

R Greiner Cmput 466 / 551

Thanks: T Dietterich, R Parr, J Shewchuk

"An Intro to Conjugate Gradient Method without Agonizing Pain"

Outline

Introduction

- □ Historical Motivation, non-LTU, Objective
- Types of Structures
- Multi-layer Feed-Forward Networks
 - □ Sigmoid Unit
 - □ Backpropagation
- Tricks
 - Line Search
 - Conjugate Gradient
 - Alternative Error Functions
- Hidden layer representations
 - □ Example: Face Recognition
- Recurrent Networks

Motivation for non-Linear Classifiers

Linear methods are "weak"
 Make strong assumptions
 Can only express relatively simple functions of inputs

Need to learn more-expressive classifiers, that can do more!

What does the space of hypotheses look like?
 How do we navigate in this space?

Non-Linear \Rightarrow Neural Nets

- Linear separability depends on FEATURES!! A function can be
 - □ not-linearly-separable with one set of features,
 - but linearly separable in another
- Have system to produce features, that make function linearly-separatable
- … neural nets …

Why "Neural Network"

- Brains network of neurons are only known example of actual intelligence
- Individual neurons are slow, boring
- Brains succeed by using massive parallelism
- Idea: Use for building approximators!
- Raises many issues:
 - Is the computational metaphor suited to the computational hardware?
 - □ How to copy the important part?
 - □ Are we aiming too low?

Artificial Neural Networks

- Develop abstraction of function of actual neurons
- Simulate large, massively parallel artificial neural networks on conventional computers
- Some have tried to build the hardware too
- Try to approximate human learning, robustness to noise, robustness to damage, etc.

Comparison...

Maybe computers should be more brain-like:

	Computers	Brains
Computational Units	10 ⁹ gates/CPU	10 ¹¹ neurons
Storage Units	10 ¹⁰ bits RAM 10 ¹² bits HD	10 ¹¹ neurons 10 ¹⁴ synapses
Cycle Time	10 ⁻⁹ S	10 ⁻⁹ S
Bandwidth	10 ¹⁰ bits/s*	10 ¹⁴ bits/s
Compute Power	10 ¹⁰ Ops/s	10 ¹⁴ Ops/s

n

Natural Neurons

- Neuron switching time ≈0.001 second
- Number of neurons $\approx 10^{11}$
- Connections per neuron ≈ 10⁴⁻⁵
- Scene recognition time ≈0.1 second
- Only time for ≈100 inference steps
 not enough if only 1 operation/time
- \Rightarrow much parallel computation

Natural, vs Artificial, Neurons

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Artificial Neural Networks

- Mathematical abstraction!
- **Units**, connected by **links**; with weight $\in \Re$
- Each unit has
 - + set of inputs links from other units
 - + set of output links to other units
 - ... computes activation at next time step
- Lots of simple computational unit
 massively parallel implementation
- Non-Linear function approximation
 One of the most widely-used learning methods

[&]quot;... neural nets are the second best thing for learning anything!" J Denker

Artificial Neural Networks

 Rich history, starting in early forties (McCulloch/Pitts 1943)

Two views:

- □ Modeling the brain
- "Just" rep'n of complex functions
- Much progress on both fronts
- Interests from:

Neuro-science, Cognitive science, Physics, Statistics, Engineering, CS / EE, ... and AI

Uses of Artificial Neural Nets

- Trained to drive
 - □ No-hands across America (Pomerleau)
 - □ ARPA Challenge (Thrun)

- Trained to pronounce English (NETtalk)
 - □ Training set: Sliding window over text, sounds
 - □95% accuracy on training set
 - □78% accuracy on test set
- Trained to recognize handwritten digits
 >99% accuracy

Applications of Neural Nets

Learn to. . .

- Control
 - drive cars
 - □ control plants
 - □ pronunciation: NETtalk ... mapping text to phonemes
 - □ ...
- Recognize/Classify
 - □ handwritten characters
 - □ spoken words
 - □ images (eg, faces)
 - credit risks
 - □ ...
- Predict
 - Market forecasting
 - □ Trend analysis
 - □ ...

