
1

Linear Classifiers

R Greiner
Cmput 466/551

HTF: Ch4
B: Ch4

2

Outline
� Framework
� Exact

� Minimize Mistakes (Perceptron Training)
� Matrix inversion (LMS)

� Logistic Regression
� Max Likelihood Estimation (MLE) of P(y | x)
� Gradient descent (MSE; MLE)
� Newton-Raphson

� Linear Discriminant Analysis
� Max Likelihood Estimation (MLE) of P(y, x)
� Direct Computation
� Fisher’s Linear Discriminant

3

Diagnosing Butterfly-itis
����� ������	

���������
�	��

4

Classifier: Decision Boundaries
� Classifier: partitions input space X into

“decision regions”

� Linear threshold unit has a
linear decision boundary

� Defn: Set of points that can be separated by
linear decision boundary is “linearly separable"

�

�

�� �

�

�

� �

�

�

�
�

�
�

#antennae

#w
in

gs

5

Linear Separators

� Draw “separating line”

� If #antennae ≤ 2, then butterfly-itis

��

�

�

� �

�

�

�

�

�

�

�
�

�

�

��������

�
�
��
�
	

� So ? is Not butterfly-itis.

�

��

6

Can be “angled”…

� If 2.3 ×××× #Wings – 7.5 ×××× #antennae + 1.2 > 0

then butterfly-itis

��

�

�� �

�

�

�
�

�

�

�
�

�

�

��������

�
�
��
�
	

��

2.3 ×××× #w – 7.5 ×××× #a + 1.2 = 0

7

Linear Separators, in General

� Given data (many features)

…

…

…

…

NoPale5010

::::

YesClear8022

NoPale9535

diseaseX?ColorPressTemp.

…

…

…

…

No1.95010

::::

Yes-28022

No39535

ClassFnF2F1

� find “weights” {w1, w2, …, wn, w0}
such that

means

��
×××× �� �
� �
�� ×××× �� �
�� �
�

���		
�
 �	

8

Linear Separator

��

��

��

Σ�
�� × ��
!

 �	

"#

$�	
%���
�� �
�&
	#
�� �

'(

)(

'

!

��

��

��

9

Linear Separator

��

��

��

Σ�
�� × ��
!

 �	

"#

���

���

��

'(

)(

'

!

*+,-

 �	

� Performance
� Given {wi}, and values for instance, compute response

� Learning
� Given labeled data, find “correct” {wi}

� Linear Threshold Unit … “Perceptron”

10

Geometric View

� Consider 3 training examples:

� Want classifier that looks like. . .

([1.0, 1.0]; 1)
([0.5; 3.0]; 1)
([2.0; 2.0]; 0)

11

Linear Equation is Hyperplane

� Equation w·x =�i wi·xi is plane

y(x) = 1 if w·x > 0
0 otherwise

12

Linear Threshold Unit: “Perceptron”

� Squashing function:
sgn: ℜ→ {-1, +1 }

sgn(r) =

(“Heaviside”)

� Actually w · x > b but. . .
Create extra input x0 fixed at 1
Corresponding w0 corresponds to -b

1 if r > 0
0 otherwise

13

� Remarkable learning algorithm: [Rosenblatt 1960]

If function f can be represented by perceptron,
then ∃learning alg guaranteed to quickly converge to f!

� enormous popularity, early / mid 60's
� But some simple fns cannot be represented

… killed the field temporarily!

� Can represent Linearly-Separated surface
. . . any hyper-plane between two half-spaces…

Learning Perceptrons

14

Perceptron Learning

� Hypothesis space is. . .
� Fixed Size:

∃ O(2n^2) distinct perceptrons over n boolean features
� Deterministic
� Continuous Parameters

� Learning algorithm:
� Various: Local search, Direct computation, . . .
� Eager
� Online / Batch

15

Task

� Input: labeled data

Transformed to

� Output: w ∈ℜr+1

Goal: Want w s.t.
∀∀∀∀i sgn(w · [1, x(i)]) = y(i)

� . . . minimize mistakes wrt data . . .

16

Error Function
Given data { [x(i), y(i)] }i=1..m, optimize...

