HTF: Ch4
 B: Ch4

Linear Classifiers

R Greiner
Cmput 466/551

Outine

- Framework
- Exact
\square Minimize Mistakes (Perceptron Training)
\square Matrix inversion (LMS)
- Logistic Regression
\square Max Likelihood Estimation (MLE) of P(y|x)
\square Gradient descent (MSE; MLE)
\square Newton-Raphson
- Linear Discriminant Analysis
\square Max Likelihood Estimation (MLE) of P(y, x)
\square Direct Computation
\square Fisher's Linear Discriminant

Diagnosing Butterfly-itis

Classifier: Decision Boundaries

- Classifier: partitions input space X into "decision regions"

- Linear threshold unit has a linear decision boundary
- Defn: Set of points that can be separated by linear decision boundary is "linearly separable"

Linear Separators

■ Draw "separating line"

- If \#antennae ≤ 2, then butterfly-itis
- So ? is Not butterfly-itis.

Can be "angled"...

■ If $2.3 x$ \#Wings $-7.5 x$ \#antennae $+1.2>0$ then butterfly-itis

Linear Separators, in General

- Given data (many features)

\mathbf{F}_{1}	\mathbf{F}_{2}	\ldots	$\mathbf{F}_{\mathbf{n}}$	Class
35	95	\cdots	3	No
22	80	\cdots	-2	Yes
$:$	$:$		$:$	$:$
10	50	\cdots	1.9	No

■ find "weights" $\left\{w_{1}, w_{2}, \ldots, w_{n}, w_{0}\right\}$ such that

$$
W_{1} \times F_{1}+\ldots+W_{n} \times F_{n}+w_{0}>0
$$

means
Class $=$ Yes

Linear Separator

Just view $F_{0}=0$, so $w_{0} \ldots$

Linear Separator

- Performance
\square Given $\left\{w_{i}\right\}$, and values for instance, compute response
- Learning
\square Given labeled data, find "correct" $\left\{w_{i}\right\}$
■ Linear Threshold Unit ... "Perceptron"

Geometric View

- Consider 3 training examples:
([1.0, 1.0]; 1)
([0.5; 3.0]; 1)
([2.0; 2.0]; 0)
- Want classifier that looks like. . .

Linear Equation is Hyperplane

- Equation $\mathbf{w} \cdot \mathbf{x}=\sum_{i} \mathbf{w}_{i} \cdot \mathbf{x}_{i}$ is plane

$$
y(\mathbf{x})= \begin{cases}1 & \text { if } \mathbf{w} \cdot \mathbf{x}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Linear Threshold Unit: "Perceptron"

- Squashing function:
sgn: $\mathfrak{R \rightarrow \{ - 1 , + 1 \}}$
$\operatorname{sgn}(r)= \begin{cases}1 & \text { if } r>0 \\ 0 & \text { otherwise }\end{cases}$
- Actually w $\cdot \mathbf{x}>$ b but. . .

Create extra input x_{0} fixed at 1
Corresponding w_{0} corresponds to -b

Learning Perceptrons

- Can represent Linearly-Separated surface . . . any hyper-plane between two half-spaces...

- Remarkable learning algorithm: [Rosenblatt 1960]

If function f can be represented by perceptron, then $\exists l e a r n i n g ~ a l g ~ g u a r a n t e e d ~ t o ~ q u i c k l y ~ c o n v e r g e ~ t o ~ f!~$
\Rightarrow enormous popularity, early / mid 60's

- But some simple fns cannot be represented
... killed the field temporarily!

Perceptron Learning

- Hypothesis space is. . .
\square Fixed Size:
$\exists O\left(2^{n^{\wedge} 2}\right)$ distinct perceptrons over n boolean features
\square Deterministic
\square Continuous Parameters
- Learning algorithm:
\square Various: Local search, Direct computation, . . .
\square Eager
\square Online / Batch

Task

- Input: labeled data

Transformed to

\[

\]

Output: $\mathbf{w} \in \mathfrak{R}^{r+1}$
Goal: Want w s.t.
$\forall \mathrm{i} \operatorname{sgn}\left(\mathbf{w} \cdot\left[1, \mathbf{x}^{(\mathrm{i})}\right]\right)=\mathrm{y}^{(\mathrm{i})}$
\square. . minimize mistakes wrt data . . .

Error Function

Given data $\left\{\left[x^{(i)}, y^{(i)}\right]\right\}_{i=1 . . m}$, optimize...

- 1. Classification error

Perceptron Training; Matrix Inversion

- 2. Mean-squared error (LMS) Matrix Inversion; Gradient Descent

$$
\operatorname{err}_{\text {Class }}(w)=\frac{1}{m} \sum_{i=1}^{m} I\left[y^{(i)} \neq o_{w}\left(x^{(i)}\right)\right]
$$

$$
\operatorname{err}_{\text {MSE }}(w)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left[y^{(i)}-o_{w}\left(x^{(i)}\right)\right]^{2}
$$

- 3. (Log) Conditional Probability (LR) $\quad L C L(w)=\frac{1}{m} \sum_{i=1}^{m} \log P_{w}\left(y^{(i)} \mid x^{(i)}\right)$ MSE Gradient Descent; LCL Gradient Descent

$$
L C L(w)=\frac{1}{m} \sum_{i=1}^{m} \log P_{w}\left(y^{(i)} \mid x^{(i)}\right)
$$

- 4. (Log) Joint Probability (LDA; FDA) $L L(w)=\frac{1}{m} \sum_{i=1}^{m} \log P_{w}\left(y^{(i)}, x^{(i)}\right)$ Direct Computation

\#1: Optimal Classification Error

- For each labeled instance [\mathbf{x}, y]

Err $=\mathrm{y}-\mathrm{o}_{\mathrm{w}}(\mathbf{x})$
$y=f(x)$ is target value
$\mathrm{o}_{\mathrm{w}}(\mathbf{x})=\operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$ is perceptron output

- Idea: Move weights in appropriate direction, to push Err $\rightarrow 0$
- If Err > 0 (error on POSITIVE example)
\square need to increase $\operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$
\Rightarrow need to increase w $\cdot \mathbf{x}$
\square Input j contributes $\mathrm{w}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{j}}$ to $\mathbf{w} \cdot \mathbf{x}$
- if $x_{j}>0$, increasing w_{j} will increaca in NEGATIVE example)
- if $x_{j}<0$, decreasing. $E_{r r}<0$ (error on

$$
\Rightarrow \mathrm{w}_{\mathrm{j}} \leftarrow \mathrm{w}_{\mathrm{j}}+\mathrm{x}_{\mathrm{j}} \quad \begin{array}{r}
\mathrm{Err}
\end{array} \quad \Rightarrow \mathrm{w}_{\mathrm{j}} \leftarrow \mathrm{w}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}}
$$

Local Search via Gradient Descent

Start w/ (random) weight vector w^{0}.
Repeat until converged V bored
Compute Gradient
$\nabla \operatorname{err}\left(\mathbf{w}^{\mathbf{t}}\right)=\left(\frac{\partial \operatorname{err}\left(\mathbf{w}^{\mathrm{t}}\right)}{\partial w_{0}}, \frac{\partial \operatorname{err}\left(\mathbf{w}^{\mathrm{t}}\right)}{\partial w_{1}}, \cdots, \frac{\partial \operatorname{err}\left(\mathbf{w}^{\mathrm{t}}\right)}{\partial w_{n}}\right)$
Let $\mathbf{w}^{\mathbf{t}+1}=\mathbf{w}^{\mathbf{t}}+\eta \nabla \operatorname{err}\left(\mathbf{w}^{\mathrm{t}}\right)$
If CONVERGED: Return $\left({ }^{\mathrm{t}}\right.$)

\#1a: Mistake Bound Perceptron Alg

Initialize w=0
Do until bored
Predict "+" iff w $\mathbf{w}>0$ else "-"
Mistake on $\mathrm{y}=+1$: $\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}$ Mistake on $\mathrm{y}=-1$: $\mathbf{w} \leftarrow \mathbf{w}-\mathbf{x}$
Weights Instance Action

Mistake Bound Theorem

Theorem: [Rosenblatt 1960]

If data is consistent $\mathbf{w} /$ some linear threshold \mathbf{w}, then number of mistakes is $\leq(1 / \Delta)^{2}$,
where $\quad \Delta \quad=\min _{x} \frac{|\mathrm{w} \cdot x|}{|\mathrm{w}| \times|x|}$

- Δ measures "wiggle room" available:

If $|x|=1$, then Δ is max, over all consistent planes, of minimum distance of example to that plane

