 0 15 30 45
examples

number of
nodes expanded 33 14.5 11.08 11.5
%age plans of
optimal quality 0.50 0.54 0.58 0.63
number of
rules learned 0 24.1 40.3 51.5
number of
rules retrieved 0 9 14.3 12.5
number of
rules used 0 9 14.3 12.5

Table 1: Performance data for Domain I.

ing, and (e) number of rules that were both retrieved
and ultimately lead to the optimal quality plan.

Table 1 presents these results. The �rst column,
zero training items, corresponds to the base planner
operating with no learning component. The remaining
columns correspond to the base planner operating with
PIPP's learning algorithm.

There are a few things to observe at this point. First,
the probability of the base planner (without PIPP) se-
lecting the optimal quality plan is 0.5. This is because
there is only one conicting choice point i.e., two pos-
sible ways of generating a plan to solve any given prob-
lem. Secondly, there is not much improvement by PIPP
over this level of performance except in 45 training item
scenario. Finally, we note that PIPP, having learned
rules for how to re�ne a plan, must engage in less plan-
ning e�ort than the base planner.

These results are not surprising and the small size
of the plan space presents something of a ceiling ef-
fect: the base planner has a 50% chance at generating
the optimal quality plan. Still, Domain 1 provides a
good baseline for considering PIPP's performance when
we increase the complexity of the re�nement space,
and thereby increase the complexity of the discriminant
function that PIPP must learn.

Domain II To increase the number of conicting
choice points, we replaced the action B2 in Domain I
with the following two actions:

(defoperator :action B2a :params {X,Y,Z}

:preconds {i},

:add {p2,p6,p9},

:del {},

:metric-effects {(X, add(4)),

(Y, add(4)), (Z, add(1))})

(defoperator :action B2b :params {X,Y,Z}

:preconds {i},

:add {p2,p4,p7},

:del {i1},

:metric-effects {(X, add(4)),

(Y, add(3)), (Z, add(1))})

number of
training 0 15 30 45
examples

number of 45.0 45.4 37.9 37.6
nodes expanded
%age plans of 0.10 0.37 0.54 0.66
optimal quality
number of
rules learned 0 47.8 73.0 114.0
number of
rules retrieved 0 17.3 23.6 28.5
number of
rules used 0 13.0 20.3 24.5

Table 2: Performance data for Domain II.

Similarly, the operator C4 in Domain I was replaced
by the following two operators to get Domain II:

(defoperator :action C4a :params {X,Y,Z}

:preconds {q3},

:add {q4,p0},

:del {i},

:metric-effects {(X, add(1)),

(Y, add(2)), (Z, add(1))})

defoperator :action C4b :params {X,Y,Z}

:preconds {q3},

:add {q4,p8},

:del {i},

:metric-effects {(X, add(2)),

(Y, add(2)), (Z, add(1))})

This created a plan space in which, for any given
problem, there was a 10% chance for the base planner
to select the optimal quality plan. Table 2 presents the
performance data for the base planner (zero training
items) and for PIPP on this domain.
Here we see that PIPP's re�nement rules generate

better-quality plans at a much increased level over
chance. With training on 30 items, PIPP generated
the optimal quality plan on average over 50% of the
time. We also note that the rule library produced is
much larger than what is actually applied during test-
ing. Most of the time, the rules retrieved actually did
lead to the optimal quality plan (e.g., 13.0 rules used
vs. 17.3 rules retrieved for the 15-fold cross validation
case). Thus, PIPP's quality performance is perhaps un-
derestimated: we only count the cases in which it gen-
erated the optimal quality plan, rather than the cases
in which, by applying its rules, it generated a better
plan than the base planner would have generated for
the same problem.
We observe less of a gain in planning e�ciency in

Domain II relative to Domain I. However, this is likely
due to the increased size of the rule library for Domain
II. As the rule library size increases, so too does the
possibility of a rule leading to planning failure. When
PIPP's application of a rule leads it to fail in generating
a plan, it simply calls the base planner from that point.

