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Linear Regression,

Evaluation,

Bias-Variance Tradeoff

HTF: Ch3, 7
B, Ch3

Thanks to: C Guestrin, T Dietterich, R Parr
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Outline

� Linear Regression
�MLE = Least Squares!

�Basis functions

� Evaluating Predictors
�Training set error vs Test set error

�Cross Validation

� Model Selection
�Bias-Variance analysis

�Regularization, Bayesian Model
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Prediction Problems …

� Predict housing price from:

�House size, lot size, rooms, neighborhood, …

� Predict weight from:

�Gender, height, ethnicity, ...

� Predict life expectancy increase from:

�Medication, disease state, ...

� Predict crop yield from:

�Precipitation, fertilizer, temperature, ...
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Prediction of Continuous Variables

� Predict a continuous variable 
based on set of continuous inputs:

�Eg, predict salaries from GPA

�Regression

GPA

S
a

la
ry
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Best LINEAR Fit

� Finding LINEAR fit

�Find (β0, β1 ,…, βk )

y = β0 + β1 x1 + … + βk xk

� Linear least squares fitting with X ∈ℜ2

� Seek the linear function of X that 
minimizes the sum of squared residuals 
from Y 
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The Linear Regression Task

� Given set of labeled Instances: { [xj, tj] }

GPA, Age, ShoeSize, … → Salary

Eg: [ (97, 14, 8);    150 ]

[ (93,  24, 12);  200 ]
[ (88,  20, 9);      45 ]

� Learn: Mapping from  x to  t(x)

�Direct linear mapping:  t(x) ≈ β0 + ∑j ββββj xj

�Find coeffs ββββ = (β0 , ββββ1,…, ββββk)

� Model: Observed value  t(x)  = β0 + ∑j ββββj xj + ε
where ε ~ N(0, σ2 )



7

Training a Regressor
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Best Values of β ?

� Model: Observed value is    t(x)  =  ∑j βj xj + ε
where ε ~ N(0, σ2 )

� Find MostLikely values of ββββ … (MLE)
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Max Likely Estimate

�Least-squares Linear Regression   
is 

MLE for Gaussians !!!

[ ] 







∑−= ∑

j

i

j

ii

j

ww xtDP
2

minarg),|(lnmaxarg βσββββ

[ ] 







∑−−








= ∑

j

i

j

ii

j
xtNDP

2

22

1

2

1
ln),|(ln β

σπσ
σββββ



10

Regression in Matrix Notation
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Regression solution 

= simple matrix operations

where

K×K matrix 
for k components 

K×1 vector

)()(minarg* tXtX −−= ββββββββββββ ββββ
T

A-1

bAtXXX
11)(*: −− == TT

Solution ββββ
b

A = XTX = b = XTy =

Setting derivative to 0 yields:



Dealing with Offset

� Actually want  k+1 values (β0, β1 ,…, βk )

y = β0 + β1 x1 + … + βk xk

� So view each k-tuple x as k+1 tuple [1, x]
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Another Approach: 

Gradient Descent

� But matrix solution is   O(m4d)
� m = #training instances;  d = #features
� matrix inversion…

� Goal: Find wi's that minimize squared error

� err(w) = (∑i [ t(i) – w x(i)]2 )/m

� Why not use Gradient Descent!
� aka Delta Rule, Adaline Rule, Widrow-Ho Rule,

LMS Rule, Classical Conditioning

Skip 2009
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Local Search via Gradient Descent
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Gradient-Descent vs Matrix-Inversion

Pro: Gradient Descend 
advantages

� ≈Biologically plausible
� Each iteration costs only O(mn)

� If uses  < m iterations,
faster than Matrix Inversion!

� More easily parallelizable

Con: Gradient Descent 
disadvantages

� It's moronic...
essentially a slow way to build XTX matrix,

then solve a set of linear equations

� If n is small, it's especially outrageous.

If n is large then direct matrix inversion 
method can be problematic

but not impossible if you want to be 
efficient.

� Need to choose a good learning rate --
how?

� Matrix inversion takes predictable time.

