CMPUT 466/551 - Assignment 4

Instructors: R Greiner, B Póczos
Due Date: $\quad 5: 00 \mathrm{pm}$, Monday, $7 / \mathrm{Dec} / 09$
The following exercises are intended to further your understanding of PAC learning, Belief Networks, Expectation Maximization, Principle Component Analysis, and Independent Component Analysis.
Relevant reading: Lecture notes;
HTF: Chapter 14.5, 18 (skim);
(Bishop: Chapter 7.1.5, 8, 12)
Total points: UGrad: 55 Grad: 55

Question 1 [10 points] Universal Set; tools from PAC learning
A set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ of binary d-tuples (i.e., each $\mathbf{x}_{k}=\left\langle x_{1}^{(k)}, \ldots, x_{d}^{(k)}\right\rangle \in\{0,1\}^{d}$) is a (d, k)-universal set if, for every assignment to any subset of k variables, S includes an element that agrees with that assignment. That is, pick any of the $\binom{d}{k}$ size- k subsets of the d variables - call them $\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\}$ where each $i_{j} \in\{1, \ldots, d\}$ - and then pick any one of the 2^{k} assignments to these variables, say $t_{i_{j}} \in\{0,1\}$ for each j. Then there is (at least) one element $\mathbf{x} \in S$ such that $x_{i_{j}}=t_{i_{j}}$ for all $j=1$..d.

As an example, consider the set of $d=4$ tuples:

$$
S=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

To be (4, 2)-universal set, it would have include all $2^{2}=4$ assignments to each of the $\binom{4}{2}=6$ pairs, $\left\langle x_{i}, x_{j}\right\rangle$. Fortunately, S does include all $2^{2}=4$ assignments to $\left\langle x_{1}, x_{2}\right\rangle$ - i.e., it includes $\left\langle x_{1}, x_{2}\right\rangle=\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle$ and $\langle 1,1\rangle$. It also includes all 4 assignments to $\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{1}, x_{4}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle$, and $\left\langle x_{3}, x_{4}\right\rangle$. However, this S is NOT a $(4,2)$-universal set as it does not include every possible assignment to $\left\langle x_{2}, x_{4}\right\rangle$: it includes $\left\langle x_{2}, x_{4}\right\rangle=\langle 0,0\rangle$ and $\langle 1,1\rangle$, but it does not include either $\langle 0,1\rangle$ or $\langle 1,0\rangle$.

Now consider

$$
S^{\prime}=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

and notice this S^{\prime} is a $(4,2)$-universal set.
There are elaborate algorithms that are guaranteed to produce such (d, k)-universal sets. But how hard is it, really?

Suppose you just generate a set of $m(d, k)$ binary d-tuples, RANDOMLY - i.e., each $x_{i}^{(k)}$ is drawn uniformly from $\{0,1\}$. How large does $m(d, k)$ have to be, to be $1-\delta$ confident that this set is a (d, k)-universal set?
(Of course, you should expect this to be at least 2^{k}.)
[Hint: 1. What is the chance that a random d-tuple (think "row in the matrix") does NOT include a particular assignment to a particular k-tuple of columns?
2. How many such "conditions" need to be satisfied?
3. Use this to bound the chance that a sample containing $m(d, k)$ instances does NOT qualify i.e., that there is a particular k-tuple of columns that does NOT contain a particular assignment. You may want to prove, then use, that $\log (1-\epsilon)<-\epsilon$ holds for all $\epsilon \in(0,1)$.]

Question 2 [4 points] Belief Networks (Independencies)
Given variables A, B, C, we say that A is independent of B, given C - written " $A \perp B \mid C$ " — iff $\forall a, b, c P(A=a \mid B=b, C=c)=P(A=a \mid C=c)$.

Prove or disprove the following statements. (You may assume that these variables are discrete, and that every probability is non-zero - i.e., $P(X=x)>0$.)
a [2]: $\quad A \perp B|C \quad \Longrightarrow \quad B \perp A| C$.
b [2]: $\quad A \perp B|C \quad \Longrightarrow \quad A \perp C| B$.

