HTF: Ch3, 7
B, Ch3

Linear Regression,

Evaluation,
Bias-Variance Tradeoff

Thanks to: C Guestrin, T Dietterich, R Parr



" A
Outline

y(a:Ov

m Linear Regression

MLE = Least Squares!
Basis functions

m Evaluating Predictors
Training set error vs Test set error
Cross Validation

m Model Selection
Bias-Variance analysis
Regularization, Bayesian Model
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Prediction Problems ...

m Predict housing price from:
House size, lot size, rooms, neighborhood, ...

m Predict weight from:
Gender, height, ethnicity, ...

m Predict life expectancy increase from:
Medication, disease state, ...

m Predict crop yield from:
Precipitation, fertilizer, temperature, ...



JE—
Prediction of Continuous Variables

m Predict a continuous variable
based on set of continuous inputs:

Eg, predict salaries from GPA
Regression

Salary




" S A
Best LINEAR Fit

m Finding LINEAR fit

Find (ﬂo, ,81 EERY ﬂk)
y=ﬁ0+ﬁ1 X1 + ... +ﬂkxk

m Linear least squares fitting with X € 92

m Seek the linear function of X that
minimizes the sum of squared residuals
fromY



"
The Linear Regression Task

m Given set of labeled Instances: { [x;, t] }
GPA, Age, ShoeSize, ... —» Salary

Eg:[ (97, 14,8); 150]
[ (93, 24, 12); 200 ]
[ (88, 20,9); 45]

m Learn: Mapping from x to t(x)
Direct linear mapping: t(x) = 5y, + 2 B X
Find coeffs B=(0,, Bi,--- B

m Model: Observed value t(x) =5, +2 5 X +¢€
where € ~ N(0, 62 .



"
Training a Regressor
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"
Best Values of 5 7

m Model: Observed value is  t(x) = 2, B x +¢€
where € ~ N(0, 02)
1 _[t_ziﬁix]z
P(t,x|B,0) = e 20
B ON2T
m Find MostLikely values of 3 ... (MLE)
InP(DI1B,0)
1 I "
= Nln — t'—=> px;
i) e Tz




"
Max Likely Estimate

InP(DI1B,o) = Nln(

o)

argmax In P(DIB,0)

m Least-squares Linear Regression
IS
MLE for Gaussians !!!



'Regression iIn Matrix Notation

N
f* =argmin, Z

Jj=1

= arg minﬁ(\X,B —t)" (X8 — t)
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= Regression solution
= simple matrix operations

*=argmin 4z (X6 - t) (XB—t)

Setting derivative to 0 yields:

Solution: B*=(X"X)"'X't=A""D

S
A-1 b
where A = XTX = b = XTy —
—~— -
KxK matrix Kx1 vector

for k components
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Dealing with Offset
a Actually want k+1 values (B,) 5, ..., B )

Y =P+ B Xq + oo+ P X
m S0 view each k-tuple x as k+1 tuple [1, X]

fo=T, T, -.0s f a datapoint t
2 = )
% il +
- _— = B h = =
S B g B z
S > %
= ) 2 »
? ] 7
J J
b g g weights observed responses

K+1 component values
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Another Approach:

Gradient Descent

Skip 2009

m But matrix solutionis O(m*d)

m = #training instances; d = #features
matrix inversion...

m Goal: Find w;'s that minimize squared error

err(w) = (2 [t —w x]2 )/m

m Why not use Gradient Descent!

aka Delta Rule, Adaline Rule, Widrow-Ho Rule,
LMS Rule, Classical Conditioning

13
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Local Search via Gradient Descent

Err(w) '

Gradient Vector

. » - . . =
wd w3l w2 o owl  wi W

Start w/ (random) weight vector w'.
Repeat until converged v bored

Compute Gradient

Ferriwt 2err(wt 2err(wt
Verr(w') = ( IGv) PeIT(w) .. DeTIw })
Let witl = wt 4+ pVerr(wt)

If CONVERGED: Return(w?')



Gradient-Descent vs Matrix-Inversion

Pro: Gradient Descend

advantages
~Biologically plausible
Each iteration costs only O(mn)

If uses < m iterations,
faster than Matrix Inversion!

More easily parallelizable

Con: Gradient Descent
disadvantages

m It's moronic...
essentially a slow way to build XTX matrix,

then solve a set of linear equations
m If nis small, it's especially outrageous.

If n is large then direct matrix inversion
method can be problematic

but not impossible if you want to be
efficient.

m Need to choose a good learning rate --
how?

m Matrix inversion takes predictable time.

You can't be sure when gradient descent
will stop.