The larger payo� in plan quality that we see in Do-
main II, which has greater complexity than domain I,
is interesting, because it hints at scale-up potential of
such techniques. The results also show that PIPP's rule
library quickly grows. However, since few of the rules
are actually used during planning, this indicates that
we can improve PIPP's rule-library by keeping some
utility metrics around and forgetting rules that are not
useful.

Related Research
The basic idea of learning the justi�cations for suc-
cess or failure of a problem solving episode can be
traced back to the early work on EBL. Minton's
PRODIGY/EBL (Min89) learned control rules by ex-
plaining why a search node lead to success or fail-
ure. Veloso implemented the derivational analogy in a
state- space planning framework, PRODIGY. Ihrig and
Kambhampati (IK97) applied the derivational anal-
ogy approach to a partial-order planner, SNLP. Der-
SNLP+EBL extended DerSNLP by learning from suc-
cesses as well as failures. All of these systems can be
regarded as speed-up learning systems: systems that
learn to improve planning e�ciency but not plan qual-
ity.
PIPP is most closely related to QUALITY (Per96),

a learning system that uses analytical approach to
learn control rules for a state-space planner PRODIGY
(VCP+95). Given a problem, a quality metric and a
user's plan, QUALITY assigns a cost value to each node
in a user's planning trace and to each node in the sys-
tem's planning trace. It identi�es all those goal-nodes
that have a zero cost in the user's trace and non-zero
cost in the system's trace. A goal-node's cost can be
zero either because it was true in the initial state or be-
cause it was added as a side-e�ect of an operator added
to achieve some other goal. The reason for the di�er-
ence in the cost values of the two nodes is identi�ed
by examining both trees. The explanation constructed
from these reasons forms the antecedent of the control
rule learned by QUALITY. However, QUALITY can
learn only from a subset of the PIPP's learning oppor-
tunities (i.e., only from those conicting choice points
where one branch has a zero cost) and QUALITY's
quality-value assignment procedure can only work if the
quality metrics are static, i.e. they assign the same
value to an plan step regardless of the context in which
it is applied. If the quality metrics are variant (depen-
dent on context), then quality values cannot be assigned
to a node which has some action parameters uninstan-
tiated.
Perez (Per96) shows that QUALITY can learn a

number of useful rules for the process planning domain
(Gil92). However, at this point, PIPP's base planner
does not deal with quanti�ed preconditions and e�ects
and therefore we were unable to compare PIPP's rules
with those learned by QUALITY.
Knowledge about how plan quality can be measured

is required (a) to identify the learning opportunities

(i.e., by identifying a lower and a higher quality plan)
and (b) to analytically learn from these learning op-
portunities. Without such quality knowledge, analytic
techniques cannot be used. However, empirical tech-
niques can be used if we assume that the learning oppor-
tunities are identi�ed with the help of a user who sup-
plies a better plan. (ZK96) and (EM97) present two in-
ductive learning techniques to learn search control rules
for partial order planners. SCOPE (EM97) uses FOIL
(Qui90), an inductive concept learner, whereas Zimmer-
man's system uses a neural network to to acquire search
control rules for UCPOP. Given a planning problem to
solve and a user's better plan for that problem, SCOPE
considers each of user's re�nement decisions to be a pos-
itive example of the application of that re�nement and
the system's re�nement decision to be a negative ex-
ample. These positive and negative examples are then
passed to FOIL to induce a rule that covers all positive
examples and none of the negative examples. Inductive
methods are well known to be less e�cient than an-
alytic techniques if background knowledge is available
(PK92).

