CMPUT 466/551 — Assignment 2

Instructors: R Greiner, B. Póczos

Due Date: 12:30pm, Tues, 3/Nov/09

The following exercises are intended to further your understanding of Linear Algebra (eigenvalues, ...), Dual Formulation, Lagrange Multiplier, Kernel Methods, Perceptrons, SVMs

Relevant reading: FTH: Chapters 5.8 and 12 (esp 12.3) + readings shown below.

Undergrads: solve problems 1–13 Grads: solve (all) problems 1–15

The HW2-ReadMe.html file describes the details of exactly what to hand in.

Total points: UGrad: 116 Grad: 162

[Hint: Several problems below extends results of previous problems...]

Question 1 [12 points] Positive semi definite matrices

The finite-dimensional spectral theorem says that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be diagonalized by an orthogonal matrix. More explicitly: For every symmetric real matrix A there exists a real orthogonal matrix U such that $D = U^T A U \in \mathbb{R}^{n \times n}$ is a diagonal matrix. (Orthogonal means $U^T U = I$ where I is the identity matrix.) This matrix is "positive semi definite" (psd) iff $v^T A v \geq 0 \quad \forall v \in \mathbb{R}^n$.

a [4]: Use this theorem to prove that the eigenvalues of a symmetric matrix are real, and

b [4]: the eigenvectors $\{u^i\}$ are orthogonal $(i.e., \langle u^i, u^j \rangle = 0$ when $i \neq j)$.

c [4]: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$. Prove that A is positive semi definite—iff— $\lambda_i \geq 0 \quad \forall i = 1, \ldots n$.

[Hint: $x^T x \ge 0$ for all $x \in \Re^n$. See also

 $http://en.\ wikipedia.\ org/wiki/\textit{Eigenvalue}, _eigenvector_\ and_\ eigenspace$

 $http://en.\ wikipedia.\ org/wiki/Spectral_\ theorem]$

Question 2 [4 points] Sum of positive semi definite matrices

Assume that K_1 , K_2 are positive semi definite matrices.

a [2]: Prove that, for any positive real constants c_1 , $c_2 > 0$, $c_1K_1 + c_2K_2$ is psd.

b [2]: Prove that $K_1 - K_2$ is not necessarily psd.

Question 3 [4 points] Constructing kernels

Let $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ be valid kernel functions, and $c_1, c_2 > 0$ be positive real constants.

a [2]: Show that $c_1k_1(x,\tilde{x}) + c_2k_2(x,\tilde{x})$ is a valid kernel function, too.

b [2]: Show that $k_1 - k_2$ is not necessarily positive semi definite.

Question 4 [12 points] Elementwise product of two positive semi definite matrices Let $K_1, K_2 \in \mathbb{R}^{n \times n}$ be two positive semi definite matrices. Prove that their **elementwise** product matrix $K(i,j) = K_1(i,j)K_2(i,j)$ is positive semi definite matrix, too.

[Hint: Consider combining two independent n-dimensional vectors $u = (u_1, \ldots, u_n)^T \sim N(0, K_1)$ and $v = (v_1, \ldots, v_n)^T \sim N(0, K_2)$, each drawn from its own Gaussian distribution.]

Question 5 [4 points] Constructing kernels

Let $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ be valid kernel functions. Show that $k_1(x, \tilde{x})k_2(x, \tilde{x})$ is also a valid kernel function.

Question 6 [4 points] Product of positive semi definite matrices Let $A, B \in \mathbb{R}^{n \times n}$ be psd matrices.

a [2]: Show that AB is not necessarily positive semi definite. [Hint: Does AB have to be symmetric?]

b [2]: Show that A^m is positive semi definite for all $m \in \mathbb{Z}_+$.

Question 7 [2 points] Non kernel

We know that $\exp(-\|x-y\|^2)$ is a kernel function. Show that

$$\exp(\|x - y\|^2)$$

is not a valid kernel.

Question 8 [16 points] Perceptron [Implementation]

a [6]: Describe when you expect the Primal to be faster than the Dual. ... and vice versa.

b [10]: Implement the perceptron classification algorithm in Primal and Dual form. Try to classify a 2D dataset, using "linear", "polynomial" and "RBF" kernels. The HW2-ReadMe.html file provides several datasets to play with — both linearly separable and non-separable cases. (It also specifies exactly what you should submit.)

Question 9 [30 points] SVM [Implementation] Recall the primal problem for SVM is:

$$\min_{w} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i$$
subject to
$$y_i \langle x_i, w \rangle \ge 1 - \xi_i, \quad (i = 1, \dots, m)$$

$$\xi_i \ge 0, \quad (i = 1, \dots, m)$$

[[Correction (14/Oct): changed from ξ to ξ_i above.]]

a [6]: Show that this is the same as

$$\min_{w} \sum_{i=1}^{m} [1 - y_i \langle x_i, w \rangle]_{+} + \lambda ||w||^2$$

where in general $r_+ = \begin{cases} r & \text{if } r \geq 0 \\ 0 & \text{otherwise} \end{cases}$ is the positive part of r.

b [4]: Describe when you expect the Primal to be faster than the Dual. ... and vice versa.

c [20]: Implement the soft SVM classification problem in Primal and Dual form. (You MAY use the 'quadprog' Matlab command... but may NOT use SVM toolboxes.)

The HW2-ReadMe.html file provides a number of datasets. Compare the classification accuracy of your method using 'linear', 'polynomial(k)', and 'RBF' kernels. Feel free to play with the k and "C" parameters. The HW2-ReadMe.html file also specifies exactly what you should submit here.

