CMPUT 466/551 - Assignment 2

Instructors: R Greiner, B. Póczos
Due Date: $\quad 12: 30 \mathrm{pm}$, Tues, $3 / \mathrm{Nov} / 09$
The following exercises are intended to further your understanding of Linear Algebra (eigenvalues, ...), Dual Formulation, Lagrange Multiplier, Kernel Methods, Perceptrons, SVMs Relevant reading: FTH: Chapters 5.8 and 12 (esp 12.3) + readings shown below.
Undergrads: solve problems 1-13
Grads: solve (all) problems 1-15
The HW2-ReadMe.html file describes the details of exactly what to hand in.
Total points: UGrad: 116 Grad: 162
[Hint: Several problems below extends results of previous problems...]

Question 1 [12 points] Positive semi definite matrices
The finite-dimensional spectral theorem says that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be diagonalized by an orthogonal matrix. More explicitly: For every symmetric real matrix A there exists a real orthogonal matrix U such that $D=U^{T} A U \in \mathbb{R}^{n \times n}$ is a diagonal matrix. (Orthogonal means $U^{T} U=I$ where I is the identity matrix.) This matrix is "positive semi definite" (psd) iff $v^{T} A v \geq 0 \quad \forall v \in \mathbb{R}^{n}$.
a [4]: Use this theorem to prove that the eigenvalues of a symmetric matrix are real, and b [4]: the eigenvectors $\left\{u^{i}\right\}$ are orthogonal (i.e., $\left\langle u^{i}, u^{j}\right\rangle=0$ when $i \neq j$).
c [4]: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Prove that
A is positive semi definite \quad iff $\quad \lambda_{i} \geq 0 \quad \forall i=1, \ldots n$.
[Hint: $x^{T} x \geq 0$ for all $x \in \Re^{n}$. See also
$h t t p: / / e n . w i k i p e d i a$. org/wiki/Eigenvalue, eigenvector_and_eigenspace
http: //en. wikipedia. org/wiki/Spectral_ theorem]
Question 2 [4 points] Sum of positive semi definite matrices Assume that K_{1}, K_{2} are positive semi definite matrices.
a [2]: Prove that, for any positive real constants $c_{1}, c_{2}>0, c_{1} K_{1}+c_{2} K_{2}$ is psd.
b [2]: Prove that $K_{1}-K_{2}$ is not necessarily psd.
Question 3 [4 points] Constructing kernels
Let $k_{1}(x, \tilde{x})$ and $k_{2}(x, \tilde{x})$ be valid kernel functions, and $c_{1}, c_{2}>0$ be positive real constants.
a [2]: Show that $c_{1} k_{1}(x, \tilde{x})+c_{2} k_{2}(x, \tilde{x})$ is a valid kernel function, too.
b [2]: Show that $k_{1}-k_{2}$ is not necessarily positive semi definite.

Question 4 [12 points] Elementwise product of two positive semi definite matrices Let $K_{1}, K_{2} \in \mathbb{R}^{n \times n}$ be two positive semi definite matrices. Prove that their elementwise product matrix $K(i, j)=K_{1}(i, j) K_{2}(i, j)$ is positive semi definite matrix, too.
[Hint: Consider combining two independent n-dimensional vectors $u=\left(u_{1}, \ldots, u_{n}\right)^{T} \sim N\left(0, K_{1}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)^{T} \sim N\left(0, K_{2}\right)$, each drawn from its own Gaussian distribution.]

Question 5 [4 points] Constructing kernels
Let $k_{1}(x, \tilde{x})$ and $k_{2}(x, \tilde{x})$ be valid kernel functions. Show that $k_{1}(x, \tilde{x}) k_{2}(x, \tilde{x})$ is also a valid kernel function.

