HTF: Ch3, 7
 B: Ch3

Linear Regression, Regularization Bias-Variance Tradeoff

Outline

- Linear Regression
\square MLE = Least Squares.

\square Basis functions
- Evaluating Predictors
\square Training set error vs Test set error
\square Cross Validation
- Model Selection
\square Bias-Variance analysis
\square Regularization, Bayesian Model

What is best choice of Polynomial?

Noisy Source Data

Fit using Degree 0,1,3,9

Comparison

- Degree 9 is the best match to the samples
 (over-fitting)
- Degree 3 is the best match to the source
- Performance on test data:

What went wrong?

- A bad choice of polynomial?
- Not enough data?
\square Yes

Terms

- \mathbf{x} - input variable
$\square \mathbf{x}^{*}-$ new input variable
- $h(\mathbf{x})$ - "truth" - underlying response function
- $\mathrm{t}=\mathrm{h}(\mathbf{x})+\varepsilon-$ actual observed response
- y(x; D) - predicted response, based on model learned from dataset D
- $\hat{y}(\mathbf{x})=E_{D}[y(\mathbf{x} ; D)]-$ expected response, averaged over (models based on) all datasets
- Eerr $=E_{D_{D,\left(x^{*}, t^{*}\right)}}\left[\left(t^{*}-y\left(\mathbf{x}^{*}\right)\right)^{2}\right]$
- expected L_{2} error on new instance \mathbf{x}^{*}

Bias-Variance Analysis in Regression

- Observed value is $\mathrm{t}(\mathbf{x})=\mathrm{h}(\mathbf{x})+\varepsilon$
$\square \varepsilon \sim N\left(0, \sigma^{2}\right)$
- normally distributed: mean 0 , std deviation σ^{2}
\square Note: $\mathrm{h}(\mathbf{x})=\mathrm{E}[\mathrm{t}(\mathrm{x}) \mid \mathbf{x}]$
- Given training examples, $\mathrm{D}=\left\{\left(\mathbf{x}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)\right\}$,
let

$$
y(.)=y(. ; D)
$$

be predicted function, based on model learned using D

- Eg, linear model $y_{w}(\mathbf{x})=\mathbf{w} \cdot \mathbf{x}+w_{0}$ using w =MLE(D)

Example: 20 points

$\mathrm{t}=\mathrm{x}+2 \sin (1.5 \mathrm{x})+\mathrm{N}(0,0.2)$

Bias-Variance Analysis

- Given a new data point \mathbf{x}^{*}
\square return predicted response: $y\left(\mathbf{x}^{*}\right)$
\square observed response:

$$
\mathrm{t}^{\star}=\mathrm{h}\left(\mathbf{x}^{\star}\right)+\varepsilon
$$

- The expected prediction error is ...

$$
\text { Eerr }=E_{D_{1}\left(x^{*}, t^{*}\right)}\left[\left(t^{*}-y\left(\mathbf{x}^{*}\right)\right)^{2}\right]
$$

Expected Loss

$$
\begin{aligned}
& \quad[y(\mathbf{x})-t]^{2}=[y(\mathbf{x})-h(\mathbf{x})+h(\mathbf{x})-t]^{2}= \\
& \quad[y(\mathbf{x})-h(\mathbf{x})]^{2} \\
& +2[y(\mathbf{x})-\mathrm{h}(\mathbf{x})][\mathrm{h}(\mathbf{x})-\mathrm{t}] \\
& +[\mathrm{h}(\mathbf{x})-\mathrm{t}]^{2}
\end{aligned}
$$

$$
\text { - Eerr }=\int[y(\mathbf{x})-\mathrm{t}]^{2} p(\mathbf{x}, \mathrm{t}) d \mathbf{x} d t
$$

$$
=\int\{y(\mathbf{x})-h(\mathbf{x})\}^{2} p(\mathbf{x}) d \mathbf{x}+\int_{\{h(\mathbf{x})-t\}^{2} p(\mathbf{x}, t) d \mathbf{x} d t}
$$