� 1. Classification error
Perceptron Training; Matrix Inversion

� 2. Mean-squared error (LMS)
Matrix Inversion; Gradient Descent

� 3. (Log) Conditional Probability (LR)
MSE Gradient Descent; LCL Gradient Descent

� 4. (Log) Joint Probability (LDA; FDA)
Direct Computation

])([
1

)()(

1

)(i
w

m

i

i
Class xoyI

m
werr ≠= �

=

2)(

1

)(])([
2
11

)(i
w

m

i

i
MSE xoy

m
werr −= �

=

)|(log
1

)()(

1

)(i
m

i

i
w xyP

m
wLCL �

=

=

),(log
1

)()(

1

)(i
m

i

i
w xyP

m
wLL �

=

=

17

#1: Optimal Classification Error
� For each labeled instance [x, y]

Err = y – ow(x)
y = f(x) is target value
ow(x) = sgn(w · x) is perceptron output

� Idea: Move weights in appropriate direction,
to push Err → 0

� If Err > 0 (error on POSITIVE example)
� need to increase sgn(w · x)
� need to increase w · x

� Input j contributes wj · xj to w · x
� if xj > 0, increasing wj will increase w · x
� if xj < 0, decreasing wj will increase w · x

� wj ←wj + xj
�If Err < 0 (error on NEGATIVE example)

� wj ←wj – xj

1818

Local Search via Gradient Descent

19

#1a: Mistake Bound Perceptron Alg

OK#3[1 -1 2]

+x#1[1 -1 2]

OK#2[1 -1 2]

OK#1[1 -1 2]

OK#1[1 0 2]

-x#2[1 0 2]

OK#3[0 -1 2]

OK#1[1 0 1]

-x#2[1 0 1]

+x#3[0 -1 1]

+x#3[0 -1 0]

-x#2[1 0 0]

+x#1[0 0 0]

ActionInstanceWeightsInitialize w = 0
Do until bored

Predict “+” iff w · x > 0
else “–"

Mistake on y = +1: w ←w + x
Mistake on ��� ��� � w ←w – x

20

Mistake Bound Theorem

Theorem: [Rosenblatt 1960]
If data is consistent w/some linear threshold w,
then number of mistakes is ≤ (1/∆)2 ,

where

� ∆ measures “wiggle room” available:

If |x| = 1, then ∆ is max, over all consistent planes,
of minimum distance of example to that plane

� w is ⊥ to separator, as w · x = 0 at boundary
� So |w · x| is projection of x onto plane,

PERPENDICULAR to boundary line
… ie, is distance from x to that line (once normalized)

See SVM…

21

Proof of Convergence

� Let w* be unit vector rep'ning target plane
∆ = minx { w* · x }

Let w be hypothesis plane

� Consider:

� On each mistake, add x to w w = Σ{x | x · w < 0 } x

x wrong wrt w iff w · x < 0

22

Proof (con't)
If w is mistake…

∆ = minx { w* ·x }

w = Σ{x | x · w < 0 } x

23

#1b: Perceptron Training Rule
� For each labeled instance [x, y]

Err([x, y]) = y – ow(x) ∈ { -1, 0, +1 }

� If Err([x, y]) = 0 Correct! … Do nothing!
∆w = 0 ≡ Err([x, y]) · x

� If Err([x, y]) = +1 Mistake on positive! Increment by +x
∆w = +x ≡ Err([x, y]) · x

� If Err([x, y]) = -1 Mistake on negative! Increment by -x
∆w = -x ≡ Err([x, y]) · x

In all cases... ∆w(i) = Err([x(i), y(i)]) · x(i) = [y(i) – ow(x(i))] · x(i)

� Batch Mode: do ALL updates at once!

∆wj = �i ∆wj
(i)

= �i x(i)
j (y(i) – ow(x(i)))

wj += η ∆w j

24

x(i)
jx(i)

feature j

∆wj

0. Fix w
∆w := 0

1. For each row i, compute
a. E(i) := y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[… ∆wj += E(i) x(i)
j …]

2. Increment w += η ∆w

E(i)

∆w

0. New w

25

Correctness
� Rule is intuitive: Climbs in correct direction. . .