- w is \perp to separator, as $w \cdot x=0$ at boundary
- So $|\mathbf{w} \cdot \mathbf{x}|$ is projection of \mathbf{x} onto plane, PERPENDICULAR to boundary line
... ie, is distance from \mathbf{x} to that line (once normalized)

Proof of Convergence

For simplicity:
0 . Use $x_{0} \equiv 1$, so target plane goes thru 0

1. Assume target plane doesn't hit any examples
2. Replace negative point $\left\langle\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle 0\right\rangle$ by positive point $\left\langle\left\langle-x_{0},-x_{1}, \ldots,-x_{n}\right\rangle 1\right\rangle$
```
x wrong wrt w iff w : x < 0
```

3. Normalize all examples to have length 1

- Let w* be unit vector rep'ning target plane $\Delta=\min _{\mathbf{x}}\left\{\mathbf{w}^{*} \cdot \mathbf{x}\right\}$
Let \mathbf{w} be hypothesis plane
- Consider:

$$
\frac{\left(w \cdot w^{*}\right)}{|w|}
$$

- On each mistake, add \mathbf{x} to \mathbf{w}

$$
\mathbf{w}=\Sigma_{\{x \mid \mathbf{x} \cdot \mathbf{w}<0\}} \mathbf{X}_{2}
$$

Proof (con't)

If w is mistake...
Numerator increases by $x \cdot w^{*} \geq \Delta$ (denominator) ${ }^{2}$ becomes

$$
(w+x)^{2}=w^{2}+x^{2}+2(w \cdot x)<w^{2}+1
$$

$\frac{\left(w \cdot w^{*}\right)}{|w|}$

$\Delta=\min _{\mathbf{x}}\left\{\mathbf{w}^{*} \cdot \mathbf{x}\right\}$

As initially $w=\langle 0, \ldots, 0\rangle$.

$$
\mathbf{w}=\Sigma_{\{x \mid \mathbf{x} \cdot \mathbf{w}<0\}} \mathbf{X}
$$

After m mistakes,

$$
\text { numerator is } \geq m \times \Delta
$$

$$
\text { (denominator) }^{2} \text { is } \leq 0+\underbrace{1+\ldots+1}_{m}=m
$$

so denominator $\leq \sqrt{m}$

- As $\left(w \cdot w^{*}\right) /|w|=\cos$ (angle between w and w^{*})

$$
\text { it must be } \leq 1 \text {, so }
$$

$$
\text { numerator } \leq \text { denominator }
$$

$$
\Rightarrow \quad \Delta * m \leq \sqrt{m} \quad \Rightarrow \quad m \leq \frac{1}{\Delta^{2}}
$$

\#1b: Perceptron Training Rule

- For each labeled instance [\mathbf{x}, y]
$\operatorname{Err}([\mathbf{x}, \mathrm{y}])=\mathrm{y}-\mathrm{o}_{\mathrm{w}}(\mathbf{x}) \in\{-1,0,+1\}$
\square If $\operatorname{Err}([\mathbf{x}, \mathrm{y}])=0 \quad$ Correct! ... Do nothing!

$$
\Delta w=0 \equiv \operatorname{Err}([\mathbf{x}, \mathrm{y}]) \cdot \mathbf{x}
$$

\square If $\operatorname{Err}([\mathbf{x}, \mathrm{y}])=+1 \quad$ Mistake on positive! Increment by +x

$$
\Delta \mathrm{w}=+\mathrm{x} \equiv \operatorname{Err}([\mathbf{x}, \mathrm{y}]) \cdot \mathbf{x}
$$

\square If $\operatorname{Err}([\mathbf{x}, \mathrm{y}])=-1 \quad$ Mistake on negative! Increment by $-x$

$$
\Delta \mathrm{w}=-\mathrm{x} \equiv \operatorname{Err}([\mathbf{x}, \mathrm{y}]) \cdot \mathbf{x}
$$

In all cases... $\quad \Delta w^{(i)}=\operatorname{Err}\left(\left[\mathbf{x}^{(i)}, y^{(i)}\right]\right) \cdot \mathbf{x}^{(i)}=\left[y^{(i)}-o_{w}\left(\mathbf{x}^{(i)}\right)\right] \cdot \mathbf{x}^{(i)}$

- Batch Mode: do ALL updates at once!

$$
\begin{aligned}
\Delta \mathrm{w}_{\mathrm{j}} & =\sum_{\mathrm{i}} \Delta \mathrm{w}_{\mathrm{j}}^{(\mathrm{i})} \\
& =\sum_{\mathrm{i}} \mathrm{x}^{(\mathrm{i}}{ }_{\mathrm{j}}\left(\mathrm{y}^{(\mathrm{i})}-\mathrm{o}_{\mathrm{w}}\left(\mathbf{x}^{(\mathrm{i})}\right)\right) \\
\mathrm{w}_{\mathrm{j}}+ & =\eta \Delta \mathbf{w}_{\mathrm{j}}
\end{aligned}
$$

Correctness

■ Rule is intuitive: Climbs in correct direction. . .

- Thrm: Converges to correct answer, if . . .
\square training data is linearly separable
\square sufficiently small η
■ Proof: Weight space has EXACTLY 1 minimum!
(no non-global minima)
\Rightarrow with enough examples, finds correct function!
- Explains early popularity
- If η too large, may overshoot

If η too small, takes too long

- So often $\eta=\eta(k)$... which decays with \# of iterations, k

\#1c: Matrix Version?

- Task: Given $\left\{\left\langle\boldsymbol{x}^{i}, y^{i}\right\}_{i}\right.$
$\square y^{i} \in\{-1,+1\}$ is label
Find $\left\{w_{i}\right\}$ s.t.

$$
\begin{array}{|c}
\begin{array}{|l}
y^{1}=w_{0}+w_{1} x_{1}^{1}+\cdots+w_{n} x_{n}^{1} \\
y^{2}=w_{0}+w_{1} x_{1}^{2}+\cdots+w_{n} x_{n}^{2} \\
\vdots \\
y^{m}=w_{0}+w_{1} x_{1}^{m}+\cdots+w_{n} x_{n}^{m}
\end{array}
\end{array}
$$

- Linear Equalities $\mathrm{y}=\mathrm{X} \mathbf{w}$
- Solution: $\mathbf{w}=\mathrm{X}^{-1} \mathbf{y}$

$$
\begin{aligned}
\mathbf{y} & =\left[y^{1}, \ldots, y^{m}\right]^{\top} \\
\mathbf{X} & =\left(\begin{array}{cccc}
1 & x_{1}^{1} & \cdots & x_{n}^{1} \\
1 & x_{1}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & & \vdots \\
1 & x_{1}^{m} & \cdots & x_{n}^{m}
\end{array}\right) \\
\mathbf{w} & =\left[w_{0}, w_{1}, \ldots, w_{n}\right]^{\top}
\end{aligned}
$$

Issues

Task: Given $\left\{\left\langle\mathbf{x}^{i}, y^{i}\right\rangle\right\} \quad y^{i} \in\{-1,+1\}$ is label Find w_{i} s.t.

$$
\begin{gathered}
y^{1}=w_{0}+w_{1} x_{1}^{1}+\cdots+w_{n} x_{n}^{1} \\
y^{2}=w_{0}+w_{1} x_{1}^{2}+\cdots+w_{n} x_{n}^{2} \\
\vdots \\
y^{m}=w_{0}+w_{1} x_{1}^{m}+\cdots+w_{n} x_{n}^{m}
\end{gathered}
$$

1. Why restrict to only $y^{i} \in\{-1,+1\}$?
\square If from discrete set $y^{i} \in\{0,1, \ldots, m\}$: General (non-binary) classification
\square If ARBITRARY $y^{i} \in \mathfrak{R}$: Regression
2. What if NO w works?
... X is singular; overconstrained ...
Could try to minimize residual

$$
\begin{aligned}
& \sum_{\mathrm{i}} \mathrm{I}\left[\mathrm{y}^{\left.(\mathrm{i}) \neq \mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}\right]}\right. \\
& \|\mathrm{y}-\mathrm{X} \mathbf{w}\|_{1}=\sum_{\mathrm{i}}\left|\mathrm{y}^{(\mathrm{i})}-\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}\right| \\
& \|\mathrm{y}-\mathrm{X} \mathbf{w}\|_{2}=\sum_{\mathrm{i}}\left(\mathrm{y}^{(\mathrm{i})}-\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}\right)^{2} \leftarrow \text { Easy! }
\end{aligned}
$$

L_{2} error vs 0/1-Loss

- "0/1 Loss function" not smooth, differentiable
- MSE error is smooth, differentiable... and is overbound...

Gradient Descent for Perceptron?