Question 6 [4 points] Product of positive semi definite matrices
Let $A, B \in \mathbb{R}^{n \times n}$ be psd matrices.
a [2]: Show that $A B$ is not necessarily positive semi definite.
[Hint: Does AB have to be symmetric?]
b [2]: \quad Show that A^{m} is positive semi definite for all $m \in \mathbb{Z}_{+}$.
Question 7 [2 points] Non kernel
We know that $\exp \left(-\|x-y\|^{2}\right)$ is a kernel function. Show that

$$
\exp \left(\|x-y\|^{2}\right)
$$

is not a valid kernel.
Question 8 [16 points] Perceptron [Implementation]
a [6]: Describe when you expect the Primal to be faster than the Dual. ... and vice versa.
b [10]: Implement the perceptron classification algorithm in Primal and Dual form. Try to classify a $2 D$ dataset, using "linear", "polynomial" and "RBF" kernels. The HW2-ReadMe.html file provides several datasets to play with - both linearly separable and non-separable cases. (It also specifies exactly what you should submit.)

Question 9 [30 points] SVM [Implementation]
Recall the primal problem for SVM is:

$$
\begin{array}{r}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } \\
y_{i}\left\langle x_{i}, w\right\rangle \geq \begin{array}{r}
1-\xi_{i}, \quad(i=1, \ldots, m) \\
\xi_{i} \geq 0, \quad(i=1, \ldots, m)
\end{array} ~ . ~
\end{array}
$$

[[Correction (14/Oct): changed from ξ to ξ_{i} above.]]
a [6]: Show that this is the same as

$$
\min _{w} \sum_{i=1}^{m}\left[1-y_{i}\left\langle x_{i}, w\right\rangle\right]_{+}+\lambda\|w\|^{2}
$$

where in general $r_{+}=\left\{\begin{array}{ll}r & \text { if } r \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$ is the positive part of r.
b [4]: Describe when you expect the Primal to be faster than the Dual. ... and vice versa. c [20]: Implement the soft SVM classification problem in Primal and Dual form. (You MAY use the 'quadprog' Matlab command... but may NOT use SVM toolboxes.)

The HW2-ReadMe.html file provides a number of datasets. Compare the classification accuracy of your method using 'linear', 'polynomial (k) ', and 'RBF' kernels. Feel free to play with the k and " C " parameters. The HW2-ReadMe. html file also specifies exactly what you should submit here.

Question 10 [14 points] Constructing feature map in finite case [Implement] Let $\mathcal{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}\right\}$ consist of the following five 2 D points:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1.5 \\
1.5
\end{array}\right]
$$

a [2]: Plot these points using Matlab.
b [2]: Consider the kernel

$$
k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{8}\right) 1 \leq i, j \leq 5
$$

Use Matlab to show that its Gram matrix is positive semi definite, and thus that this $k(\cdot, \cdot)$ is a valid kernel.
c [6]: Using Matlab construct a feature map $\phi: \mathcal{X} \rightarrow \mathbb{R}^{5}$ that is compatible with kernel k.
d [4]: Verify if the constructed feature map is good - i.e., if the inner product between $\phi\left(\mathbf{x}_{i}\right)$ and $\phi\left(\mathbf{x}_{j}\right)$ in the feature space is equal to the values of the kernel function $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.

Question 11 [4 points] l_{p}^{20} norms [Matlab exploration]
The HW2-ReadMe.html file provides three different 20 dimensional vectors x, each with only a few non-0 coordinates.
a [2]: For $p \in\left\{\frac{1}{128}, \frac{1}{32}, \frac{1}{2}, 1,2,8,32,128\right\}$, plot $\|x\|_{p}^{p}=\sum_{i=1}^{20}\left|x_{i}\right|^{p}$, and $\|x\|_{p}=\left(\sum_{i=1}^{20}\left|x_{i}\right|^{p}\right)^{1 / p}$. You should probably use log-scale for the Y axis. (In Matlab: set (gca, 'Yscale', 'log').)

The HW2-ReadMe.html file specifies exactly what you should submit here.
b [2]: What happens when $p \rightarrow 0$? ... and when $p \rightarrow \infty$?

