
1

Artificial Neural
Networks

R Greiner
Cmput 466 / 551

Thanks: T Dietterich, R Parr, J Shewchuk

HFT: Ch 11

“An Intro to Conjugate Gradient Method without Agonizing Pain”

2

Outline
� Introduction

� Historical Motivation, non-LTU, Objective
� Types of Structures

� Multi-layer Feed-Forward Networks
� Sigmoid Unit
� Backpropagation

� Tricks
� Line Search
� Conjugate Gradient
� Alternative Error Functions

� Hidden layer representations
� Example: Face Recognition

� Recurrent Networks

3

Motivation for non-Linear Classifiers
� Linear methods are “weak”

�Make strong assumptions
�Can only express relatively simple functions

of inputs

� Need to learn more-expressive classifiers,
that can do more!
�What does the space of hypotheses look like?
�How do we navigate in this space?

Skip

4

Non-Linear � Neural Nets
� Linear separability depends on FEATURES!!

A function can be
� not-linearly-separable with one set of features,
� but linearly separable in another

� Have system to produce features,
that make function linearly-separatable

� … neural nets …

5

Why “Neural Network”

� Brains – network of neurons – are only known
example of actual intelligence

� Individual neurons are slow, boring
� Brains succeed by using massive parallelism
� Idea: Use for building approximators!

� Raises many issues:
� Is the computational metaphor suited to the

computational hardware?
� How to copy the important part?
� Are we aiming too low?

6

Artificial Neural Networks
� Develop abstraction of function of actual

neurons
� Simulate large, massively parallel artificial

neural networks on conventional
computers

� Some have tried to build the hardware too
� Try to approximate human learning,

robustness to noise, robustness to
damage, etc.

Skip

7

Comparison…

Maybe computers should be more brain-like:

Skip

8

Natural Neurons

� Neuron switching time ≈0.001 second
� Number of neurons ≈1011

� Connections per neuron ≈ 104-5

� Scene recognition time ≈0.1 second
� Only time for ≈100 inference steps

�not enough if only 1 operation/time
� much parallel computation

Skip

9

Natural, vs Artificial, Neurons

Properties of artificial neural nets (ANN's):
� Many neuron-like threshold switching units
� Many weighted interconnections among units
� Highly parallel, distributed process
� Emphasis on tuning weights automatically

10

Artificial Neural Networks
� Mathematical abstraction!
� Units, connected by links; with weight ∈ℜ
� Each unit has

+ set of inputs links from other units
+ set of output links to other units
. . . computes activation at next time step

� Lots of simple computational unit
� massively parallel implementation

� Non-Linear function approximation
One of the most widely-used learning methods

“… neural nets are the second best thing for learning anything!” J Denker

11

Artificial Neural Networks
� Rich history, starting in early forties

(McCulloch/Pitts 1943)
� Two views:

�Modeling the brain
� “Just” rep'n of complex functions

� Much progress on both fronts
� Interests from:

Neuro-science, Cognitive science,
Physics, Statistics, Engineering, CS / EE,
... and AI

12

� Trained to drive
�No-hands across America (Pomerleau)

�ARPA Challenge (Thrun)

� Trained to pronounce English (NETtalk)

�Training set: Sliding window over text, sounds
�95% accuracy on training set
�78% accuracy on test set

� Trained to recognize handwritten digits
�>99% accuracy

Uses of Artificial Neural Nets

13

Applications of Neural Nets
Learn to. . .
� Control

� drive cars
� control plants
� pronunciation: NETtalk … mapping text to phonemes
� . . .

� Recognize/Classify
� handwritten characters
� spoken words
� images (eg, faces)
� credit risks
� . . .

� Predict
� Market forecasting
� Trend analysis
� ...

Skip

14

Neural Network Lore

� Neural nets have been adopted with an almost
religious fervor within the AI community
… several times

� Often ascribed near magical powers by people…
� usually people who know the least about computation or

brains �

� For most AI people, magic is gone…
but neural nets remain extremely interesting and
useful mathematical objects

Skip

15

When to Consider Neural Networks
� Input is

� high-dimensional (attribute-value pairs)
� discrete or real-valued
� possibly noisy [training, testing]
� complete
� (eg, raw sensor input)

� Output is
� vector of values
� discrete or real valued
� “linear ordering"

� ℜn → ℜ
� . . . have LOTS OF TIME to train (performance is fast)
� Form of target function is unknown

� Human readability / Explanability is NOT important

16

Multi-Layer Networks

� Perceptrons GREAT if want
SINGLE STRAIGHT
SURFACE

� What about . . .