- Why not Gradient Descent for THRESHOLDed perceptron?
- Needs gradient (derivative), not

- Gradient Descent is General approach. Requires
+ continuously parameterized hypothesis
+ error must be differentiatable wrt parameters
But. . .
- can be slow (many iterations)
- may only find LOCAL opt

Linear Separators - Facts

- GOOD NEWS:
\square If data is linearly separated,
\square Then FAST ALGORITHM finds correct $\left\{w_{i}\right\}$! ■ But...

Linear Separators - Facts

- GOOD NEWS:
\square If data is linearly separated,
\square Then FAST ALGORITHM finds correct $\left\{w_{i}\right\}$! ■ But...

- Some "data sets" are NOT linearly separatable!

\#1. LMS version of Classifier

- View as Regression
\square Find "best" linear mapping w from \mathbf{X} to Y
- $\mathrm{w}^{*}=\operatorname{argmin} \operatorname{Err}_{\text {LMS }}{ }^{(\mathbf{X}, \mathbf{Y})}(\mathrm{w})$
- $\operatorname{Err}_{\text {LMS }}{ }^{(\mathbf{X}, \mathbf{Y})}(\mathrm{w})=\sum_{\mathrm{i}}\left(\mathrm{y}^{(\mathrm{i})}-\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}\right)^{2}$
\square Threshold: if $\mathrm{w}^{\top} \mathrm{x}>0.5$,
return 1;
else 0
■ See Chapter 3...

General Idea

- Use a discriminant function $\delta_{k}(x)$ for each class k
$\square E g, \delta_{k}(x)=\mathrm{P}(\mathrm{G}=\mathrm{k} \mid \mathrm{X})$
- Classification rule:

Return $\mathrm{k}=\operatorname{argmax}_{\mathrm{j}} \delta_{j}(x)$

- If each $\delta_{j}(x)$ is linear,
decision boundaries are piecewise hyperplanes

inear Classification using Linear Regression

- 2D Input space: $X=\left(X_{1}, X_{2}\right)$ K-3 classes: $\quad Y=\left(Y_{1}, Y_{2}, Y_{3}\right) \in\left\{\begin{array}{l}{[1,0,0]} \\ {[0,1,0]} \\ {[0,0,1]}\end{array}\right.$
- Training sample ($\mathrm{N}=5$):
- Regression output:

$$
\mathbf{X}=\left[\begin{array}{lll}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} \\
1 & x_{31} & x_{32} \\
1 & x_{41} & x_{42} \\
1 & x_{51} & x_{52}
\end{array}\right], \quad \mathbf{Y}=\left[\begin{array}{lll}
y_{11} & y_{12} & y_{13} \\
y_{21} & y_{22} & y_{23} \\
y_{31} & y_{32} & y_{33} \\
y_{41} & y_{42} & y_{43} \\
y_{51} & y_{52} & y_{53}
\end{array}\right]
$$

$$
\hat{Y}\left(\left(x_{1}, x_{2}\right)\right)=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right)\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=\left(x^{T} \beta_{1} x^{T} \beta_{2} x^{T} \beta_{3}\right)
$$

- Classification rule:

$$
\hat{G}\left(\left(x_{1} x_{2}\right)\right)=\arg \max \hat{X}_{k}\left(\left(x_{1} x_{2}\right)\right)
$$

$$
\begin{aligned}
& \hat{Y}_{1}\left(\left(x_{1} x_{2}\right)\right)=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right) \beta_{1} \\
& \hat{Y}_{2}\left(\left(x_{1} x_{2}\right)\right)=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right) \beta_{2} \\
& \hat{Y}_{3}\left(\left(x_{1} x_{2}\right)\right)=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right) \beta_{3}
\end{aligned}
$$

Use Linear Regression for Classification?

- But ... regression minimizes
sum of squared errors on target function
... which gives strong influence to outliers

\#3: Logistic Regression

- Want to compute $\mathrm{P}_{\mathrm{w}}(\mathrm{y}=1 \mid \mathbf{x})$
... based on parameters w
- But ...
$\square \mathbf{w} \cdot \mathbf{x}$ has range $[-\infty, \infty]$
\square probability must be in range $\in[0 ; 1]$
- Need "squashing" function $[-\infty, \infty] \rightarrow[0,1]$

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Alternative Derivation...

$$
\begin{aligned}
& P(+y \mid x)=\frac{P(x \mid+y) P(+y)}{P(x \mid+y) P(+y)+P(x \mid-y) P(-y)} \\
&=\frac{1}{1+\exp (-a)} \\
& a=\ln \frac{P(x \mid+y) P(+y)}{P(x \mid-y) P(-y)}
\end{aligned}
$$

Sigmoid Unit

- Sigmoid Function: $\quad \sigma(x)=\frac{1}{1+e^{-x}}$
- Useful properties:

$$
\begin{aligned}
& -\sigma: \Re \rightarrow[0,1] \\
& -\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x)) \\
& - \text { If } x \approx 0, \text { then } \sigma(x) \approx x
\end{aligned}
$$

Logistic Regression (con't)

- Assume 2 classes:

$$
\begin{aligned}
P_{w}(+y \mid x) & =\sigma(w \cdot x)=\frac{1}{1+e^{-(x \cdot w)}} \\
P_{w}(-y \mid x) & =1-\frac{1}{1+e^{-(x \cdot w)}}=\frac{e^{-(x \cdot w)}}{1+e^{-(x \cdot w)}}
\end{aligned}
$$

- Log Odds:

$$
\log \frac{P_{w}(+y \mid x)}{P_{w}(-y \mid x)}=x \cdot w{ }^{\text {Linear }}
$$

How to learn parameters w?

■... depends on goal?
\square A: Minimize MSE?

$$
\sum_{i}\left(y^{(i)}-o_{w}\left(\mathbf{x}^{(i)}\right)\right)^{2}
$$

\square B: Maximize likelihood?
$\sum_{\mathrm{i}} \log \mathrm{P}_{\mathrm{w}}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})}\right)$

MSError Gradient for Sigmoid Unit

\square Error: $\sum_{\mathrm{j}}\left(\mathrm{y}^{(\mathrm{j})}-\mathrm{o}_{\mathbf{w}}\left(\mathbf{x}^{(\mathrm{j})}\right)\right)^{2}=\sum_{\mathrm{j}} \mathrm{E}(\mathrm{j}) \quad \sigma(z)=\frac{1}{1+e^{-z}}$
For single training instance
■ Input: $\mathbf{x}^{(\mathrm{j})}=\left[\mathrm{x}^{(\mathrm{j})}{ }_{1}, \ldots, \mathrm{x}^{(\mathrm{j})}{ }_{\mathrm{k}}\right]$
■ Computed Output: $\mathrm{o}^{(\mathrm{j})}=\sigma\left(\sum_{\mathrm{i}} \mathrm{X}^{(\mathrm{j})_{\mathrm{i}}} \cdot \mathrm{w}_{\mathrm{i}}\right)=\sigma\left(\mathrm{Z}^{(\mathrm{j})}\right)$
\square where $z^{(j)}=\sum_{i} x^{(j)}{ }_{i} \cdot w_{i}$ using current $\left\{w_{i}\right\}$
■ Correct output: $\mathrm{y}^{(\mathrm{j})}$
Stochastic Error Gradient (Ignore ${ }^{\text {(j) }}$ superscript)

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i}} & =\frac{\partial}{\partial w_{i}}\left[\frac{1}{2}(o-y)^{2}\right]=\frac{1}{2}\left[2(o-y) \frac{\partial}{\partial w_{i}}(o-y)\right] \\
& =(o-y)\left(\frac{\partial o}{\partial w_{i}}\right)=(o-y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_{i}}
\end{aligned}
$$

Derivative of Sigmoid

$$
\begin{aligned}
& \frac{d}{d a} \sigma(a)=\frac{d}{d a} \frac{1}{\left(1+e^{-a}\right)} \\
& \quad=\frac{-1}{\left(1+e^{-a}\right)^{2}} \frac{d}{d a}\left(1+e^{-a}\right)=\frac{-1}{\left(1+e^{-a}\right)^{2}}\left(-e^{-a}\right) \\
& \quad=\frac{e^{-a}}{\left(1+e^{-a}\right)^{2}}=\frac{1}{\left(1+e^{-a}\right)} \frac{e^{-a}}{\left(1+e^{-a}\right)}=\sigma(a)[1-\sigma(a)]
\end{aligned}
$$

Updating LR Weights (MSE)

- $\frac{\partial E}{\partial w_{i}}=(o-y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_{i}}$
- Using:

$$
\begin{aligned}
\frac{\partial \sigma(z)}{\partial z} & =\sigma(z)(1-\sigma(z))=o(1-o) \\
\frac{\partial z}{\partial w_{i}} & =\frac{\partial\left(\sum_{i} w_{i} \cdot x_{i}\right)}{\partial w_{i}}=x_{i}
\end{aligned}
$$