Mismatch between OUR hypothesis $\mathrm{y}($.$) \& target \mathrm{h}($.
... we can influence this

Noise in distribution of target
... nothing we can do

Eerr $=\int\{y(\mathbf{x})-h(\mathbf{x})\}^{2} p(\mathbf{x}) d \mathbf{x}+\int\left\{h(\mathbf{x})-\theta^{2} p(\mathbf{x}, t) d \mathbf{x d t}\right.$

Relevant Part of Loss

- Really $y(\mathbf{x})=y(\mathbf{x} ; \mathrm{D})$ fit to data D... so consider expectation over data sets D
\square Let $\hat{y}(\mathbf{x})=\mathrm{E}_{\mathrm{D}}[\mathrm{y}(\mathbf{x} ; \mathrm{D})]$
- $E_{D}\left[\{h(x)-y(x ; D)\}^{2}\right]$
$\left.=E_{D}[h(\mathbf{x})-\hat{y}(x)+\hat{y}(x)-y(\mathbf{x} ; D)]\right\}^{2}$
$=E_{D}\left[\{h(x)-\hat{y}(x)\}^{2}\right]+2 E_{D}\left[\{h(x)-\hat{y}(x)\}\left\{v(x ; D)-E_{D T(X ; D)}\right\}\right]$ $+\mathrm{E}_{\mathrm{D}}\left[\left\{\mathrm{y}(\mathbf{x} ; \mathrm{D})-\mathrm{E}_{\mathrm{D}}[\mathrm{y}(\mathbf{x} ; \mathrm{D})]\right\}^{2}\right]$
$=\{\underbrace{h(\mathbf{x})-\hat{y}(\mathbf{x})}\}^{2}+\mathrm{E}_{\mathrm{D}}\left[\{\mathrm{y}(\mathbf{x} ; \mathrm{D})-\hat{y}(\mathbf{x})\}^{2}\right]$
$B i a{ }^{2}$
Variance

50 fits (20 examples each)

Bias, Variance, Noise

50 fits (20 examples each)

Understanding Bias

$$
\{\hat{\eta}(x) \rightarrow \text { n } n(2)\}
$$

- Measures how well
our approximation architecture can fit the data
- Weak approximators
\square (e.g. low degree polynomials) will have high bias
- Strong approximators
\square (e.g. high degree polynomials) will have lower bias

Understanding Variance

$$
E_{D}\left[\left\{y(\mathbf{x} ; D)-\hat{y}_{D}(\mathbf{x})\right\}^{2}\right]
$$

- No direct dependence on target values
- For a fixed size D:
\square Strong approximators tend to have more variance ... different datasets will lead to DIFFERENT predictors
\square Weak approximators tend to have less variance
... slightly different datasets may lead to SIMILAR predictors
- Variance will typically disappear as $|\mathrm{D}| \rightarrow \infty$

Summary of Bias,Variance,Noise

- Eerr $=E\left[\left(t^{*}-y\left(\mathbf{x}^{*}\right)\right)^{2}\right]=$

$$
\begin{aligned}
& \mathrm{E}\left[\left(\mathrm{y}\left(\mathbf{x}^{*}\right)-\hat{y}\left(\mathbf{x}^{*}\right)\right)^{2}\right] \\
+ & \left(\hat{y}\left(\mathbf{x}^{*}\right)-\mathrm{h}\left(\mathbf{x}^{*}\right)\right)^{2} \\
+ & \mathrm{E}\left[\left(\mathrm{t}^{*}-\mathrm{h}\left(\mathbf{x}^{*}\right)\right)^{2}\right] \\
= & \operatorname{Var}\left(\mathrm{h}\left(\mathrm{x}^{*}\right)\right)+\operatorname{Bias}\left(\mathrm{h}\left(\mathrm{x}^{*}\right)\right)^{2}+\text { Noise }
\end{aligned}
$$