� Need NETWORK of nodes. . .

Skip

17

Types of Network Structures

� Single layer:
� Linear Threshold Units
� Linear Units, Sigmoid Units

� General multi-layered feed-forward:
� input / hidden units / output

� Recurrent + Cycles, to allow “state”
� Hopfield networks (used for associative memory),

Boltzmann machines, . . .

18

Threshold Functions

g(x) = sign(x)
(perceptron)

g(x)=tanh(x) or 1/(1+exp(-x))
(logistic regression; sigmoid)

19

Sigmoid Unit

2
1

20

Feed Forward Neural Nets

� SET of connected Sigmoid Functions

��

��

��

�
ℜ

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

21

Artificial Neural Nets

� Can Represent ANY classifier!
� w/just 1 “hidden” layer…
� in fact…

	
�

�

Σ���� × ��Σ���� × ��

�

� �

�

��

��

��

�

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

22

ANNs: Architecture

� Different # of layers

	
�

�

��

��

��

�

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

� ����
�
�����������
�

� ����������
��
����������

� ����
�
����������������������

23

Computing Network Output

� Two (non-input) layers: 2 input units + 2 hidden units + 1 output unit
� “Activation” passed from input to output:

Node #0 set to “1” is input to each node (using w0,t)
Final unit (here “#5”) typically NOT σ(·)

o = σ(�r wr, 5 · or) = σ(w3,5 · o3 + w4,5 · o4)
= σ(w3,5 · σ(�s ws,3 · os) + w4,5 · σ(�t wt,4 · ot))
= σ(w3,5 · σ(w1,3 · o1 + w2, 3 · o2)

+ w4,5 · σ(w1,4 · o1 + w2,4 · o2))

24

Representational Power
� Any Boolean Formula

� Consider formula in DNF: (x1 & ¬x2) v (x2 & x4) v (¬x3 & x5)
� Represent each AND by hidden unit; the OR by output unit.
� ... but may need exponentially-many hidden units!

� Bounded functions
� Can approximate any bounded continuous function to arbitrary

accuracy with 1 hidden sigmoid layer
+ linear output unit

� ... given enough hidden units.
(Output unit “linear” � computes � = W4 · A)

� Arbitrary Functions
� Can approximate any function to arbitrary accuracy with

2 hidden sigmoid layers + linear output unit

25

Fixed versus Variable Size
� Network w/fixed # of hidden unit

represents fixed hypothesis space
� But iterative training process
� More steps � can “reach" more functions
� So... view networks as having a variable

hypothesis space

� ≈ LINEAR!

≈

Skip

26

Learning Neural Networks
Neural Networks Can Represent Complex Decision

Boundaries
� ≈Stratified:

More “gradient descent” steps � reach more functions
� Deterministic
� Continuous Parameters

Learning algorithms for neural networks
� Local Search:

same algorithm as for sigmoid threshold units
� Eager
� Batch (typically)

Skip

27

MultiLayerNetwork Learning Task
� Want to minimize error on training ex's

[not quite. . . why?]

� function minimization problem.

� Err on outputs, for given input,
is function of weights { wij }

� Minimize:
�gradient descent in weight space:

� backpropagation algorithm (aka “chain rule”)

28

Backpropagation
� Perceptron learning relied on direct connection between

input value xj, weight wj, output value
� could localize contribution & determine change locally

� Not true for multilayer network!

� Still, can estimate effect of each weight
... and make small changes accordingly
Use derivative of error, wrt weight wij !
Propagate backward (up net) using chain rule

� But no guarantees here... ∃ many local minima!

� Need to take DERIVATIVE
� use “sigmoid” squashing function. . .

29

x(r)

∆wij

0. Fix w
∆w := 0

1. For each instance r, compute
∆wij

(r) = …

∆wij += ∆wij
(r)

2. Increment w += η ∆w

{ ∆wij
(r) }

∆w

0. New w

30

Error Gradient for Network

� E = E([x; t]) = ½ (Ow(x) – t)2

31

Factoring Derivative

32

Computing “Terminal” δis

�

33

Computing Non-Terminal δis

34

Computing δ3

�

35

What if Many Children?