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

$\Rightarrow \frac{\partial E^{(j)}}{\partial w_{i}}=\left(o^{(j)}-y^{(j)}\right) o^{(j)}\left(1-o^{(j)}\right) x_{i}^{(j)}$
Note: As already computed $0^{(j)}=\sigma\left(z^{(j)}\right)$ to get answer, trivial to compute $\sigma^{\prime}\left(z^{(j)}\right)=\sigma\left(z^{(i)}\right)\left(1-\sigma\left(Z^{(i)}\right)\right)$

- Update $\mathrm{w}_{\mathrm{i}}+=\Delta \mathrm{w}_{\mathrm{i}}$ where

$$
\Delta w_{i}=\eta \cdot \frac{\partial E^{(j)}}{\partial w_{i}}
$$

(LMS)

2. Increment $w+=\eta \Delta w$

$\Delta \mathrm{w} \rightarrow \square \square \Delta \mathrm{w}_{\mathrm{j}}$

B: Or... Learn Conditional Probability

- As fitting probability distribution, better to return probability distribution ($\approx \mathbf{w}$) that is most likely, given training data, S

$$
\text { Goal: } \begin{aligned}
\mathbf{w}^{*} & =\underset{\mathbf{w}}{\operatorname{argmax}} P(\mathbf{w} \mid S) & & \\
& =\underset{\mathbf{w}}{\operatorname{argmax}} \frac{P(S \mid \mathbf{w}) P(\mathbf{w})}{P(S)} & & \text { Bayes Rules } \\
& =\underset{\mathbf{w}}{\operatorname{argmax}} P(S \mid \mathbf{w}) P(\mathbf{w}) & & \text { As } P(S) \text { does not depend on } \mathbf{w} \\
& =\underset{\mathbf{w}}{\operatorname{argmax}} P(S \mid \mathbf{w}) & & \text { As } P(\mathbf{w}) \text { is uniform } \\
& =\underset{\mathbf{w}}{\operatorname{argmax}} \log P(S \mid \mathbf{w}) & & \text { As log is monotonic }
\end{aligned}
$$

ML Estimation

- $\mathrm{P}(\mathrm{S} \mid \mathbf{w}) \equiv$ likelihood function
$\mathrm{L}(\mathbf{w})=\log \mathrm{P}(\mathrm{S} \mid \mathbf{w})$
- $\mathbf{w}^{*}=\operatorname{argmax}_{w} L(\mathbf{w})$
is "maximum likelihood estimator" (MLE)

Computing the Likelihood

- As training examples [$\mathbf{x}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}$] are iid
\square drawn independently from same (unknown) prob $\mathrm{P}_{\mathrm{w}}(\mathbf{x}, \mathrm{y})$
- $\log \mathrm{P}(\mathrm{S} \mid \mathbf{w})=\log \Pi_{\mathrm{i}} \mathrm{P}_{\mathrm{w}}\left(\mathbf{x}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)$

$$
\begin{aligned}
& =\sum_{i} \log P_{w}\left(\mathbf{x}^{(i)}, y^{(i)}\right) \\
& =\sum_{i} \log P_{w}\left(y^{(i)} \mid \mathbf{x}^{(i)}\right)+\sum_{i} \log P_{w}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

- Here $P_{w}\left(\mathbf{x}^{(i)}\right)=1 / n \ldots$
not dependent on w, over empirical sample S
$\boldsymbol{\square} \mathbf{w}^{*}=\operatorname{argmax}_{\mathbf{w}} \sum_{i} \log \mathrm{P}_{\mathrm{w}}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})}\right)$

Fit Logistic Regression... by Gradient Ascent

- Want $\mathbf{w}^{*}=\operatorname{argmax}_{w} \mathrm{~J}(\mathbf{w})$
$\left.\square J(\mathbf{w})=\sum_{i} r \mathbf{(y}^{(1)}, \mathbf{x}^{(1)}, \mathbf{w}\right)$
For $y \in\{0,1\}$

$$
r(\mathbf{y}, \mathbf{x}, \mathbf{w})=\log \mathrm{P}_{\mathbf{w}}(\mathrm{y} \mid \mathbf{x})=
$$

$$
y \log \left(P_{w}(y=1 \mid x)\right)+(1-y) \log \left(1-P_{w}(y=1 \mid x)\right)
$$

- So climb along... $\frac{\partial J(\mathbf{w})}{\partial w_{j}}=\sum_{i} \frac{\partial r\left(y^{(i)}, \mathbf{x}^{(i)}, \mathbf{w}\right)}{\partial w_{j}}$

Gradient Descent ...

$$
\begin{aligned}
& \frac{\partial r(y, \mathbf{x}, \mathbf{w})}{\partial w_{j}}=\frac{\partial}{\partial w_{j}}\left[y \log \left(p_{1}\right)+(1-y) \log \left(1-p_{1}\right)\right. \\
& =\frac{y}{p_{1}} \frac{\partial p_{1}}{\partial w_{j}}+(-1) \times \frac{1-y}{1-p_{1}} \frac{\partial p_{1}}{\partial w_{j}}=\frac{y-p_{1}}{p_{1}\left(1-p_{1}\right)} \frac{\partial p_{1}}{\partial w_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial p_{1}}{\partial w_{j}}=\frac{\partial P_{w}(y=1 \mid x)}{\partial w_{j}}=\frac{\partial}{\partial w_{j}}(\sigma(x \cdot w)) \\
& =\sigma(x \cdot w)[1-\sigma(x \cdot w)] \frac{\partial}{\partial w_{j}}(x \cdot w)=p_{1}\left(1-p_{1}\right) \cdot x_{j}^{(i)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial J(w)}{\partial w_{j}}=\sum_{i} \frac{\partial r\left(y^{(i)}, x^{(i)}, w\right)}{\partial w_{j}}=\sum_{i} \frac{y^{(i)}-p_{1}}{p_{1}\left(1-p_{1}\right)} p_{1}\left(1-p_{1}\right) \cdot x_{j}^{(i)} \\
& =\sum_{i}\left(y^{(i)}-P_{w}(y=1 \mid x)\right) \cdot x_{j}^{(i)}
\end{aligned}
$$

Gradient Ascent for Logistic Regression (MLE)

Given: training examples $\left\langle\mathrm{x}^{(i)}, y^{(i)}\right\rangle, i=1 . . N$ Set initial weight vector $\mathrm{w}=\langle 0,0,0,0, \ldots, 0\rangle$
Repeat until convergenco
Let gradient vector $\Delta \mathrm{w}=\langle 0,0,0,0, \ldots, 0\rangle$
For $i=1$ to N do
$p_{1}^{(i)}=1 /\left(1+\exp \left[\mathbf{w} \cdot \mathbf{x}^{(i)}\right]\right)$
error $_{i}=\mathrm{y}^{(\mathrm{i})}-p_{1}^{(i)}$
For $j=1$ to n do
$\Delta \mathrm{w}_{\mathrm{j}}+=$ error $_{i} \cdot x_{i j}$
$\mathrm{w}+=\eta \Delta \mathrm{w} \%$ step in direction of increasing gradient

Comments on MLE Algorithm

- This is BATCH;
\exists obvious online alg
(stochastic gradient ascent)
- Can use second-order (Newton-Raphson) alg for faster convergence
\square weighted least squares computation; aka
"Iteratively-Reweighted Least Squares" (IRLS)

Use Logistic Regression for Classification

- Return YES iff

$$
P(y=1 \mid x) \quad>P(y=0 \mid x)
$$

$$
P(y=1 \mid x)
$$

$$
>\quad 1
$$

$$
\ln \frac{P(y=1 \mid x)}{P(y=0 \mid x)}
$$

$$
>\quad 0
$$

$$
\ln \frac{1 /(1+\exp (-w \cdot x))}{\exp (-w \cdot x) /(1+\exp (-w \cdot x))}>
$$

$$
\ln \frac{1}{\exp (-w \cdot x)}=w \cdot x>0
$$

Logistic Regression for K > 2 Classes

- To handle $K>2$ classes
- Let class K be "reference"
- Represent each other class $k \neq K$ as

$$
\log \frac{P(y=1 \mid \mathrm{x})}{P(y=K \mid \mathrm{x})}=\mathrm{w}_{1} \cdot \mathrm{x}
$$ logistic function of odds of class k versus class K :

$$
\log \frac{P(y=K-1 \mid \mathrm{x})}{P(y=K \mid \mathrm{x})}=\mathrm{w}_{K-1} \cdot \mathrm{x}
$$

- Apply gradient ascent to learn all w_{k} weight vectors, in parallel.