Question 10 [14 points] Constructing feature map in finite case [Implement] Let $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5\}$ consist of the following five 2D points:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$$

a [2]: Plot these points using Matlab.

b [2]: Consider the kernel

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{8}) \quad 1 \le i, j \le 5$$

Use Matlab to show that its Gram matrix is positive semi definite, and thus that this $k(\cdot, \cdot)$ is a valid kernel.

c [6]: Using Matlab construct a feature map $\phi: \mathcal{X} \to \mathbb{R}^5$ that is compatible with kernel k.

d [4]: Verify if the constructed feature map is good — *i.e.*, if the inner product between $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_i)$ in the feature space is equal to the values of the kernel function $k(\mathbf{x}_i, \mathbf{x}_i)$.

Question 11 [4 points] l_p^{20} norms [Matlab exploration]

The HW2-ReadMe.html file provides three different 20 dimensional vectors x, each with only a few non-0 coordinates.

a [2]: For $p \in \{\frac{1}{128}, \frac{1}{32}, \frac{1}{2}, 1, 2, 8, 32, 128\}$, plot $||x||_p^p = \sum_{i=1}^{20} |x_i|^p$, and $||x||_p = (\sum_{i=1}^{20} |x_i|^p)^{1/p}$. You should probably use log-scale for the Y axis. (In Matlab: set(gca, 'Yscale', 'log').)

The HW2-ReadMe.html file specifies exactly what you should submit here.

b [2]: What happens when $p \to 0$? ... and when $p \to \infty$?

Question 12 [4 points] Representer theorem

a [2]: Let \mathcal{F} be an RKHS function space with kernel $k(\cdot, \cdot)$. Let $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ be m training input-output pairs. Our task is to find the $f^* \in \mathcal{F}$ function that minimizes the following regularized functional:

$$f^* = \arg\min_{f \in \mathcal{F}} \left(\prod_{i=1}^m |f(\mathbf{x}_i)|^6 \right) \sum_{i=1}^m \left[|\sin(\|\mathbf{x}_i\|^{|y_i - f(\mathbf{x}_i)|})|^{25} + y_i |f(x_i)|^{42} \right] + \exp(\|f\|_{\mathcal{F}})$$

This is a nonparametric minimization problem over functions in the function space \mathcal{F} . Prove that f^* can be expressed as $f^*(\cdot) = \sum_{i=1}^m \alpha_i k(x_i, \cdot)$, reducing the problem to an m-dimensional minimization [with respect to $(\alpha_1, \ldots, \alpha_m)$] only.

b [2]: Now consider

$$g^* = \arg\min_{g \in \mathcal{F}} \|g\|_{\mathcal{F}} \sum_{i=1}^m \left[\left| \sin \left(\|\mathbf{x}_i\|^{|y_i - g(\mathbf{x}_i)|} \right) \right|^{25} + y_i |g(x_i)|^{42} \right] + \exp(\|g\|_{\mathcal{F}})$$

Can you use the representer theorem to express $g^*(\cdot) = \sum_{j=1}^m \alpha_j k(x_j, \cdot)$ for some α_j 's? Explain.

Question 13 [6 points] Lagrange multipliers, discrete random variables A discrete distribution $p = (p_1, p_2, \dots, p_n)$ has $\sum p_i = 1$ and $p_i \geq 0$ for all i

A discrete distribution $p = (p_1, p_2, ..., p_n)$ has $\sum p_i = 1$ and $p_i \ge 0$ for all i. The entropy, which measures the uncertainty of a distribution, is defined by $H(p) = -\sum_{i=1}^{n} p_i \log p_i$. (Note we define $0 \log 0 = 0$).

a [1]: Prove that the entropy is 0 for the $(p_1 = 1, p_2 = ... = p_n = 0)$ deterministic distribution.

b [5]: Show that the uniform distribution has the largest entropy.

Question 14 [16 points] Lagrange multipliers, continuous random variables [Grad only] The entropy of a continuous distribution with density function f is defined by $H(f) = -\int f(x) \log f(x) \ dx$. Let X be a random variable with density f.

a [8]: Prove that if $\mathbb{E}_f[X] = 0$ and $\mathbb{E}_f[X^2] = \sigma^2$, then the Gaussian distribution $N(0, \sigma^2)$ has the maximal entropy.

[Hint: Use Lagrange multipliers, and $\frac{\partial}{\partial f(y)}\int r(x)f(x)\,dx = r(y)$ when r(.) is not related to f(.). (Note $\frac{\partial}{\partial f(y)}\int f(x)\log(f(x))\,dx = \log(f(y)) + 1$.) http://en.wikipedia.org/wiki/Functional_derivative

Also, if a density has the form " $a \exp((x-b)^2/2c^2)$ " for any real constants a, b and c, then it must be the density of the normal distribution.

b [8]: Prove that if $support(f) = [0, \infty]$, and $E[X] = \mu$, then the exponential distribution $(f(x) = \frac{1}{\mu} \exp(-\frac{x}{\mu}))$ has the largest entropy.

 $[\mathit{Hint:}\ \mathit{For}\ \mathit{support},\ \mathit{see}\ \mathit{http://en.}\ \mathit{wikipedia.}\ \mathit{org/wiki/Support}_\ (\mathit{mathematics})\]$

Question 15 [30 points] SVM, Quadratic Approximation, Dual form, Lagrange multipliers [Grad only]

Given the following primal "quadratic version" of the soft SVM classification problem:

$$\min \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i^2$$
subject to
$$y_i \langle x_i, w \rangle \ge 1 - \xi, (i = 1, \dots, m)$$

$$\xi \ge 0, (i = 1, \dots, m)$$

What are the dual equations?