15



"
Computing the Gradient

err(w) = (2 [t —w x0]2) /m

derr(w) 9 (1 & 1)
awj - aWj (mlzz:‘eﬂ;(w)j — m;awj €F}”Z(W)

2
derr.(w) 0 L
= X.. |—1.
o X

derr(w) derr(w) 0 err(w)}

,,,,,

Then descend a distance n along gradient {

ow,  ow ow,
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" S
Gradient Descent Algorithm

feature |
Gradient-Descent( S : training examples; ne R+) @ !
%S ={[xD t0]},... \X"
% X = vector of input values; t is target output value 7
% 1 is learning rate (eg, 0.05) \\\\ -
= Initialize each w;to small random value ¥ x () —» X

]
Typically € [-0.05, +0.05] \2

m  Until termination condition is met, do

Initialize each AW < 0

. N
Foreach[x(), 1) ] e S, do AW,

m Set EO « i) —w - x0)
m Foreach |, do

AW, < AW, + r(i) x(i)j

For each | do
W < W; + 1 Aw;
m Returnw
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e

AW —

feature |

-~

0. New w
1. For each row I, compute
a. Aw =0
b. E0) = t() —w - x0)
C. Aw += E0 x()
[ ... AW, += E ]

2. Incrementw + n Aw

AW,

18
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Batch Gradient Descent:

1.
2.

Do until satisfied

Compute gradient Verrg[w]
w «— w — nVerrg[w]

On-Line Gradient Descent:

Do until satisfied
For each training example (X,y) in S

1. Compute gradient Verr( ,[w]
2. wWew —nVerr,,[w]
err{x,yj [“'F] = (y — W 'T')E
errglw] = Z errpe ) [w] = Z (y —w-x)?
(x,y)ES (x,y)eS

On-Line Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely
if 7 small enough

19



" A
Comments on On-Line Mode

m Stochastic gradient descent may avoid
local minima as “noisier”

aka “Stochastic Gradient Descent”,
“Robbins-Munro algorithm"

m Some versions store all training examples;

make repeated passes through them until
convergence

20



" S
Learning Rates and Convergence

m Learning rate n = “step size”
m Convergence whenever...

m 1 sophisticated alg's
(Newton's method; Line Search; ...)
that choose step size automatically, converge faster.

m 3 only one “basin” for linear threshold units
= local minimum is global minimum!

m Good starting point = algorithm converges faster

21



" A
Results wrt Gradient Descent

Gradient descent (Delta training rule)

m guaranteed to converge to hypothesis with
minimum squared error (eventually!)
if

m Sufficiently small learning rate n

m . ..even when training data
contains noise
not separable!

22



" A
What about other features?

m Data:
Not linear!!
Perhaps
f(X) = 0, X2 + 0y X + 0O
m How to fit 77?7

: \x/x2x1

18 25 5 1 543
11 4% 4|l 2| op = 1
38 7 49| 7| 1 o= -2

6 f 3}\ o] 3| 1 0= 3
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General Approach

Transformed values
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Xqy weey Xg a datapoint
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" S
General Linear Regression Task

m Given set of labeled Instances: { [x;, t] }

m Learn: Mapping from x to t(x)
Can use BASIS funct|ons H={h,(x),... h(x)}

m EQ: X2, X3, (X4 X3), X; SIN(X

(Basis) linear mapping: t =2 B.
Find coeffs B = (B,..., B, )

= Model: Observed value t'(x) = 2 B hi(x) + €
where € ~ N(0, 62)

Model is LINEAR in these bases... even if bases are NOT linear




" A
Features/Basis Functions

m Polynomials
1, X, X2, x3, x4, ..
m Indicators
m Gaussian densities
m Step functions or sigmoids
m Sinusoids (Fourier basis)
m Wavelets
m Anything you can imagine...
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"
Fitting Parameterized Function

m Least squares
fitting of a
function of two
Inputs

m find parameters
of f,(x) that
minimize the
sum-of-squared
vertical errors

DN
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" A
What if t0) is a vector?

m Nothing changes!
m Scalar prediction:

Solution: B*=(X"X)" X"t
m Vector prediction:

Solution: B*=(X"X)"'X'T
Target MATRIX

28



" A
Applications Corner 1
m Predict stock value over time from

past values

other relevant vars
m €.9., weather, demands, etc.