$$
\text { - Conditional probabilities: } \frac{\exp \left(\mathrm{w}_{k} \cdot \mathrm{x}\right)}{1+\sum_{\ell=1}^{K-1} \exp \left(\mathbf{w}_{\ell} \cdot \mathbf{x}\right)}
$$

and

$$
P(y=K \mid \mathrm{x}) \quad=\quad \frac{1}{1+\sum_{\ell=1}^{K-1} \exp \left(\mathrm{w}_{\ell} \cdot \mathrm{x}\right)}
$$

Learning LR Weights

Task: Given data $\left\langle\left\langle\mathbf{x}^{(i)}, y^{(i)}\right\rangle\right\rangle$,

$$
\begin{aligned}
& \text { Given data }\left\langle\left\langle\mathbf{x}^{(i)}, y^{(i)}\right\rangle\right\rangle, \frac{1}{\frac{1}{1+\exp (-w \cdot x)}} \begin{array}{ll}
\frac{\exp (-w \cdot x)}{1+\exp (-w \cdot x)} & \text { if } y=0
\end{array} \\
& \text { find } \mathrm{w} \text { in } p_{\mathrm{w}}(y \mid \mathbf{x})=\{ \\
& \text { s.t. } p_{\mathrm{w}}\left(y^{(i)} \mid \mathbf{x}^{(i)}\right)>\frac{1}{2} \quad \text { iff } \quad y^{(i)}=1
\end{aligned}
$$

Approach 1: MSE - "Neural nets" Minimize $\sum_{i}\left(o^{(i)}-y^{(i)}\right)^{2}$

$$
\text { Gradient: } \Delta \mathbf{w}^{(i)}=\left(0^{(i)}-y^{(i)}\right) 0^{(i)}\left(1-0^{(i)}\right)
$$

Approach 2: MLE - "Logistic Regression" Maximize $\sum_{i} p_{\mathrm{w}}(y \mid \mathrm{x})$

$$
\text { Gradient: } \Delta \mathbf{w}^{(\mathrm{i})}{ }_{\mathrm{j}}=\left(\mathrm{y}^{(\mathrm{i})}-\mathrm{p}\left(1 \mid \mathrm{x}^{(\mathrm{i})}\right)\right) \mathrm{x}^{(\mathrm{i})}{ }_{\mathrm{j}}
$$

0. New w

$$
\Delta \mathbf{w}=0
$$

1. For each row i , compute

$$
\begin{aligned}
& \text { a. } E^{(i)}=\left(y^{(i)}-p\left(1 \mid x^{(i)}\right)\right) \\
& \text { b. } \Delta \mathbf{w}+=E^{(i)} \mathbf{x}^{(i)}
\end{aligned}
$$

$$
\left[\ldots \Delta w_{j}+=E^{(i)} x^{(i)} \ldots\right]
$$

2. Increment w $+=\eta \Delta \mathbf{w}$

Logistic Regression Computation...

$$
l(\beta)=\sum_{i=1}^{N}\left\{\log \operatorname{Pr}\left(G=y_{i} \mid X=x_{i}\right)\right\}
$$

$$
=\sum_{i=1}^{N} y_{i} \log \left(\operatorname{Pr}\left(G=1 \mid X=x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(\operatorname{Pr}\left(G=0 \mid X=x_{i}\right)\right)
$$

$$
=\sum_{i=1}^{N}\left(y_{i} \beta^{T} x_{i}+\left(1-y_{i}\right) \log \frac{1}{1+\exp \left(\beta^{T} x_{i}\right)}\right)
$$

$$
=\sum_{i=1}^{N}\left(y_{i} \beta^{T} x_{i}-\left(1-y_{i}\right) \log \left(1+\exp \left(\beta^{T} x_{i}\right)\right)\right)
$$

$$
\frac{\partial l(\beta)}{\partial \beta}=\sum_{i=1}^{N}\left(y_{i}-\frac{\exp \left(\beta^{T} x\right)}{1+\exp \left(\beta^{T} x\right)}\right) x_{i}=0
$$

- ($p+1$) non-linear equations
- Solve by Newton-Raphson method:

$$
\beta^{\text {new }}=\beta^{o l d}-\left[\operatorname{Jacobian}\left(\frac{\partial l\left(\beta^{o l d}\right)}{\partial \beta}\right)\right]^{-1} \frac{\partial l\left(\beta^{\text {old }}\right)}{\partial \beta}
$$

Newton-Raphson Method

- A gen'l technique for solving $f(x)=0$
$\square . .$. even if non-linear
- Taylor series:
$\square f\left(x_{n+1}\right) \approx f\left(x_{n}\right)+\left(x_{n+1}-x_{n}\right) f^{\prime}\left(x_{n}\right)$
$\square x_{n+1} \approx x_{n}+\left[f\left(x_{n+1}\right)-f\left(x_{n}\right)\right] / f^{\prime}\left(x_{n}\right)$
- When $\mathrm{x}_{\mathrm{n}+1}$ near root, $\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+1}\right) \approx 0$

$$
\Rightarrow \quad x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Iteration...

Newton-Raphson in Multi-dimensions

- To solve the equations: $\begin{aligned} & {\left[\begin{array}{l}f_{1}\left(x_{1}, x_{2}, \ldots, x_{x}\right)=0 \\ \left.f_{x}, x_{1}, x_{2}, \ldots, x_{N}\right)=0 \\ \vdots \\ f_{N}\left(x_{N}, x_{2}, \ldots, x_{N}\right)=0\end{array}\right.} \\ & f_{2},\end{aligned}$
- Taylor series: $f_{j}(x+\Delta x)=f_{j}(x)+\sum_{k=1}^{N} \frac{\partial f_{j}}{\partial_{k}} x_{k}, \quad j=1, \ldots, N$

Newton-Raphson : Example

- Solve

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-\cos \left(x_{2}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=\sin \left(x_{1}\right)+x_{1}^{2}+x_{2}^{3}=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1}^{n+1} \\
x_{2}^{n+1}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{n} \\
x_{2}^{n}
\end{array}\right]-\left[\begin{array}{cc}
2 x_{1}^{n} & \sin \left(x_{2}^{n}\right) \\
\cos \left(x_{1}^{n}\right)+2 x_{1}^{n} & 3\left(x_{2}^{n}\right)^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(x_{1}^{n}\right)^{2}-\cos \left(x_{2}^{n}\right) \\
\sin \left(x_{1}^{n}\right)+\left(x_{1}^{n}\right)^{2}+\left(x_{2}^{n}\right)^{3}
\end{array}\right]
$$

Maximum Likelihood Parameter Estimation

- Find the unknown parameters mean \& standard deviation of a Gaussian pdf,

$$
p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

given N independent samples, $\left\{x_{1}, \ldots, x_{N}\right\}$
■ Estimate the parameters that maximize the likelihood function $\quad L(\mu, \sigma)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)$

$$
(\hat{\mu}, \hat{\sigma})=\underset{\mu, \sigma}{\arg \max } L(\mu, \sigma)
$$

Logistic Regression Algs for LTUs

- Learns Conditional Probability Distribution $P(y \mid x)$
- Local Search:

Begin with initial weight vector; iteratively modify to maximize objective function log likelihood of the data
(ie, seek w s.t. probability distribution $P_{w}(y \mid x)$ is most likely given data.)

- Eager: Classifier constructed from training examples, which can then be discarded.
- Online or batch

Masking of Some Class

Linear regression of the indicator matrix can lead to masking
2D input space and three classes

LDA can avoid this masking

\#4: Linear Discriminant Analysis

- LDA learns joint distribution $P(y, x)$
\square As $P(y, x) \neq P(y \mid x)$; optimizing $P(y, x) \neq$ optimizing $P(y \mid x)$
- "generative model"
$\square \mathrm{P}(\mathrm{y}, \mathrm{x})$ model of how data is generated
\square Eg, factor
$P(y, x)=P(y) P(x \mid y)$
- $P(y)$ generates value for y; then
- $P(x \mid y)$ generates value for x given this y
- Belief net:

Linear Discriminant Analysis, con't

■ $P(y, x)=P(y) P(x \mid y)$

- $P(y)$ is a simple discrete distribution
$\square E g: P(y=0)=0.31 ; P(y=1)=0.69$
(31\% negative examples; 69\% positive examples)
■ Assume $P(x \mid y)$ is multivariate normal, with mean μ_{k} and covariance Σ

$$
\begin{aligned}
& P(\mathrm{x} \mid y=k)= \\
& \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathrm{x}-\mu_{k}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{k}\right)\right]
\end{aligned}
$$

Estimating LDA Model

■ Linear discriminant analysis assumes form

$$
P(\boldsymbol{x}, y)=P(y) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathrm{x}-\mu_{y}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{y}\right)\right]
$$

