

## Linear Regression, Regularization Bias-Variance Tradeoff

Thanks to C Guestrin, T Dietterich, R Parr, N Ray

## Outline

- Linear Regression
   MLE = Least Squares.
  - □ Basis functions
- Evaluating Predictors
   Training set error vs Test set error
   Cross Validation
- Model Selection
  - □ Bias-Variance analysis
  - Regularization, Bayesian Model



#### What is best choice of Polynomial?



## Fit using Degree 0,1,3,9



4

## Comparison

- Degree 9 is the best match to the samples (over-fitting)
- Degree 3 is the best match to the source
- Performance on test data:



## What went wrong?

- A bad choice of polynomial?
- Not enough data?

□Yes





## Terms

- x input variable
  - □ x<sup>\*</sup> − new input variable
- h(x) "truth" underlying response function
- $t = h(x) + \varepsilon$  actual observed response
- y(x; D) predicted response, based on model learned from dataset D
- ŷ(x) = E<sub>D</sub>[y(x; D)] expected response, averaged over (models based on) all datasets

• Eerr = 
$$E_{D,(x^*,t^*)}[(t^*-y(x^*))^2]$$

– expected  $L_2$  error on new instance  $\mathbf{x}^*$ 

## **Bias-Variance Analysis in Regression**

• Observed value is  $t(\mathbf{x}) = h(\mathbf{x}) + \varepsilon$  $\Box \epsilon \sim N(0, \sigma^2)$ • normally distributed: mean 0, std deviation  $\sigma^2$  $\Box$  Note:  $h(\mathbf{x}) = E[t(\mathbf{x}) | \mathbf{x}]$ Given training examples,  $D = \{(\mathbf{x}_i, \mathbf{t}_i)\},\$ let y(.) = y(.; D)be predicted function, based on model learned using D • Eg, linear model  $y_w(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + \mathbf{w}_0$ using  $\mathbf{w} = MLE(D)$ 

## Example: 20 points t = x + 2 sin(1.5x) + N(0, 0.2)



## **Bias-Variance Analysis**

Given a *new* data point x\*
 return predicted response: y(x\*)
 observed response: t\* = h(x\*) + ε

The expected prediction error is ...

Eerr =  $E_{D,(x^*,t^*)}[(t^*-y(x^*))^2]$ 



Mismatch between OUR hypothesis y(.) & target h(.) Noise in distribution of target ... we can influence this ... nothing we can do

#### $Eerr = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$ Relevant Part of Loss

• Really  $y(\mathbf{x}) = y(\mathbf{x}; \mathbf{D})$  fit to data  $\mathbf{D}...$ so consider expectation over data sets D  $\Box$ Let  $\hat{\mathbf{y}}(\mathbf{x}) = E_D[\mathbf{y}(\mathbf{x}; D)]$  $= E_{D}[\{h(\mathbf{x}) - y(\mathbf{x}; D)\}^{2}]$  $= E_{D}[h(\mathbf{x}) - \hat{y}(x) + \hat{y}(x) - y(\mathbf{x}; D)]^{2}$  $= E_{D}[\{h(\mathbf{x}) - \hat{y}(\mathbf{x})\}^{2}] + 2E_{D}[\{h(\mathbf{x}) - \hat{y}(\mathbf{x})\}\{y(\mathbf{x}; D) - E_{D}[y(\mathbf{x}; D)]\}\}$ +  $E_{D}[\{ y(\mathbf{x}; D) - E_{D}[y(\mathbf{x}; D)] \}^{2}]$ 

$$= \{h(\mathbf{x}) - \hat{y}(\mathbf{x})\}^{2} + E_{D}[\{y(\mathbf{x}; D) - \hat{y}(\mathbf{x})\}^{2}]$$

### 50 fits (20 examples each)



13

## Bias, Variance, Noise



50 fits (20 examples each)



## **Understanding Bias**



- Measures how well our approximation architecture can fit the data
- Weak approximators