Neural Network Lore

- Neural nets have been adopted with an almost religious fervor within the AI community ... several times
- Often ascribed near magical powers by people...
 - usually people who know the *least* about computation or brains ³
- For most AI people, magic is gone... but neural nets remain extremely interesting and useful mathematical objects

When to Consider Neural Networks

Input is

□ high-dimensional (attribute-value pairs)

discrete or real-valued

possibly noisy [training, testing]

complete

□ (eg, raw sensor input)

- Output is
 - vector of values
 - □ discrete or real valued
 - "linear ordering"
- $\Rightarrow \mathfrak{R}^{\mathsf{n}} \to \mathfrak{R}$
- ... have LOTS OF TIME to train (performance is fast)
- Form of target function is unknown

Human readability / Explanability is NOT important

Multi-Layer Networks

- Perceptrons GREAT if want SINGLE STRAIGHT SURFACE
- What about . . .

Need NETWORK of nodes.

Types of Network Structures

Threshold Functions

g(x) = sign(x) (perceptron)

g(x)=tanh(x) or 1/(1+exp(-x)) (logistic regression; sigmoid)

Sigmoid Unit

- Sigmoid Function: $\sigma(x) = \frac{1}{1+e^{-x}}$
- Useful properties:

$$\begin{aligned} &-\sigma: \ \Re \to [0,1] \\ &-\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \ (1-\sigma(x)) \\ &- \ \text{If} \ x \approx \frac{1}{2}, \ \text{then} \ \sigma(x) \approx x \end{aligned}$$

Feed Forward Neural Nets

SET of connected Sigmoid Functions

Artificial Neural Nets

Can Represent ANY classifier!

- □ w/just 1 "hidden" layer...
- \Box in fact...

+

ANNs: Architecture

- Different # of layers
- Different structures
 - what's connected to what..
- Different "squashing function"

Computing Network Output

Two (non-input) layers: 2 input units + 2 hidden units + 1 output unit
 "Activation" passed from input to output:

$$O = \sigma(\sum_{r} W_{r,5} \cdot O_{r}) = \sigma(W_{3,5} \cdot O_{3} + W_{4,5} \cdot O_{4})$$

= $\sigma(W_{3,5} \cdot \sigma(\sum_{s} W_{s,3} \cdot O_{s}) + W_{4,5} \cdot \sigma(\sum_{t} W_{t,4} \cdot O_{t}))$
= $\sigma(W_{3,5} \cdot \sigma(W_{1,3} \cdot O_{1} + W_{2,3} \cdot O_{2})$
+ $W_{4,5} \cdot \sigma(W_{1,4} \cdot O_{1} + W_{2,4} \cdot O_{2}))$

Node #0 set to "1" is input to each node (using $w_{0,t}$) Final unit (here "#5") typically NOT $\sigma(\cdot)$

23

Representational Power

Any Boolean Formula

- \Box Consider formula in DNF: $(x_1 \& \neg x_2) \lor (x_2 \& x_4) \lor (\neg x_3 \& x_5)$
- Represent each AND by hidden unit; the OR by output unit.
- … but may need exponentially-many hidden units!

Bounded functions

Can approximate any bounded continuous function to arbitrary accuracy with 1 hidden sigmoid layer

+ linear output unit

... given enough hidden units.

(Output unit "linear" \Rightarrow computes $\hat{y} = W_4 \cdot A$)

Arbitrary Functions

Can approximate any function to arbitrary accuracy with
 2 hidden sigmoid layers + linear output unit

Fixed versus Variable Size

- Network w/fixed # of hidden unit represents fixed hypothesis space
- But iterative training process
- More steps \Rightarrow can "reach" more functions
- So... view networks as having a *variable* hypothesis space

Skip

Learning Neural Networks

Neural Networks Can Represent Complex Decision Boundaries

■ ≈Stratified:

More "gradient descent" steps \Rightarrow reach more functions

- Deterministic
- Continuous Parameters

Learning algorithms for neural networks

Local Search:

same algorithm as for sigmoid threshold units

- Eager
- Batch (typically)

MultiLayerNetwork Learning Task

- Want to minimize error on training ex's [not quite... why?]
- \Rightarrow function minimization problem.

$$Err(D,\vec{w}) = \frac{1}{2} \sum_{\langle \vec{x}, y \rangle \in D} (y - o_{\vec{w}}(\vec{x}))^2$$

Err on outputs, for given input,

is function of weights { w_{ij} }

Minimize:

gradient descent in weight space:

 \Rightarrow backpropagation algorithm (aka "chain rule")

Backpropagation

- Perceptron learning relied on direct connection between input value *x_j*, weight *w_j*, output value ⇒ could localize contribution & determine change
- Not true for multilayer network!
- Still, can estimate effect of each weight

 and make small changes accordingly
 Use derivative of error, wrt weight w_{ij} !