Question 3 [10 points] NaiveBayes + Conditional Likelihood
As you recall, the parameters $\Theta=\left\{\theta_{y}\right\} \cup\left\{\theta_{x_{i} \mid y}\right\}$ for the standard NaiveBayes model

are trained generatively, to optimize (log) likelihood of the training data $S=\left\{\left\langle\mathbf{x}_{i}, y_{i}\right\rangle\right\}$; i.e.,

$$
\begin{aligned}
\Theta_{M L}^{(*)} & =\underset{\Theta}{\operatorname{argmax}} P(S \mid \Theta) \\
& =\underset{\Theta}{\operatorname{argmax}} \sum_{\langle\mathbf{x}, y\rangle \in S} \log P_{\Theta}(y, \mathbf{x})
\end{aligned}
$$

Of course, we will later use this NaiveBayes model for the discriminative task of predicting y given \mathbf{x}. This suggests it might make sense to, instead, seek the parameters that optimize conditional likelihood

$$
\begin{equation*}
\Theta_{M C L}^{(*)}=\underset{\Theta}{\operatorname{argmax}} \sum_{\langle\mathbf{x}, y\rangle \in S} \log P_{\Theta}(y \mid \mathbf{x}) \tag{1}
\end{equation*}
$$

Consider the simple case where everything is binary $-y \in\{0,1\}$ and $x_{i, j} \in\{0,1\}$. Also, let $\beta_{y}=\log \theta_{y}$ and $\beta_{x_{i} \mid y}=\log \theta_{x_{i} \mid y}$ be the logs of the corresponding θ parameters (which you may assume are all non-zero).
a [3]: Express the value of $P_{\Theta}(y=1 \mid \mathbf{x})$ in terms of these β_{χ} parameters.
\mathbf{b} [6]: Write $f_{+}(\mathbf{x})=P_{\Theta}(y=1 \mid \mathbf{x})$ as an explicit function of the values \mathbf{x}. You may assume that $\mathbf{x}=\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$.
[Hint: Observe $\beta_{x_{i}=a \mid y}=\beta_{x_{i}=0 \mid y}+a\left(\beta_{x_{i}=1 \mid y}-\beta_{x_{i}=0 \mid y}\right)$ for $a \in\{0,1\}$.]
\mathbf{c} [1]: Quickly describe an algorithm for finding the optimal values for these parameters - i.e., that optimize Equation 1.

Question 4 [15 points] Mixture of Gaussians; EM
You are to compute maximum likelihood estimates of the parameters $\theta, \mu_{0}, \sigma_{0}^{2}, \mu_{1}, \sigma_{1}^{2}$ of the following distribution of the discrete variable G that represents a person's gender, and the continuous variable X that represents a person's height:

$$
\begin{aligned}
P(G=1) & =\theta \\
P(G=0) & =(1-\theta) \\
P(X=x \mid G=1) & =P_{\mathcal{N}}\left(x ; \mu_{1}, \sigma_{1}^{2}\right) \\
P(X=x \mid G=0) & =P_{\mathcal{N}}\left(x ; \mu_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

where $P_{\mathcal{N}}\left(x ; \mu, \sigma^{2}\right)$ is the Gaussian probability distribution function with mean μ and variance σ^{2}. This model is a mixture of two Gaussian distributions, one for females and one for males.

Several sub-questions below ask for "high-level pseudo-code" for some algorithm. It is critical that your code here be simple and concise - while Matlab is not required, the person grading your assignment will probably be thinking this way. Note also that each function should be only a few lines. Finally, you are ALLOWed to actually implement your code, if you wish. (This is not required.)
a [2]: What is the marginal distribution of X - i.e., what is the pdf $p(X=x)$?
b [2]: What is the distribution $P(G=g \mid X=x)$?
c [5]: Suppose that, in order to make your assignment extremely easy, your TA has gone out and measured people's height (at a local bar, say) and given you a list of i.i.d. instance of height+genders pairs $\left\langle x_{i}, g_{i}\right\rangle, i \in\{1 . . N\}$ where $x_{i} \in \Re^{+}$is the height of the person i and $g_{i}=1$ holds if i is female, and $g_{i}=0$ if i is male. Assume these are drawn from the above distribution. Express the maximum likelihood estimates of the above five parameters in terms of x_{i} and g_{i}. (You don't need to derive them, just write them down.) Write high-level pseudo-code for the function
function [theta, mu_1, sig2_1, mu_0, sig2_0, loglike] = maxlike(x, g)
that returns the maximum likelihood parameter estimates, as well as the log likelihood of the data given those estimates. You should treat the vector g as a vector of probabilities, where the i th entry gives the probability that person i is female - i.e., don't use an 'if' statement to determine which Gaussian distribution to use, but rather treat g_{i} as an indicator variable.