Expected prediction error
 $=$ Variance + Bias $^{2}+$ Noise

Bias, Variance, and Noise

- Bias: $\hat{y}\left(\mathbf{x}^{*}\right)-h\left(x^{*}\right)$
\square the best error of model $\hat{y}\left(\mathrm{x}^{*}\right)$ [average over datasets]
- Variance: $E_{D}\left[\left(y_{D}\left(\mathbf{x}^{*}\right)-\hat{y}\left(\mathbf{x}^{*}\right)\right)^{2}\right]$
\square How much $y_{D}\left(x^{*}\right)$ varies from one training set D to another

■ Noise: $E\left[\left(t^{*}-h\left(\mathbf{x}^{*}\right)\right)^{2}\right]=E\left[\varepsilon^{2}\right]=\sigma^{2}$
\square How much t^{*} varies from $\mathrm{h}\left(\mathbf{x}^{*}\right)=\mathrm{t}^{*}+\varepsilon$
\square Error, even given PERFECT model, and ∞ data

50 fits (20 examples each)

Predictions at $\mathrm{X}=2.0$

50 fits (20 examples each)

Predictions at $\mathrm{X}=5.0$

Observed Responses at $\mathrm{X}=5.0$

Model Selection: Bias-Variance

- C_{1} "more expressive than" C_{2} iff

representable in $\mathrm{C}_{1} \Rightarrow$ representable in C_{2} " $\mathrm{C}_{2} \subset \mathrm{C}_{1}$ "
- Eg, LinearFns \subset QuadraticFns 0 -HiddenLayerNNs $\subset 1$-HiddenLayerNNs
\Rightarrow can ALWAYs get better fit using C_{1}, over C_{2}
- But ... sometimes better to look for $\mathrm{y} \in \mathrm{C}_{2}$

Standard Plots.

Why?

- $\mathrm{C}_{2} \subset \mathrm{C}_{1} \Rightarrow$
$\forall y \in C_{2}$
$\exists x^{*} \in C_{1}$ that is at-least-as-good-as y
- But given limited sample, might not find this best x^{*}
- Approach: consider Bias² ${ }^{2}$ Variance!!

Bias-Variance tradeoff - Intuition

- Model too "simple" \Rightarrow does not fit the data well
\square A biased solution

■ Model too complex \Rightarrow small changes to the data, changes predictor a lot
\square A high-variance solution

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias

More complex class \Rightarrow less bias
\square More complex class \Rightarrow more variance

- Behavior of test sample and training sample error as function of model complexity
\square light blue curves show the training error err,
\square light red curves show the conditional test error ErrT
for 100 training sets of size 50 each
- Solid curves = expected test error Err and expected training error E[err].

Empirical Study

- Based on different regularizers

Effect of Algorithm Parameters on Bias and Variance

- k-nearest neighbor:
\square increasing k typically increases bias and reduces variance
- decision trees of depth D :
\square increasing D typically increases variance and reduces bias
- RBF SVM with parameter σ :
\square increasing σ typically
increases bias and reduces variance

Least Squares Estimator

- Truth: $f(x)=x^{\top} \beta$

Observed: $y=f(x)+\varepsilon \quad E[\varepsilon]=0 \quad X=$

- Least squares estimator

$$
f\left(x_{0}\right)=x_{0}^{\top} \underline{\beta} \quad \underline{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

K component values
\square Unbiased: $f\left(x_{0}\right)=E\left[f\left(x_{0}\right)\right]$

$$
\begin{aligned}
& f\left(x_{0}\right)-E\left[f\left(x_{0}\right)\right] \\
& \quad=x_{0}^{\top} \beta-E\left[x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} y\right] \\
& =x_{0}^{\top} \beta-E\left[x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top}(X \beta+\varepsilon)\right] \\
& =x_{0}^{\top} \beta-E\left[x_{0}^{\top} \beta+x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon\right] \\
& =x_{0}^{\top} \beta-x_{0}^{\top} \beta+x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} E[\varepsilon]=0
\end{aligned}
$$