36

Multiple Children (con't)

� In general:

37

Basic Computations
� 1. Sweep FORWARD, from input to output

� For each node n, compute “output” on

� 2. Sweep BACKWARD, from output to input
� For each node n, compute

� Notice everything is trivial to compute!

38

Backpropagation Alg
Initialize all weights to small random numbers
Until satisfied, do
� For each training example [x, t] , do

1. Sweep forward
Compute network outputs ok for x for each

hidden/output node
2. Sweep backward
For each output unit k

δk ← ok (1 – ok) (tk – ok)
For each hidden unit h

δh ← oh (1 – oh) �k ∈ child(h) wh,k δk

3. Update each network weight
wi,j ← wi,j + η δj oi

39

x(r)

∆wij

0. Fix w
∆w := 0

1. For each instance r, compute
a. Forward: o(r)

i := σ(�j wji o(r)
j)

b. Backward:

c. ∆wij += δ(r)
j o(r)

i

2. Increment w += η ∆w

o(r)
1 …, o(r)

n,,

∆w

0. New w

)(

)(
)(

r

r
r

i y
E

∂
∂=δ

δ(r)
1, …, δ(r)

n

40

Empirical Results (MultiLayer Net)

“Restaurant Domain”

41

More on Backpropagation
� Gradient descent over entire network weight vector { wij }
� Can be either: “Incremental Mode” Gradient Descent

or “Batch Mode”:

� Easily generalized to arbitrary directed graphs
� If have > 1 OUTPUTs: Just add them up!
� Can have arbitrary connections

Not just “everything on level 3 to everything on level 4”

	
�

�

��

��

��

�

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

Σ���� × ��

Σ���� × ��

�

Σ���� × ��

42

Issues
Backprop will (at best)…
� … slowly …

�Faster? Line search, Conjugate gradient, …

� … converge to LOCAL Opt …
�Multiple restart, simulated annealing, …

� … wrt Training Data
�Early stopping, regularization

43

Outline
� Introduction

� Historical Motivation, non-LTU, Objective
� Types of Structures

� Multi-layer Feed-Forward Networks
� Sigmoid Unit
� Backpropagation

� Tricks for Effectiveness
� Efficiency: Line Search, Conjugate Gradient
� Generalization: Alternative Error Functions

� Hidden layer representations
� Example: Face Recognition

� Recurrent Networks

44

Gradient Descent

� General description:
Want w* that minimizes function J(w)

� So far. . .
� w(0) is random
� α(k) = 0.05
� d(k) = ∇J = is derivative
� m = until bored...

� Alternatively...
1. Use small random values for w(0)

2. Use line search for distance α(k)

3. Use conjugate gradient for direction d(k)

4. Use “cross tuning” for stopping criteria m … overfitting

45

1. Proper Initialization (variables)

� Put all of the variables on same scale
� Standardize all feature values

�Mean = 0, Standard Deviation = 1
� (ie, subtract mean, divide by std.dev.)

46

1. Proper Initialization (w)
� Start in “linear regions”

�Keep all weights near 0,
� sigmoid units in linear regions.
� whole net one linear threshold unit

(very simple function)
� Break symmetry

�Ensure each unit has different input weights
(so hidden units move in different directions)

�Set weight to random number in range

47

Why BackProp tends to Work?
� Only guaranteed to converge

�EVENTUALLY
� to a LOCAL opt

� Why does it work so well in practice?
As start w/ wij ≈ 0,
network ≈ linear in weights…

so moves quickly

... until in “correct region”

48

Efficiency
� Number of Iterations: Very important!

� If too small: high error
� If too large: overfitting � high gen'l error

� Learning: Intractable in general
� Training can take thousands of iterations .. slow!
� Learning net w/ single hidden unit is NP-hard
� In practice: backprop is very useful.

� Use: Using network (after training) is very fast

49

2. Line Search
� Task: Seek w that minimize J(w)
� Approach: Given direction d ∈ℜn

� New value w(r+1) := w(r) + η d
� But what value of η?