 Propagate backward (up net) using chain rule
- But no guarantees here... ∃ many local minima!
- Need to take DERIVATIVE ⇒ use "sigmoid" squashing function...

Error Gradient for Network

 $\bullet E = E([\mathbf{x}; t]) = \frac{1}{2} (O_{\mathbf{w}}(\mathbf{x}) - t)^2$

Compute each δ_j during BACKWARD sweep !

Computing "Terminal" $\delta_i s$

$$\underbrace{\left(\sum_{\ell} w_{\ell,5} \cdot o_{\ell}\right)}_{\ell} \neq y_5 \neq (\sigma(y_5)) \neq o_5 \rightarrow O$$

Computing Non-Terminal δ_i s

As $\frac{\partial E(\langle \vec{x},t\rangle)}{\partial w_{1,3}}$ depends only on o_3 , and hence y_3

$$\Rightarrow \quad \frac{\partial E(\langle \vec{x}, t \rangle)}{\partial w_{1,3}} = \frac{\partial E}{\partial y_3} \frac{\partial y_3}{\partial w_{1,3}} = \delta_3 o_1$$

•
$$\frac{\partial y_3}{\partial w_{1,3}} = \frac{\partial (\sum_{\ell} w_{\ell,3} o_{\ell})}{\partial w_{1,3}} = o_1$$

• $\delta_3 = \frac{\partial E}{\partial y_3} = \frac{\partial E}{\partial o_3} \frac{\partial o_3}{\partial y_3}$

33

Computing δ_3

•
$$\delta_3 = \frac{\partial E}{\partial y_3} = \frac{\partial E}{\partial o_3} \frac{\partial o_3}{\partial y_3}$$

•
$$\frac{\partial E}{\partial o_3} = \frac{\partial E}{\partial y_5} \frac{\partial y_5}{\partial o_3} = \delta_5 \frac{\partial (\sum_{\ell} w_{\ell,5} \cdot o_{\ell})}{\partial o_3} = \delta_5 \cdot w_{3,5}$$

•
$$\frac{\partial o_3}{\partial y_3} = \frac{\partial \sigma(y_3)}{\partial y_3} = \sigma(y_3) (1 - \sigma(y_3)) = o_3 (1 - o_3)$$

 $\Rightarrow \qquad \delta_3 = [\delta_5 w_{3,5}] o_3 (1 - o_3)$

34

What if Many Children?

As before...

$$\frac{\partial E}{\partial w_{1,A}} = \frac{\partial E}{\partial y_A} \frac{\partial y_A}{\partial w_{1,A}} = \delta_A o_1$$

$$\delta_A = \frac{\partial E}{\partial y_A} = \frac{\partial E}{\partial o_A} \frac{\partial o_A}{\partial y_A} = \frac{\partial E}{\partial o_A} [o_A (1 - o_A)]$$

• Notice $\frac{\partial E}{\partial o_A}$ depends only on BOTH
 $\star B$ (via y_B)
 $\star C$ (via y_C)

Multiple Children (con't)

Basic Computations

- Sweep FORWARD, from input to output
 For each node *n*, compute "output" o_n
- 2. Sweep BACKWARD, from output to input
 For each node *n*, compute

$$\delta_{n} = \frac{\partial E}{\partial y_{n}}$$

$$= o_{n} (1-o_{n}) \begin{cases} (t-o) & \text{if terminal} \\ \sum_{k \in child(n)} \delta_{k} w_{n,k} & \text{otherwise} \end{cases}$$

$$\frac{\partial E}{\partial w_{\ell,n}} = \delta_{n} o_{\ell}$$

Notice everything is trivial to compute!

Backpropagation Alg

Initialize all weights to small random numbers Until satisfied, do

For each training example [x, t], do

1. Sweep forward

Compute network outputs o_k for **x** for each hidden/output node

2. Sweep backward

For each output unit k

 $\delta_{k} \gets o_{k} \left(1 - o_{k}\right) \left(t_{k} - o_{k}\right)$

For each hidden unit h

$$\delta_{h} \leftarrow o_{h} (1 - o_{h}) \sum_{k \in \text{ child}(h)} w_{h,k} \delta_{k}$$

3. Update each network weight

 $\mathbf{w}_{i,j} \leftarrow \mathbf{w}_{i,j} + \eta \, \delta_j \, \mathbf{o}_i$

Empirical Results (MultiLayer Net)

"Restaurant Domain"

More on Backpropagation

- Gradient descent over entire network weight vector { W_{ii} }
- Can be either: "Incremental Mode" Gradient Descent or "Batch Mode":

$$\frac{\partial E}{\partial w_i} = \sum_{d \in D} \frac{\partial E^{(d)}}{\partial w_i}$$

- Easily generalized to arbitrary directed graphs
 - If have > 1 OUTPUTs: Just add them up!
 - Can have arbitrary connections
 Not just "everything on level 3 to everything on level 4"

Issues

Backprop will (at best)...

