

R Greiner Cmput 466/551

Outline

- Framework
- Exact
 - Minimize Mistakes (Perceptron Training)
 - □ Matrix inversion (LMS)
- Logistic Regression
 - Max Likelihood Estimation (MLE) of P(y | x)
 - Gradient descent (MSE; MLE)
 - Newton-Raphson
- Linear Discriminant Analysis
 - Max Likelihood Estimation (MLE) of P(y, x)
 - Direct Computation
 - Fisher's Linear Discriminant

Diagnosing Butterfly-itis

Classifier: Decision Boundaries

Classifier: partitions input space X into "decision regions"

#antennae

- Linear threshold unit has a linear decision boundary
- Defn: Set of points that can be separated by linear decision boundary is "linearly separable"

Linear Separators

Draw "separating line"

If #antennae ≤ 2 , then butterfly-itis

So <u>?</u> is Not butterfly-itis.

Can be "angled"...

Linear Separators, in General

Given data (many features)

F ₁	F_2	 F _n	Class
35	95	 3	No
22	80	 -2	Yes
:	:	:	:
10	50	 1.9	No

• find "weights" $\{w_1, w_2, \dots, w_n, w_0\}$ such that

$$V_1 \times F_1 + \dots + W_n \times F_n + W_0 > 0$$

means

7

Linear Separator

Linear Separator

- Performance
 - \Box Given {w_i}, and values for instance, compute response
- Learning
 - □ Given labeled data, find "correct" {w_i}
- Linear Threshold Unit ... "Perceptron"

Geometric View

Consider 3 training examples:

Want classifier that looks like...

Linear Equation is Hyperplane

• Equation $\mathbf{w} \cdot \mathbf{x} = \sum_{i} w_{i} \cdot x_{i}$ is plane

Linear Threshold Unit: "Perceptron"

$$o_{w}(x_{1},...,x_{n}) = \begin{cases} 1 & \text{if } w_{0} + w_{1}x_{1} + \dots + w_{n}x_{n} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

= sign((w_{0}, w_{1},...,w_{n}) \cdot (1, x_{1},...,x_{n}))

Squashing function: sgn: $\Re \rightarrow \{-1, +1\}$

$$sgn(r) = \begin{cases} 1 & \text{if } r > 0 \\ 0 & \text{otherwise} \end{cases}$$

Actually w · x > b but...
 Create extra input x₀ fixed at 1
 Corresponding w₀ corresponds to -b

Learning Perceptrons

Can represent Linearly-Separated surface ... any hyper-plane between two half-spaces...

Remarkable learning algorithm: [Rosenblatt 1960]

If function f can be represented by perceptron, then \exists learning alg guaranteed to quickly converge to f!

- \Rightarrow enormous popularity, early / mid 60's
- But some simple fns cannot be represented
 - ... killed the field temporarily!

Perceptron Learning

Hypothesis space is...

Fixed Size:

 $\exists O(2^{n^2})$ distinct perceptrons over *n* boolean features

Deterministic

Continuous Parameters

• Learning algorithm:

□ Various: Local search, Direct computation, ...

Eager

Online / Batch

Task

Output: w ∈ ℜ^{r+1}
 Goal: Want w s.t.
 ∀i sgn(w · [1, x⁽ⁱ⁾]) = y⁽ⁱ⁾
 ... minimize mistakes wrt data ...

Error Function

Given data { $[x^{(i)}, y^{(i)}]$ }_{i=1..m}, optimize...

- 1. Classification error
 Perceptron Training; Matrix Inversion
- 2. Mean-squared error (LMS) Matrix Inversion; Gradient Descent
- 3. (Log) Conditional Probability (LR)
 MSE Gradient Descent; LCL Gradient Descent
- 4. (Log) Joint Probability (LDA; FDA) Direct Computation

$$err_{Class}(w) = \frac{1}{m} \sum_{i=1}^{m} I[y^{(i)} \neq o_w(x^{(i)})]$$

$$err_{MSE}(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [y^{(i)} - o_w(x^{(i)})]^2$$

$$LCL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_{w}(y^{(i)} | x^{(i)})$$

$$LL(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_{w}(y^{(i)}, x^{(i)})$$

#1: Optimal Classification Error

Local Search via Gradient Descent

Start w/ (random) weight vector W^0 . Repeat until converged \lor bored

Compute Gradient $\nabla \operatorname{err}(\mathbf{w}^t) = \left(\frac{\partial \operatorname{err}(\mathbf{w}^t)}{\partial w_0}, \frac{\partial \operatorname{err}(\mathbf{w}^t)}{\partial w_1}, \cdots, \frac{\partial \operatorname{err}(\mathbf{w}^t)}{\partial w_n}\right)$ Let $\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \nabla \operatorname{err}(\mathbf{w}^t)$ If CONVERGED: Return(\mathbf{w}^t)

#1a: Mistake Bound Perceptron Alg

Initialize w = 0	
Do until bored	
Predict "+" iff w ⋅ x > 0	
else "—"	
Mistake on $y = +1$: $\mathbf{w} \leftarrow \mathbf{w} +$	X
Mistake on $y = -1$: $w \leftarrow w - x$	Χ

Weights	Instance	Action
[0 0 0]	#1	

1

Mistake Bound Theorem

Theorem: [Rosenblatt 1960]

If data is consistent w/some linear threshold **w**, then number of mistakes is $\leq (1/\Delta)^2$, where $\Delta = \min_{x} \frac{|\mathbf{w} \cdot x|}{|\mathbf{w}| \times |\mathbf{w}|}$

• Δ measures "wiggle room" available:

If |x| = 1, then Δ is max, over all consistent planes, of minimum distance of example to that plane

- w is \perp to separator, as w · x = 0 at boundary
- So |w · x| is projection of x onto plane,
 PERPENDICULAR to boundary line

... ie, is distance from **x** to that line (once normalized)

20

Proof of Convergence

For simplicity:

- 0. Use $x_0 \equiv 1$, so target plane goes thru 0
- Assume target plane doesn't hit any examples
- 2. Replace negative point $\langle \langle x_0, x_1, \ldots, x_n \rangle \rangle \rangle$ by positive point $\langle \langle -x_0, -x_1, \ldots, -x_n \rangle \rangle$
- 3. Normalize all examples to have length 1

Let w^{*} be unit vector rep'ning target plane

$$\Delta = \min_{\mathbf{x}} \{ \mathbf{w}^* \cdot \mathbf{x} \}$$

Let w be hypothesis plane

Consider:

On each mistake, add x to w

$$\mathbf{W} = \sum_{\{\mathbf{X} \mid \mathbf{X} \cdot \mathbf{W} < 0\}} \mathbf{X}_{\mathbf{X} \cdot \mathbf{W} < 0\}}$$

x wrong wrt **w** iff $w \cdot x < 0$

Proof (con't)