� Good news: η ∈ℜ � 1 dim search!
� Let e(η) = J(w + η · d)

Want η* = argmin e(η)
� Line Search:

Near 0, e(η) ≈ quadratic

50

Line Search, con't
� Set ηA = 0, and guess 2 other values:

Eg, ηB = 0.2 ηC = 0.5
s.t. e(ηA), e(ηC) > e(ηB)

� Fit 2-D poly
to [ηA, e(ηA)], [ηB, e(ηB)], [ηC, e(ηC)]

� Take min of this poly… the new η*
� Compute e(η*)

h(η) = r η2 +s η + t η*

51

Line Search, III
� Let η* = argminη h(η)

Iteration �η’A, η’B, η’C� :=
�η*, ηB, ηC� if η* < ηB & e(η*) > e(ηB)
�ηA, η*, ηC� if η* < ηB & e(η*) < e(ηB)
�ηB, η*, ηC� if η* > ηB & e(η*) < e(ηB)
�ηA, ηB, η*� if η* > ηB & e(η*) > e(ηB)

� ... for ONE ITERATION of general search
Search can involve m iterations,
Each iteration may involve 10's of eval's to get η*

� Issues:
� How to find first 3 values?
� Many other tricks... (Brent's Method)
� Given assumptions, ANALYTIC form

52

3. Conjugate Gradient
� At step r, searching along gradient d(r)

... using q(η) = J(w(r) + η · d(r))

�����������η�	

�������(r+1) � �����(r) �η*·����(r)

� ∇������(r+1)�� �(r) � ��

� Gradient ∇������(r+1)��at r +1st step is ORTHOGONAL to

previous search direction d(r) !

� Is this the best direction??

0)()()(=+
∂
∂ rr dwJ η
η

53

Problem with Steepest Descent

� Steepest Descent…
from [-2,-2]T to [2,-2]T

� Path “zigzag”s as each gradient is
orthogonal to the previous gradient

54

Does Gradient always work??

� Each green line is
gradient…

� Problematic when going
down narrow canyon

� Red is better…

55

Better…
� Problem: Gradients { gi } are NOT

orthogonal to each other
�so can “repeat” same directions

� Suppose directions { di } were Conjugate
�Spanning
� “Orthogonal” (wrt matrix)

� Then after n moves (dim of space),

must be at optimum!!

56

Make Descent Directions Orthogonal

� At step r, searching along gradient dr

... using g(η) = J(wr + η · dr)
����������	

����r+1 � ��r �η*·�r
�∇��������r+1�

���r � ��

� Gradient ∇�����r+1��at r +1st step is ORTHOGONAL to

previous search direction dr !

Direction dr+1 is conjugate to direction dr
if component of gradient parallel to dr
remains 0 as move along dr+1

0)(* =+
∂
∂

rr dwJ η
η

57

Conjugate Gradient, IIa

� Let d be DIRECTION of change.
Could have d = g but . . .

� At time r, require g(wr+1)T dr = 0
Want this to be true for next direction as well:

g(wr+2)T dr = 0
... want dr+1 s.t.

wr+2 := wr+1 + λ dr+1
g(wr+1 + λ dr+1)T dr = 0

nw
J

w
J

Jg
∂
∂

∂
∂=∇= ,...,

1
Later. . . gr = ∇�������(r)��on rth iteration

58

� First order Taylor expansion:
0 = g(wr+1 + λ dr+1)T

= g(wr+1)T + λdr+1
T g’(wr+1 + γ dr+1)

for some γ ∈ (0, λ)
� Post-Multiply by dr & use g(wr+1)T dr = 0 to

get

λdr+1
T g’(wr+1 + γ dr+1) dr = 0

� Let �(����r� = g’(wr) = ∇(∇������r���

Conjugate Gradient, IIb

59

Hessian Matrix (Second Derivatives)

� Consider J(x, y) = x2 +3xy – 5x

� As J(x, y) is quadratic, � is constant
If J(x, y) = x3y2 +…, then is function of args

60

� Using �(����r� = g’(wr) = ∇(∇������r���

0 = dr+1
T g’(wr+1 + γ dr+1) dr

= dr+1
T �(wr+1 + γ dr+1) dr

≈≈≈≈ dr+1
T � dr

� Challenge: How to find such dr vectors?
� Assuming J(w) = J0 + bTw + ½ wT� w

then g(w) = ∇J(w) = b + � w
� J is min at w* s.t. g(w*) = b + � w* = 0

λdr+1 T g’(wr+1 + γ dr+1) dr = 0

61

Conjugate Gradient, IV
� Spse ∃ k vectors “mutually conjugate wrt �”

dj
T � di = 0 j � i

Then { di } linearly independent (if � pos def)
� Starting from w1; want minimum w*

As { di } spanning, w* – w1 = �i=1
k αi di

� Let wj = w1 + �i=1
j-1 αi di

� wj+1 = wj + αj dj

� Series of steps, each parallel some conjugate
direction, of magnitude αj ∈ℜ

� Earlier: computed optimal αj by line search.
But given above assumptions...