29



" S
Applications Corner 2

m Measure

temperatures at some
locations

m Predict temperatures
throughout the | "
environment o iﬂ‘i MR

[Guestrin et al. '04]

1M
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Applications Corner 3

m Predict when a sensor will fail

based several variables
m age, chemical exposure, number of hours used,...
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" A
Outline

y(a:Ov

m Linear Regression

MLE = Least Squares.
Basis functions

™~ m Evaluating Predictors
Training set error vs Test set error
Cross Validation

m Model Selection

Bias-Variance analysis
Regularization, Bayesian Model

32



"
Training Set Error

m Choose a loss function
eg, squared error (L,) for regression
m Given a labeled dataset S,
learn optimal predictor wg

W, = w(S) = argmm Z( Zwihl.(x)}

(X,t)eS

S = .
Tralning dats”

compute empirical error (of any w )

erry(w) _F ( ZWhi(X)j

| (X,t)eS

m Training set error: errg( Wg)

33



"“# Training Set Error as a function of
Model Complexity

Error

errs( W)

“Model Complexity”

... €Qg, #basis functions;

degree of poly, ...
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" A
True Prediction Error M

licki oraphorpress  Example

e of polnomial: (13 v

© FitxtoY
Caloulate | View Polynomial | Reset

m WARNING: Training set error can be poo
measure of “quality” of solution

m Want: error over all possible input points,
not just training data:

Prediction error:

err,(W) = E_, Kt(X) - Zi w;h, (X))2‘
= [(=X w0 ) Dx.t) dxd

X,

Requires D(x,t) — unknown! 35




"4 Prediction Error as a function of
Model Complexity

Error

“Model Complexity”

\ ... g, #basis functions;

degree of poly, ...




" S
errs( Ws ) vs errp( Wg )

Error versus NumberOfWeightUpdates

o 7]

0.01
Training set error * -

0.009
True error +
0.008 7

0.007
0.006
0.003
0.004
0.003
0.002

Error

0 5000 10000 15000 20000

Number of weight updates ,



» BN
But ...

m errg( Ws ) #errp ( Ws )

m errg( Wg ) =
Eval wg on training set S
only approximation to errp( Wg )
... can be TOO optimistic!

m “Cheating”
Like being evaluated on test
after seeing SAME test. . .

fix)
A
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" J
Computing Prediction Error

m Computing prediction

erry (W) = | (=" w0 DXty dxdr

Depends on D(x, t) for every x — typically not known
Hard integral

m New sample: a set of i.i.d. points

S'={(X1,t1), -5 (Xppotp) } from D(x,t)

th(x)

err,(Wg) = er@w@ YT
(

XZ)S

2




"
Training Error # Prediction Error

m Sampling approximation of prediction error:
errg( Wg ) = errp( Wg )

m [raining error :
errg( Wg ) # errp( Wg )

m Very similar equations!!!

Why is training error a bad measure of
prediction error?

40



"
Training Error # Prediction Error

Because you cheated!!!

Training error is good estimate for a single w,
But you optimized w with respect to the training error,

and found w that is good for this set of instances

Training error is a (optimistically) biased
estimate of prediction error

m Very similar equations!!!
Why is training error a bad measure of
prediction error?

41



TeSt Set Error Ws =Ww'(S) =argmin ) (t—zi:wihi(x)jz

(X,t)eS

m Randomly split dataset into two parts:
Training data — S = {X4,..., Xntrain}
Test data - S'= {thrain+1=---= thrain+Ntest}
m Use fraining data to optimize w = wg

m Test set error:
Given wg, estimate error using:

ISI(Z ( ZWh"(X)jz

X,t)EeS'

errg(Wg) =

42



Estimating Error: S
Hold-Out Set 5; <

m RunlearnerL(.))on S

N

— produce regressor wg = L(S)
What is true error errg(wg) ? S, -

m Want to return [wg, errp(wg) |
... or at least [wg, e ] where e = errp(wg)

m Divide S into disjoint S, S,
Train on S;: computing wg_ = L(S,)
Teston S.,: errs, (W, )
Return [wg, errg (wWsg.) |

m Why is errg (Wg ) = errp(wg) ?
As S;~ S, wg =L(S,) =~ L(S) = wq
errs (Wg,) is estimate of errp(wg,) = errp(wg) 43



S e
Challenge wrt Hold-Out Set >t~

m How to divide S into disjoint S, S, S2 {

o AS |S1| < |S|5
L(S,) not as good as L(S) |
Learning curve: L(S) improves as |S| increases) o
= want S, to be large o)

O ﬂSQ(WS1) IS estimate of errp(wg)
Estimate improves as S, gets larger

— want S, to be as large as possible Lerr. () —err () = —2
JS1

m As S =5, uUS,, musttrade off
quality of classifier Wg, = L(S,)
with
accuracy of estimate ﬂsz( Ws, ) a4



" N _
Return: [Predictor + Est Quality]

Labeled data, S

l

> =

\ 1
B,
\

B. errsa(B]




"4 Test Set Error as a function of
Model Complexity

Error

“Model Complexity”

\ ... g, #basis functions;

degree of poly, ...
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- S
Estimating Error:

Cross Validation

m “Cross-Validation”

CV(data 5, algL, intk)

Divide S into k disjoint sets { S,, S,, ..., S }
Fori=1..kdo

RunLonS;=5-S5

obtain h; := L(S,)