 As (w·w^{*})/|w| = cos(angle between w and w^{*}) it must be ≤ 1, so numerator ≤ denominator

$$\Rightarrow \quad \Delta * m \leq \sqrt{m} \quad \Rightarrow \quad m \leq \frac{1}{\Delta^2} \tag{22}$$

#1b: Perceptron Training Rule

- For each labeled instance [x, y] Err([x, y]) = y - o_w(x) ∈ { -1, 0, +1 }
 - □ If Err($[\mathbf{x}, y]$) = 0 Correct! ... Do nothing! $\Delta w = 0 \equiv Err([\mathbf{x}, y]) \cdot \mathbf{x}$
 - □ If Err([**x**, y]) = +1 Mistake on positive! Increment by +x $\Delta w = +x \equiv Err([$ **x** $, y]) \cdot$ **x**
 - □ If Err($[\mathbf{x}, y]$) = -1 Mistake on negative! Increment by -x $\Delta w = -x \equiv Err([\mathbf{x}, y]) \cdot \mathbf{x}$

In all cases... $\Delta w^{(i)} = \text{Err}([\mathbf{x}^{(i)}, y^{(i)}]) \cdot \mathbf{x}^{(i)} = [y^{(i)} - o_{\mathbf{w}}(\mathbf{x}^{(i)})] \cdot \mathbf{x}^{(i)}$

Batch Mode: do ALL updates at once!

$$\begin{array}{ll} \Delta w_{j} &= \sum_{i} \Delta w_{j}^{(i)} \\ &= \sum_{i} x^{(i)}{}_{j} \left(y^{(i)} - o_{w}(\boldsymbol{x}^{(i)}) \right) \\ W_{j} + = \eta \Delta \boldsymbol{w}{}_{j} \end{array}$$

 η is learning rate (small pos "constant" ... \approx 0.05?) ²³

Correctness

Rule is intuitive: Climbs in correct direction...

Thrm: Converges to correct answer, if . . . training data is linearly separable sufficiently small η

- Proof: Weight space has EXACTLY 1 minimum! (no non-global minima)
 - \Rightarrow with enough examples, finds correct function!
- Explains early popularity
- If η too large, may overshoot
 If η too small, takes too long
- So often $\eta = \eta(k)$... which decays with # of iterations, k

#1c: Matrix Version?

Task: Given $\{\langle \mathbf{x}', \mathbf{y}' \rangle_i$ $\Box y^i \in \{-1, +1\}$ is label Find { w_{j} } s.t. $\begin{cases} y^{1} = w_{0} + w_{1} x_{1}^{1} + \cdots + w_{n} x_{n}^{1} \\ y^{2} = w_{0} + w_{1} x_{1}^{2} + \cdots + w_{n} x_{n}^{2} \\ \vdots \\ y^{m} = w_{0} + w_{1} x_{1}^{m} + \cdots + w_{n} x_{n}^{m} \end{cases}$ $\mathbf{y} = [y^1, \dots, y^m]^\top$ Linear Equalities $\mathbf{y} = \mathbf{X} \mathbf{w}$ $\mathbf{x} = \begin{pmatrix} 1 & x_1^1 & \cdots & x_n^1 \\ 1 & x_1^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ 1 & x_1^m & \cdots & x_n^m \end{pmatrix}$ $\mathbf{w} = [w_0, w_1, \dots, w_n]^\top$ Solution: $\mathbf{W} = \mathbf{X}^{-1} \mathbf{y}$

Issues

Task: Given { $\langle x^i, y^i \rangle$ } $y^i \in \{-1, +1\}$ is label Find w_i s.t. $y^1 = w_0 + w_1 x_1^1 + \dots + w_n x_n^1$ $y^2 = w_0 + w_1 x_1^2 + \dots + w_n x_n^2$ \vdots $y^m = w_0 + w_1 x_1^m + \dots + w_n x_n^m$

- 1. Why restrict to only $y^i \in \{-1, +1\}$?
 - □ If from discrete set $y^i \in \{0, 1, ..., m\}$: General (non-binary) classification
 - □ If ARBITRARY $y^i \in \mathfrak{R}$: Regression
- 2. What if NO w works?

 $\sum_{i} I[\mathbf{y}^{(i)} \neq \mathbf{W} \cdot \mathbf{x}^{(i)}]$

...X is singular; overconstrained ...

Could try to minimize residual

NP-Hard!

$$|| \mathbf{y} - \mathbf{X} \mathbf{w} ||_1 = \sum_i |\mathbf{y}^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)} |$$

$$|| \mathbf{y} - \mathbf{X} \mathbf{w} ||_2 = \sum_i (\mathbf{y}^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)})^2 \qquad \text{Easy!}$$

L₂ error vs 0/1-Loss

"0/1 Loss function" not smooth, differentiable

MSE error is smooth, differentiable...
 and is overbound...

Gradient Descent for Perceptron?

- Why not Gradient Descent for THRESHOLDed perceptron?
- Needs gradient (derivative), not

Gradient Descent is General approach.
 Requires

+ continuously parameterized hypothesis

+ error must be differentiatable wrt parameters But...

- can be slow (many iterations)
- may only find LOCAL opt

Linear Separators – Facts

GOOD NEWS:

□ If data is linearly separated,

Then FAST ALGORITHM finds correct {w_i} !
 But...

Linear Separators – Facts

GOOD NEWS:

□ If data is linearly separated,

Then FAST ALGORITHM finds correct {w_i} !
 But...

Some "data sets" are NOT linearly separatable!

#1. LMS version of Classifier

View as Regression
 □ Find "best" linear mapping w from X to Y
 w^{*} = argmin Err_{LMS}^(X, Y)(w)
 Err_{LMS}^(X, Y)(w) = ∑_i (y⁽ⁱ⁾ - w · x⁽ⁱ⁾)²

- Threshold: if w^Tx > 0.5, return 1; else 0
- See Chapter 3...

General Idea

- Use a discriminant function $\delta_k(x)$ for each class k $\Box Eg, \delta_k(x) = P(G=k | X)$
- Classification rule:
 Return k = argmax_j $\delta_j(x)$
- If each $\delta_i(x)$ is linear,

decision boundaries are piecewise hyperplanes

Linear Classification using Linear Regression

• 2D Input space: $X = (X_1, X_2)$ K-3 classes: $Y = (Y_1, Y_2, Y_3) \in \begin{cases} [1,0,0] \\ [0,1,0] \\ [0,0,1] \end{cases}$

 $\hat{G}((x_1 \ x_2)) = \arg \max \hat{Y}_k((x_1 \ x_2))$

k

Classification rule:

Training sample (N=5): $\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ 1 & x_{31} & x_{32} \\ 1 & x_{41} & x_{42} \\ 1 & x_{51} & x_{52} \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \\ y_{41} & y_{42} & y_{43} \\ y_{51} & y_{52} & y_{53} \end{bmatrix}$

$$\hat{Y}((x_1, x_2)) = (1 \ x_1 \ x_2)(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = (x^T \beta_1 \ x^T \beta_2 \ x^T \beta_3)$$

$$\hat{Y}_1((x_1 \, x_2)) = (1 \, x_1 \, x_2)\beta_1$$
$$\hat{Y}_2((x_1 \, x_2)) = (1 \, x_1 \, x_2)\beta_2$$
$$\hat{Y}_3((x_1 \, x_2)) = (1 \, x_1 \, x_2)\beta_3$$

Use Linear Regression for Classification?