Gauss-Markov Theorem

- Least squares estimator $f\left(x_{0}\right)=x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} y$
$\square \ldots$ is unbiased: $f\left(x_{0}\right)=E\left[f\left(x_{0}\right)\right]$
$\square \ldots$ is linear in $y \ldots f\left(x_{0}\right)=c_{0}{ }^{\top} y$ where $c_{0}{ }^{\top}$
■ Gauss-Markov Theorem:
Least square estimate has the minimum variance among all linear unbiased estimators.
\square BLUE: Best Linear Unbiased Estimator
- Interpretation: Let $g\left(x_{0}\right)$ be any other ...
\square unbiased estimator of $f\left(x_{0}\right) \ldots$ ie, $E\left[g\left(x_{0}\right)\right]=f\left(x_{0}\right)$
\square that is linear in $y \ldots$ ie, $g\left(x_{0}\right)=c^{\top} y$
then $\operatorname{Var}\left[\boldsymbol{f}\left(\mathrm{x}_{0}\right)\right] \leq \operatorname{Var}\left[g\left(\mathrm{x}_{0}\right)\right]$

Variance of Least Squares Estimator

- Least squares estimator

$$
f\left(x_{0}\right)=x_{0}^{\top} \underline{\beta} \quad \underline{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

- Variance:

$$
\begin{aligned}
& \mathrm{E}\left[\left(f\left(x_{0}\right)-E\left[f\left(x_{0}\right)\right]\right)^{2}\right] \\
& =E\left[\left(f\left(x_{0}\right)-f\left(\left(_{0}\right)\right)^{2}\right]\right. \\
& =E\left[\left(x_{0}^{\top}\left(X^{\top} X^{-1} X^{\top} \beta-x_{0}^{\top} \beta\right)^{2}\right]\right. \\
& =E\left[\left(x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top}(X \beta+\varepsilon)-x_{0}^{\top} \beta\right)^{2}\right] \\
& =E\left[\left(X_{0}^{\top} \beta+x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon-x_{0}^{\top} \beta\right)^{2}\right] \\
& =E\left[\left(x_{0}^{\top}\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon\right)^{2}\right] \\
& =\sigma_{\varepsilon}^{2} p / N
\end{aligned}
$$

... in "in-sample error" model ...

Trading off Bias for Variance

- What is the best estimator for the given linear additive model?
- Least squares estimator

$$
f\left(x_{0}\right)=x_{0}^{\top} \underline{\beta} \quad \underline{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

is BLUE: Best Linear Unbiased Estimator
\square Optimal variance, wrt unbiased estimators
\square But variance is $\mathrm{O}(\mathrm{p} / \mathrm{N}) \ldots$
■ So if FEWER features, smaller variance...
... albeit with some bias??

Feature Selection

- LS solution can have large variance
\square variance $\propto \mathrm{p}$ (\#features)
- Decrease $p \Rightarrow$ decrease variance... but increase bias
- If decreases test error, do it!
\Rightarrow Feature selection
- Small \#features also means:
\square easy to interpret

Statistical Significance Test

$-\underline{Y}=\beta_{0}+\sum_{j} \beta_{j} X_{j}$

- Q : Which X_{j} are relevant?

A: Use statistical hypothesis testing!

- Use simple model:
$Y=\beta_{n}+\sum_{j} \beta_{j} X_{j}+\varepsilon \quad \varepsilon \sim N\left(0, \sigma_{e}{ }^{2}\right)$
- Here: $\hat{\beta} \sim N\left(\beta,\left(X^{\top} X\right)^{-1} \sigma_{e}{ }^{2}\right)$
- Use $z_{j}=\frac{\hat{\beta}_{j}}{\hat{\sigma} \sqrt{v_{j}}}$

$$
\hat{\sigma}=\frac{1}{N-p-1} \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

v_{j} is the $f^{\text {th }}$ diagonal element of $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$

- Keep variable X_{i} if z_{j} is large...