� Thrm: Converges to correct answer, if . . .
� training data is linearly separable
� sufficiently small η

� Proof: Weight space has EXACTLY 1 minimum!
(no non-global minima)

� with enough examples, finds correct function!

� Explains early popularity

� If η too large, may overshoot
If η too small, takes too long

� So often η = η(k) … which decays with # of iterations, k

26

#1c: Matrix Version?

� Task: Given { �xi, yi }i

� yi ∈ { –1, +1 } is label

Find { wi } s.t.

� Linear Equalities y = X w

� Solution: w = X-1 y

27

Issues

1. Why restrict to only yi ∈ { –1, +1 } ?
� If from discrete set yi ∈ { 0, 1, …, m } :

General (non-binary) classification
� If ARBITRARY yi ∈ ℜ: Regression

2. What if NO w works?
...X is singular; overconstrained ...
Could try to minimize residual

�i �[y(i) ≠ w · x(i)]

|| y – X w ||1 = �i | y(i) – w · x(i) |
|| y – X w ||2 = �i (y(i) – w · x(i))2

NP-Hard!

Easy!

28

L2 error vs 0/1-Loss

� “0/1 Loss function” not smooth,
differentiable

� MSE error is smooth, differentiable…
and is overbound...

29

Gradient Descent for Perceptron?
� Why not Gradient Descent

for THRESHOLDed perceptron?
� Needs gradient (derivative), not

� Gradient Descent is General approach.
Requires

+ continuously parameterized hypothesis
+ error must be differentiatable wrt parameters

But. . .
– can be slow (many iterations)
– may only find LOCAL opt

30

Linear Separators – Facts

� GOOD NEWS:
� If data is linearly separated,
�Then FAST ALGORITHM finds correct {wi} !

�

� �

�

� But…

31

Linear Separators – Facts

� GOOD NEWS:
� If data is linearly separated,
�Then FAST ALGORITHM finds correct {wi} !

� Some “data sets” are
NOT linearly separatable!

�

� �

�

� But…

Stay tuned!

32

#1. LMS version of Classifier

� View as Regression
�Find “best” linear mapping w from X to Y

� w* = argmin ErrLMS
(X, Y)(w)

� ErrLMS
(X, Y)(w) = �i (y(i) – w · x(i))2

�Threshold: if wTx > 0.5,
return 1;
else 0

� See Chapter 3…

33

General Idea

� Use a discriminant function δk(x) for each class k
� Eg, δk(x) = P(G=k | X)

� Classification rule:
Return k = argmaxj δj(x)

� If each δj(x) is linear,

decision boundaries are piecewise hyperplanes

34

Linear Classification using
Linear Regression

� 2D Input space: X = (X1, X2)
K-3 classes:

� Training sample (N=5):

� Regression output:

� Classification rule:

�
�

�
�

�

∈=
]1,0,0[
]0,1,0[
]0,0,1[

),,(321 YYYY

�
�
�
�
�
�

	

�
�
�
�
�
�

�

=

�
�
�
�
�
�

	

�
�
�
�
�
�

�

=

535251

434241

333231

232221

131211

5251

4241

3231

2221

1211

,

1
1
1
1
1

yyy

yyy

yyy

yyy

yyy

xx

xx

xx

xx

xx

YX

)())(1()),((ˆ
321

1
2121 βββ TTTTT xxxxxxxY == − YXXX

321213

221212

121211

)1())((ˆ
)1())((ˆ
)1())((ˆ

β
β

β

xxxxY

xxxxY

xxxxY

=

=

=

))((ˆmaxarg))((ˆ
2121 xxYxxG k

k
=

35

Use Linear Regression for
Classification?