Question 12 [4 points] Representer theorem
a [2]: Let \mathcal{F} be an RKHS function space with kernel $k(\cdot, \cdot)$. Let $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ be m training input-output pairs. Our task is to find the $f^{*} \in \mathcal{F}$ function that minimizes the following regularized functional:

$$
f^{*}=\arg \min _{f \in \mathcal{F}}\left(\prod_{i=1}^{m}\left|f\left(\mathbf{x}_{i}\right)\right|^{6}\right) \sum_{i=1}^{m}\left[\left|\sin \left(\left\|\mathbf{x}_{i}\right\|^{\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|}\right)\right|^{25}+y_{i}\left|f\left(x_{i}\right)\right|^{42}\right]+\exp \left(\|f\|_{\mathcal{F}}\right)
$$

This is a nonparametric minimization problem over functions in the function space \mathcal{F}. Prove that f^{*} can be expressed as $f^{*}(\cdot)=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, \cdot\right)$, reducing the problem to an m dimensional minimization [with respect to $\left.\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right]$ only.
b [2]: Now consider

$$
g^{*}=\arg \min _{g \in \mathcal{F}}\|g\|_{\mathcal{F}} \sum_{i=1}^{m}\left[\left|\sin \left(\left\|\mathbf{x}_{i}\right\|^{\left|y_{i}-g\left(\mathbf{x}_{i}\right)\right|}\right)\right|^{25}+y_{i}\left|g\left(x_{i}\right)\right|^{42}\right]+\exp \left(\|g\|_{\mathcal{F}}\right)
$$

Can you use the representer theorem to express $g^{*}(\cdot)=\sum_{j=1}^{m} \alpha_{j} k\left(x_{j}, \cdot\right)$ for some α_{j} 's? Explain.
Question 13 [6 points] Lagrange multipliers, discrete random variables
A discrete distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ has $\sum p_{i}=1$ and $p_{i} \geq 0$ for all i. The entropy, which measures the uncertainty of a distribution, is defined by $H(p)=-\sum_{i=1}^{n} p_{i} \log p_{i}$. (Note we define $0 \log 0=0$).
a [1]: Prove that the entropy is 0 for the $\left(p_{1}=1, p_{2}=\ldots=p_{n}=0\right)$ deterministic distribution.
b [5]: Show that the uniform distribution has the largest entropy.
Question 14 [16 points] Lagrange multipliers, continuous random variables [Grad only] The entropy of a continuous distribution with density function f is defined by $H(f)=-\int f(x) \log f(x) d x$. Let X be a random variable with density f.
a [8]: Prove that if $\mathbb{E}_{f}[X]=0$ and $\mathbb{E}_{f}\left[X^{2}\right]=\sigma^{2}$, then the Gaussian distribution $N\left(0, \sigma^{2}\right)$ has the maximal entropy.
[Hint: Use Lagrange multipliers, and $\frac{\partial}{\partial f(y)} \int r(x) f(x) d x=r(y)$ when $r($.$) is not related to$ $f(.) . \quad\left(\right.$ Note $\left.\frac{\partial}{\partial f(y)} \int f(x) \log (f(x)) d x=\log (f(y))+1.\right) \quad$ http://en.wikipedia.org/wiki/ Functional_ derivative
Also, if a density has the form " $a \exp \left((x-b)^{2} / 2 c^{2}\right)$ " for any real constants a, b and c, then it must be the density of the normal distribution.]
$\mathbf{b}[8]: \quad$ Prove that if $\operatorname{support}(f)=[0, \infty]$, and $E[X]=\mu$, then the exponential distribution $\left(f(x)=\frac{1}{\mu} \exp \left(-\frac{x}{\mu}\right)\right)$ has the largest entropy.
[Hint: For support, see http://en.wikipedia.org/wiki/Support_ (mathematics)]
Question 15 [30 points] SVM, Quadratic Approximation, Dual form, Lagrange multipliers [Grad only]
Given the following primal "quadratic version" of the soft SVM classification problem:

$$
\begin{array}{r}
\min \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}^{2} \\
\quad \text { subject to } \\
y_{i}\left\langle x_{i}, w\right\rangle \geq 1-\xi,(i=1, \ldots, m) \\
\xi \geq 0,(i=1, \ldots, m)
\end{array}
$$

What are the dual equations?