   (e.g. low degree polynomials)
   will have high bias
- Strong approximators
   (e.g. high degree polynomials)
   will have lower bias







Understanding Variance

$$E_{D}[\{y(\mathbf{x}; D) - \hat{y}_{D}(\mathbf{x})\}^{2}]$$

- No direct dependence on target values
- For a fixed size D:
  - Strong approximators tend to have more variance ... different datasets will lead to DIFFERENT predictors
  - Weak approximators tend to have less variance ... slightly different datasets may lead to SIMILAR predictors
- Variance will typically disappear as  $|D| \rightarrow \infty$

## Summary of Bias, Variance, Noise

Eerr = E[ 
$$(t^* - y(x^*))^2$$
] =
E[  $(y(x^*) - \hat{y}(x^*))^2$ ]
+  $(\hat{y}(x^*) - h(x^*))^2$ 
+ E[  $(t^* - h(x^*))^2$ ]
= Var(  $h(x^*)$ ) + Bias(  $h(x^*)$ )<sup>2</sup> + Noise

Expected prediction error = Variance + Bias<sup>2</sup> + Noise

## Bias, Variance, and Noise

■ Bias: ŷ(**x**\*)- h(**x**\*)

 $\Box$  the best error of model  $\hat{\mathbf{y}}(\mathbf{x}^*)$  [average over datasets]

#### • Variance: $E_D[(y_D(\mathbf{x}^*) - \hat{y}(\mathbf{x}^*))^2]$

How much y<sub>D</sub>(x\*) varies from one training set *D* to another

#### ■ Noise: E[ $(t^* - h(\mathbf{x}^*))^2$ ] = E[ $\varepsilon^2$ ] = $\sigma^2$

□ How much t<sup>\*</sup> varies from  $h(\mathbf{x}^*) = t^* + \varepsilon$ □ Error, even given PERFECT model, and ∞ data

## 50 fits (20 examples each)



## Predictions at x=2.0



## 50 fits (20 examples each)



### Predictions at x=5.0



22

## Observed Responses at x=5.0



## Model Selection: Bias-Variance

- $C_1$  "more expressive than"  $C_2$ iff representable in  $C_1 \Rightarrow$  representable in  $C_2$ " $C_2 \subset C_1$ "
- Eg, LinearFns ⊂ QuadraticFns

0-HiddenLayerNNs  $\subset$  1-HiddenLayerNNs

 $\Rightarrow$  can ALWAYs get better fit using C<sub>1</sub>, over C<sub>2</sub>

But ... sometimes better to look for  $y \in C_2$ 

 $C_1$ 



## Why?

• 
$$C_2 \subset C_1 \Rightarrow$$
  
 $\forall y \in C_2$   
 $\exists x^* \in C_1$  that is at-least-as-good-as y

#### But given *limited sample,* might not find this best x<sup>\*</sup>

Approach: consider Bias<sup>2</sup> + Variance!!

#### Bias-Variance tradeoff – Intuition

- Model too "simple" ⇒ does *not* fit the data well
   □ A biased solution
- Model too complex ⇒ small changes to the data, changes predictor a lot
   A high-variance solution

## Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
  - $\Box$  More complex class  $\Rightarrow$  less bias
  - $\Box$  More complex class  $\Rightarrow$  more variance







Model Complexity (df)

- Behavior of test sample and training sample error as function of model complexity
  - light blue curves show the training error err,
  - light red curves show the conditional test error ErrT
  - for 100 training sets of size 50 each
- Solid curves = expected test error Err and expected training error E[err].