- μ_{y} is mean for examples belonging to class y ; covariance matrix \sum is shared by all classes !
- Can estimate LDA directly:
$m_{k}=$ \#training examples in class $y=k$
\square Estimate of $P(y=k): \underline{p}_{\underline{k}}=m_{k} / m$

$$
\hat{\mu}_{k}=\frac{1}{m} \sum_{\left\{i: y_{i}=k\right\}} x_{i}
$$

$$
\hat{\Sigma}=\frac{1}{m} \sum_{i}\left(x_{i}-\hat{\mu}_{y_{i}}\right)\left(x_{i}-\hat{\mu}_{y_{i}}\right)^{T} \xrightarrow{T}
$$

(Subtract each x_{i} from corresponding $\hat{\mu}_{y_{i}}$ before taking outer product)

Example of Estimation

x_{1}	x_{2}	x_{3}	y
13.1	20.2	0.4	+
6.0	17.7	-4.2	+
8.2	18.2	-2.5	+
0.4	10.1	19.2	-
-4.2	12.8	5.1	-
-4.3	15.0	21.7	-
0.9	10.1	19.2	-

- m=7 examples; $\mathrm{m}_{+}=3$ positive; $\mathrm{m}_{-}=4$ negative

$$
\Rightarrow \quad \mathrm{p}_{+}=3 / 7 \quad \mathrm{p}_{-}=4 / 7
$$

- Compute $\hat{\mu}_{i}$ over each class

$$
\left.\begin{array}{rl}
\hat{\mu}_{+} & =\frac{1}{3} \sum_{i:\left\langle y^{(i)}=+\right\rangle} \mathrm{x}^{(i)} \\
= & \frac{1}{3}\left(\begin{array}{ll}
{[13.1,} & 20.2, \\
{\left[\begin{array}{cc}
6.0, & 17.7, \\
{[8.2,} & 18.2,
\end{array}\right]^{\top}+2.2}
\end{array}\right]^{\top}+
\end{array}\right) .\left[\begin{array}{lll}
\mathrm{B}
\end{array}\right) .
$$

Estimation...

- Compute common $\hat{\Sigma}$
- "Normalize" each $\mathrm{z}:=\mathrm{x}-\mu_{y(\mathrm{x})}$

$$
\begin{aligned}
\mathrm{z}^{(1)} & :=[13.1,20.2,0,4]^{\top}-[9.1,18.7,-2.1]^{\top} \\
& =[4.0,1.5,-1.7]^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{z}^{(4)} & :=[0.4,10.1,19.2]^{\top}-[-1.8,12.0,16.3]^{\top} \\
& =[2.2,-1.9,2.9]^{\top} \\
\ldots & \mathrm{z}^{(7)}
\end{aligned}
$$

- Compute covariance matrix, for each i : For $\mathrm{x}^{(1)}$, via $\mathbf{z}^{(1)}$:

$$
\begin{aligned}
& \mathrm{z}^{(1)} \times \mathrm{z}^{(1)^{\top}}=\left[\begin{array}{c}
4.0 \\
0.5 \\
-1.7
\end{array}\right] \cdot[4.0,0.5,-1.7] \\
& =\left[\begin{array}{rrr}
4.0 \cdot 4.0 & 4.0 \cdot 0.5 & 4.0 \cdot-1.7 \\
0.5 \cdot 4.0 & 0.5 \cdot 0.5 & 0.5 \cdot-1.7 \\
-1.7 \cdot 4.0 & -1.7 \cdot 0.5 & -1.7 \cdot-1.7
\end{array}\right] \\
& =\left[\begin{array}{rrr}
16.0 & 2.0 & -6.8 \\
2.0 & 0.25 & -0.85 \\
-6.8 & -0.85 & -2.89
\end{array}\right] \\
& - \text { Set } \quad \hat{\Sigma}=\frac{1}{m} \sum_{i} z^{(i)} \mathbf{z}^{(i)}{ }^{\top}
\end{aligned}
$$

Classifying, Using LDA

- How to classify new instance, given estimates

Eg, $\hat{p}_{+}=3 / 7 \quad \hat{p}_{-}=4 / 7$

$$
\begin{aligned}
\star \hat{\mu}_{+} & =\left[\begin{array}{llr}
9.1, & 18.7, & -2.1
\end{array}\right]^{\top} \\
\hat{\mu}_{-} & =\left[\begin{array}{lrr}
-1.8, & 12.0, & 16.3
\end{array}\right]^{\top} \\
\star \hat{\Sigma} & =\left[\begin{array}{rrr}
7.22 & -1.31 & 6.35 \\
-1.31 & 2.91 & 0.32 \\
6.35 & 0.32 & 26.03
\end{array}\right]
\end{aligned}
$$

- Class for instance $\mathbf{x}=[5,14,6]^{\top}$?

$$
\begin{aligned}
& P\left(y=+, \mathrm{x}=[5,14,6]^{\top}\right)=P(y=+) P([5,14,6] \mid y=+) \\
& =\frac{3}{7} \times P\left(\mathrm{x}=[5,14,6]^{\top} \mid \mathrm{x} \sim \mathcal{N}\left(\hat{\mu}_{+}, \hat{\Sigma}\right)\right) \\
& =\frac{3}{7} \times \frac{1}{(2 \pi)^{3 / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(x-\hat{\mu}_{+}\right)^{\top} \hat{\Sigma}^{-1}\left(\mathrm{x}-\hat{\mu}_{+}\right)\right] \\
& \begin{aligned}
& =16.63 \mathrm{E}-11 \\
P(y & =-, \quad \mathrm{x}=\left[\begin{array}{ll}
5,14, & 6]) \\
& =\frac{4}{7} \times \frac{1}{(2 \pi)^{3 / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathrm{x}-\hat{\mu}_{-}\right)^{\top} \sum^{-1}\left(\mathrm{x}-\hat{\mu}_{-}\right)\right]
\end{array} \quad P\left([5,14,6]^{\top} \mid y=-\right)\right.
\end{aligned} \\
& =43.33 \mathrm{E}-11 \\
& \text { - } P\left(y=+\mid[5,14,6]^{\top}\right)= \\
& \frac{P(y=+,[5,14,6])}{P(y=+,[5,14,6])+P(y=-,[5,14,6])}=0.2774 \\
& P\left(y=-\left\lvert\,\left[\begin{array}{lll}
5, & 14 & 6
\end{array}\right]^{\top}\right.\right)=0.7226
\end{aligned}
$$

LDA learns an LTU

- Consider 2-class case with a $0 / 1$ loss function
- Classify y = 1 if

$$
\begin{aligned}
& \log \frac{P(y}{P(y}=1 \mid \mathrm{x}) \\
& \frac{P(\mathrm{x})}{P(\mathrm{x}, y=1)} \\
& P(\mathrm{x}, y=0)>\quad \text { iff } \quad \log \frac{P(y=1, \mathrm{x})}{P(y=0, \mathrm{x})}>0 \\
& P(y=0) \frac{P(y=1) \frac{1}{\left.(2 \pi)^{n / 2} \Sigma\right|^{1 / 2} /\left[\left.\right|^{1 / 2}\right.}}{} \exp \left[-\frac{1}{2}\left(\mathrm{x}-\mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{1}\right)\right] \\
&=\frac{P(y=1) \exp \left[-\frac{1}{2}\left(\mathrm{x}-\mu_{0}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{0}\right)\right]}{P(y=0) \exp \left[-\frac{1}{2}\left(\mathrm{x}-\mu_{0}\right)^{\top} \Sigma^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{1}\right)\right]} \\
& \ln \frac{\left.P\left(\mathrm{x}-\mu_{0}\right)\right]}{P(\mathrm{x}, y=1)}=\ln \frac{P(y=1)}{P(y=0)}-\frac{1}{2}\left[\left(\mathrm{x}-\mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{1}\right)-\left(\mathrm{x}-\mu_{0}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{0}\right)\right]
\end{aligned}
$$

LDA Learns an LTU (2)

