

Thanks to: C Guestrin, T Dietterich, R Parr

Outline

Linear Regression □ MLE = Least Squares! Basis functions Evaluating Predictors Training set error vs Test set error Cross Validation Model Selection □ Bias-Variance analysis Regularization, Bayesian Model

Prediction Problems ...

- Predict housing price from:
 House size, lot size, rooms, neighborhood, ...
- Predict weight from:
 - Gender, height, ethnicity, ...
- Predict life expectancy increase from:
 - □ Medication, disease state, ...
- Predict crop yield from:
 - □ Precipitation, fertilizer, temperature, ...

Prediction of Continuous Variables

 Predict a continuous variable based on set of continuous inputs:
 Eg, predict salaries from GPA
 Regression

Y

- Linear least squares fitting with $X \in \Re^2$
- Seek the linear function of X that minimizes the sum of squared residuals from Y

The Linear Regression Task

Given set of labeled Instances: { [x_j, t_j] }

GPA, Age, ShoeSize, $\dots \rightarrow$ Salary

Eg: [(97, 14, 8); 150] [(93, 24, 12); 200] [(88, 20, 9); 45]

Learn: Mapping from x to t(x)

- \Box Direct linear mapping: $\mathbf{t}(\mathbf{x}) \approx \beta_0 + \sum_j \beta_j \mathbf{x}_j$
- $\Box \text{ Find coeffs } \beta = (\beta_0, \beta_1, ..., \beta_k)$

• Model: Observed value $t(x) = \beta_0 + \sum_j \beta_j x_j + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

Training a Regressor

Width	Size	Eyes	 Light	size
35	95	Y	 Pale	22
22	110	N	 Clear	18
:	:		:	:
10	87	N	 Pale	33

7

Best Values of β ?

Model: Observed value is $t(\mathbf{x}) = \sum_{i} \beta_{i} \mathbf{x}_{i} + \boldsymbol{\varepsilon}$ where $\varepsilon \sim N(0, \sigma^2)$ $P(t, \mathbf{X} | \boldsymbol{\beta}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t - \sum_{i} \beta_{i} x_{i}]^{2}}{2\sigma^{2}}}$ Find MostLikely values of ⁶ ... (MLE) $\ln P(D | \boldsymbol{\beta}, \boldsymbol{\sigma})$ $= N \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{1}{2\sigma^2} \left| \sum_{i} \left[t^j - \sum_{i} \beta_i x_i^j \right]^2 \right|$

Max Likely Estimate

$$\ln P(D \mid \boldsymbol{\beta}, \sigma) = N \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{1}{2\sigma^2} \left[\sum_{j} \left[t^j - \sum_{i} \beta_i x_i^j \right]^2 \right]$$
$$\arg \max_{w} \ln P(D \mid \boldsymbol{\beta}, \sigma) \neq \arg \min_{w} \left[\sum_{j} \left[t^j - \sum_{i} \beta_i x_i^j \right]^2 \right]$$

Least-squares Linear Regression is MLE for Gaussians !!!

Regression in Matrix Notation

Regression solution = simple matrix operations

$$\boldsymbol{\beta}^* = \arg\min_{\boldsymbol{\beta}} (\mathbf{X}\boldsymbol{\beta} - \mathbf{t})^T (\mathbf{X}\boldsymbol{\beta} - \mathbf{t})$$

Setting derivative to 0 yields:

Solution:
$$\boldsymbol{\beta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t} = \mathbf{A}^{-1} \mathbf{b}$$

Dealing with Offset

 Actually want k+1 values (β₀, β₁,..., β_k) y = β₀ + β₁ x₁ + ... + β_k x_k
 So view each k-tuple x as k+1 tuple [1, x]

Another Approach: Gradient Descent

- But matrix solution is O(m⁴d)
 m = #training instances; d = #features
 matrix inversion...
- Goal: Find w_i's that minimize squared error $\Box \text{ err}(w) = \left(\sum_{i} \left[t^{(i)} - w x^{(i)} \right]^2 \right) / m$
- Why not use Gradient Descent!
 aka Delta Rule, Adaline Rule, Widrow-Ho Rule, LMS Rule, Classical Conditioning