 But ... regression minimizes sum of squared errors on target function ... which gives strong influence to outliers

#3: Logistic Regression

Want to compute P_w(y=1| x) ... based on parameters w

But ...

□ w·x has range [-∞, ∞]

 \Box probability must be in range \in [0; 1]

■ Need "squashing" function $[-\infty, \infty] \rightarrow [0, 1]$

Alternative Derivation...

$$P(+y|x) = \frac{P(x|+y)P(+y)}{P(x|+y)P(+y) + P(x|-y)P(-y)}$$
$$= \frac{1}{1 + \exp(-a)}$$
$$a = \ln \frac{P(x|+y)P(+y)}{P(x|-y)P(-y)}$$

Sigmoid Unit

- Sigmoid Function: $\sigma(x) = \frac{1}{1+e^{-x}}$
- Useful properties:

$$-\sigma: \Re \to [0,1]$$

$$-\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x))$$

- If $x \approx 0$, then $\sigma(x) \approx x$

Logistic Regression (con't)

Assume 2 classes:

$$P_{w}(+y \mid x) = \sigma(w \cdot x) = \frac{1}{1 + e^{-(x \cdot w)}}$$
$$P_{w}(-y \mid x) = 1 - \frac{1}{1 + e^{-(x \cdot w)}} = \frac{e^{-(x \cdot w)}}{1 + e^{-(x \cdot w)}}$$

• Log Odds: $\log \frac{P_w(+y \mid x)}{P_w(-y \mid x)} = x \cdot w$ Linear

How to learn parameters w?

 ■ ... depends on goal?
 □ A: Minimize MSE?
 ∑_i (y⁽ⁱ⁾ - o_w(x⁽ⁱ⁾))²

 □ B: Maximize likelihood?
 ∑_i log P_w(y⁽ⁱ⁾ | x⁽ⁱ⁾)

MSError Gradient for Sigmoid Unit

Error:
$$\sum_{j} (y^{(j)} - o_{w}(\mathbf{x}^{(j)}))^{2} = \sum_{j} E^{(j)}$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

For single training instance

• Input:
$$\mathbf{x}^{(j)} = [\mathbf{x}^{(j)}_1, \dots, \mathbf{x}^{(j)}_k]$$

• Computed Output: $o^{(j)} = \sigma(\sum_{i} x^{(j)} \cdot w_{i}) = \sigma(z^{(j)})$

 $\square \text{ where } z^{(j)} = \sum_{i} x^{(j)}_{i} \cdot w_{i} \text{ using current } \{ w_{i} \}$

Correct output: y^(j)

Stochastic Error Gradient (Ignore (i) superscript)

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\frac{1}{2} (o-y)^2 \right] = \frac{1}{2} \left[2(o-y) \frac{\partial}{\partial w_i} (o-y) \right]$$
$$= (o-y) \left(\frac{\partial o}{\partial w_i} \right) = (o-y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_i}$$

41

Derivative of Sigmoid

$$\frac{d}{da}\sigma(a) = \frac{d}{da}\frac{1}{(1+e^{-a})}$$
$$= \frac{-1}{(1+e^{-a})^2}\frac{d}{da}(1+e^{-a}) = \frac{-1}{(1+e^{-a})^2}(-e^{-a})$$
$$= \frac{e^{-a}}{(1+e^{-a})^2} = \frac{1}{(1+e^{-a})}\frac{e^{-a}}{(1+e^{-a})} = \sigma(a)\left[1-\sigma(a)\right]$$

Updating LR Weights (MSE)

•
$$\frac{\partial E}{\partial w_i} = (o-y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_i}$$

• Using:

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) (1 - \sigma(z)) = o(1 - o)$$
$$\frac{\partial z}{\partial w_i} = \frac{\partial (\sum_i w_i \cdot x_i)}{\partial w_i} = x_i$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\Rightarrow \left| \frac{\partial E^{(j)}}{\partial w_i} \right| = \left(o^{(j)} - y^{(j)} \right) o^{(j)} \left(1 - o^{(j)} \right) x_i^{(j)}$$

Note: As already computed $o^{(j)} = \sigma(z^{(j)})$ to get answer, trivial to compute $\sigma'(z^{(j)}) = \sigma(z^{(j)})(1 - \sigma(z^{(j)}))$

• Update $W_i += \Delta W_i$ where

$$\Delta w_i = \eta \cdot \frac{\partial E^{(j)}}{\partial w_i}$$

B: Or... Learn Conditional Probability

As fitting probability distribution,
 better to return probability distribution (≈ w)
 that is most likely, given training data, S

Goal:
$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} P(\mathbf{w} | S)$$

$$= \operatorname{argmax}_{\mathbf{w}} \frac{P(S | \mathbf{w}) P(\mathbf{w})}{P(S)} \qquad \text{Bayes Rules}$$

$$= \operatorname{argmax}_{\mathbf{w}} P(S | \mathbf{w}) P(\mathbf{w}) \qquad \text{As P(S) does not depend on } \mathbf{w}$$

$$= \operatorname{argmax}_{\mathbf{w}} P(S | \mathbf{w}) \qquad \text{As P(W) is uniform}$$

$$= \operatorname{argmax}_{\mathbf{w}} \log P(S | \mathbf{w}) \qquad \text{As log is monotonic}$$

ML Estimation

P(S | w) = likelihood function
L(w) = log P(S | w)
w* = argmax_w L(w)
is "maximum likelihood estimator" (MLE)

Computing the Likelihood

- As training examples [x⁽ⁱ⁾, y⁽ⁱ⁾] are iid
 drawn independently from same (unknown) prob P_w(x, y)
- $\blacksquare \log P(S | \mathbf{w}) = \log \Pi_i P_{\mathbf{w}}(\mathbf{x}^{(i)}, y^{(i)})$
 - $= \sum_{i} \log P_{\mathbf{w}}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$
 - $= \sum_{i} \log P_{\mathbf{w}}(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) + \sum_{i} \log P_{\mathbf{w}}(\mathbf{x}^{(i)})$
- Here P_w(x⁽ⁱ⁾) = 1/n ... not dependent on w, over empirical sample S
- $\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \sum_{i} \log P_{\mathbf{w}}(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)})$