� But … regression minimizes
sum of squared errors on target function

… which gives strong influence to outliers

Great separation

Bad separation

36

#3: Logistic Regression

xe
x −+

=
1

1
)(σ

� Want to compute Pw(y=1| x)
... based on parameters w

� But …
� w·x has range [-∞, ∞]
� probability must be in range ∈ [0; 1]

� Need “squashing” function [-∞, ∞] →[0, 1]

37

Alternative Derivation…

)exp(1
1

)()|()()|(
)()|(

)|(

a

yPyxPyPyxP
yPyxP

xyP

−+
=

−−+++
++=+

)()|(
)()|(

ln
yPyxP
yPyxP

a
−−
++=

38

Sigmoid Unit

39

Logistic Regression (con’t)

� Assume 2 classes:

)(1
1

)()|(wxw e
xwxyP ⋅−+

=⋅=+ σ

)(

)(

)(11
1

1)|(wx

wx

wxw e
e

e
xyP ⋅−

⋅−

⋅− +
=

+
−=−

� Log Odds:
wx

xyP
xyP

w

w ⋅=
−
+

)|(
)|(

log
Linear

40

How to learn parameters w ?

� … depends on goal?
� A: Minimize MSE?

�i (y(i) – ow(x(i)))2

� B: Maximize likelihood?

�i log Pw(y(i) | x(i))

41

MSError Gradient for Sigmoid Unit

� Error: �j (y(j) – ow(x(j)))2 = �j E(j)

For single training instance
� Input: x(j) = [x(j)

1, …, x(j)
k]

� Computed Output: o(j) = σ(�i x(j)
i · wi) = σ(z(j))

� where z(j) = �i x(j)
i · wi using current { wi }

� Correct output: y(j)

Stochastic Error Gradient (Ignore (j) superscript)

ze
z −+

=
1

1
)(σ

42

Derivative of Sigmoid

)](1[)(
)1()1(

1
)1(

)(
)1(

1
)1(

)1(
1

)1(
1

)(

2

22

aa
e

e
ee

e

e
e

e
da
d

e

eda
d

a
da
d

a

a

aa

a

a
a

a
a

a

σσ

σ

−=
++

=
+

=

−
+
−=+

+
−=

+
=

−

−

−−

−

−
−

−
−

−

43

� Update wi += ∆wi where

Updating LR Weights (MSE)

ze
z −+

=
1

1
)(σ

Note: As already computed o(j) = σ(z(j)) to get answer,
trivial to compute σ’(z(j)) = σ(z(j))(1– σ(z(j)))

44

(LMS)

x(i)
jx(i)

feature j

∆wj

E(i)

0. Fix w
∆w = 0

1. For each row i, compute
a. E(i) = y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[… ∆wj += E(i) x(i)
j …]

2. Increment w += η∆w

∆w

0. New w

(o(i) – y(i)) o(i) (1– o(i))

45

B: Or... Learn Conditional Probability

� As fitting probability distribution,
better to return probability distribution (≈ w)
that is most likely, given training data, S

Bayes Rules

As P(S) does not depend on w

As P(w) is uniform

As log is monotonic

46

ML Estimation

� P(S | w) ≡ likelihood function
L(w) = log P(S | w)

� w* = argmaxw L(w)
is “maximum likelihood estimator” (MLE)

47

Computing the Likelihood

� As training examples [x(i), y(i)] are iid
� drawn independently from same (unknown) prob Pw(x, y)

� log P(S | w) = log Πi Pw(x(i), y(i))

= �i log Pw(x(i), y(i))

= �i log Pw(y(i) | x(i)) + �i log Pw(x(i))
� Here Pw(x(i)) = 1/n …

not dependent on w, over empirical sample S

�w* = argmaxw �i log Pw(y(i) | x(i))

48

Fit Logistic Regression…
by Gradient Ascent

�Want w* = argmaxw J(w)
�J(w) =�i r(y(i), x(i), w)

�For y ∈ {0, 1}

r(y, x, w) = log Pw(y | x) =
y log(Pw(y=1 | x)) + (1 – y) log(1 – Pw(y=1 | x))

� So climb along… � ∂
∂=

∂
∂

i j

ii

j w
yr

w
J)()()()(���������������� �

49

Gradient Descent …

jjj

jj

w
p

pp
py

w
p

p
y

w
p

p
y

pypy
ww

yr

∂
∂

−
−=

∂
∂

−
−×−+

∂
∂=

−−+
∂

∂=
∂

∂

1

11

11

1

1

1

11

)1(1
1

)1(

)1log()1()log([
)(������������ �

()