You can't be sure when gradient descent 
will stop.
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Computing the Gradient

err(w) = (∑i [ t(i) – w x(i)]2) /m
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Then descend a distance η along gradient
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Gradient Descent Algorithm

Gradient-Descent( S : training examples;  η∈ℜ+ )
% S = { [ x(i) , t(i) ] },…

% x = vector of input values; t is target output value

% η is learning rate (eg, 0.05)

� Initialize each wj to small random value
� Typically ∈ [–0.05, +0.05]

� Until termination condition is met, do

� Initialize each ∆wj ← 0
� For each [ x(i) , t(i) ] ∈ S, do

� Set   E(i) ← t(i) – w · x(i)

� For each j, do

�∆wj ← ∆wj + r(i) x(i)
j

� For each j do

�wj ← wj + η ∆wj
� Return w

x(i)
jx(i)

feature j

∆wj

E
(i) ←

t(
i) –

w
· x

(i)
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x(i)
jx(i)

feature j

∆wj

E(i)

0. Fix w

1. For each row i, compute

a. ∆w = 0
b. E(i) = t(i) – w · x(i)

c. ∆w += E(i) x(i)

[ … ∆wj += E(i) x(i)
j … ]

2. Increment w += η ∆w

∆w

0. New w
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Comments on On-Line Mode

� Stochastic gradient descent may avoid 
local minima as “noisier”

�aka “Stochastic Gradient Descent“,

“Robbins-Munro algorithm"

� Some versions store all training examples;

make repeated passes through them until 
convergence
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Learning Rates and Convergence

� Learning rate  η ≡ “step size”

� Convergence whenever…

� limt→∞ηt = 0

� ∑ ηt = ∞

� ∑ ηt
2 < ∞

� ∃ sophisticated alg's

(Newton's method; Line Search; …)

that choose step size automatically, converge faster.

� ∃ only one “basin” for linear threshold units

⇒ local minimum is global minimum!

� Good starting point ⇒ algorithm converges faster
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Results wrt Gradient Descent

Gradient descent (Delta training rule)

� guaranteed to converge to hypothesis with

minimum squared error (eventually!)

if

� Sufficiently small learning rate η

� . . . even when training data
� contains noise

� not separable!
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What about other features?

� Data:

�Not linear!!

�Perhaps 

f(x) = α2 x2 + α1 x + α0

� How to fit ???

α2 = -0.179
α1 =   1.938
α0 =   1.5435

-2

7

3

18

11

38

6

t x

25 5 1

4 -2 1

49 7 1

9 3 1

x2 x    1

α2 =    1
α1 =   -2

α0 =    3



24

General Approach
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General Linear Regression Task

� Given set of labeled Instances: { [xj, tj] }

� Learn: Mapping from  x to  t(x)

�Can use BASIS functions: H = { h1(x), … hr(x) }

� Eg: xi
2, xi

3, (x1 x3), xi sin(xi), …

� (Basis) linear mapping:  t(x) ≈ ∑j βj hj(x) 

�Find coeffs β = (β1,…, βr )

� Model: Observed value t*(x)  =  ∑j βj hj(x) + ε
where ε ~ N(0, σ2 )

Model is LINEAR in these bases… even if bases are NOT linear
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Features/Basis Functions

� Polynomials
�1, x, x2, x3, x4, ..

� Indicators

� Gaussian densities

� Step functions or sigmoids

� Sinusoids (Fourier basis)

� Wavelets

� Anything you can imagine…
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� Least squares 
fitting of a 
function of two 
inputs

� Find parameters 
of f

θ
(x) that 

minimize the 
sum-of-squared 
vertical errors

Fitting Parameterized Function
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What if t(i) is a vector?

� Nothing changes!

� Scalar prediction:

� Vector prediction:

tXXX
TT

Solution
1)(*: −=ββββ

TTTTTT
Solution XXX

1)(*: −=ββββ
Target MATRIX
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Applications Corner 1

� Predict stock value over time from

�past values

�other relevant vars

� e.g., weather, demands, etc.
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Applications Corner 2

� Measure 

temperatures at some 

locations

� Predict temperatures 

throughout the 

environment
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Applications Corner 3

� Predict when a sensor will fail

�based several variables

� age, chemical exposure, number of hours used,…
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Outline

� Linear Regression
�MLE = Least Squares!