Fit Logistic Regression... by Gradient Ascent

■ Want
$$\mathbf{w}^* = \operatorname{argmax}_{w} J(\mathbf{w})$$

□ J(w) = $\sum_i r(y^{(i)}, \mathbf{x}^{(i)}, \mathbf{w})$
□ For y ∈ {0, 1}
r(y, x, w) = log P_w(y | x) =
y log(P_w(y=1 | x)) + (1 - y) log(1 - P_w(y=1 | x))

So climb along...

$$\frac{\partial J(\mathbf{W})}{\partial w_j} = \sum_i \frac{\partial r(y^{(i)}, \mathbf{X}^{(i)}, \mathbf{W})}{\partial w_j}$$

Gradient Descent ...

$$\frac{\partial r(y, \mathbf{x}, \mathbf{w})}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} [y \log(p_{1}) + (1 - y) \log(1 - p_{1})]$$
$$= \frac{y}{p_{1}} \frac{\partial p_{1}}{\partial w_{j}} + (-1) \times \frac{1 - y}{1 - p_{1}} \frac{\partial p_{1}}{\partial w_{j}} = \frac{y - p_{1}}{p_{1}(1 - p_{1})} \frac{\partial p_{1}}{\partial w_{j}}$$

$$\frac{\partial p_1}{\partial w_j} = \frac{\partial P_w(y = 1 \mid x)}{\partial w_j} = \frac{\partial}{\partial w_j} (\sigma(x \cdot w))$$
$$= \sigma(x \cdot w) [1 - \sigma(x \cdot w)] \frac{\partial}{\partial w_j} (x \cdot w) = p_1 (1 - p_1) \cdot x_j^{(i)}$$

$$\frac{\partial J(w)}{\partial w_{j}} = \sum_{i} \frac{\partial r(y^{(i)}, x^{(i)}, w)}{\partial w_{j}} = \sum_{i} \frac{y^{(i)} - p_{1}}{p_{1}(1 - p_{1})} p_{1}(1 - p_{1}) \cdot x_{j}^{(i)}$$
$$= \sum_{i} (y^{(i)} - P_{w}(y = 1 | x)) \cdot x_{j}^{(i)}$$
49

Gradient Ascent for Logistic Regression (MLE)

Given: training examples
$$\langle \mathbf{x}^{(i)}, y^{(i)} \rangle$$
, $i = 1..N$
Set initial weight vector $\mathbf{w} = \langle 0, 0, 0, 0, ..., 0 \rangle$
Repeat until convergence
Let gradient vector $\Delta \mathbf{w} : \langle 0, 0, 0, 0, ..., 0 \rangle$
For $i = 1$ to N do
 $p_1^{(i)} = 1/(1 + \exp[\mathbf{w} \cdot \mathbf{x}^{(i)}])$
error_i = $y^{(i)} - p_1^{(i)}$
For $j = 1$ to n do
 $\Delta \mathbf{w}_j + = \operatorname{error}_i \cdot x_{ij}$
 $\mathbf{w} + = \eta \Delta \mathbf{w} %$ step in direction of increasing gradient

Comments on MLE Algorithm

This is BATCH;

∃ obvious online alg (stochastic gradient ascent)

Can use second-order (Newton-Raphson)

alg for faster convergence

weighted least squares computation; aka

"Iteratively-Reweighted Least Squares" (IRLS)

Use Logistic Regression for Classification

Return YES iff

Logistic Regression for K > 2 Classes

- To handle K > 2 classes
 - Let class K be "reference"
 - Represent each other class $k \neq K$ as logistic function of odds of class k versus class K:
 - Apply gradient ascent to learn all \mathbf{w}_k weight vectors, in parallel.
 - Conditional probabilities: $\exp(\mathbf{w}_k \cdot \mathbf{x})$ $P(y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k \cdot \mathbf{x})}{1 + \sum_{\ell=1}^{K-1} \exp(\mathbf{w}_\ell \cdot \mathbf{x})}$

and

$$P(y = K | \mathbf{x}) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\mathbf{w}_{\ell} \cdot \mathbf{x})}$$

$$\log \frac{P(y = 1 | \mathbf{x})}{P(y = K | \mathbf{x})} = \mathbf{w}_1 \cdot \mathbf{x}$$

$$log \frac{P(y=2 | \mathbf{x})}{P(y=K | \mathbf{x})} = \mathbf{w}_2 \cdot \mathbf{x}$$

$$log \frac{P(y = K - 1 | \mathbf{x})}{P(y = K | \mathbf{x})} = \mathbf{w}_{K-1} \cdot \mathbf{x}$$

Learning LR Weights

Task: Given data $\langle \langle \mathbf{x}^{(i)}, y^{(i)} \rangle \rangle$, find w in $p_{\mathbf{w}}(y|\mathbf{x}) = \begin{cases} \frac{1}{1 + \exp(-w \cdot x)} & \text{if } y = 1\\ \frac{\exp(-w \cdot x)}{1 + \exp(-w \cdot x)} & \text{if } y = 0 \end{cases}$ s.t. $p_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)}) > \frac{1}{2} & \text{iff } y^{(i)} = 1 \end{cases}$

 $\begin{array}{l} \text{Approach 1: MSE - "Neural nets"} \\ \text{Minimize } \sum_{i} (o^{(i)} - y^{(i)})^2 \\ \\ \text{Gradient:} \quad & \Delta \textbf{W^{(i)}}_{j} = \left(\textbf{O}^{(i)} - \textbf{Y}^{(i)} \right) \textbf{O}^{(i)} \left(\textbf{1} - \textbf{O}^{(i)} \right) \\ \\ \text{Approach 2: MLE - "Logistic Regression"} \\ \\ \text{Maximize } \sum_{i} p_{w}(y|x) \\ \\ \\ \text{Gradient:} \quad & \Delta \textbf{W^{(i)}}_{j} = \left(\textbf{Y}^{(i)} - \textbf{p}(\textbf{1}|x^{(i)}) \right) \textbf{X^{(i)}}_{j} \end{array}$

Logistic Regression Computation...

$$l(\beta) = \sum_{i=1}^{N} \{\log \Pr(G = y_i | X = x_i)\}$$

= $\sum_{i=1}^{N} y_i \log(\Pr(G = 1 | X = x_i)) + (1 - y_i) \log(\Pr(G = 0 | X = x_i))$
= $\sum_{i=1}^{N} (y_i \beta^T x_i + (1 - y_i) \log \frac{1}{1 + \exp(\beta^T x_i)})$
= $\sum_{i=1}^{N} (y_i \beta^T x_i - (1 - y_i) \log(1 + \exp(\beta^T x_i)))$
 $\frac{\partial l(\beta)}{\partial \beta} = \sum_{i=1}^{N} \left(y_i - \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)} \right) x_i = 0$