())(
11

1

)1()](1)[(

)(
)|1(

i
j

j

jj

w

j

xppwx
w

wxwx

wx
ww

xyP
w
p

⋅−=⋅
∂

∂⋅−⋅=

⋅
∂

∂=
∂

=∂=
∂
∂

σσ

σ

)()(

)(
11

11

1
)()()(

))|1((

)1(
)1(

),,()(

i
j

i
w

i

i
j

i

i

i j

ii

j

xxyPy

xpp
pp
py

w
wxyr

w
wJ

⋅=−=

⋅−
−
−=

∂
∂=

∂
∂

�

��

50

Gradient Ascent
for Logistic Regression (MLE)

y(i)

∆w

η ∆w

)(
1

ip
)(

1
ip

∆wj

51

Comments on MLE Algorithm

� This is BATCH;
∃ obvious online alg

(stochastic gradient ascent)
� Can use second-order (Newton-Raphson)

alg for faster convergence
�weighted least squares computation;

aka
“Iteratively-Reweighted Least Squares” (IRLS)

52

Use Logistic Regression for Classification

� Return YES iff

0
)exp(

1
ln

0
))exp(1/()exp(
))exp(1/(1

ln

0
)|0(
)|1(

ln

1
)|0(
)|1(

)|0()|1(

>⋅=
⋅−

>
⋅−+⋅−
⋅−+

>
=
=

>
=
=

=>=

xw
xw

xwxw
xw

xyP
xyP

xyP
xyP

xyPxyP

Logistic Regression learns a LTU!

53

Logistic Regression for K > 2 Classes

Note: k-1 different w
i weights,

… each of dimension |x|

54

Learning LR Weights

∆w(i)
j = (o(i) – y(i)) o(i) (1– o(i))

∆w(i)
j = (y(i) – p(1|x(i))) x(i)

j

0

1 0
)exp(1

)exp(

1
)exp(1

1

=
⋅−+

⋅−

=
⋅−+

yif
xw

xw

yif
xw

55

(LMS)

x(i)
jx(i)

feature j

∆wj

E(i)

0. Fix w
∆w = 0

1. For each row i, compute
a. E(i) = y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[… ∆wj += E(i) x(i)
j …]

2. Increment w += η∆w

∆w

0. New w

(o(i) – y(i)) o(i) (1– o(i))(y(i) – p(1|x(i)))(MaxProb)

56

Logistic Regression Computation…

� (p+1) non-linear equations
� Solve by Newton-Raphson method:

0
)exp(1

)exp()(

1

=��
�

�
��
�

�

+
−=

∂
∂

�
=

N

i
iT

T

i x
x

x
y

l
β

β
β
β

β
β

β
βββ

∂
∂

∂
∂−=)(

)]
)(

Jacobian([1-
oldold

oldnew ll

�

�

�

�

=

=

=

=

+−−=

+
−+=

==−+===

===

N

i
i

T
ii

T
i

N

i i
Tii

T
i

N

i
iiii

N

i
ii

xyxy

x
yxy

xXGyxXGy

xXyGl

1

1

1

1

)))exp(1log()1((

)
)exp(1

1
log)1((

))|0log(Pr()1())|1log(Pr(

)}|Pr({log)(

ββ

β
β

β

57

Newton-Raphson Method

� A gen’l technique for solving f(x)=0
�… even if non-linear

� Taylor series:
� f(xn+1) ≈ f(xn) + (xn+1 – xn) f’(xn)
� xn+1 ≈ xn + [f(xn+1) – f(xn)] / f’(xn)

� When xn+1 near root, f(xn+1) ≈ 0

�
)(
)(

:1
n

n
nn xf

xf
xx

′
−=+

Iteration…

58

Newton-Raphson in Multi-dimensions

� To solve the equations:

� Taylor series:

� N-R:

0),,,(

0),,,(

0),,,(

21

212

211

=

=
=

NN

N

N

xxxf

xxxf

xxxf

�

�

�

�

Njx
x

f
xfxxf

N

k
k

k

j
jj ,...,1,)()(

1

=∆
∂
∂

+=∆+ �
=

�
�
�
�
�

	

�
�
�
�
�

�

�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�

�

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

−

�
�
�
�
�

	