Based on different regularizers

# Effect of Algorithm Parameters on Bias and Variance

 k-nearest neighbor:
 increasing k typically increases bias and reduces variance

decision trees of depth D:

increasing D typically increases variance and reduces bias

**RBF SVM with parameter \sigma:** 

increasing σ typically increases bias and reduces variance

#### a datapoint

N data points

#### Least Squares Estimator $X_1, ..., X_k$ • Truth: $f(x) = x^{T}\beta$ Observed: $y = f(x) + \varepsilon$ $E[\varepsilon] = 0^{X} =$ Least squares estimator $\boldsymbol{\ell}(\mathbf{X}_{0}) = \mathbf{X}_{0}^{\mathsf{T}}\boldsymbol{\beta} \qquad \boldsymbol{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$ K component values $\Box$ Unbiased: $f(x_0) = E[\ell(x_0)]$ $f(x_0) - E[\ell(x_0)]$ $= \mathbf{x}_0^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{E} [\mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}]$ $= \mathbf{X}_0^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{E} [\mathbf{X}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon})]$ $= \mathbf{x}_0^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{E} [\mathbf{x}_0^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{x}_0^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \boldsymbol{\varepsilon} ]$ $= \mathbf{X}_0^{\mathsf{T}}\boldsymbol{\beta} - \mathbf{X}_0^{\mathsf{T}}\boldsymbol{\beta} + \mathbf{X}_0^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{E}[\boldsymbol{\varepsilon}] = \mathbf{0}$

33

## Gauss-Markov Theorem

• Least squares estimator  $f(x_0) = x_0^T (X^T X)^{-1} X^T y$ 

 $\Box$  ... is unbiased:  $f(x_0) = E[f(x_0)]$ 

 $\Box$  ... is linear in **y** ...  $\mathbf{f}(\mathbf{x}_0) = \mathbf{c}_0^{\mathsf{T}}\mathbf{y}$  where  $\mathbf{c}_0^{\mathsf{T}}$ 

Gauss-Markov Theorem:

*Least square estimate* has the minimum variance among all linear unbiased estimators.

BLUE: Best Linear Unbiased Estimator

- Interpretation: Let  $g(x_0)$  be any other ...
  - $\Box$  unbiased estimator of  $f(x_0)$  ... ie,  $E[g(x_0)] = f(x_0)$
  - $\Box$  that is linear in **y** ... ie,  $g(x_0) = c^T y$

then Var[ $\mathbf{f}(x_0) ] \leq Var[g(x_0)]$ 

### Variance of Least Squares Estimator

#### $y = f(x) + \varepsilon$ $Var(\varepsilon) = \sigma \varepsilon E[\varepsilon] = 0$ • Least squares estimator $\mathbf{f}(\mathbf{x}_0) = \mathbf{x}_0^{\mathsf{T}}\underline{\beta} \quad \underline{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}^{\mathsf{T}}$ Variance: $E[(\ell(x_0) - E[\ell(x_0)])^2]$ $= E[(\ell(x_0) - f(x_0))^2]$ = E[ $(\mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{\beta} - \mathbf{x}_0^T \beta)^2$ ] = E[ $(\mathbf{X}_0^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) - \mathbf{X}_0^{\mathsf{T}}\boldsymbol{\beta})^2$ ] = E[ $(\mathbf{X}_0^{\mathsf{T}}\boldsymbol{\beta} + \mathbf{X}_0^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\varepsilon} - \mathbf{X}_0^{\mathsf{T}}\boldsymbol{\beta})^2$ ] = E[ $(X_0^T(X^TX)^{-1}X^T\varepsilon)^2$ ] $= \sigma_{s}^{2} (p/$

... in "in-sample error" model ...

## **Trading off Bias for Variance**

- What is the best estimator for the given linear additive model?
- Least squares estimator  $\boldsymbol{\ell}(\mathbf{x}_0) = \mathbf{x}_0^{\mathsf{T}} \underline{\beta} \quad \underline{\beta} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ 
  - is BLUE: Best Linear Unbiased Estimator
    - Optimal variance, wrt unbiased estimators
    - $\Box$  But variance is O( p / N ) ...
- So if FEWER features, smaller variance...
  ... albeit with some bias??