$\square\left(x-\mu_{1}\right)^{\top} \sum^{-1}\left(x-\mu_{1}\right)-\left(x-\mu_{0}\right)^{\top} \sum^{-1}\left(x-\mu_{0}\right)$

$$
=x^{\top} \sum^{-1}\left(\mu_{0}-\mu_{1}\right)+\left(\mu_{0}-\mu_{1}\right)^{\top} \sum^{-1} x+
$$

$$
\mu_{1}^{\top} \sum^{-1} \mu_{1}-\mu_{0}^{\top} \sum^{-1} \mu_{0}
$$

- As \sum^{-1} is symmetric,

$$
\ldots=2 x^{\top} \sum^{-1}\left(\mu_{0}-\mu_{1}\right)+\mu_{1}^{\top} \sum^{-1} \mu_{1}-\mu_{0}^{\top} \sum^{-1} \mu_{0}
$$

$$
\begin{aligned}
& \Rightarrow \ln \frac{P(\mathrm{x}, y=1)}{P(\mathrm{x}, y=0)}= \\
\ln & \frac{P(y=1)}{P(y=0)}-\frac{1}{2}\left[\left(\mathrm{x}-\mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{1}\right)-\left(\mathrm{x}-\mu_{0}\right)^{\top} \Sigma^{-1}\left(\mathrm{x}-\mu_{0}\right)\right] \\
& =\ln \frac{P(y=1)}{P(y=0)}+\mathrm{x}^{\top} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)+\frac{1}{2} \mu_{0}^{\top} \Sigma^{-1} \mu_{0}-\frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1} \\
= & \mathrm{x}^{\top} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)+\ln \frac{P(y=1)}{P(y=0)}+\frac{1}{2} \mu_{0}^{\top} \Sigma^{-1} \mu_{0}-\frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1}
\end{aligned}
$$

LDA Learns an LTU (3)

$$
\ln \frac{P(\mathrm{x}, y=1)}{P(\mathrm{x}, y=0)}=\mathrm{x}^{\top} \sum^{-1}\left(\mu_{1}-\mu_{0}\right)+\frac{\frac{(y=1)}{P(y=0)}+\frac{1}{2} \mu_{0}^{\top} \Sigma^{-1} \mu_{0}-\frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1}}{}
$$

- So let...

$$
\begin{aligned}
& \mathbf{w}=\Sigma^{-1}\left(\mu_{1}-\mu_{0}\right) \\
& c=\ln \frac{P(y=1)}{P(y=0)}+\frac{1}{2} \mu_{0}^{\top} \Sigma^{-1} \mu_{0}-\frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1}
\end{aligned}
$$

■ Classify $\hat{y}=1$ iff $\mathbf{w} \cdot \mathbf{X}+C>0$
LTU!!

LDA: Example

LDA was able to avoid masking here

View LDA wrt Mahalanobis Distance

- Squared Mahalanobis distance between \mathbf{x} and $\mu_{\text {ק }}$

$$
D_{M}^{2}(\mathbf{x}, \mu)=(\mathbf{x}-\mu)^{\top} \sum^{-1}(\mathbf{x}-\mu)
$$

$\square \sum^{-1} \approx$ linear distortion

... converts standard Euclidean distance into Mahalanobis distance.

- LDA classifies \mathbf{x} as 0 if

$$
D_{M}^{2}\left(\mathbf{x}, \mu_{0}\right)<D_{M}^{2}\left(\mathbf{x}, \mu_{1}\right)
$$

- $\log P(\mathbf{x} \mid y=k) \approx \log \pi_{k}-1 / 2 D_{M}^{2}\left(\mathbf{x}, \mu_{k}\right)$

Generalizations of LDA

- General Gaussian Classifier: QDA

Allow each class k to have its own \sum_{k}
\Rightarrow Classifier \equiv quadratic threshold unit (not LTU)

- Naïve Gaussian Classifier

Allow each class k to have its own Σ_{k}
but require each \sum_{k} be diagonal.
\Rightarrow within each class, any pair of features x_{i} and x_{j} are independent
\square Classifier is still quadratic threshold unit but with a restricted form

- Most "discriminating" Low Dimensional Projection
\square Fisher's Linear Discriminant

QDA and Masking

Better than Linear Regression in terms of handling masking:

Usually computationally more expensive than LDA

Variants of LDA

- Covariance matrix Σ
- n features; k classes

Name	Same for all classes?	Diagonal	\#param's
LDA	+	+	k
Naïve Gaussian Classifier	-	-	n^{2}
General Gaussian Classifier	-	-	k n

Versions of ?L?Q?N? DA

- LDA

- Quadratic

- Naïve

- SuperSimple

Summary of Linear Discriminant Analysis

- Learns Joint Probability Distr'n P(y, x)
- Direct Computation.

MLEstimate of $\mathrm{P}(\mathrm{y}, \mathbf{x})$ computed directly from data without search.
But need to invert matrix, which is $\mathrm{O}\left(\mathrm{n}^{3}\right)$

- Eager:

Classifier constructed from training examples, which can then be discarded.

- Batch: Only a batch algorithm.

An online LDA alg requires online alg for incrementally updating Σ^{-1}
[Easy if Σ^{-1} is diagonal. . .]

Fisher's Linear Discriminant

- LDA
\square Finds K-1 dim hyperplane
($\mathrm{K}=$ number of classes)
\square Project \mathbf{x} and $\left\{\mu_{k}\right\}$ to that hyperplane
\square Classify \mathbf{x} as nearest μ_{k} within hyperplane
- Better:

Find hyperplane that maximally separates projection of x's wrt \sum^{-1}

Fisher's Linear Discriminant

Fisher Linear Discriminant

- Recall any vector w projects $\mathfrak{R}^{n} \rightarrow \mathfrak{R}$

■ Goal: Want w that "separates" classes
\square Each $\mathbf{w} \cdot \mathbf{x}^{+}$far from each $\mathbf{w} \cdot \mathbf{x}^{-}$

Mean of x's projections:
$\mu_{+}=\frac{\sum_{i} y^{(i)} \mathbf{w}^{\top} \cdot \mathbf{x}^{(\mathbf{i})}}{\sum_{i} y^{(i)}}=\mathbf{w}^{\top} \cdot \mathbf{m}_{+}$

- Perhaps project onto $\mathbf{m}_{+}-\mathbf{m}_{-}$

- Still overlap... why?

Fisher Linear Discriminant

- Using $\mathbf{m}_{+}=\frac{\sum_{i} y^{(i)} \cdot \mathrm{x}^{(\mathrm{i})}}{\sum_{i} y^{(i)}} \quad \mathbf{m}_{-}=\frac{\sum_{i}\left(1-y^{(i)}\right) \cdot \mathrm{x}^{(\mathrm{i})}}{\sum_{i}\left(1-y^{(i)}\right)}$

Mean of x's projections:

$$
\begin{aligned}
& \mu_{+}=\frac{\sum_{i} y^{(i)} \mathbf{w}^{\top} \cdot \mathbf{x}^{(i)}}{\sum_{i} y^{(i)}}=\mathbf{w}^{\top} \cdot \mathbf{m}_{+} \\
& \mu_{-}=\frac{\sum_{i}\left(1-y^{(i)}\right) \mathbf{w}^{\top} \cdot \mathbf{x}^{(\mathbf{i})}}{\sum_{i}\left(1-y^{(i)}\right)}=\mathbf{w}^{\top} \cdot \mathbf{m}_{-}
\end{aligned}
$$

- Problem with $\mathbf{m}_{+}-\mathbf{m}_{-}$:

- Does not consider "scatter" within class
- Goal: Want w that "separates" classes
\square Each $\mathbf{w} \cdot \mathbf{x}^{+}$far from each $\mathbf{w} \cdot \mathbf{x}^{-}$
\square Positive $\mathbf{x}^{+} \mathrm{s}$: $\mathbf{w} \cdot \mathbf{x +}$ close to each other
\square Negative $\mathbf{x}^{-\prime} \mathrm{s}$: w $\cdot \mathbf{x}^{-}$close to each other
■ "scatter" of +instance; -instance

$$
\begin{aligned}
& \square \mathbf{s}_{+}^{2}=\sum_{i} y^{(i)}\left(\mathbf{w} \cdot \mathbf{x}^{(i)}-\mathbf{m}_{+}\right)^{2} \\
& \square \mathbf{s}_{-}^{2}=\sum_{\mathbf{i}}\left(1-\mathbf{y}^{(i)}\right)\left(\mathbf{w} \cdot \mathbf{x}^{(i)}-\mathbf{m}\right)^{2}
\end{aligned}
$$

Fisher Linear Discriminant

- Recall any vector w projects $\mathfrak{R}^{n} \rightarrow \Re$

■ Goal: Want w that "separates" classes
\square Positive $\mathbf{x}^{+} \mathbf{s}$: w $\cdot \mathbf{x +}$ close to each other
\square Negative $\mathbf{x}^{-1} \mathrm{~s}: \mathbf{w} \cdot \mathbf{x}^{-}$close to each other
\square Each w $\cdot \mathbf{x}+$ far from each $\mathbf{w} \cdot \mathbf{x}^{-}$

- Using $\mathbf{m}_{+}=\frac{\sum_{i} y^{(i)} \cdot \mathrm{x}^{(\mathrm{i})}}{\sum_{i} y^{(i)}} \quad \mathbf{m}_{-}=\frac{\sum_{i}\left(1-y^{(i)}\right) \cdot \mathrm{x}^{(\mathrm{i})}}{\sum_{i}\left(1-y^{(i)}\right)}$

