
CMPUT 466/551 — Assignment 4
Instructors: R Greiner, B Póczos
Due Date: 5:00pm, Monday, 7/Dec/09
The following exercises are intended to further your understanding of PAC learning, Be-
lief Networks, Expectation Maximization, Principle Component Analysis, and Independent
Component Analysis.
Relevant reading: Lecture notes;
HTF: Chapter 14.5, 18 (skim);
(Bishop: Chapter 7.1.5, 8, 12)
Total points: UGrad: 55 Grad: 55

Question 1 [10 points] Universal Set; tools from PAC learning

A set S = {x1, . . . , xm} of binary d-tuples (i.e., each xk = 〈x
(k)
1 , . . . , x

(k)
d 〉 ∈ {0, 1}d) is

a (d, k)-universal set if, for every assignment to any subset of k variables, S includes an
element that agrees with that assignment. That is, pick any of the

(

d

k

)

size-k subsets of the
d variables — call them {Xi1, . . . , Xik} where each ij ∈ {1, . . . , d} — and then pick any one
of the 2k assignments to these variables, say tij ∈ {0, 1} for each j. Then there is (at least)
one element x ∈ S such that xij = tij for all j = 1..d.

As an example, consider the set of d = 4 tuples:

S =













x1 x2 x3 x4

0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 1













To be (4, 2)-universal set, it would have include all 22 = 4 assignments to each of the
(

4
2

)

= 6
pairs, 〈xi, xj〉. Fortunately, S does include all 22 = 4 assignments to 〈x1, x2〉 — i.e., it
includes 〈x1, x2〉 = 〈0, 0〉, 〈0, 1〉, 〈1, 0〉 and 〈1, 1〉. It also includes all 4 assignments to
〈x1, x3〉, 〈x1, x4〉, 〈x2, x3〉, and 〈x3, x4〉. However, this S is NOT a (4, 2)-universal set as
it does not include every possible assignment to 〈x2, x4〉: it includes 〈x2, x4〉 = 〈0, 0〉 and
〈1, 1〉, but it does not include either 〈0, 1〉 or 〈1, 0〉.

Now consider

S ′ =



















x1 x2 x3 x4

0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 1
1 0 1 1
1 1 1 0



















and notice this S ′ is a (4, 2)-universal set.
There are elaborate algorithms that are guaranteed to produce such (d, k)-universal sets.

But how hard is it, really?
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Suppose you just generate a set of m(d, k) binary d-tuples, RANDOMLY — i.e., each x
(k)
i

is drawn uniformly from {0, 1}. How large does m(d, k) have to be, to be 1 − δ confident
that this set is a (d, k)-universal set?

(Of course, you should expect this to be at least 2k.)
[Hint: 1. What is the chance that a random d-tuple (think “row in the matrix”) does NOT

include a particular assignment to a particular k-tuple of columns?

2. How many such “conditions” need to be satisfied?

3. Use this to bound the chance that a sample containing m(d, k) instances does NOT qualify —

i.e., that there is a particular k-tuple of columns that does NOT contain a particular assignment.

You may want to prove, then use, that log(1 − ǫ) < −ǫ holds for all ǫ ∈ (0, 1).]

Question 2 [4 points] Belief Networks (Independencies)
Given variables A, B, C, we say that A is independent of B, given C — written “A⊥B |C”
— iff ∀a, b, c P ( A = a |B = b, C = c ) = P ( A = a |C = c ).

Prove or disprove the following statements. (You may assume that these variables are
discrete, and that every probability is non-zero — i.e., P ( X = x ) > 0.)

a [2]: A⊥B |C =⇒ B ⊥A |C.

b [2]: A⊥B |C =⇒ A⊥C |B.

Question 3 [10 points] NaiveBayes + Conditional Likelihood
As you recall, the parameters Θ = {θy} ∪ {θxi|y} for the standard NaiveBayes model
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are trained generatively , to optimize (log) likelihood of the train-
ing data S = { 〈xi, yi〉 }; i.e.,

Θ
(∗)
ML = argmax

Θ
P ( S |Θ )

= argmax
Θ

∑

〈x,y〉∈S

log PΘ( y, x )

Of course, we will later use this NaiveBayes model for the discriminative task of predicting
y given x. This suggests it might make sense to, instead, seek the parameters that optimize
conditional likelihood

(1) Θ
(∗)
MCL = argmax

Θ

∑

〈x,y〉∈S

log PΘ( y |x )

Consider the simple case where everything is binary — y ∈ {0, 1} and xi,j ∈ {0, 1}. Also,
let βy = log θy and βxi|y = log θxi|y be the logs of the corresponding θ parameters (which you
may assume are all non-zero).

a [3]: Express the value of PΘ( y = 1 |x ) in terms of these βχ parameters.

b [6]: Write f+(x) = PΘ( y = 1 |x ) as an explicit function of the values x. You may
assume that x = 〈1, x1, . . . , xn〉.
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[Hint: Observe βxi=a|y = βxi=0|y + a (βxi=1|y − βxi=0|y) for a ∈ {0, 1}.]

c [1]: Quickly describe an algorithm for finding the optimal values for these parameters
— i.e., that optimize Equation 1.