- ... slowly ...
 - □ Faster? Line search, Conjugate gradient, ...
- ... converge to LOCAL Opt ...

□ Multiple restart, simulated annealing, ...

- ... wrt Training Data
 - □ Early stopping, regularization

Outline

- Introduction
 - □ Historical Motivation, non-LTU, Objective
 - □ Types of Structures
- Multi-layer Feed-Forward Networks
 - Sigmoid Unit
 - Backpropagation
- Tricks for Effectiveness
 - □ Efficiency: Line Search, Conjugate Gradient
 - □ Generalization: Alternative Error Functions
- Hidden layer representations
 - Example: Face Recognition
- Recurrent Networks

Gradient Descent

Initialize $\mathbf{w}^{(0)}$ For k = 1..m $\mathbf{w}^{(k+1)} := \mathbf{w}^{(k)} + \alpha^{(k)} \times \mathbf{d}^{(k)}$

- General description:
 Want w* that minimizes function J(w)
- So far. . .
 - \square w⁽⁰⁾ is random
 - $\Box \ \alpha^{(k)} = 0.05$

 $\Box d^{(k)} = \nabla J = \left\langle \frac{\partial J(w^{(k)})}{\partial w^{(k)}} \right\rangle_{i}$ is derivative

- \square *m* = until bored...
- Alternatively...
 - 1. Use *small* random values for w⁽⁰⁾
 - 2. Use *line search* for distance $\alpha^{(k)}$
 - 3. Use *conjugate gradient* for direction d^(k)
 - 4. Use "cross tuning" for stopping criteria m ... overfitting

1. Proper Initialization (variables)

- Put all of the variables on same scale
- Standardize all feature values
 - □ Mean = 0, Standard Deviation = 1
 - □ (ie, subtract mean, divide by std.dev.)

1. Proper Initialization (w)

Start in "linear regions"

□ Keep all weights near 0,

 \Rightarrow sigmoid units in linear regions.

 \Rightarrow whole net one linear threshold unit (very simple function)

Break symmetry

 Ensure each unit has different input weights (so hidden units move in different directions)
 Set weight to random number in range

$$[-1, +1] \times \frac{1}{\sqrt{\text{fan-in}}}$$

Why BackProp tends to Work?

Only guaranteed to converge EVENTUALLY to a LOCAL opt

Why does it work so well in practice?

As start w/ $w_{ij} \approx 0$,

network \approx linear in weights...

so moves quickly

... until in "correct region"

Efficiency

Number of Iterations: Very important!

□ If too small: high error

 \Box If too large: overfitting \Rightarrow high gen'l error

- Learning: Intractable in general
 - Training can take thousands of iterations .. slow!
 - Learning net w/ single hidden unit is NP-hard
 - □ In practice: backprop is very useful.
- Use: Using network (after training) is very fast

2. Line Search

- **Task**: Seek w that minimize J(w)
- Approach: Given direction d ∈ ℜⁿ
 □ New value w^(r+1) := w^(r) + η d
 □ But what value of η?
- Good news: $\eta \in \Re \Rightarrow 1$ dim search!
- Let $e(\eta) = J(w + \eta \cdot d)$ Want $\eta^* = \operatorname{argmin} e(\eta)$
- Line Search:

Near 0, $e(\eta) \approx quadratic$

Line Search, con't

- Set $\eta_A = 0$, and guess 2 other values:
 - Eg, $\eta_{B} = 0.2$ $\eta_{C} = 0.5$ s.t. $e(\eta_{A}), e(\eta_{C}) > e(\eta_{B})$

- Fit 2-D poly $h(\eta) = r \eta^2 + s \eta + t$ to $[\eta_A, e(\eta_A)], [\eta_B, e(\eta_B)], [\eta_C, e(\eta_C)]$
- Take min of this poly... the new η^*
- Compute $e(\eta^*)$