Measuring Bias and Variance

■ In practice (unlike in theory), only ONE training set D

- Simulate multiple training sets by bootstrap replicates
$\square D^{\prime}=\{x \mid x$ is drawn at random with replacement from D \}
$\square\left|D^{\prime}\right|=|D|$

Estimating Bias / Variance

Original Data Bootstrap Replicate

Estimating Bias / Variance

Average Response for each x_{i}

$\underline{\mathrm{h}}\left(\mathrm{x}_{\mathrm{j}}\right)=\sum_{\{i: \mathrm{x} \in \mathrm{Ti}\}} \mathrm{h}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) /\left\|\left\{\mathrm{i}: \mathrm{x} \in \mathrm{T}_{\mathrm{i}}\right\}\right\|$

Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S S_{1}, \ldots, S_{B}
- Apply learning alg to each replicate S_{b} to obtain hypothesis h_{b}
- Let $T_{b}=S \backslash S_{b}=$ data points not in S_{b} (out of bag points)
- Compute predicted value
$h_{b}(x)$
for each $x \in T_{b}$

Estimating Bias and Variance

- For each $x \in S$,
\square observed response y
\square predictions y_{1}, \ldots, y_{k}
- Compute average prediction $\underline{\mathrm{h}(\mathrm{x})}=\operatorname{ave}_{i}\left\{y_{i}\right\}$
- Estimate bias: $\quad \mathrm{h}(\mathrm{x})$ - y
- Estimate variance:

$$
\Sigma_{\{i: x \in T i\}}\left(h_{i}(x)-\underline{h(x)}\right)^{2} /(k-1)
$$

- Assume noise is 0

Outline

- Linear Regression
\square MLE = Least Squares.

\square Basis functions
- Evaluating Predictors
\square Training set error vs Test set error
\square Cross Validation
- Model Selection
\square Bias-Variance analysis
\square Regularization, Bayesian Model

Regularization

- Idea: Penalize overly-complicated answers
- Regular regression minimizes:

$$
\sum_{i}\left(y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)-t_{i}\right)^{2}
$$

- Regularized regression minimizes:

$$
\sum_{i}\left(y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)-t_{i}\right)^{2}+\lambda\|\mathbf{w}\|
$$

Regularization: Why?

- For polynomials, extreme curves typically require extreme values
- In general, encourages use of few features
\square only features that lead to a substantial increase in performance
- Problem: How to choose λ

Solving Regularized Form

Solving $w^{*}=\arg \min _{w}\left[\sum_{j}\left[t^{j}-\sum_{i} w_{i} x_{i}^{j}\right]^{j}\right]$

$$
\mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
$$

Solving $w^{*}=\arg \min w\left[\sum_{j}\left[t^{j}-\sum_{i} w_{i} x_{i}^{j}\right]^{2}+\lambda \sum_{i} w_{i}^{2}\right]$

$$
\mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{t}
$$

Regularization: Empirical Approach

- Problem:
magic constant λ trading-off complexity vs. fit
- Solution 1:
\square Generate multiple models
\square Use lots of test data to discover and discard bad models
- Solution 2: k-fold cross validation:
\square Divide data S into k subsets $\left\{S_{1}, \ldots, S_{k}\right\}$
\square Create validation set $S_{-i}=S_{i}-S$
- Produces k groups, each of size (k-1)/k
\square For $\mathrm{i}=1$..k: Train on $\mathrm{S}_{-\mathrm{i}}$, Test on S_{i}
\square Combine results ... mean? median? ...

A Bayesian Perspective

- Given a space of possible hypotheses $\mathrm{H}=\left\{\mathrm{h}_{\mathrm{j}}\right\}$
- Which hypothesis has the highest posterior:

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

- As $P(D)$ does not depend on h :
$\operatorname{argmax} \mathrm{P}(\mathrm{h} \mid \mathrm{D})=\operatorname{argmax} \mathrm{P}(\mathrm{D} \mid \mathrm{h}) \mathrm{P}(\mathrm{h})$
■ "Uniform $\mathrm{P}(\mathrm{h})$ " \Rightarrow Maximum Likelihood Estimate
\square (model for which data has highest prob.)
- ... can use $\mathrm{P}(\mathrm{h})$ for regularization ...