Conclusion

Being able to e�ciently produce good quality solutions
is essential if AI planners are to be widely applied to
the real-world situations. However, conventional wis-
dom in AI has been that \domain independent plan-
ning is a hard combinatorial problem. Taking into ac-
count plan quality makes the task even more di�cult"
(AK97). This paper has presented a novel technique
for learning local search control rules for partial order
planners that improve plan quality without sacri�cing
much in the way of planning e�ciency. We believe that
these ideas will contribute towards making AI planning
applicable to more practical planning situations where
plan quality depends on a number of factors.

Acknowledgement

This work was supported by NSERC research grant
A0089 to Renee Elio.

References

J. Ambite and C. Knoblock. Planning by rewrit-
ing: E�ciently generating high-quality plans. In Proc.
of the Fourteenth National Conf. on Arti�cial Intelli-

gence, Menlo Park, CA, 1997. AAAI Press.

A. Barett and D. Weld. Partial order planning: eval-
uating possible e�ciency gains. Arti�cial Intelligence,
67:71{112, 1994.

J. Carbonell. Derivational analogy and its role in prob-
lem solving. In Proc. of the Third National Conf. on

Arti�cial Intelligence, Los Altos, CA, 1983. Morgan
Kaufmann.

J. Carbonell. Learning by analogy: Formulating and
generalizing plans from past experience. In R. Michal-
ski, editor, Machine Learning: An Arti�cial Intelli-

gence Approach, pages 131{161. Tioga Pub. Co., Palo
Alto, CA, 1983.

T. Estlin and R. Mooney. Learning to improve both
e�ciency and quality of planning. In Proc. of the IJ-

CAI. Morgan Kaufmann, 1997.

P. Fishburn. Utility Theory for Decision Making. Wi-
ley, New York, 1970.

Y. Gill. A speci�cation of manufacturing processes for
planning. Technical Report CMU-CS-91-179, School
of Computer Science, Carnegie Mellon University,
1992.

K. Hammond. Case-based planning: A framework for
planning from experience. Cognitive Science, 14(3),
1990.

L. Ihrig and S. Kambhampati. Storing and indexing
plan derivations through explanation-based analysis of
retrieval failures. Journal of Arti�cial Intelligence Re-
search, 7:161{198, 1997.

R. Keeney and H. Rai�a. Decisions With Multiple Ob-

jectives: Preferences and Value Tradeo�s. Cambridge
University Press, New York, 2nd edition, 1993.

S. Minton. Expalantion-based learning. Arti�cial In-
telligence, 40:63{118, 1989.

D. McAllester and D. Rosenblitt. Systematic nonlin-
ear planning. In Ninth National Conf. on Arti�cial

Intelligence, pages 634{639, Menlo Park, CA, 1991.
AAAI Press/MIT Press.

A. Perez. Representing and learning quality-improving
search control knowledge. In L. Saitta, editor, Proc. of
the Thirteenth International Conf. on Machine Learn-

ing, Los Altos, CA, 1996. Morgan Kaufmann.

M. Pazzani and D. Kibler. The utility of background
knowledge in inductive learning. Machine Learning,
9:57{94, 1992.

S. Polyak and A. Tate. Rationale in planning: Causal-
ity, dependencies, and decisions. Knowledge Engineer-
ing Review, 13:1{16, 1998.

R. Quinlan. Learning logical de�nitions from relations.
Machine Learning, 5(3):239{2666, 1990.

M. Veloso, J. Carbonell, M. Perez, E. Borrajo, D.
amd Fink, and J. Blythe. Integrating planning and
learning: The PRODIGY architecture. Journal of Ex-
perimental and Theoretical Arti�cial Intelligence, 7(1),
1995.

M. Veloso. Learning by Analogical Reasoning. Springer
Verlag, Berlin, 1994.

M. Williamson. A value-directed approach to plan-
ning. Technical Report TR-96-06-03, PhD thesis, Uni-
versity of Washington, 1996.

T. Zimmerman and S. Kambhampati. Neural network
guided search control in partial order planning. In
Proc. of the Thirteenth National Conf. on Arti�cial

Intelligence, Menlo Park, CA, 1996. AAAI Press.