Line Search, III

• Let $\eta^* = \operatorname{argmin}_{\eta} h(\eta)$ Iteration $\langle \eta'_A, \eta'_B, \eta'_C \rangle :=$ $\langle \eta^*, \eta_B, \eta_C \rangle$ if $\eta^* < \eta_B$ & $e(\eta^*) > e(\eta_B)$ $\langle \eta_A, \eta^*, \eta_C \rangle$ if $\eta^* < \eta_B$ & $e(\eta^*) < e(\eta_B)$ $\langle \eta_B, \eta^*, \eta_C \rangle$ if $\eta^* > \eta_B$ & $e(\eta^*) < e(\eta_B)$ $\langle \eta_A, \eta_B, \eta^* \rangle$ if $\eta^* > \eta_B$ & $e(\eta^*) > e(\eta_B)$

for ONE ITERATION of general search Search can involve m iterations,

Each iteration may involve 10's of eval's to get η^*

Issues:

- \Box How to find first 3 values?
- □ Many other tricks... (Brent's Method)
- □ Given assumptions, ANALYTIC form

3. Conjugate Gradient

• At step *r*, searching along gradient $\mathbf{d}^{(r)}$... using $\mathbf{q}(\eta) = \mathbf{J}(\mathbf{w}^{(r)} + \eta \cdot \mathbf{d}^{(r)})$

At minimum η^* : $\frac{\partial}{\partial \eta} J(w^{(r)} + \eta d^{(r)}) = 0$

Let
$$\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} + \eta^* \cdot \mathbf{d}^{(r)}$$

 $\Rightarrow \nabla J(\mathbf{w}^{(r+1)})^\top \mathbf{d}^{(r)} = 0$

Gradient ∇J(w^(r+1)) at r +1st step is ORTHOGONAL to previous search direction d^(r) !

Is this the best direction??

Problem with Steepest Descent

-2

x(0)

Steepest Descent... from [-2,-2]^T to [2,-2]^T

Path "zigzag"s as each gradient is orthogonal to the previous gradient

 x_1

Does Gradient always work??

- Each green line is gradient...
- Problematic when going down narrow canyon
- Red is better...

Better...

- Problem: Gradients { g_i } are NOT orthogonal to each other
 so can "repeat" same directions
- Suppose directions { d_i } were Conjugate
 - □ Spanning
 - □ "Orthogonal" (wrt matrix)
- Then after n moves (dim of space), must be at optimum!!

Make Descent Directions Orthogonal

At step r, searching along gradient d_r

... using
$$g(\eta) = J(\mathbf{w}_r + \eta \cdot \mathbf{d}_r)$$

At minimum:
 $\frac{\partial}{\partial \eta} J(w_r + \eta^* d_r) = 0$

Let
$$\mathbf{w}_{r+1} = \mathbf{w}_r + \eta^* \cdot \mathbf{d}_r$$

 $\Rightarrow \nabla J(\mathbf{w}_{r+1})^{\top} \mathbf{d}_{r} = \mathbf{0}$

Gradient ∇J(w_{r+1}) at r +1st step is ORTHOGONAL to previous search direction d_r !

Direction d_{r+1} is conjugate to direction d_r if component of gradient parallel to d_r remains 0 as move along d_{r+1}

Conjugate Gradient, Ila

 $g = \nabla J = \left\langle \frac{\partial J}{\partial w_1}, ..., \frac{\partial J}{\partial w_n} \right\rangle$ Later. ... $\mathbf{g}_r = \nabla J(\mathbf{w}^{(r)})$ on r^{th} iteration

Let d be DIRECTION of change.

Could have $\mathbf{d} = \mathbf{g}$ but . . .

• At time *r*, require $g(\mathbf{w}_{r+1})^T \mathbf{d}_r = 0$ Want this to be true for next direction as well: $g(\mathbf{w}_{r+2})^T \mathbf{d}_r = 0$... want d_{r+1} s.t.

$$w_{r+2} := w_{r+1} + λ d_{r+1}$$
 $g(w_{r+1} + λ d_{r+1})^T d_r = 0$

Conjugate Gradient, IIb

First order Taylor expansion:

$$0 = g(\mathbf{w}_{r+1} + \lambda \mathbf{d}_{r+1})^{\mathsf{T}}$$

= $g(\mathbf{w}_{r+1})^{\mathsf{T}} + \lambda \mathbf{d}_{r+1}^{\mathsf{T}} g'(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1})$
for some $\gamma \in (0, \lambda)$

for some $\gamma \in (0, \lambda)$

■ Post-Multiply by d_r & use g(w_{r+1})^T d_r = 0 to get

$$\lambda \mathbf{d}_{r+1} T \mathbf{g}'(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_{r} = 0$$