Local Search via Gradient Descent

Start w/ (random) weight vector $w^0.$ Repeat until converged \lor bored

Compute Gradient

$$\nabla \operatorname{err}(\mathbf{w}^{t}) = \left(\frac{\partial \operatorname{err}(\mathbf{w}^{t})}{\partial w_{0}}, \frac{\partial \operatorname{err}(\mathbf{w}^{t})}{\partial w_{1}}, \cdots, \frac{\partial \operatorname{err}(\mathbf{w}^{t})}{\partial w_{n}}\right)$$

Let $\mathbf{w}^{t+1} = \mathbf{w}^{t} + \eta \nabla \operatorname{err}(\mathbf{w}^{t})$
If CONVERGED: Return(\mathbf{w}^{t})

Gradient-Descent vs Matrix-Inversion

- Pro: Gradient Descend advantages
- ≈Biologically plausible
- Each iteration costs only O(mn)
- If uses < m iterations, faster than Matrix Inversion!
- More easily parallelizable

Con: Gradient Descent disadvantages

- It's moronic... essentially a slow way to build X^TX matrix, then solve a set of linear equations
- If n is small, it's especially outrageous.
 If n is large then direct matrix inversion method can be problematic but not impossible if you want to be efficient.
- Need to choose a good learning rate -how?
- Matrix inversion takes predictable time. You can't be sure when gradient descent will stop.

Computing the Gradient

$$err(w) = (\sum_{i} [t^{(i)} - w x^{(i)}]^2) / m$$

$$\frac{\partial err(w)}{\partial w_j} = \frac{\partial}{\partial w_j} \left(\frac{1}{m} \sum_{i=1}^m err_i(w) \right) = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial w_j} err_i(w)$$

$$\frac{\partial err_i(w)}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\left(\sum_{i=1}^m w_j x_{ij} \right) - t_i \right]^2$$
$$= 2 \cdot \left[\left(\sum_{i=1}^m w_j x_{ij} \right) - t_i \right] \cdot \frac{\partial}{\partial w_j} \left[\left(\sum_{i=1}^m w_j x_{ij} \right) - t_i \right]$$
$$= 2 \cdot \left[\left(\sum_{i=1}^m w_j x_{ij} \right) - t_i \right] \cdot x_{ij}$$

Then descend a distance η along gradient $\begin{bmatrix} \frac{\partial err(w)}{\partial w_0}, \frac{\partial err(w)}{\partial w_1}, \dots, \frac{\partial err(w)}{\partial w_n} \end{bmatrix}$

Gradient Descent Algorithm

Batch Gradient Descent:

Do until satisfied

- 1. Compute gradient $\nabla \operatorname{err}_S[w]$
- 2. $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla \operatorname{err}_{S}[\mathbf{w}]$

On-Line Gradient Descent:

Do until satisfied
For each training example
$$\langle \mathbf{X}, y \rangle$$
 in S
1. Compute gradient $\nabla \operatorname{err}_{(\mathbf{X},y)}[\mathbf{W}]$
2. $\mathbf{W} \leftarrow \mathbf{W} - \eta \nabla \operatorname{err}_{(\mathbf{X},y)}[\mathbf{W}]$

$$\operatorname{err}_{(x,y)}[\mathbf{w}] \equiv (y - \mathbf{w} \cdot x)^{2}$$

$$\operatorname{err}_{S}[\mathbf{w}] \equiv \sum_{(\mathbf{x},y)\in S} \operatorname{err}_{(\mathbf{x},y)}[\mathbf{w}] = \sum_{(\mathbf{x},y)\in S} (y - \mathbf{w} \cdot \mathbf{x})^{2}$$

On-Line Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η small enough

Comments on On-Line Mode

- Stochastic gradient descent may avoid local minima as "noisier"
 - □ aka "Stochastic Gradient Descent",

"Robbins-Munro algorithm"

Some versions store all training examples; make repeated passes through them until convergence

Learning Rates and Convergence

• Learning rate $\eta \equiv$ "step size"

Convergence whenever...

```
\Box \lim_{t \to \infty} \eta_t = 0
\Box \sum \eta_t = \infty
\Box \sum \eta_t^2 < \infty
```

■ ∃ sophisticated alg's

(Newton's method; Line Search; ...)

that choose step size automatically, converge faster.