(p+1) non-linear equations

Solve by Newton-Raphson method:

$$\beta^{new} = \beta^{old} - [\text{Jacobian}(\frac{\partial l(\beta^{old})}{\partial \beta})]^{-1} \frac{\partial l(\beta^{old})}{\partial \beta}$$

Newton-Raphson Method

- A gen'l technique for solving f(x)=0
 ... even if non-linear
- Taylor series:

□ f(x_{n+1}) ≈ f(x_n) + ($x_{n+1} - x_n$) f'(x_n) □ $x_{n+1} \approx x_n$ + [f(x_{n+1}) - f(x_n)] / f'(x_n) ■ When x_{n+1} near root, f(x_{n+1}) ≈ 0

$$\Rightarrow \qquad x_{n+1} \coloneqq x_n - \frac{f(x_n)}{f'(x_n)}$$

Iteration...

Newton-Raphson in Multi-dimensions

To solve the equations:

$$f_{1}(x_{1}, x_{2}, \dots, x_{N}) = 0$$

$$f_{2}(x_{1}, x_{2}, \dots, x_{N}) = 0$$

$$\vdots$$

$$f_{N}(x_{1}, x_{2}, \dots, x_{N}) = 0$$

Taylor series:
$$f_j(x + \Delta x) = f_j(x) + \sum_{k=1}^N \frac{\partial f_j}{\partial x_k} \Delta x_k, \qquad j = 1,...,N$$

$$\blacksquare \text{N-R:} \qquad \begin{bmatrix} x_1^{n+1} \\ x_2^{n+1} \\ \vdots \\ x_N^{n+1} \end{bmatrix} = \begin{bmatrix} x_1^{n+1} \\ x_2^{n+1} \\ \vdots \\ x_N^{n+1} \end{bmatrix} - \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix}^{-1} \begin{bmatrix} f_1(x_1^n, x_2^n, \dots, x_N^n) \\ f_2(x_1^n, x_2^n, \dots, x_N^n) \\ \vdots \\ f_N(x_1^n, x_2^n, \dots, x_N^n) \end{bmatrix}$$
Jacobian matrix
$$45$$

Newton-Raphson : Example

Solve $\begin{aligned} f_1(x_1, x_2) &= x_1^2 - \cos(x_2) &= 0 \\ f_2(x_1, x_2) &= \sin(x_1) + x_1^2 + x_2^3 = 0 \end{aligned}$

$$\begin{bmatrix} x_1^{n+1} \\ x_2^{n+1} \end{bmatrix} = \begin{bmatrix} x_1^n \\ x_2^n \end{bmatrix} - \begin{bmatrix} 2x_1^n & \sin(x_2^n) \\ \cos(x_1^n) + 2x_1^n & 3(x_2^n)^2 \end{bmatrix}^{-1} \begin{bmatrix} (x_1^n)^2 - \cos(x_2^n) \\ \sin(x_1^n) + (x_1^n)^2 + (x_2^n)^3 \end{bmatrix}$$

Maximum Likelihood Parameter Estimation

 Find the unknown parameters mean & standard deviation of a Gaussian pdf,

$$p(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

given N independent samples, $\{x_1, \ldots, x_N\}$

Estimate the parameters that maximize the likelihood function $L(\mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x_i - \mu)^2}{2\sigma^2})$

$$(\hat{\mu}, \hat{\sigma}) = \underset{\mu, \sigma}{\operatorname{arg\,max}} L(\mu, \sigma)$$

Logistic Regression Algs for LTUs

Learns Conditional Probability Distribution P(y | x)

Local Search:

Begin with initial weight vector; iteratively modify to maximize objective function log likelihood of the data (ie, seek w s.t. probability distribution P_w(y | x) is most likely given data.)

 Eager: Classifier constructed from training examples, which can then be discarded.

Online or batch

Masking of Some Class

Linear regression of the indicator matrix can lead to masking

#4: Linear Discriminant Analysis

- LDA learns joint distribution P(y, x)
 □ As P(y, x) ≠ P(y | x); optimizing P(y, x) ≠ optimizing P(y | x)
- "generative model"
 - \Box P(y,x) model of how data is generated
 - □ Eg, factor
 - $\mathsf{P}(\mathsf{y}, \mathsf{x}) = \mathsf{P}(\mathsf{y}) \mathsf{P}(\mathsf{x} | \mathsf{y})$
 - P(y) generates value for y; then
 - P(x | y) generates value for x given this y
- Belief net:

Linear Discriminant Analysis, con't

 $\blacksquare P(\mathbf{y}, \mathbf{x}) = P(\mathbf{y}) P(\mathbf{x} | \mathbf{y})$ P(y) is a simple discrete distribution \Box Eq: P(y = 0) = 0.31; P(y = 1) = 0.69 (31% negative examples; 69% positive examples) • Assume $P(\mathbf{x} | \mathbf{y})$ is multivariate normal, with mean μ_k and covariance Σ $P(\mathbf{x} | y = k) =$ $\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\mu_k)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_k)\right]$

Estimating LDA Model

• Linear discriminant analysis assumes form $P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x})^{-1}$

$$P(\mathbf{x}, y) = P(y) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu_y)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_y)\right]$$

- μ_y is mean for examples belonging to class y;
 covariance matrix Σ is shared by all classes !
- Can estimate LDA directly:
 - $m_k = #training examples in class y = k$
 - □ Estimate of P(y = k): $\underline{p}_{\underline{k}} = m_k / m$

$$\hat{\mu}_{k} = \frac{1}{m} \sum_{\{i: y_{i} = k\}} x_{i} \qquad \hat{\Sigma} = \frac{1}{m} \sum_{i} (x_{i} - \hat{\mu}_{y_{i}}) (x_{i} - \hat{\mu}_{y_{i}})^{T} \qquad m - k$$

(Subtract each x_i from corresponding $\hat{\mu}_{y_i}$ before taking outer product)

Example of Estimation

x_1	x_2	x_3	У
13.1	20.2	0.4	+
6.0	17.7	-4.2	+
8.2	18.2	-2.5	+
0.4	10.1	19.2	_
-4.2	12.8	5.1	—
-4.3	15.0	21.7	—
0.9	10.1	19.2	—

■ m=7 examples; $m_{+} = 3$ positive; $m_{-} = 4$ negative $\Rightarrow p_{+} = 3/7 \quad p_{-} = 4/7$