• Let $\mathcal{H}(\mathbf{w}_r) = g'(\mathbf{w}_r) = \nabla(\nabla J(\mathbf{w}_r))$

Hessian Matrix (Second Derivatives)

• Consider $J(x, y) = x^2 + 3xy - 5x$

•
$$g(x,y) = \nabla J = \left\langle \frac{\partial J(x,y)}{\partial x}, \frac{\partial J(x,y)}{\partial y} \right\rangle = \langle 2x + 3y - 5, 3x \rangle$$

•
$$\mathcal{H} = \nabla \nabla J = \begin{bmatrix} \frac{\partial}{\partial x} \frac{\partial J(x,y)}{\partial x} & \frac{\partial}{\partial y} \frac{\partial J(x,y)}{\partial x} \\ \frac{\partial}{\partial x} \frac{\partial J(x,y)}{\partial y} & \frac{\partial}{\partial y} \frac{\partial J(x,y)}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial}{\partial x} (2x + 3y - 5) & \frac{\partial}{\partial y} (2x + 3y - 5) \\ \frac{\partial}{\partial x} (3x) & \frac{\partial}{\partial y} (3x) \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}$$

• As J(x, y) is quadratic, \mathcal{H} is constant If $J(x, y) = x^3y^2 + ...$, then is function of args

$$\lambda d_{r+1} T g'(w_{r+1} + \gamma d_{r+1}) d_r = 0$$

■ Using
$$\mathcal{H}(\mathbf{w}_r) = g'(\mathbf{w}_r) = \nabla(\nabla J(\mathbf{w}_r))$$

 $0 = \mathbf{d}_{r+1}^T g'(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r$
 $= \mathbf{d}_{r+1}^T \mathcal{H}(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r$
 $\approx \mathbf{d}_{r+1}^T \qquad \mathcal{H} \qquad \mathbf{d}_r$
■ Challenge: How to find such \mathbf{d}_r vectors?
■ Assuming $J(\mathbf{w}) = J_0 + b^T \mathbf{w} + \frac{1}{2} \mathbf{w}^T \mathcal{H} \mathbf{w}$
then $\mathbf{g}(\mathbf{w}) = \nabla J(\mathbf{w}) = \mathbf{b} + \mathcal{H} \mathbf{w}$
■ J is min at \mathbf{w}^* s.t. $g(\mathbf{w}^*) = \mathbf{b} + \mathcal{H} \mathbf{w}^* = 0$

Conjugate Gradient, IV

Spse ∃ k vectors "mutually conjugate wrt *H*"
d_j^T *H* d_j = 0 j ≠ i

Then { d_i } linearly independent (if *H* pos def)
 Starting from w₁; want minimum w^{*}

As { \mathbf{d}_i } spanning, $\mathbf{w}^* - \mathbf{w}_1 = \sum_{i=1}^k \alpha_i \mathbf{d}_i$

• Let
$$\mathbf{w}_{j} = \mathbf{w}_{1} + \sum_{i=1}^{j-1} \alpha_{i} \mathbf{d}_{i}$$

 \Rightarrow **W**_{j+1} = **W**_j + α_j **d**_j

- Series of steps, each parallel some conjugate direction, of magnitude $\alpha_i \in \mathfrak{R}$
- Earlier: computed optimal α_j by line search.
 But given above assumptions...

To find α_i

• To find value for α_j :

 $\square \text{ multiply } \mathbf{w}^* - \mathbf{w}_1 = \sum_{i=1}^k \alpha_i \, \mathbf{d}_i$ $\square \text{ by } \mathbf{d}_i^\top \mathcal{H} :$

$$\mathbf{d_j^{\mathsf{T}}}(-\mathbf{b_k} - \mathcal{H} \mathbf{w_1}) = \sum_{i=1}^{k} \alpha_i \mathbf{d_j^{\mathsf{T}}} \mathcal{H} \mathbf{d_i} = \alpha_j \mathbf{d_j^{\mathsf{T}}} \mathcal{H} \mathbf{d_j}$$
As \mathbf{w}^* is optimum, $0 = g(\mathbf{w}^*) = \mathcal{H}(\mathbf{w}^*) + b$
As $\mathbf{d_j^{\mathsf{T}}} \mathcal{H} \mathbf{d_i} = 0$ unless $i = j$