Question 4 [15 points] Mixture of Gaussians; EM
You are to compute maximum likelihood estimates of the parameters θ, µ0, σ

2
0 , µ1, σ

2
1 of the

following distribution of the discrete variable G that represents a person’s gender, and the
continuous variable X that represents a person’s height:

P ( G = 1 ) = θ

P ( G = 0 ) = (1 − θ)

P ( X = x |G = 1 ) = PN (x; µ1, σ
2
1)

P ( X = x |G = 0 ) = PN (x; µ0, σ
2
0)

where PN (x; µ, σ2) is the Gaussian probability distribution function with mean µ and vari-
ance σ2. This model is a mixture of two Gaussian distributions, one for females and one for
males.

Several sub-questions below ask for “high-level pseudo-code” for some algorithm. It is
critical that your code here be simple and concise — while Matlab is not required, the
person grading your assignment will probably be thinking this way. Note also that each
function should be only a few lines. Finally, you are ALLOWed to actually implement your
code, if you wish. (This is not required.)

a [2]: What is the marginal distribution of X — i.e., what is the pdf p(X = x)?

b [2]: What is the distribution P ( G = g |X = x )?

c [5]: Suppose that, in order to make your assignment extremely easy, your TA has gone
out and measured people’s height (at a local bar, say) and given you a list of i.i.d. instance
of height+genders pairs 〈xi, gi〉, i ∈ {1..N} where xi ∈ ℜ+ is the height of the person i and
gi = 1 holds if i is female, and gi = 0 if i is male. Assume these are drawn from the above
distribution. Express the maximum likelihood estimates of the above five parameters in
terms of xi and gi. (You don’t need to derive them, just write them down.) Write high-level
pseudo-code for the function

function [theta, mu 1, sig2 1, mu 0, sig2 0, loglike] = maxlike(x, g)

that returns the maximum likelihood parameter estimates, as well as the log likelihood of the
data given those estimates. You should treat the vector g as a vector of probabilities, where
the ith entry gives the probability that person i is female — i.e., don’t use an ‘if’ statement
to determine which Gaussian distribution to use, but rather treat gi as an indicator variable.

Note: You may assume this sample includes at least one male, and at least one female.

d [3]: Suppose that, while out at the bar, a clumsy patron spilled a drink on the half of
the sheet of paper on which your TA was recording the genders, rendering this gender data
unavailable. However, the TA notices that if only we knew the parameters of the distribution,
we could determine the probability that each data point was female, say. (He assumes that
you students have already completed part (b).) Write high-level pseudo-code for

function [g] = expectation(x, theta, mu 1, sig2 1, mu 0, sig2 0)
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that computes the expected value of each gi given xi and the five parameters, which in our
case also happens to be the probability P ( G = 1 | x ).

e [3]: You now have the components necessary to run “Expectation Maximation” (EM)
to estimate the parameters. Write the high-level pseudo-code

function [theta, mu 1, sig2 1, mu 0, sig2 0, g, loglike] =

emiteration(x, theta, mu 1, sig2 1, mu 0, sig2 0)

that takes the current parameter guesses and the observed data vector x and returns a new
set of parameter estimates, along with the vector of expectations g and the log likelihood of
the data given the new parameters.

Question 5 [10 points] PCA/ICA: Independence, Correlation
Definitions:

• Y and Z are independent ⇔ p(y, z) = p(y) p(z)

• (correlation) corr(Y, Z) =
E

[

(Y −E[Y ]) (Z−E[Z])
]

var(Y )1/2 var(Z)1/2

corr(Y, Z) = 0 means Y and Z are uncorrelated.
Note that the numerator is the “covariance” cov(Y, Z) = E

[

(Y −E[Y ]) (Z−E[Z])
]

.

a [2]: Prove: Y and Z are independent ⇒ E[ g(Y ) h(Z) ] = E[ g(Y ) ] E[ h(Z) ],
where g(·) and h(·) are arbitrary functions (provided only that their expected values are well
defined).

b [2]: Prove: corr(Y, Z) = 0 ⇔ E[ Y Z ] = E[Y ] E[Z]

c [1]: Prove: Y and Z are independent ⇒ Y and Z are uncorrelated.

d [3]: Show an example where Y and Z are uncorrelated but Y and Z are not independent.

e [2]: Prove: if (Y1, Y2) are jointly Gaussian, then
Y1 and Y2 are independent ⇔ Y1 and Y2 are uncorrelated.

Question 6 [6 points] PCA can be used for whitening
Let A ∈ ℜN×M be a full rank matrix, N ≥ M .
Let s ∈ ℜM be a random variable such that E[ssT ] = IM , and let x = As ∈ ℜN . Prove:
∃ Q ∈ ℜM×N such that, using A∗ = QA, if x∗ .

= Qx then:

x∗ = A∗s
A∗A∗T = IM

E[x∗x∗T ] = IM