62

To find αj
� To find value for αj :

� multiply w* – w1 = �i=1
k αi di

� by dj
T � :

dj
T(–b – � w1) = �i=1

k αi dj
T� di = αj dj

T� dj

j
T
j

j
T
j

j
T
j

j
T
j

j
T
j

T
j

j ������������
��������

������������
��������������������

������������
��������������������

−=
+

−=
+

−=
))1α

As w* is optimum, 0 = g(w*) = �(w*) +b As dj
T� di = 0 unless i = j

dj
T� wj = dj

T� [w1 +�i=1
(j-1) αi di]

= dj
T� w1 +�i=1

(j-1) αi dj
T� di = dj

T� w1

63

Obtaining di from gi
� Given gradient gj+1

let dj+1 := –gj+1 + βj dj

� Find βj such that: dj+1
T� dj = 0

� gj+1
T� dj = βj dj

T�dj

�

j
T
j

j
T
j

j Hdd

Hdg 1+=β

64

Simpler version of
� Observe

gj+1 – gj = [� wj+1 + b] – [� wj + b]
= � [wj+1 – wj] = ��[αj dj] = αj ��dj

� So… ��dj = [gj+1 – gj]/ αj

j
T
j

j
T
j

j Hdd

Hdg 1+=β

][

][

/][

/][

1

11

1

111

jj
T
j

jj
T
j

jjj
T
j

jjj
T
j

j
T
j

j
T
j

j ggd

ggg

ggd

ggg

Hdd

Hdg

−
−

=
−
−

==
+

++

+

+++

α
α

β

� Note dj
T gk = 0 ∀j <k

65

Computing Actual Direction d
� dj+1 := – gj+1 +βjdj where
� Assuming J is quadratic...

�Hestenes-Stiefel:

�Polak-Ribiere:

�Fletcher-Reeves:

� If J is NOT quadratic, Polak-Ribiere seems best
[If gradients similar, β ≈ 0, so ≈restarting!]

j
T
j

j
T
j

j Hdd

Hdg 1+=β

][

][

1

11

jj
T
j

jj
T
j

j ggd

ggg

−
−

=
+

++β

j
T
j

jj
T
j

j gg

ggg][11 −
= ++β

j
T
j

j
T
j

j gg

gg 11 ++=β

66

Conjugate Gradient Algorithm
� Update parameters: wj+1 := wj + αj dj

�To get DIRECTION dj
� d1 := –g1

� dj+1 := –gj+1 +βj dj

�To find appropriate distance

� If J quadratic, converge in n steps!
If not… sometimes reset: dt := –gt

� Do not need to compute Hessian � for βj

j
T
j

j
T
j

j ������������
��������

−=α

j
T
j

jj
T
j

j gg

ggg][11 −
= ++β

67

Overfitting in ANNs
4. Avoid Overfitting

68

Local � Global Optimum
� Techniques so far: Seek LOCAL minimal
� For Linear Separators: PERFECT

∃ 1 minimum
... if everything nearby looks “bad” � Done!

� Not true in general!

� Simulated Annealing
Go wrong-way sometimes ...

with diminishing probabilities

69

4. Stopping Criteria
� After N iterations? (for fixed N)

� When resubstitution error is suff. small?
BAD: often overfits

� Use “validation data set”
1. Do many iterations,

then use weights from high-water mark
2. Cross validation:

Plot # iterations vs error → opt = ri
Let r =median(ri)
Use all data, for r iterations

70

Regularized Error Functions
� Penalize large weights: “Regularizing”

… “weight decay”

�� � +
+−≡

∈ ∈ ji ij

ij

Dd outputsk
kdkd w

w
otwE

,
2

2
2

1
)(

2
1

)(γ�

�� � +−≡
∈ ∈ ji

ij
Dd outputsk

kdkd wotwE
,

22)(
2
1

)(γ�

� ≈ ridge regression

71

Example

Neural Network - 10 Units

No Weight Decay Weight Decay=0.02

72

Other Ideas

� Tie together weights:
– eg, in phoneme recognition network
(Fewer weights, …)

� Multiple restarts
� Change structure

� Train on target slopes as well as values:
(more constraints…)

73

Dynamically Modifying
Network Structure

� So far, assume structure FIXED..
… only learning values of WEIGHTS

� Why not modify structure as well?