Evaluate h on S,

errs(h) = 1/IS| = o5 [hO) —t 12

Return Average 1/k 2. errs(h)

— Less Pessimistic
as train on (k — 1)/k |S| of the data

47



"
Comments on Cross-Validation

Every point used as

Test 1 time, Training K — 1 times
Computational cost for k-fold Cross-validation ... linear in k
Should use “balanced CV”

If class c; appears in m, instances,
I m .

kK|S |
Use CV(S, L, k) as ESTIMATE of true error of L(S)
Return L(S) and CV(S, L, k)
Leave-One-Out-Cross-Validation k=m !
eg, for Nearest-Neighbor
Notice different folds are correlated

U

insist each S, include such instances

5x 2-CV
Run 2-fold CV, 5 times. . .

48



" A
To Form k Balanced Folds

1. Partition the data S based on the class:
subset S, has all the positive instances,
subset S_ has all the negative instances.

2. Randomly partition each subset into k folds:

S,=U{S,,,...,S,.}

3. SJ — S+j U S'J for J=1 k

49



" _
Return: [Predictor + Est Quality]

Labeled data, S

b
C toarer

B,
\ errg(By)
~

/

[B, =errp(B) ]




" S
How many points needed for

training/testing?

m Very hard question to answer!
Too few training points, learned w is bad
Too few test points, you never know if you reached a good solution

m Bounds, such as Hoeffding’s inequality can help:

N 2
P(|6—0"|>e) < 2e 2N¢

m More on this later this semester, but still hard to answer

m [ypically:

if you have a reasonable amount of data, pick test set “large enough”
for a “reasonable” estimate of error, and use the rest for learning

if you have little data, then you need to pull out the big guns...
m e.g., bootstrapping

51



'Error as function of #Training Examples,
for a fixed Model Complexity

\/\

Error

little data infinite data
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" A
Error Estimators

X,

Gold Standard!

erry, (W) — j(t—zi Wihi(x))zD(X,t) dx dt| « Unbiased

Uses TRAIN data

errs(Wg) —m ( Zw.hi(x)j
(X,H)eS i

... Optimistic

Approx truth...

/ Unbiased
... iIf you are careful

53



" A
Error Estimators

Be careful!!!

Test set only unbiased if you never never never never
do any any any learning/adjustment/... on the test data

Eg,

If you use the test set to select the degree of the polynomial...
no longer unbiased!!!

(We will address this problem later in the semester)

erg(We) = ( Zwihi(x)j

IS I(X HeSs'

54



"
Finding Best Parameters

m Want to learn what “parameters” work best?

Best model (RBF vs linear? degree of polynomial)?
Feature selection? Trade-off parameter?...

argmin, { errg( L(S,v)) }

m #17: Try each value on entire dataset.
Report which has smallest TRAINING SET error?

argmin, { errg( L(S,V)) }

m #27: For each value, run 5-fold C-V (wrt entire dataset)
v =argmax, { E[ errg; (L(S,, V) ])

m Run cross-validation on “best-value” algorithm



" ! :
Return: [Predictor + Est Quality]

Labeled data, S

Learner can be arbitrarily complicated

Learner

odel Selector
“m!!
earn parameters
for model m

Use same learner in ALL places ...

|. p! zeTTDuj) J



Fit-to-Data # Generalization

Error versus NumberOfWeightUpdates
T T T

0.01

Y ..

0.009 |, Training set error
True error
0.008 7
0007 I | e h; = hyp after k updates
T DN er75(hz0000) < €7s(h10000) DUt

0.005 \ | errp, f( h20000) > errp f(h10000) !
0.004 | .
0003 | .
0.002

0 5000 10000 15000 20000

Number of weight updates

m “Overfitting"
Best “fit-to-data” can find “meaningless regularity”" in data
(coincidences in the noise)
= bad generalization behavior
m Gen'l: Hypothesis h € H overfits training data if
1 alternative hypothesis h" € H s.t.

ETT g (h) < E’ﬁ",s(h’:ﬂ
but
errps(h) > errps(h')




"
Summary of Estimating Error

m SetUp: Learner L, Estimating errp( hg)
using labeled training data S 1. Training Set Errpr
produces predictor hg = L(S) = Use hg's empirical error on S

err«( he )
; elfs\ Ng
Want errp( hs ) = Very Optimistic

g;stﬁt)entgrﬁli[z)ation Error over 5 Hold Out Error
Strioutio = Divide S=S,US,;

to evaluate predictor hg Return errg _(hg.)
to decide among possible — Slightly Peasimistic
predlc’ltors | 3. Cross Validation
to evaluate learner | » 1k X errs(L(S.)
m But depends on D(x,t): = Slightly Less Pessimistic
not known!

For evaluating GENERAL PREDICTORS
- classifiers, regressors
* ... best values for parameters
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