�
�
�
�
�

�

=

�
�
�
�
�

	

�
�
�
�
�

�

−

+

+

+

+

+

+

),,,(

),,,(
),,,(

21

212

211

1

21

2

2

2

1

2

1

2

1

1

1

1

1
2

1
1

1

1
2

1
1

n
N

nn
N

n
N

nn

n
N

nn

N

NNN

N

N

n
N

n

n

n
N

n

n

xxxf

xxxf

xxxf

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x

x

x

x

x

x

�

�

�

�

�

����

�

�

��

Jacobian matrix

59

Newton-Raphson : Example

� Solve

0)sin(),(

0)cos(),(
3
2

2
11212

2
2
1211

=++=

=−=

xxxxxf

xxxxf

�
	

�
�

++
−

�
	

�
�

+
−�

	

�
�

=�

	

�
�

−

+

+

3
2

2
11

2
2

1

1

2
211

21

2

1
1

2

1
1

)()()sin(
)cos()(

)(32)cos(
)sin(2

nnn

nn

nnn

nn

n

n

n

n

xxx

xx

xxx

xx

x

x

x

x

60

Maximum Likelihood Parameter
Estimation

� Find the unknown parameters
mean & standard deviation of a Gaussian pdf,

given N independent samples, {x1,….,xN }

� Estimate the parameters that maximize the
likelihood function

)
2

)(
exp(

2
1

),;(2

2

σ
µ

σπ
σµ −−= x

xp

),(maxarg)ˆ,ˆ(
,

σµσµ
σµ

L=

∏
=

−−=
N

i

ix
L

1
2

2

)
2

)(
exp(

2
1

),(
σ

µ
σπ

σµ

61

Logistic Regression Algs for LTUs
� Learns Conditional Probability Distribution P(y | x)

� Local Search:
Begin with initial weight vector;
iteratively modify to maximize objective function

log likelihood of the data
(ie, seek w s.t. probability distribution Pw(y | x) is
most likely given data.)

� Eager: Classifier constructed from training examples,
which can then be discarded.

� Online or batch

62

Masking of Some Class

3213)1(ˆ βxxY =

2212)1(ˆ βxxY =

Linear regression of the indicator matrix can lead to masking

LDA can avoid this masking

2D input space and three classes Masking

1211)1(ˆ βxxY =

Viewing direction

63

#4: Linear Discriminant Analysis
� LDA learns joint distribution P(y, x)

� As P(y, x) � P(y | x);
optimizing P(y, x) � optimizing P(y | x)

� “generative model”
� P(y,x) model of how data is generated
� Eg, factor

P(y, x) = P(y) P(x | y)
� P(y) generates value for y; then
� P(x | y) generates value for x given this y

� Belief net: Y

X

64

Linear Discriminant Analysis, con't

� P(y, x) = P(y) P(x | y)
� P(y) is a simple discrete distribution

�Eg: P(y = 0) = 0.31; P(y = 1) = 0.69
(31% negative examples; 69% positive examples)

� Assume P(x | y) is multivariate normal,
with mean µk and covariance �

65

Estimating LDA Model

� Linear discriminant analysis assumes form

� µy is mean for examples belonging to class y;
covariance matrix � is shared by all classes !

� Can estimate LDA directly:
mk = #training examples in class y = k
� Estimate of P(y = k): pk = mk / m

(Subtract each xi from corresponding before taking outer product)

P(x,y) =

T

i yiyi ii
xx

m� −−=Σ)ˆ)(ˆ(
1ˆ µµ� =

=
}:{

1ˆ
kyi ik

i
x

m
µ

iyµ̂
m – k

66

Example of Estimation

� m=7 examples;
m+ = 3 positive; m- = 4 negative
� p+ = 3/7 p- = 4/7

Note: do NOT pre-pend x0=1!

4

T

T

T

T

T

67

Estimation…

… z(7) := …

T T
T

T T

T

68

Classifying, Using LDA
� How to classify new instance, given estimates

� Class for instance x = [5, 14, 6]T ?