$$\alpha_{j} = -\frac{\mathbf{d}_{j}^{T}(\mathbf{b} + \mathbf{Hw}_{j})}{\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}} = -\frac{\mathbf{d}_{j}^{T}(\mathbf{b} + \mathbf{Hw}_{j})}{\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}} = -\frac{\mathbf{d}_{j}^{T}\mathbf{g}_{j}}{\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}}$$

$$\mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} \mathbf{w}_{\mathbf{j}} = \mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} [\mathbf{w}_{1} + \sum_{i=1}^{(j-1)} \alpha_{i} \mathbf{d}_{i}]$$
$$= \mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} \mathbf{w}_{1} + \sum_{i=1}^{(j-1)} \alpha_{i} \mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{i} = \mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} \mathbf{w}_{1}$$

Obtaining **d**_i from **g**_i

- Given gradient \mathbf{g}_{j+1} let $\mathbf{d}_{j+1} := -\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$
- Find β_j such that: $\mathbf{d}_{j+1}^{\mathsf{T}} \mathcal{H} \mathbf{d}_j = 0$ $\Rightarrow \mathbf{g}_{j+1}^{\mathsf{T}} \mathcal{H} \mathbf{d}_j = \beta_j \mathbf{d}_j^{\mathsf{T}} \mathcal{H} \mathbf{d}_j$

$$\Rightarrow \quad \beta_{j} = \frac{g_{j+1}^{T} H d_{j}}{d_{j}^{T} H d_{j}}$$

Simpler version of $\beta_j = \frac{g_{j+1}^T H d_j}{d_j^T H d_j}$ • Observe

 $\begin{aligned} \mathbf{g}_{j+1} - \mathbf{g}_j &= [\mathcal{H} \mathbf{w}_{j+1} + b] - [\mathcal{H} \mathbf{w}_j + b] \\ &= \mathcal{H} [\mathbf{w}_{j+1} - \mathbf{w}_j] = \mathcal{H} [\alpha_j \mathbf{d}_j] = \alpha_j \mathcal{H} \mathbf{d}_j \\ &= \mathrm{So} \dots \mathcal{H} \mathbf{d}_j = [\mathbf{g}_{j+1} - \mathbf{g}_j] / \alpha_j \end{aligned}$

$$\beta_{j} = \frac{g_{j+1}^{T}Hd_{j}}{d_{j}^{T}Hd_{j}} = \frac{g_{j+1}^{T}[g_{j+1} - g_{j}]/\alpha_{j}}{d_{j}^{T}[g_{j+1} - g_{j}]/\alpha_{j}} = \frac{g_{j+1}^{T}[g_{j+1} - g_{j}]}{d_{j}^{T}[g_{j+1} - g_{j}]}$$

• Note $\mathbf{d}_{i}^{\mathsf{T}}\mathbf{g}_{k} = 0 \quad \forall j < k$

Computing Actual Direction d

d_{j+1} := $-\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$ where $\beta_j = \frac{g_{j+1}^T H d_j}{d_j^T H d_j}$ **Assuming J** is quadratic...

□ Hestenes-Stiefel:

$$\mathcal{B}_{j} = \frac{g_{j+1}^{T} [g_{j+1} - g_{j}]}{d_{j}^{T} [g_{j+1} - g_{j}]}$$

□ Polak-Ribiere:

□ Fletcher-Reeves:

$$\beta_{j} = \frac{g_{j+1}^{T} [g_{j+1} - g_{j}]}{g_{j}^{T} g_{j}}$$

$$\boldsymbol{\beta}_{j} = \frac{g_{j+1}^{T}g_{j+1}}{g_{j}^{T}g_{j}}$$

If J is NOT quadratic, Polak-Ribiere seems best [If gradients similar, β ≈ 0, so ≈restarting!]

Conjugate Gradient Algorithm

- Update parameters: $\mathbf{w}_{j+1} := \mathbf{w}_j + \alpha_j \mathbf{d}_j$ \Box To get DIRECTION \mathbf{d}_j $\mathbf{d}_1 := -\mathbf{g}_1$ $\mathbf{d}_{j+1} := -\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$ \Box To find appropriate distance
- If J quadratic, converge in n steps!
 If not... sometimes reset: d_t := -g_t
 Do not need to compute Heasian *#* for R⁶⁶

4. Avoid Overfitting

Overfitting in ANNs

Local ≠ Global Optimum

- Techniques so far: Seek LOCAL minimal
- For Linear Separators: PERFECT
 - ∃ 1 minimum
 - ... if everything nearby looks "bad" \Rightarrow Done!
- Not true in general!