Bayesian Regression

- Assume that, given \mathbf{x}, noise is iid Gaussian
- Homoscedastic noise model (same σ for each position)

Maximum Likelihood Solution

$$
P(D \mid h)=P\left(t^{(1)}, \ldots, t^{(m)} \mid y(\mathbf{x} ; \mathbf{w}), \sigma\right)=\prod_{i} \frac{e^{\frac{-\left(t^{(i)}-y(\mathbf{x} ; \mathbf{w})\right)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}}
$$

MLE fit for mean is

- just linear regression fit
- does not depend upon σ^{2}

Bayesian learning of Gaussian parameters

- Conjugate priors
\square Mean: Gaussian prior
\square Variance: Wishart Distribution

- Prior for mean:

Bayesian Solution

- Introduce prior distribution over weights

$$
p(h)=p(\mathbf{w} \mid \lambda)=N\left(\mathbf{w} \mid 0, \lambda^{2} I\right)
$$

■ Posterior now becomes:

$$
\begin{aligned}
& P(D \mid h) P(h)=P\left(t^{(1)}, \ldots, t^{(m)} \mid y(\mathbf{X} ; \mathbf{w}), \sigma\right) P(\mathbf{w}) \\
& \quad=\prod_{i} \frac{e^{\frac{-\left(t^{(i)}-y\left(\mathbf{x}^{(0} ; \mathbf{w}\right)\right)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}} \frac{e^{\frac{-w^{T} w}{2 \lambda^{2}}}}{\sqrt{2 \pi \lambda^{2}} k}
\end{aligned}
$$

Regularized Regression
 vs Bayesian Regression

■ Regularized Regression minimizes:

$$
\sum_{i}\left(t_{i}-y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)^{2}+\kappa\|\mathbf{w}\|
$$

■ Bayesian Regression maximizes:

$$
\text { const }+\sum_{i} \frac{-\left(t^{(i)}-y\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)^{2}}{2 \sigma^{2}}+\frac{-\mathbf{w}^{T} \mathbf{w}}{2 \lambda^{2}}
$$

■ These are identical (up to constants)
... take log of Bayesian regression criterion

Viewing L_{2} Regularization

$$
w^{*}=\arg \min _{w}\left[\sum_{j}\left[t^{j}-\sum_{i} w_{i} x_{i}^{x^{j}}\right]^{2}+\lambda \sum_{i} w_{i}^{2}\right]
$$

- Using Lagrange Multiplier...

$$
\begin{aligned}
\Rightarrow w^{*} & =\arg \min _{w}\left[\sum_{j}\left[t^{j}-\sum_{i} w_{i} x_{i}^{j}\right]^{2}\right] \\
\text { s.t. } & \sum_{i} w_{i}^{2} \leq \omega
\end{aligned}
$$

Use L_{2} vs L_{1} Regularization

$w^{*}=\operatorname{argmin}_{w}\left[\sum_{j}\left[t^{j}-\left.\sum_{i} w_{i} x_{i}^{\prime}\right|^{+}+\lambda \sum_{i}\left|w_{i}\right| \tau\right]\right.$
$\Rightarrow w^{*}=\arg \min _{w}\left[\sum_{i}\left[t^{j}-\sum_{i} w_{i} x_{i}^{j}\right]^{2}\right]$ s.t. $\quad \sum_{i}\left|w_{i}\right|^{q} \leq \boldsymbol{\omega}$

Intersections often on axis!

$$
\ldots \text { so } w_{i}=0!!
$$

What you need to know
 - Regression

\square Optimizing sum squared error == MLE!
\square Basis functions = features
\square Relationship between regression and Gaussians

- Evaluating Predictor
\square TestSetError $=$ Prediction Error
\square Cross Validation
- Bias-Variance trade-off
\square Model complexity ...

- Regularization \approx Bayesian modeling
- L_{1} regularization - prefers 0 weights!