�Basis functions

� Evaluating Predictors
�Training set error vs Test set error

�Cross Validation

� Model Selection
�Bias-Variance analysis

�Regularization, Bayesian Model
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Training Set Error
� Choose a loss function

� eg, squared error (L2) for regression

� Given a labeled dataset S, 
learn optimal predictor wS
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�compute empirical error (of any w )

S = “Training data”

� Training set error:    errS( wS )



34

Training Set Error as a function of 

Model Complexity
E

rr
o
r

“Model Complexity”

… eg, #basis functions; 

degree of poly, …

errS( wS )
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True Prediction Error

� WARNING: Training set error can be poor 
measure of “quality” of solution

� Want: error over all possible input points, 
not just training data:

�Prediction error:
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Prediction Error as a function of 

Model Complexity

errS( wS )

“Model Complexity”

… eg, #basis functions; 

degree of poly, …

errD( wS )

E
rr

o
r



37

errS( wS ) vs errD( wS )
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But …

� errS( wS ) ≠ errD ( wS )

� errS( wS ) ≡
Eval wS on training set S

� only approximation to errD( wS )

� ... can be TOO optimistic!

� “Cheating”

Like being evaluated on test

after seeing SAME test. . .

errS( w ) =  0
errS( w ) >  0
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Computing Prediction Error

� Computing prediction

� Depends on D(x,  t) for every x – typically not known

� Hard integral

� New sample: a set of i.i.d. points 

S’={(x1,t1), …, (xM,tM) } from D(x,t)
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Training Error ≠ Prediction Error

� Sampling approximation of prediction error:

errS’( wS ) ≈ errD( wS ) 

� Training error :   

errS( wS ) ≈ errD( wS ) 

� Very similar equations!!! 
�Why is training error a bad measure of 

prediction error?
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Training Error ≠ Prediction Error

� Sampling approximation of prediction error:

errS’( wS ) ≈ errD;t( wS ) 

� Training error :   

errS( wS ) ≈ errD;t( wS ) 

� Very similar equations!!! 
�Why is training error a bad measure of 

prediction error?

Because you cheated!!! 

Training error is good estimate for a single w,
But you optimized w with respect to the training error, 
and found w that is good for this set of instances

Training error is a (optimistically) biased 
estimate of prediction error 
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Test Set Error

� Randomly split dataset into two parts: 

�Training data – S = {x1,…, xNtrain}

�Test data       – S’ = {xNtrain+1,…, xNtrain+Ntest}

� Use training data to optimize w = wS

� Test set error:
Given wS, estimate error using:
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Estimating Error: 

Hold-Out Set
� Run learner L(.) on S

– produce regressor wS = L(S)
What is true error errD(wS) ?

� Want to return    [wS, errD(wS) ] 
… or at least [wS, e ] where e ≈ errD(wS) 

� Divide S into disjoint S1, S2

� Train on S1: computing wS1
:= L(S1)

� Test on S2: errS2
(wS1

)

Return [wS, errS2
(wS1

)  ] 

� Why is errS2
(wS1

) ≈ errD(wS) ?
� As S1 ≈ S, wS1 

= L(S1) ≈ L(S) = wS

� errS2
(wS1

) is estimate of errD(wS1) ≈ errD(wS) 

S

S1

S2
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Challenge wrt Hold-Out Set

� How to divide S into disjoint S1, S2

� As  |S1| < |S|,
L(S1) not as good as L(S)

Learning curve: L(S) improves as |S| increases)

⇒ want S1 to be large

� errS2
(wS1

) is estimate of errD(wS)

Estimate improves as S2 gets larger

⇒ want S2 to be as large as possible

� As S = S1 ∪ S2, must trade off
quality of classifier wS1

= L(S1)

with

accuracy of estimate  errS2
( wS1

)

S

S1

S2

||
|)()(|

S
herrherr DS

α
≈−



Return:  [Predictor + Est Quality]
Labeled data, S

[ β,             ]

Learner

S1

S2

Learner

β1

≈errD(β)errS2(β1)
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Test Set Error as a function of 

Model Complexity

“Model Complexity”

… eg, #basis functions; 

degree of poly, …

errS( wS )

errD( wS )

errS’( wS )

E
rr

o
r
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Estimating Error:

Cross Validation

� “Cross-Validation”
CV( data S, alg L, int k )
Divide S into k disjoint sets  { S1, S2, …, Sk }
For i = 1..k do
Run L on S-1 = S – Si
obtain hi := L(S-i)
Evaluate hi on Si

errSi
(hi) = 1/|Si| ∑ 〈 x,t〉 ∈ Si

[ hi(x) − t ]2

Return Average 1/k ∑i errSi
(hi)

⇒ Less Pessimistic

as train on (k – 1)/k |S| of the data
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Comments on Cross-Validation

� Every point used as
Test 1 time, Training k – 1 times

� Computational cost for k-fold Cross-validation … linear in k

� Should use “balanced CV”
If class ci appears in mi instances,

insist each Sk include   ≈(1/k) mi/|S|   such instances

� Use CV(S, L, k) as ESTIMATE of true error of L(S)

Return L(S) and CV(S, L, k)
� Leave-One-Out-Cross-Validation  k = m !