T

T

T T
T

T T

T

T
T T

T

69

LDA learns an LTU

� Consider 2-class case with a 0/1 loss function
� Classify � = 1 if

iff

70

LDA Learns an LTU (2)
� (x–µ1)T �-1 (x–µ1) – (x–µ0)T �-1 (x–µ0)

= xT�-1 (µ0 –µ1) + (µ0 –µ1)T �-1 x +
µ1

T �-1 µ1 – µ0
T �-1 µ0

� As �-1 is symmetric,
… = 2 xT�-1 (µ0 –µ1)+ µ1

T �-1 µ1 – µ0
T �-1 µ0

71

LDA Learns an LTU (3)

� So let…

� Classify � = 1 iff w · x + c > 0
LTU!!

72

LDA: Example

LDA was able to avoid masking here

73

View LDA wrt Mahalanobis Distance

� Squared Mahalanobis distance between x and µµµµ

DM
2(x, µµµµ) = (x–µµµµ)T �-1 (x–µµµµ)

� �-1 ≈ linear distortion
… converts standard Euclidean distance into Mahalanobis distance.

� LDA classifies x as 0 if
DM

2(x, µµµµ0) < DM
2(x, µµµµ1)

� log P(x | y = k) ≈ log πk – ½ DM
2(x, µµµµk)

74

Generalizations of LDA
� General Gaussian Classifier: QDA

Allow each class k to have its own ����k

� Classifier ≡ quadratic threshold unit (not LTU)

� Naïve Gaussian Classifier
Allow each class k to have its own �k

but require each �k be diagonal.
� within each class,

any pair of features xi and xj are independent
� Classifier is still quadratic threshold unit

but with a restricted form
� Most “discriminating” Low Dimensional Projection

� Fisher’s Linear Discriminant

75

QDA and Masking
Better than Linear Regression in terms of handling masking:

Usually computationally more expensive than LDA

76

Variants of LDA � Covariance matrix �
� n features; k classes

General
Gaussian
Classifier

Naïve
Gaussian
Classifier

LDA

Name

k n2——

k n+—

n2—+

k++

#param’sDiagonalSame for all
classes?

77

Versions of ?L?Q?N? DA

� LDA

� Quadratic

� Naïve

� SuperSimple

78

Summary of
Linear Discriminant Analysis
� Learns Joint Probability Distr'n P(y, x)
� Direct Computation.

MLEstimate of P(y, x) computed directly from data
without search.
But need to invert matrix, which is O(n3)

� Eager:
Classifier constructed from training examples,
which can then be discarded.

� Batch: Only a batch algorithm.
An online LDA alg requires online alg for incrementally
updating �-1

[Easy if �-1 is diagonal. . .]

79

Fisher's Linear Discriminant
� LDA

� Finds K–1 dim hyperplane
(K = number of classes)

� Project x and { µk } to that hyperplane

� Classify x as nearest µk
within hyperplane

� Better:
Find hyperplane that maximally
separates projection of x's wrt �-1

Fisher’s Linear Discriminant

80

Fisher Linear Discriminant
� Recall any vector w projects ℜn → ℜ
� Goal: Want w that “separates” classes

�Each w · x+ far from each w · x–

� Perhaps project onto m+ – m– ?
� Still overlap… why?

µ+

µ-

81

Fisher Linear Discriminant

� Problem with m+ – m– :
� Does not consider “scatter” within class
� Goal: Want w that “separates” classes

� Each w · x+ far from each w · x–

� Positive x+'s: w · x+ close to each other
� Negative x–'s: w · x– close to each other

� “scatter” of +instance; –instance

� s+
2 = ����i y(i) (w · x(i) – m+)2

� s–
2 = ����i (1 – y(i)) (w · x(i) – m-)2

µ+

µ-

82

Fisher Linear Discriminant
� Recall any vector w projects ℜn → ℜ
� Goal: Want w that “separates” classes

� Positive x+'s: w · x+ close to each other
� Negative x–'s: w · x– close to each other
� Each w · x+ far from each w · x–