• Compute $\hat{\mu}_i$ over each class

$$\hat{\mu}_{+} = \frac{1}{3} \sum_{i: \langle y^{(i)} = + \rangle} \mathbf{x}^{(i)}$$

$$= \frac{1}{3} \begin{pmatrix} [13.1, 20.2, 0.4]^{\mathsf{T}} + \\ [6.0, 17.7, -4.2]^{\mathsf{T}} + \\ [8.2, 18.2, -2.5]^{\mathsf{T}} \end{pmatrix}$$

$$= [9.1, 18.7, -2.1]^{\mathsf{T}}$$

$$\hat{\mu}_{-} = \frac{1}{4} \sum_{i: \langle y^{(i)} = - \rangle} \mathbf{x}^{(i)} = [-1.8, 12.0, 16.3]^{\mathsf{T}}$$

Estimation...

x_1	x_2	x_3	У
13.1	20.2	0.4	+
6.0	17.7	-4.2	+
8.2	18.2	-2.5	+
0.4	10.1	19.2	_
-4.2	12.8	5.1	—
-4.3	15.0	21.7	_
0.9	10.1	19.2	-

- Compute common $\hat{\Sigma}$
 - "Normalize" each z := $\mathbf{x} \mu_{y(\mathbf{x})}$ $\mathbf{z}^{(1)} := [13.1, 20.2, 0.4]^{\mathsf{T}} - [9.1, 18.7, -2.1]^{\mathsf{T}}$ $= [4.0, 1.5, -1.7]^{\mathsf{T}}$

$$\begin{array}{l} \overset{\mathsf{T}}{\mathbf{z}^{(4)}} := & \begin{bmatrix} 0.4, \, 10.1, \, 19.2 \end{bmatrix}^\mathsf{T} - & \begin{bmatrix} -1.8, \, 12.0, \, 16.3 \end{bmatrix}^\mathsf{T} \\ &= & \begin{bmatrix} 2.2, \, -1.9, \, 2.9 \end{bmatrix}^\mathsf{T} \\ & \ldots & \mathsf{Z}^{(7)} := \dots \end{array}$$

- Compute covariance matrix, for each i: For $x^{(1)}$, via $z^{(1)}$:

$$\mathbf{z}^{(1)} \times \mathbf{z}^{(1)^{\top}} = \begin{bmatrix} 4.0\\ 0.5\\ -1.7 \end{bmatrix} \cdot [4.0, 0.5, -1.7]$$

$$= \begin{bmatrix} 4.0 \cdot 4.0 & 4.0 \cdot 0.5 & 4.0 \cdot -1.7\\ 0.5 \cdot 4.0 & 0.5 \cdot 0.5 & 0.5 \cdot -1.7\\ -1.7 \cdot 4.0 & -1.7 \cdot 0.5 & -1.7 \cdot -1.7 \end{bmatrix}$$

$$= \begin{bmatrix} 16.0 & 2.0 & -6.8\\ 2.0 & 0.25 & -0.85\\ -6.8 & -0.85 & -2.89 \end{bmatrix}$$
Set $\hat{\Sigma} = \frac{1}{m} \sum_{i} \mathbf{z}^{(i)} \mathbf{z}^{(i)^{\top}}$ 67

Classifying, Using LDA

How to classify new instance, given estimates

Σ

 $\{\hat{\mu}_i\}$

 $\{\widehat{p}_i\}$

Eg,
$$\hat{p}_{+} = 3/7$$
 $\hat{p}_{-} = 4/7$
* $\hat{\mu}_{+} = [9.1, 18.7, -2.1]^{\mathsf{T}}$
 $\hat{\mu}_{-} = [-1.8, 12.0, 16.3]^{\mathsf{T}}$
* $\hat{\Sigma} = \begin{bmatrix} 7.22 & -1.31 & 6.35 \\ -1.31 & 2.91 & 0.32 \\ 6.35 & 0.32 & 26.03 \end{bmatrix}$

• Class for instance $\mathbf{x} = [5, 14, 6]^{\mathsf{T}}$? P(y = +, x = [5, 14, 6]) = P(y = +) P([5, 14, 6]|y = +) $= \frac{3}{7} \times P(x = [5, 14, 6]|x \sim \mathcal{N}(\hat{\mu}_{+}, \hat{\Sigma}))$

$$= \frac{3}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{+})\right]$$

$$= 16.63E-11$$

$$P(y = -, x = [5, 14, 6]) = P(y = -)P([5, 14, 6]] | y = -)$$

$$= \frac{4}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(x - \hat{\mu}_{-})^{\top} \hat{\Sigma}^{-1}(x - \hat{\mu}_{-})\right]$$

$$= 43.33E-11$$

$$\bullet P(y = + | [5, 14, 6]^{\top}) = \frac{P(y = +, [5, 14, 6]^{\top})}{P(y = +, [5, 14, 6]) + P(y = -, [5, 14, 6])} = 0.2774$$

$$P(y = - | [5, 14, 6]^{\top}) = 0.7226$$

LDA learns an LTU

Consider 2-class case with a 0/1 loss function
Classify ŷ = 1 if

$$\log \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} > 0 \quad \text{iff} \quad \log \frac{P(y=1,\mathbf{x})}{P(y=0,\mathbf{x})} > 0$$

$$\frac{P(\mathbf{x},y=1)}{P(\mathbf{x},y=0)} = \frac{P(y=1)\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}\exp\left[-\frac{1}{2}(\mathbf{x}-\mu_1)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_1)\right]}{P(y=0)\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}\exp\left[-\frac{1}{2}(\mathbf{x}-\mu_0)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_0)\right]}$$

$$= \frac{P(y=1)\exp\left[-\frac{1}{2}(\mathbf{x}-\mu_1)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_1)\right]}{P(y=0)\exp\left[-\frac{1}{2}(\mathbf{x}-\mu_0)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_0)\right]}$$

$$\ln \frac{P(\mathbf{x},y=1)}{P(\mathbf{x},y=0)} = \ln \frac{P(y=1)}{P(y=0)} - \frac{1}{2}\left[(\mathbf{x}-\mu_1)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_1) - (\mathbf{x}-\mu_0)^{\mathsf{T}}\Sigma^{-1}(\mathbf{x}-\mu_0)\right]}{P(\mathbf{x}-\mu_0)^{\mathsf{T}}\Sigma^{-1}(\mathbf$$

LDA Learns an LTU (2)

 $(x-\mu_1)^T \sum_{i=1}^{-1} (x-\mu_1) - (x-\mu_0)^T \sum_{i=1}^{-1} (x-\mu_0)$ $= x^T \sum_{i=1}^{-1} (\mu_0 - \mu_1) + (\mu_0 - \mu_1)^T \sum_{i=1}^{-1} x + \mu_1^T \sum_{i=1}^{-1} \mu_1 - \mu_0^T \sum_{i=1}^{-1} \mu_0$