� eg, for Nearest-Neighbor

� Notice different folds are correlated

as training sets overlap:  (k-2)/k unless k=2

� 5 ×××× 2-CV
� Run 2-fold CV, 5 times. . .

||

1

S

m

k

i≈

Can use CV to estimate parameters in general!
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To Form k Balanced Folds

1. Partition the data S based on the class:

� subset S+ has all the positive instances, 

� subset S- has all the negative instances.

2. Randomly partition each subset into k folds:

S+ = U { S+1, ..., S+k }

3. Sj = S+j U S-j for j=1..k



Return:  [Predictor + Est Quality]
Labeled data, S

[ β,  ≈errD(β) ]

Learner Learner

β1

errS1(β1)

S-1

S1

S-5

S5

…

Learner

β5

errS5(β5)

…

Average
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How many points needed for 

training/testing?

� Very hard question to answer!
� Too few training points, learned w is bad

� Too few test points, you never know if you reached a good solution

� Bounds, such as Hoeffding’s inequality can help:

� More on this later this semester, but still hard to answer

� Typically:
� if you have a reasonable amount of data, pick test set “large enough”

for a “reasonable” estimate of error, and use the rest for learning

� if you have little data, then you need to pull out the big guns…

� e.g., bootstrapping 
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Error as function of #Training Examples, 

for a fixed Model Complexity

little data infinite data

errS( wS )

errD( wS )

errS’( wS )

E
rr

o
r
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Error Estimators 
Gold Standard!

Unbiased

Uses TRAIN data

… optimistic

Approx truth…

Unbiased 

… if you are careful
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Error Estimators 
Gold Standard!

Unbiased

Uses TRAIN data

… optimistic

Approx truth…

Unbiased 

… if you are careful
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Be careful!!! 

Test set only unbiased if you never never never never
do any any any learning/adjustment/… on the test data

Eg, 

if you use the test set to select the degree of the polynomial…

no longer unbiased!!!
(We will address this problem later in the semester)



Finding Best Parameters

� Want to learn what “parameters” work best?

� Best model (RBF vs linear? degree of polynomial)? 

Feature selection?  Trade-off parameter?…

� argminv {  errD(  L( S, v) )  }

� #1?: Try each value on entire dataset.

Report which has smallest TRAINING SET error?

� argminv {  errS(  L( S, v) )  }

� #2?: For each value, run 5-fold C-V (wrt entire dataset)

� v* = argmaxv { E[ errSi ( L(S-I, v) ] )

� Run cross-validation on “best-value” algorithm



Return:  [Predictor + Est Quality]
Labeled data, S

[ β,  ≈errD(β) ]

Learner Learner

β1

errS1(β1)

S-1

S1

S-5

S5

…

Learner

β5

errS5(β5)

…

Average

Learner can be arbitrarily complicated

Learner

Model Selector

“m”

Learn parameters

for model m

Use same learner in ALL places …
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Fit-to-Data ≠ Generalization

� “Overfitting"

Best “fit-to-data" can find “meaningless regularity" in data

(coincidences in the noise)

⇒ bad generalization behavior

� Gen'l: Hypothesis h ∈ H overfits training data if

∃ alternative hypothesis h’ ∈ H s.t.
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Summary of Estimating Error

� SetUp: Learner L,

� using labeled training data S

� produces predictor hS = L(S)

� Want errD( hS )

h's Generalization Error over 
distribution D

� to evaluate predictor hS

� to decide among possible 
predictors

� to evaluate learner

� But depends on D(x,t):
not known!

Estimating errD( hS )

1. Training Set Error

� Use hS's empirical error on S

errS( hS )

⇒ Very Optimistic

2. Hold Out Error

� Divide S = S1 ∪ S2 ; 

Return errS2
(hS1

)

⇒ Slightly Pessimistic 

3. Cross Validation

� 1/k ∑i errSi
( L(S-i)

⇒ Slightly Less Pessimistic 

For evaluating GENERAL PREDICTORS

• classifiers, regressors

• … best values for parameters