� “scatter” of +instance; –instance

� s+
2 = ����i y(i) (w · x(i) – m+)2

� s–
2 = ����i (1 – y(i)) (w · x(i) – m+)2

µ+

µ-

83

FLD, con't

� Separate means m– and m+

� maximize (m– – m+)2

� Minimize each spread s+
2, s–

2

� minimize (s+
2 + s–

2)
� Objective function: maximize

#1:(µ– – µ+)2 = (wT m+ – wT m–)2

= wT (m+ – m–)(m+ – m–)T w = wT SB w

SB = (m+ – m–) (m+ – m–)T“between-class scatter”

)(
)(

)(22

2

−+

−+

+
−=

ss
wJS

µµ

84

FLD, III

� s+
2 = ����i y(i) (w · x(i) – m+)2

= ����i wT y(i) (x(i) – m+) (x(i) – m+)T w
= wT S+ w

� Sw = S+ + S– so s+
2 + s–

2 = wT SW w

S+ = ����i y(i) (x(i) – m+) (x(i) – m+)T

… “within-class scatter matrix” for +

S– = ����i (1 – y(i)) (x(i) – m–) (x(i) – m–)T

… “within-class scatter matrix” for –

)(
)(

)(22

2

−+

−+

+
−=

ss
wJS

µµ

85

FLD, IV

� … w* is eigenvector of SB
-1Sw

��������

��������
����

w
T

B
T

S S
S

ss
J =

+
−=

−+

−+

)(
)(

)(22

2µµ

)2(2
),(

��������
����

����
wB SS

L λλ −=
∂

∂

� Minimizing JS(w) …
w* = argminw wTSBw s.t. wTSww = 1

� Lagrange: L(w, λ) = wTSBw + λ (1 - wTSww)

��������
����

����

λ
λ 1

0
),(1 =�=

∂
∂ −

wB SS
L

86

FLD, V

� Optimal w* is eigenvector of SB
-1Sw

� When P(x | yi) ~ N(µi; �)
∃ LINEAR DISCRIMINANT: w = �-1(µ+ – µ–)
� FLD is optimal classifier,

if classes normally distributed
� Can use even if not Gaussian:

After projecting d-dim to 1,
just use any classification method

��������

��������
����

w
T

B
T

S S
S

ss
J =

+
−=

−+

−+

)(
)(

)(22

2µµ

87

Fisher’s LD vs LDA

� Fisher’s LD = LDA when…
� Prior probabilities are same
� Each class conditional density is

multivariate Gaussian
� … with common covariance matrix

� Fisher’s LD…
� does not assume Gaussian densities
� can be used to reduce dimensions even

when multiple classes scenario

88

Comparing
LMS, Logistic Regression, LDA, FLD
� Which is best: LMS, LR, LDA, FLD ?
� Ongoing debate within machine learning

community about relative merits of
�direct classifiers [LMS]
�conditional models P(y | x) [LR]
�generative models P(y, x) [LDA, FLD]

� Stay tuned...

89

Issues in Debate
� Statistical efficiency

If generative model P(y, x) is correct, then …
usually gives better accuracy, particularly if training sample is small

� Computational efficiency
Generative models typically easiest to compute
(LDA/FLD computed directly, without iteration)

� Robustness to changing loss functions
LMS must re-train the classifier when the loss function changes.
… no retraining for generative and conditional models

� Robustness to model assumptions.
Generative model usually performs poorly when the assumptions
are violated.
Eg, LDA works poorly if P(x | y) is non-Gaussian.
Logistic Regression is more robust, … LMS is even more robust

� Robustness to missing values and noise.
In many applications, some of the features xij may be missing or
corrupted for some of the training examples.
Generative models typically provide better ways of handling this
than non-generative models.

90

Other Algorithms for learning LTUs

� Naive Bayes [Discuss later]
For K = 2 classes, produces LTU

� Winnow [?Discuss later?]
Can handle large numbers of “irrelevant"
features
� (features whose weights should be zero)

91

Learning Theory
Assume data is truly linearly separable. . .
� Sample Complexity: Given ε, δ ∈ (0, 1),

want LTU has error rate (on new examples)
� less than ε
� with probability > 1 – δ .

Suffices to learn from (be consistent with)

labeled training examples.

� Computational Complexity:
There is a polynomial time algorithm for
finding a consistent LTU
(reduction from linear programming)

Agnostic case… different…