- ∃ only one "basin" for linear threshold units
 ⇒ local minimum is global minimum!
- Good starting point \Rightarrow algorithm converges faster

Results wrt Gradient Descent

Gradient descent (Delta training rule)

- guaranteed to converge to hypothesis with minimum squared error (eventually!)
 if
- Sufficiently small learning rate η
- ... even when training data
 - contains noise
 - not separable!

What about other features?

Data:
Not linear!!
Perhaps

f(x) = α₂ x² + α₁ x + α₀

How to fit ???

 $\begin{array}{ll} \alpha_2 = -0.179 \\ \alpha_1 = & 1.938 \\ \alpha_0 = & 1.543 \end{array}$

General Linear Regression Task

Given set of labeled Instances: { [x_i, t_i] } Learn: Mapping from x to t(x) \Box Can use **BASIS** functions: H = { h₁(**x**), ... h_r(**x**) } • Eg: x_i^2 , x_i^3 , $(x_1 x_3)$, $x_i \sin(x_i)$, ... \Box (Basis) linear mapping: $t(\mathbf{x}) \approx \sum_{i} \beta_{i}(\mathbf{h}_{i}(\mathbf{x}))$ \Box Find coeffs $\beta = (\beta_1, \dots, \beta_r)$ • Model: Observed value $t^{*}(x) = \sum_{i} \beta_{i} h_{i}(x) + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$

Model is LINEAR in these bases... even if bases are NOT linear

ZJ

Features/Basis Functions

- Polynomials
 1, x, x², x³, x⁴, ...
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...

Fitting Parameterized Function

- Least squares fitting of a function of two inputs
- Find parameters of f_θ(x) that minimize the sum-of-squared vertical errors

What if t⁽ⁱ⁾ is a vector?

- Nothing changes!
- Scalar prediction:

Solution:
$$\boldsymbol{\beta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

Vector prediction:

Solution:
$$\boldsymbol{\beta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T}$$

Target MATRIX

Applications Corner 1

Predict stock value over time from

- □ past values
- other relevant vars
 - e.g., weather, demands, etc.

Applications Corner 2

- Measure temperatures at some locations
- Predict temperatures throughout the environment

[Guestrin et al. '04]

Applications Corner 3

Predict when a sensor will fail

based several variables

■ age, chemical exposure, number of hours used,...

Outline

Linear Regression \square MLE = Least Squares. Basis functions Evaluating Predictors □ Training set error vs Test set error Cross Validation Model Selection □ Bias-Variance analysis **Regularization**, Bayesian Model

Training Set Error

Choose a loss function

 \Box eg, squared error (L₂) for regression

 Given a labeled dataset S, learn optimal predictor w_s

$$\mathbf{w}_{s} = \mathbf{w}^{*}(S) = \arg\min_{\mathbf{w}} \sum_{(\mathbf{x},t)\in S} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

 $\sum_{i} w_{i}h_{i}(\mathbf{x})^{2}$

□ compute empirical error (of any w)

$$\operatorname{err}_{S}(\mathbf{w}) = \frac{1}{|S|} \sum_{(\mathbf{x},t) \in S} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

Training set error: err_S(w_S)

Training Set Error as a function of Model Complexity

34

True Prediction Error

- WARNING: Training set error can be poor measure of "quality" of solution
- Want: error over all possible input points, not just training data:

Prediction error:

$$err_{D}(\mathbf{W}) = E_{x,t} \left[\left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} \right]$$
$$= \int_{x,t} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} D(\mathbf{x}, \mathbf{t}) \, dx \, dt$$

Requires $D(\mathbf{x},t)$ – unknown!

$\underline{err}_{S}(\mathbf{w}_{S}) vs err_{D}(\mathbf{w}_{S})$

ა7

But ...

- $\blacksquare \underline{\operatorname{err}}_{S}(\mathbf{w}_{S}) \neq \operatorname{err}_{D}(\mathbf{w}_{S})$
- err_S(w_S) ≡
 Eval w_S on training set S
 only approximation to err_D(w_S)
 ... can be TOO optimistic!

 "Cheating"
 Like being evaluated on test after seeing SAME test...