“Optimal Brain Damage”
start w/ complex network,
prune “inessential" connections

Inessential if wi ≈ 0
. . . or dE/d wi ≈ 0

“Cascade Correlation"
1. Initially: NO hidden units
. . . just direct connections from input-output
2. Find best weights for this structure
3. If good fit: STOP.

Otherwise. . . if significant residual error:
4. Produce new hidden unit
from previous units, and to all output units
w/weights CORRELATED to residual error
Goto 2

74

Neural Network Evaluation

75

Outline
� Introduction

� Historical Motivation, non-LTU, Objective
� Types of Structures

� Multi-layer Feed-Forward Networks
� Sigmoid Unit
� Backpropagation

� Tricks
� Line Search
� Conjugate Gradient
� Alternative Error Functions

� Hidden layer representations
� Example: Face Recognition

� Recurrent Networks

76

Learning Hidden Layer Repr'n
� Auto-encoder:

� Goal: Learn

77

Hidden Layer Representations
� Learned hidden layer representation:

1 0 0
0 0 1
0 1 0
1 1 1
0 0 0
0 1 1
1 0 1
1 1 0

78

Training Curve #1

79

Training Curve #2

80

Training Curve #3

81

Neural Nets for Face Recognition
� Performance Task: Recognize DIRECTION of face
� Framework: Different people, poses, “glasses”, different

background, . . .
� Design Decisions:

� Input Encoding:
� Just pixels? (subsampled? averaged?)
� or perhaps lines/edges?

� Output Encoding:
� Single output ([0, 1/n] = #1, . . .)
� Set of n-output (take highest value)

� Network structure: # of layers
� Connections (training time vs accuracy)

� Learning Parameters: Stochastic?
� Initial values of weights?
� Learning rate η, Momentum α, . . .
� Size of Validation Set, . . .

82

Neural Nets Used

90% accurate learning head pose,
and recognizing 1-of-20 faces

left strt rght up

Typical input images

left strt rght up

83

Recurrent Networks
� Brain needs short-term memory, . . .
� feedforward network not sufficient.

� Brain has many feed-back connections.
� brain is recurrent network, with Cycles!

� Recurrent nets:
� Can capture internal state.

(activation keeps going around)
� More complex agents
� Much harder to analyze.

… Unstable, Oscillate, Chaotic
� Main types:

� Iterative model
� Hopfield networks
� Boltzmann machines

84

Iterative Recurrent Network

85

Hopfield Networks
� Symmetric connections (Wi,j = Wj,i)

� Activation only {+1, -1 }
� σ(.) is sign-function

� Train weights to obtain associative memory
� eg, store patterns

� After learning, can “retrieve” patterns:
� Set some node values,
� other nodes settle to best pattern match

� Theorem:
An N-unit Hopfield net can store up to
0.138N patterns reliably.

� Note: No explicit storage; all in the weights!

86

Boltzmann Machines
� Symmetric connections (Wi,j = Wj,i)
� Activation only {+1, -1 }, but stochastic
� P(ni = 1) depends on inputs

�Network in constant motion,
computing average output value of each node

. . . like simulated annealing
� Has nice (but slow) learning algorithm.
� Related to probabilistic reasoning

… belief networks!

87

Other Topics
� Architecture
� Initialization

� Incorporating Background Knowledge
� KBANN, ...

� Better statistical models
� When to use which system?
� Other training techniques
� Regularizing

� Other “internal” functions
� Sigmoid
� Radial Basis Function

88

What to Remember
� Neural Nets can represent arbitrarily complex

functions
� It can be challenging to LEARN the parameters,

as multiple local optima
� … gradient descent … using backpropagation

� Many tricks to make gradient descent work!
� Line search
� Conjugate gradient

… useful for ANY optimization (not just NN)