• As Σ^{-1} is symmetric, ... = 2 x^T Σ^{-1} ($\mu_0 - \mu_1$)+ $\mu_1^{T} \Sigma^{-1} \mu_1 - \mu_0^{T} \Sigma^{-1} \mu_0$

$$\Rightarrow \ln \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} =$$

$$\ln \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} \left[(\mathbf{x} - \mu_1)^\top \Sigma^{-1} (\mathbf{x} - \mu_1) - (\mathbf{x} - \mu_0)^\top \Sigma^{-1} (\mathbf{x} - \mu_0) \right]$$

$$= \ln \frac{P(y = 1)}{P(y = 0)} + \mathbf{x}^\top \Sigma^{-1} (\mu_1 - \mu_0) + \frac{1}{2} \mu_0^\top \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1$$

$$= \mathbf{x}^\top \Sigma^{-1} (\mu_1 - \mu_0) + \ln \frac{P(y = 1)}{P(y = 0)} + \frac{1}{2} \mu_0^\top \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1$$

70

LDA Learns an LTU (3)

 $\ln \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \mathbf{x}^{\top} \sum_{i=1}^{-1} (\mu_1 - \mu_0) + \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2} \mu_0^{\top} \sum_{i=1}^{-1} \mu_0 - \frac{1}{2} \mu_1^{\top} \sum_{i=1}^{-1} \mu_1$

So let...

$$w = \Sigma^{-1}(\mu_1 - \mu_0)$$

$$c = \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2}\mu_0^\top \Sigma^{-1} \mu_0 - \frac{1}{2}\mu_1^\top \Sigma^{-1} \mu_1$$

• Classify $\hat{y} = 1$ iff $W \cdot X + C > 0$ LTU!!

LDA: Example

LDA was able to avoid masking here
View LDA wrt Mahalanobis Distance

8

Squared Mahalanobis distance between x and µ₃

 $D_{M}^{2}(\mathbf{x}, \mu) = (\mathbf{x} - \mu)^{T} \sum^{-1} (\mathbf{x} - \mu)$

 $\Box \sum^{-1} \approx$ linear distortion

... converts standard Euclidean distance into Mahalanobis distance.

• LDA classifies **x** as 0 if $D_M^2(\mathbf{x}, \mu_0) < D_M^2(\mathbf{x}, \mu_1)$

■ log P(**x** | y = k) ≈ log $\pi_k - \frac{1}{2} D_M^2(\mathbf{x}, \mu_k)$

Generalizations of LDA

General Gaussian Classifier: QDA

Allow each class k to have its own $\sum_{\mathbf{k}}$

 \Rightarrow Classifier \equiv *quadratic* threshold unit (not LTU)

Naïve Gaussian Classifier

Allow each class k to have its own \sum_{k}

but require each \sum_{k} be diagonal.

 \Rightarrow within each class,

any pair of features x_i and x_j are independent

Classifier is still quadratic threshold unit but with a restricted form

Most "discriminating" Low Dimensional Projection

Fisher's Linear Discriminant

QDA and Masking

Better than Linear Regression in terms of handling masking:

Usually computationally more expensive than LDA

Variants of LDA

• Covariance matrix Σ

n features; k classes

Name	Same for all classes?	Diagonal	#param's
	+	+	k
LDA	+		n ²
Naïve Gaussian Classifier		+	k n
General Gaussian Classifier			k n²

Summary of Linear Discriminant Analysis

Learns Joint Probability Distr'n P(y, x)

Direct Computation.

MLEstimate of P(y, x) computed directly from data without search.

But need to invert matrix, which is O(n³)

• Eager:

Classifier constructed from training examples, which can then be discarded.

Batch: Only a batch algorithm.

An online LDA alg requires online alg for incrementally updating $\Sigma^{\text{-1}}$

[Easy if Σ^{-1} is diagonal. . .]

Fisher's Linear Discriminant

LDA

□ Finds K–1 dim hyperplane

(K = number of classes)

- \Box Project \boldsymbol{x} and { $\boldsymbol{\mu}_k$ } to that hyperplane
- \Box Classify \boldsymbol{x} as nearest $\boldsymbol{\mu}_k$ within hyperplane

Better:

Find hyperplane that maximally separates projection of **x**'s wrt Σ^{-1}

Fisher's Linear Discriminant

Fisher Linear Discriminant

Recall any vector w projects ℜⁿ → ℜ
 Goal: Want w that "separates" classes
 Each w ⋅ x⁺ far from each w ⋅ x⁻

Still overlap... why?

Fisher Linear Discriminant

• Using
$$\mathbf{m}_{+} = \frac{\sum_{i} y^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_{i} y^{(i)}} \quad \mathbf{m}_{-} = \frac{\sum_{i} (1 - y^{(i)}) \cdot \mathbf{x}^{(i)}}{\sum_{i} (1 - y^{(i)})}$$

Mean of x's projections: $\mu_{+} = \frac{\sum_{i} y^{(i)} \mathbf{w}^{\top} \cdot \mathbf{x}^{(i)}}{\sum_{i} y^{(i)}} = \mathbf{w}^{\top} \cdot \mathbf{m}_{+}$ $\mu_{-} = \frac{\sum_{i} (1 - y^{(i)}) \mathbf{w}^{\top} \cdot \mathbf{x}^{(i)}}{\sum_{i} (1 - y^{(i)})} = \mathbf{w}^{\top} \cdot \mathbf{m}_{-}$

• Problem with $m_{+} - m_{-}$:

81

Does not consider "scatter" within class
Goal: Want w that "separates" classes
Each w · x⁺ far from each w · x⁻
Positive x⁺'s: w · x⁺ close to each other
Negative x⁻'s: w · x⁻ close to each other

$$\Box \mathbf{s_{+}}^{2} = \sum_{i} y^{(i)} \left(\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m}_{+} \right)^{2}$$
$$\Box \mathbf{s_{-}}^{2} = \sum_{i} (1 - y^{(i)}) \left(\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m}_{-} \right)^{2}$$

Fisher Linear Discriminant

- Recall any vector **w** projects $\mathfrak{R}^n \to \mathfrak{R}$
- Goal: Want w that "separates" classes
 - □ Positive **x**⁺'s: **w** · **x**⁺ close to each other
 - □ Negative \mathbf{x}^{-1} 's: $\mathbf{w} \cdot \mathbf{x}^{-1}$ close to each other
 - \Box Each $\mathbf{w} \cdot \mathbf{x}^+$ far from each $\mathbf{w} \cdot \mathbf{x}^-$

• Using
$$\mathbf{m}_{+} = \frac{\sum_{i} y^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_{i} y^{(i)}} \quad \mathbf{m}_{-} = \frac{\sum_{i} (1 - y^{(i)}) \cdot \mathbf{x}^{(i)}}{\sum_{i} (1 - y^{(i)})}$$