Computing Prediction Error

Computing prediction

$$err_D(\mathbf{W}) = \int_{x,t} \left(t - \sum_i w_i h_i(\mathbf{X})\right)^2 D(\mathbf{X}, \mathbf{t}) \, dx \, dt$$

Depends on D(x, t) for every x – typically not known
 Hard integral

New sample: a set of i.i.d. points
S'={(x₁,t₁), ..., (x_M,t_M)} from D(x,t)

$$\operatorname{err}_{D}(\mathbf{w}_{\mathbf{S}}) \approx \operatorname{err}_{\mathbf{S}'}(\mathbf{w}_{\mathbf{S}}) = \frac{1}{|S'|} \sum_{(\mathbf{x},t) \in S'} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

Training Error ≠ Prediction Error

 Sampling approximation of prediction error: err_{S'}(W_S) ≈ err_D(W_S)

■ Training error : err_S(w_S) ≠ err_D(w_S)

Very similar equations!!!
 Why is *training error* a bad measure of *prediction error*?

Training Error ≠ Prediction Error

Because you cheated!!!

Training error is good estimate for a single **w**, But you optimized **w** with respect to the training error, and found **w** that is good for *this set of instances*

Training error is a (optimistically) biased estimate of prediction error

Very similar equations!!!
 Why is *training error* a bad measure of *prediction error*?

Test Set Error

$$\mathbf{w}_{S} = \mathbf{w}^{*}(S) = \arg\min_{\mathbf{w}} \sum_{(\mathbf{x},t)\in S} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

Randomly split dataset into two parts:
Training data - S = {x₁,..., x_{Ntrain}}
Test data - S' = {x_{Ntrain+1},..., x_{Ntrain+Ntest}}
Use *training data* to optimize w = w_S
Test set error:

Given w_s, estimate error using:

$$\operatorname{err}_{\mathbf{S}'}(\mathbf{w}_{\mathbf{S}}) = \frac{1}{|S'|} \sum_{(\mathbf{x},t)\in S'} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

Estimating Error: Hold-Out Set

- Run learner L(.) on S

 produce regressor w_S = L(S)
 What is true error err_D(w_S) ?
- Want to return $[w_S, err_D(w_S)]$... or at least $[w_S, e]$ where $e \approx err_D(w_S)$
- Divide S into disjoint S₁, S₂
 Train on S₁: computing w_{S1} := L(S₁)
 Test on S₂: $err_{S_2}(w_{S_1})$ Return [w_S, $err_{S_2}(w_{S_1})$]

■ Why is
$$\underline{err}_{S_2}(w_{S_1}) \approx err_D(w_S)$$
?
□ As $S_1 \approx S$, $w_{S_1} = L(S_1) \approx L(S) = w_S$
□ $\underline{err}_{S_2}(w_{S_1})$ is estimate of $err_D(w_{S_1}) \approx err_D(w_S)$

 $S_1 \begin{cases} S \\ S_2 \end{cases}$

43

Challenge wrt Hold-Out Set

- How to divide S into disjoint S₁, S₂
- As |S₁| < |S|, L(S₁) not as good as L(S) Learning curve: L(S) improves as |S| increases) ⇒ want S₁ to be large
- $\frac{\text{err}_{S_2}(w_{S_1})}{\text{Estimate improves as } S_2 \text{ gets larger}}$ $\Rightarrow \text{ want } S_2 \text{ to be as large as possible}$
- As $S = S_1 \cup S_2$, must trade off quality of classifier $w_{S_1} = L(S_1)$ with

accuracy of estimate $\underline{err}_{S_2}(w_{S_1})$

44

 \Rightarrow Less Pessimistic as train on (k - 1)/k |S| of the data

Comments on Cross-Validation

Every point used as Test 1 time, Training k – 1 times Computational cost for k-fold Cross-validation ... linear in k Should use "balanced CV" If class c_i appears in m_i instances, insist each S_k include $\approx \frac{1}{k} \frac{m_i}{1 + S_i + 1}$ such instances Use CV(S, L, k) as ESTIMATE of true error of L(S) Return L(S) and CV(S, L, k) Leave-One-Out-Cross-Validation k = m ! □ eg, for Nearest-Neighbor Notice different folds are correlated Can use CV to estimate parameters in general! as training sets overlap: (k-2)/k unless k=2■ 5 × 2-CV □ Run 2-fold CV, 5 times. . .