Mean of x 's projections:

$$
\begin{aligned}
& \boldsymbol{\mu}_{+}=\frac{\sum_{i} y^{(i)} \mathbf{w}^{\top} \cdot \mathbf{x}^{(\mathbf{i})}}{\sum_{i} y^{(i)}}=\mathbf{w}^{\top} \cdot \mathbf{m}_{+} \\
& \boldsymbol{\mu}_{-}=\frac{\sum_{i}\left(1-y^{(i)}\right) \mathbf{w}^{\top} \cdot \mathbf{x}^{(\mathbf{i})}}{\sum_{i}\left(1-y^{(i)}\right)}=\mathbf{w}^{\top} \cdot \mathbf{m}_{-}
\end{aligned}
$$

■ "scatter" of +instance; -instance

$$
\begin{aligned}
& \square \mathbf{s}_{+}^{2}=\sum_{\mathrm{i}} \mathrm{y}^{(\mathrm{i})}\left(\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{+}\right)^{2} \\
& \square \mathbf{s}_{-}^{2}=\sum_{\mathrm{i}}\left(1-\mathrm{y}^{(\mathrm{i})}\right)\left(\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{+}\right)^{2}
\end{aligned}
$$

FLD, con't

- Separate means m_{-}and m_{+}
\Rightarrow maximize $\left(\mathrm{m}_{-}-\mathrm{m}_{+}\right)^{2}$
- Minimize each spread $\mathbf{s}_{+}{ }^{2}, \mathbf{s}_{-}{ }^{2}$
\Rightarrow minimize ($\mathbf{s}_{+}{ }^{2}+\mathbf{s}_{-}{ }^{2}$)
- Objective function: maximize $J_{S}(w)=\frac{\left(\mu_{+}-\mu_{-}\right)^{2}}{\left(s_{+}^{2}+s_{-}^{2}\right)}$
$\# 1:\left(\mu_{-}-\mu_{+}\right)^{2}=\left(\mathbf{w}^{\top} \mathbf{m}_{+}-\mathbf{w}^{\top} \mathbf{m}_{-}\right)^{2}$
$=\mathbf{w}^{\top}\left(\mathbf{m}_{+}-\mathbf{m}_{-}\right)\left(\mathbf{m}_{+}-\mathbf{m}_{-}\right)^{\top} \mathbf{w}=\mathbf{w}^{\top} S_{B} \mathbf{w}$
"between-class scatter"

$$
S_{B}=\left(\mathbf{m}_{+}-\mathbf{m}_{-}\right)\left(\mathbf{m}_{+}-\mathbf{m}_{-}\right)^{\top}{ }_{83}
$$

$$
J_{S}(w)=\frac{\left(\mu_{+}-\mu_{-}\right)^{2}}{\left(s_{+}^{2}+s_{-}^{2}\right)}
$$

- $\mathbf{s}_{+}{ }^{2}=\sum_{\mathrm{i}} \mathrm{y}^{(\mathrm{i})}\left(\mathbf{w} \cdot \mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{+}\right)^{\mathbf{2}}$
$=\sum_{i} \mathbf{w}^{\top} \mathbf{y}^{(\mathrm{i})}\left(\mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{+}\right)\left(\mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{+}\right)^{\top} \mathbf{w}$
$=\mathbf{w}^{\top} S_{+} \mathbf{w}$
$S_{+}=\sum_{i} y^{(i)}\left(\mathbf{x}^{(i)}-\mathbf{m}_{+}\right)\left(\mathbf{x}^{(i)}-\mathbf{m}_{+}\right)^{\top}$
. "within-class scatter matrix" for +

$$
S_{-}=\sum_{i}\left(1-y^{(\mathrm{i})}\right)\left(\mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{-}\right)\left(\mathbf{x}^{(\mathrm{i})}-\mathbf{m}_{-}\right)^{\top}
$$

... "within-class scatter matrix" for -

- $S_{w}=S_{+}+S_{-}$so $\mathbf{s}_{+}{ }^{2}+\mathbf{s}_{-}{ }^{2}=\mathbf{w}^{\top} S_{W} \mathbf{w}$

$$
\text { FLD, IV } \quad J_{S}(\mathbf{w})=\frac{\left(\mu_{+}-\mu_{-}\right)^{2}}{\left(s_{+}^{2}+s_{-}^{2}\right)}=\frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{w} \mathbf{w}}
$$

- Minimizing $\mathrm{J}_{\mathrm{S}}(\mathbf{w}) \ldots$ $\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}} \mathbf{w}^{\top} \mathbf{S}_{\mathbf{B}} \mathbf{w} \quad$ s.t. $\quad \mathbf{w}^{\mathbf{\top}} \mathbf{S}_{\mathbf{w}} \mathbf{w}=1$
- Lagrange: $\mathrm{L}(\mathbf{w}, \lambda)=\mathbf{w}^{\boldsymbol{\top}} \mathbf{S}_{\mathbf{B}} \mathbf{w}+\lambda\left(1-\mathbf{w}^{\boldsymbol{\top}} \mathbf{S}_{\mathbf{w}} \mathbf{w}\right)$

$$
\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}}=2 S_{B} \mathbf{w}-\lambda\left(2 S_{w} \mathbf{w}\right)
$$

$$
\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}}=0 \quad \Rightarrow \quad S_{B}^{-1} S_{w} \mathbf{w}=\frac{1}{\lambda} \mathbf{w}
$$

$\square \ldots \mathbf{w}^{*}$ is eigenvector of $S_{B}{ }^{-1} S_{w}$

$$
J_{S}(\mathbf{w})=\frac{\left(\mu_{+}-\mu_{-}\right)^{2}}{\left(s_{+}^{2}+s_{-}^{2}\right)}=\frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{w} \mathbf{w}}
$$

$■$ Optimal w^{*} is eigenvector of $S_{B}{ }^{-1} S_{w}$

■ When $P\left(x \mid y_{i}\right) \sim N\left(\mu_{i} ; \Sigma\right)$ \exists LINEAR DISCRIMINANT: $\mathbf{w}=\sum^{-1}\left(\mu_{+}-\mu_{-}\right)$
\Rightarrow FLD is optimal classifier,
if classes normally distributed

- Can use even if not Gaussian:

After projecting d-dim to 1 , just use any classification method

Fisher's LD vs LDA

- Fisher's LD = LDA when...
\square Prior probabilities are same
\square Each class conditional density is multivariate Gaussian
\square... with common covariance matrix
■ Fisher's LD...
\square does not assume Gaussian densities
\square can be used to reduce dimensions even when multiple classes scenario

Comparing

LMS, Logistic Regression, LDA, FLD

- Which is best: $L M S, L R, L D A, F L D$?
- Ongoing debate within machine learning community about relative merits of
\square direct classifiers [LMS]
\square conditional models $\mathrm{P}(\mathrm{y} \mid \mathbf{x})$ [$L R$]
\square generative models $\mathrm{P}(\mathrm{y}, \mathbf{x})$ [LDA, FLD]
- Stay tuned...

-Issues in Debate

- Statistical efficiency

If generative model $P(y, x)$ is correct, then ... usually gives better accuracy, particularly if training sample is small

- Computational efficiency

Generative models typically easiest to compute
(LDA/FLD computed directly, without iteration)

- Robustness to changing loss functions

LMS must re-train the classifier when the loss function changes.
... no retraining for generative and conditional models

- Robustness to model assumptions.

Generative model usually performs poorly when the assumptions are violated.
Eg, LDA works poorly if $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$ is non-Gaussian.
Logistic Regression is more robust, ... LMS is even more robust

- Robustness to missing values and noise. In many applications, some of the features $x_{i j}$ may be missing or corrupted for some of the training examples.
Generative models typically provide better ways of handling this than non-generative models.

Other Algorithms for learning LTUs

- Naive Bayes [Discuss later]

For K = 2 classes, produces LTU

■ Winnow [?Discuss later?]
Can handle large numbers of "irrelevant" features
\square (features whose weights should be zero)

Learning Theory

Assume data is truly linearly separable. . .

- Sample Complexity: Given $\varepsilon, \delta \in(0,1)$, want LTU has error rate (on new examples)
\square less than ε
\square with probability $>1-\delta$.
Suffices to learn from (be consistent with)

$$
m=O\left(\frac{1}{\epsilon}\left[\ln \frac{1}{\delta}+(n+1) \ln \frac{1}{\epsilon}\right]\right)
$$

labeled training examples.

- Computational Complexity:

There is a polynomial time algorithm for finding a consistent LTU (reduction from linear programming)

Agnostic case... different...