Mean of x's projections:

$$\mu_{+} = \frac{\sum_{i} y^{(i)} \mathbf{w}^{\top} \cdot \mathbf{x}^{(i)}}{\sum_{i} y^{(i)}} = \mathbf{w}^{\top} \cdot \mathbf{m}_{+}$$

$$\mu_{-} = \frac{\sum_{i} (1 - y^{(i)}) \mathbf{w}^{\top} \cdot \mathbf{x}^{(i)}}{\sum_{i} (1 - y^{(i)})} = \mathbf{w}^{\top} \cdot \mathbf{m}_{-}$$

• "scatter" of +instance; –instance

$$\Box \mathbf{s_{+}}^{2} = \sum_{i} y^{(i)} (\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m_{+}})^{2}$$

$$\Box \mathbf{s_{-}}^{2} = \sum_{i} (1 - y^{(i)}) (\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m_{+}})^{2}$$

82

FLD, con't

• Separate means m_{-} and m_{+} \Rightarrow maximize $(m_{-} - m_{+})^{2}$

Minimize each spread s², s²

 \Rightarrow minimize ($s_{+}^{2} + s_{-}^{2}$)

Objective function: maximize

$$J_{S}(w) = \frac{(\mu_{+} - \mu_{-})^{2}}{(s_{+}^{2} + s_{-}^{2})}$$

#1:
$$(\mu_{-} - \mu_{+})^{2} = (\mathbf{w}^{\top} \mathbf{m}_{+} - \mathbf{w}^{\top} \mathbf{m}_{-})^{2}$$

= $\mathbf{w}^{\top} (\mathbf{m}_{+} - \mathbf{m}_{-})(\mathbf{m}_{+} - \mathbf{m}_{-})^{\top} \mathbf{w} = \mathbf{w}^{\top} S_{B} \mathbf{w}$

"between-class scatter"

$$S_{B} = (m_{+} - m_{-}) (m_{+} - m_{-})^{T}$$

$$J_{s}(w) = \frac{(\mu_{+} - \mu_{-})^{2}}{(s_{+}^{2} + s_{-}^{2})}$$

$$S_{+}^{2} = \sum_{i} y^{(i)} (\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m}_{+})^{2}$$

= $\sum_{i} \mathbf{w}^{T} y^{(i)} (\mathbf{x}^{(i)} - \mathbf{m}_{+}) (\mathbf{x}^{(i)} - \mathbf{m}_{+})^{T} \mathbf{w}$
= $\mathbf{w}^{T} S_{+} \mathbf{w}$

$$S_{+} = \sum_{i} y^{(i)} (\mathbf{x}^{(i)} - \mathbf{m}_{+}) (\mathbf{x}^{(i)} - \mathbf{m}_{+})^{\mathsf{T}}$$

... "within-class scatter matrix" for +

$$S_{-} = \sum_{i} (1 - y^{(i)}) (\mathbf{x}^{(i)} - \mathbf{m}_{-}) (\mathbf{x}^{(i)} - \mathbf{m}_{-})^{T}$$

... "within-class scatter matrix" for -

•
$$S_w = S_+ + S_-$$
 so $S_+^2 + S_-^2 = W^T S_W W$

FLD, IV $J_{S}(\mathbf{w}) = \frac{(\mu_{+} - \mu_{-})^{2}}{(s_{+}^{2} + s_{-}^{2})} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{W} \mathbf{w}}$

Minimizing $J_{S}(\mathbf{w}) \dots$ $\mathbf{w}^{*} = \operatorname{argmin}_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{w}} \mathbf{w} = 1$ Lagrange: $L(\mathbf{w}, \lambda) = \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w} + \lambda (1 - \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{w}} \mathbf{w})$ $\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 2S_{B} \mathbf{w} - \lambda (2S_{w} \mathbf{w})$ $\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 0 \implies S_{B}^{-1} S_{w} \mathbf{w} = \frac{1}{\lambda} \mathbf{w}$

• ... w^{*} is eigenvector of $S_B^{-1}S_w$

FLD, V
$$J_{S}(\mathbf{w}) = \frac{(\mu_{+} - \mu_{-})^{2}}{(s_{+}^{2} + s_{-}^{2})} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{w} \mathbf{w}}$$

• **Optimal** W^* is eigenvector of $S_B^{-1}S_W$

When P(x | y_i) ~ N(µ_i; ∑) ∃ LINEAR DISCRIMINANT: w = ∑⁻¹(µ₊ - µ₋) ⇒ FLD is optimal classifier, if classes normally distributed
Can use even if not Gaussian: After projecting *d*-dim to 1, just use any classification method

Fisher's LD vs LDA

Fisher's LD = LDA when...

- Prior probabilities are same
- Each class conditional density is multivariate Gaussian
- □ ... with common covariance matrix
- Fisher's LD...
 - does not assume Gaussian densities
 - can be used to reduce dimensions even when multiple classes scenario

Comparing LMS, Logistic Regression, LDA, FLD

- Which is best: LMS, LR, LDA, FLD ?
- Ongoing debate within machine learning community about relative merits of
 direct classifiers [LMS]
 conditional models P(y | x) [LR]
 generative models P(y, x) [LDA, FLD]
- Stay tuned...

Issues in Debate

Statistical efficiency

If generative model P(y, x) is correct, then ... usually gives better accuracy, particularly if training sample is small

Computational efficiency

Generative models typically easiest to compute (LDA/FLD computed directly, without iteration)

Robustness to changing loss functions

LMS must re-train the classifier when the loss function changes. ... no retraining for generative and conditional models

Robustness to model assumptions.

Generative model usually performs poorly when the assumptions are violated.

Eg, LDA works poorly if P(x | y) is non-Gaussian.

Logistic Regression is more robust, ... LMS is even more robust

Robustness to missing values and noise.

In many applications, some of the features x_{ij} may be missing or corrupted for some of the training examples. Generative models typically provide better ways of handling this than non-generative models.

Other Algorithms for learning LTUs

Naive Bayes [Discuss later]
 For K = 2 classes, produces LTU

- Winnow [?Discuss later?]
 Can handle large numbers of "irrelevant" features
 - □ (features whose weights should be zero)

Learning Theory

Assume data is truly linearly separable...

- Sample Complexity: Given ε , $\delta \in (0, 1)$, want LTU has error rate (on new examples)
 - \Box less than ε
 - \square with probability $> 1 \delta$.

Suffices to learn from (be consistent with)

$$m = O\left(\frac{1}{\epsilon}\left[\ln\frac{1}{\delta} + (n+1)\ln\frac{1}{\epsilon}\right]\right)$$

labeled training examples.

Computational Complexity:

There is a polynomial time algorithm for finding a consistent LTU (reduction from linear programming)

Agnostic case... different...