To Form k Balanced Folds

- Partition the data S based on the class:
 □ subset S₊ has all the positive instances,
 □ subset S₋ has all the negative instances.
- 2. Randomly partition each subset into k folds: $S_{+} = U \{ S_{+1}, ..., S_{+k} \}$

3. $S_j = S_{+j} U S_{-j}$ for j=1..k

How many points needed for training/testing?

- Very hard question to answer!
 Too few training points, learned w is bad
 Too few test points, you never know if you reached a good solution
- Bounds, such as Hoeffding's inequality can help:

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

More on this later this semester, but still hard to answer

Typically:

- if you have a reasonable amount of data, pick test set "large enough" for a "reasonable" estimate of error, and use the rest for learning
- $\hfill\square$ if you have little data, then you need to pull out the big guns...
 - e.g., bootstrapping

little data

infinite data

Error Estimators

$$err_{D}(\mathbf{w}) = \int_{x,t} (t - \sum_{i} w_{i}h_{i}(\mathbf{x}))^{2} D(\mathbf{x}, \mathbf{t}) dx dt$$
Gold Standard!
Unbiased
Uses TRAIN data
... optimistic

$$err_{S}(\mathbf{w}_{S}) = \frac{1}{|S|} \sum_{(\mathbf{x},t)\in S} \left(t - \sum_{i} w_{i}h_{i}(\mathbf{x})\right)^{2}$$
Approx truth...
Unbiased
... if you are careful

2.4

Error Estimators

Be careful!!!

Test set only unbiased if you *never never never never* do *any any any* learning/adjustment/... on the test data

Eg,

if you use the test set to select the degree of the polynomial... no longer unbiased!!!

(We will address this problem later in the semester)

$$\operatorname{err}_{S'}(\mathbf{w}_{S}) = \frac{1}{|S'|} \sum_{(\mathbf{x},t) \in S'} \left(t - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2}$$

... II you are careiul

Finding Best Parameters

- Want to learn what "parameters" work best?
 - Best model (RBF vs linear? degree of polynomial)? Feature selection? Trade-off parameter?...
 - $\Box \operatorname{argmin}_{v} \{ \operatorname{err}_{D}(L(S, v)) \}$
- #1?: Try each value on entire dataset.
 Report which has smallest TRAINING SET error?
 argmin_v { err_s(L(S, v)) }
- #2?: For each value, run 5-fold C-V (wrt entire dataset)
 v^{*} = argmax_v { E[err_{Si} (L(S₋₁, v)])
- Run cross-validation on "best-value" algorithm

Fit-to-Data *≠* Generalization

• h_k = hyp after k updates $\widehat{err}_S(h_{20000}) < \widehat{err}_S(h_{10000})$ but $err_{\mathcal{D},f}(h_{20000}) > err_{\mathcal{D},f}(h_{10000})$!

"Overfitting"

Best "fit-to-data" can find "meaningless regularity" in data

(coincidences in the noise)

 \Rightarrow bad generalization behavior

Gen'I: Hypothesis h ∈ H overfits training data if
 ∃ alternative hypothesis h' ∈ H s.t.

```
\widehat{err}_{S}(h) < \widehat{err}_{S}(h')
but
err_{\mathcal{D},f}(h) > err_{\mathcal{D},f}(h')
```

Summary of Estimating Error

- SetUp: Learner L,
 - using labeled training data S
 - \square produces predictor $h_S = L(S)$
- Want err_D(h_S)
 - h's Generalization Error over distribution D
 - □ to evaluate predictor h_s
 - to decide among possible predictors
 - to evaluate learner
- But depends on D(x,t): not known!

Estimating $err_{D}(h_{S})$

- 1. Training Set Error
 - Use h_S's empirical error on S
 - $\underline{err}_{S}(h_{S})$
 - \Rightarrow Very Optimistic
- 2. Hold Out Error
 - Divide $S = S_1 \cup S_2$; Return $\underline{err}_{S_2}(h_{S_1})$
 - \Rightarrow Slightly Pessimistic
- 3. Cross Validation
 - $1/k \sum_{i} err_{S_i}(L(S_{-i}))$
 - \Rightarrow Slightly Less Pessimistic

For evaluating GENERAL PREDICTORS

- classifiers, regressors
- ... best values for parameters