Note: You may assume this sample includes at least one male, and at least one female.
d [3]: Suppose that, while out at the bar, a clumsy patron spilled a drink on the half of the sheet of paper on which your TA was recording the genders, rendering this gender data unavailable. However, the TA notices that if only we knew the parameters of the distribution, we could determine the probability that each data point was female, say. (He assumes that you students have already completed part (b).) Write high-level pseudo-code for

```
function [g] = expectation(x, theta, mu_1, sig2_1, mu_0, sig2_0)
```

that computes the expected value of each g_{i} given x_{i} and the five parameters, which in our case also happens to be the probability $P(G=1 \mid x)$.
e [3]: You now have the components necessary to run "Expectation Maximation" (EM) to estimate the parameters. Write the high-level pseudo-code

```
function [theta, mu_1, sig2_1, mu_0, sig2_0, g, loglike] =
emiteration(x, theta, mu_1, sig2_1, mu_0, sig2_0)
```

that takes the current parameter guesses and the observed data vector x and returns a new set of parameter estimates, along with the vector of expectations g and the \log likelihood of the data given the new parameters.

Question 5 [10 points] PCA/ICA: Independence, Correlation
Definitions:

- Y and Z are independent $\Leftrightarrow p(y, z)=p(y) p(z)$
- (correlation) $\operatorname{corr}(Y, Z)=\frac{\mathbb{E}[(Y-\mathbb{E}[Y])(Z-\mathbb{E}[Z])]}{\operatorname{var}(Y)^{1 / 2} \operatorname{var}(Z)^{1 / 2}}$
$\operatorname{corr}(Y, Z)=0$ means Y and Z are uncorrelated.
Note that the numerator is the "covariance" $\operatorname{cov}(Y, Z)=\mathbb{E}[(Y-\mathbb{E}[Y])(Z-\mathbb{E}[Z])]$.
a [2]: Prove: Y and Z are independent $\Rightarrow \mathbb{E}[g(Y) h(Z)]=\mathbb{E}[g(Y)] \mathbb{E}[h(Z)]$, where $g(\cdot)$ and $h(\cdot)$ are arbitrary functions (provided only that their expected values are well defined).
$\mathbf{b}[2]: \quad$ Prove: $\operatorname{corr}(Y, Z)=0 \quad \Leftrightarrow \quad \mathbb{E}[Y Z]=\mathbb{E}[Y] \mathbb{E}[Z]$
c [1]: Prove: Y and Z are independent $\Rightarrow \quad Y$ and Z are uncorrelated.
d [3]: Show an example where Y and Z are uncorrelated but Y and Z are not independent.
e [2]: Prove: if $\left(Y_{1}, Y_{2}\right)$ are jointly Gaussian, then
Y_{1} and Y_{2} are independent $\quad \Leftrightarrow \quad Y_{1}$ and Y_{2} are uncorrelated.
Question 6 [6 points] PCA can be used for whitening
Let $\mathbf{A} \in \Re^{N \times M}$ be a full rank matrix, $N \geq M$.
Let $\mathbf{s} \in \Re^{M}$ be a random variable such that $\mathbb{E}\left[\mathbf{s s}^{T}\right]=\mathbf{I}_{M}$, and let $\mathbf{x}=\mathbf{A} \mathbf{s} \in \Re^{N}$. Prove:
$\exists \mathbf{Q} \in \Re^{M \times N}$ such that, using $\mathbf{A}^{*}=\mathbf{Q A}$, if $\mathbf{x}^{*} \doteq \mathbf{Q} \mathbf{x}$ then:

$$
\begin{array}{llr}
\mathbf{x}^{*} & =\mathbf{A}^{*} \mathbf{s} \\
\mathbf{A}^{*} \mathbf{A}^{* T} & = & \mathbf{I}_{M} \\
\mathbb{E}\left[\mathbf{x}^{*} \mathbf{x}^{* T}\right] & =\mathbf{I}_{M}
\end{array}
$$