## Feature Selection

- LS solution can have large variance
   variance ~ p (#features)
- Decrease p ⇒ decrease variance... but increase bias
- If decreases test error, do it!
  - $\Rightarrow$  Feature selection
- Small #features also means:
  - □ easy to interpret

## Statistical Significance Test

•  $\underline{\mathbf{Y}} = \beta_0 + \sum_i \beta_i \mathbf{X}_i$ 

Q: Which X<sub>i</sub> are relevant?

A: Use statistical hypothesis testing!

Use simple model:

 $Y = \beta_0 + \sum_i \beta_i X_i + \epsilon$   $\epsilon \sim N(0, \sigma_e^2)$ 

• Here  $\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma_e^2)$ 

• USE 
$$z_j = \frac{p_j}{\hat{\sigma}\sqrt{v_j}}$$

$$\hat{\sigma} = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

v<sub>i</sub> is the *j*<sup>th</sup> diagonal element of (X<sup>7</sup>X)<sup>-1</sup>
Keep variable X<sub>i</sub> if z<sub>i</sub> is large...

## Measuring Bias and Variance

In practice (unlike in theory), only ONE training set D

 Simulate multiple training sets by bootstrap replicates

D' = {x | x is drawn at random with replacement from D }

 $\Box |\mathsf{D}'| = |\mathsf{D}|$ 

## Estimating Bias / Variance



## Estimating Bias / Variance



## Average Response for each x<sub>i</sub>

X<sub>r</sub>

 $X_1$ 



 $\underline{h(x_{j})} = \sum_{\{i: x \in Ti\}} h_{i}(x_{j}) / ||\{i: x \in T_{i}\}||_{42}$ 

## Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S S<sub>1</sub>, ..., S<sub>B</sub>
- Apply learning alg to each replicate S<sub>b</sub> to obtain hypothesis h<sub>b</sub>
- Let  $T_b = S \setminus S_b$  = data points not in  $S_b$ (*out of bag* points)
- Compute predicted value h<sub>b</sub>(x) for each x ∈ T<sub>b</sub>

## **Estimating Bias and Variance**

• For each  $x \in S$ ,

□ observed response y

 $\Box$  predictions  $y_1, ..., y_k$ 

- Compute average prediction  $h(x) = ave_i \{y_i\}$
- Estimate bias: <u>h(x)</u> y

Estimate variance:

 $\Sigma_{\{i: \ x \ \in \ Ti\}} \ ( \ h_i(x) - \underline{h(x)} \ )^2 \ / \ (k-1)$ 

Assume noise is 0

## Outline

- Linear Regression
   MLE = Least Squares.
  - Basis functions
- Evaluating Predictors
   Training set error vs Test set error
   Cross Validation
- Model Selection
  - Bias-Variance analysis
  - □ Regularization, Bayesian Model



## Regularization

Idea: Penalize overly-complicated answers
 Regular regression minimizes:

$$\sum_{i} \left( y(\mathbf{X}^{(i)}; \mathbf{W}) - t_{i} \right)^{2}$$

Regularized regression minimizes:

$$\sum_{i} \left( y(\mathbf{x}^{(i)}; \mathbf{w}) - t_{i} \right)^{2} + \lambda \|\mathbf{w}\|$$

Note: May exclude constants from the norm

## **Regularization: Why?**

- For polynomials, extreme curves typically require extreme values
- In general, encourages use of few features
   only features that lead to a substantial increase in performance
- Problem: How to choose  $\lambda$

## Solving Regularized Form

Solving 
$$w^* = \arg \min_{w} \left[ \sum_{j} \left[ t^j - \sum_{i} w_i x_i^j \right]^2 \right]$$
  
$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

Solving 
$$w^* = \arg\min_{w} \left[ \sum_{j} \left[ t^j - \sum_{i} w_i x_i^j \right]^2 + \lambda \sum_{i} w_i^2 \right]$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{t}$$

## Regularization: Empirical Approach

#### Problem:

magic constant  $\lambda$  trading-off complexity vs. fit

#### Solution 1:

- □ Generate multiple models
- Use lots of test data to discover and discard bad models
- Solution 2: k-fold cross validation:
  - $\square$  Divide data S into k subsets { S<sub>1</sub>, ..., S<sub>k</sub> }
  - $\Box$  Create validation set  $S_{-i} = S_i S_i$ 
    - Produces k groups, each of size (k -1)/k
  - $\Box$  For i=1..k: Train on S<sub>-i</sub>, Test on S<sub>i</sub>
  - □ Combine results ... mean? median? ...

## A Bayesian Perspective

- Given a space of possible hypotheses H={h<sub>j</sub>}
- Which hypothesis has the highest posterior:

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

- As P(D) does not depend on h: argmax P(h|D) = argmax P(D|h) P(h)
- "Uniform P(h)" ⇒ Maximum Likelihood Estimate
   □ (model for which data has highest prob.)
- ... can use P(h) for regularization ...

## **Bayesian Regression**

- Assume that, given x, noise is iid Gaussian
- Homoscedastic noise model (same σ for each position)



## Maximum Likelihood Solution

$$P(D \mid h) = P(t^{(1)}, ..., t^{(m)} \mid y(\mathbf{X}; \mathbf{W}), \sigma) = \prod_{i} \frac{e^{\frac{-(t^{(i)} - y(\mathbf{X}; \mathbf{W}))^{2}}{2\sigma^{2}}}}{\sqrt{2\pi\sigma^{2}}}$$

MLE fit for mean is

- just linear regression fit
- does not depend upon  $\sigma^2$

## Bayesian learning of Gaussian parameters

Conjugate priors Mean: Gaussian prior □ Variance: Wishart Distribution Prior for mean:  $P(\mu$ <sup>)</sup> P(μ |η,λ) 2λ

η

x

Remember this??

 $=e^{\frac{-(\mu-\lambda)}{2\lambda^2}}$ 

## **Bayesian Solution**

# Introduce prior distribution over weights $p(h) = p(\mathbf{w} \mid \lambda) = N(\mathbf{w} \mid 0, \lambda^2 I)$

Posterior now becomes:  $P(D \mid h)P(h) = P(t^{(1)}, ..., t^{(m)} \mid y(\mathbf{X}; \mathbf{W}), \sigma) P(\mathbf{W})$   $\frac{-(t^{(i)} - y(\mathbf{x}^{(0)}; \mathbf{W}))^{2}}{2} = \frac{-w^{T}w}{2}$ 

$$= \prod_{i} \frac{e^{2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} \frac{e^{2\lambda^{2}}}{\sqrt{2\pi\lambda^{2}}^{k}}$$

## Regularized Regression vs Bayesian Regression

## Regularized Regression minimizes:

$$\sum_{i} \left( t_{i} - y(\mathbf{X}^{(i)}; \mathbf{W}) \right)^{2} + \kappa \|\mathbf{W}\|$$

Bayesian Regression maximizes:



These are identical (up to constants) ... take log of Bayesian regression criterion 55

## Viewing L<sub>2</sub> Regularization

$$w^* = \arg\min_{w} \left[ \sum_{j} \left[ t^j - \sum_{i} w_i x_i^j \right]^2 + \lambda \sum_{i} w_i^2 \right]$$

Using Lagrange Multiplier...

$$\Rightarrow w^* = \arg\min_{w} \left[ \sum_{j} \left[ t^j - \sum_{i} w_i x_i^j \right]^2 \right]$$
  
s.t. 
$$\sum_{i} w_i^2 \leq \omega$$

2110



## What you need to know

- Regression
  - □ Optimizing sum squared error == MLE !
  - □ Basis functions = features
  - Relationship between regression and Gaussians
- Evaluating Predictor
  - □ TestSetError ≠ Prediction Error
  - Cross Validation
- Bias-Variance trade-off
   Model complexity ...



- Regularization ≈ Bayesian modeling
- L<sub>1</sub> regularization prefers 0 weights!