Simulated Annealing
 Go wrong-way sometimes ...
 with diminishing probabilities

4. Stopping Criteria

- After N iterations? (for fixed N)
- When resubstitution error is suff. small?

BAD: often overfits

- 1. Do many iterations, ¹/₂₃₄₅₆₇₈ then use weights from high-water marκ
- 2. Cross validation:

Plot # iterations vs error \rightarrow opt = r_i

- Let $\underline{\mathbf{r}} = \text{median}(\mathbf{r}_i)$
- Use all data, for <u>r</u> iterations

Regularized Error Functions

Penalize large weights: "Regularizing" "weight decay"

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ij}^2$$
$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} \frac{w_{ij}^2}{1 + w_{ij}^2}$$

■ ≈ ridge regression

Example

Neural Network - 10 Units

Other Ideas

 Train on target slopes as well as values: (more constraints...)

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

- Tie together weights:
 - eg, in phoneme recognition network
 (Fewer weights, ...)
- Multiple restarts
- Change structure
Dynamically Modifying Network Structure

So far, assume structure FIXED.. ... only learning values of WEIGHTS Why not modify structure as well?

"Cascade Correlation"

- 1. Initially: NO hidden units
- ... just direct connections from input-output
- 2. Find best weights for this structure
- 3. If good fit: STOP.

Otherwise. . . if significant residual error:

4. Produce new hidden unit from previous units, and to all output units w/weights CORRELATED to residual error Goto 2 "Optimal Brain Damage" start w/ complex network, prune "inessential" connections Inessential if $w_i \approx 0$... or dE/d $w_i \approx 0$

Neural Network Evaluation

Criterion	LMS	Logistic	LDA	DecTree	NeuralNets
Mixed data	No	No	No	Yes	No
Missing values	No	No	Yes	Yes	No
Outliers	No	Yes	No	Yes	Yes
Monotone transforms	No	No	No	Yes	kinda
Scalability	Yes	Yes	Yes	Yes	Yes
Irrelevant inputs	No	No	No	kinda	No
Linear combinations	Yes	Yes	Yes	No	Yes
Interpretable	Yes	Yes	Yes	Yes	No
Predictive power	Yes	Yes	Yes	No	Yes

Outline

- Introduction
 - □ Historical Motivation, non-LTU, Objective
 - Types of Structures
- Multi-layer Feed-Forward Networks
 - Sigmoid Unit
 - □ Backpropagation
- Tricks
 - □ Line Search
 - Conjugate Gradient
 - □ Alternative Error Functions
- Hidden layer representations
 - □ Example: Face Recognition
- Recurrent Networks

Learning Hidden Layer Repr'n

Auto-encoder:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Hidden Layer Representations

Learned hidden layer representation:

Input	Hidden				Output	
10000000	\rightarrow	1	0	0	\rightarrow	10000000
01000000	\rightarrow	0	0	1	\rightarrow	01000000
00100000	\rightarrow	0	1	0	\rightarrow	00100000
00010000	\rightarrow	1	1	1	\rightarrow	00010000
00001000	\rightarrow	0	0	0	\rightarrow	00001000
00000100	\rightarrow	0	1	1	\rightarrow	00000100
00000010	\rightarrow	1	0	1	\rightarrow	00000010
00000001	\rightarrow	1	1	0	\rightarrow	00000001

Training Curve #1

Training Curve #2

Training Curve #3

Neural Nets for Face Recognition

- **Performance Task:** Recognize DIRECTION of face
- Framework: Different people, poses, "glasses", different background, . . .

Design Decisions:

- Input Encoding:
 - Just pixels? (subsampled? averaged?)
 - or perhaps lines/edges?
- Output Encoding:
 - Single output ([0, 1/n] = #1, . . .)
 - Set of n-output (take highest value)
- Network structure: # of layers
 - Connections (training time vs accuracy)
- □ **Learning Parameters:** Stochastic?
 - Initial values of weights?
 - Learning rate η , Momentum α , . . .
 - Size of Validation Set, . . .

Neural Nets Used

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Recurrent Networks

- Brain needs short-term memory, . . .
 - \Rightarrow feedforward network not sufficient.
- Brain has many feed-back connections.
 - \Rightarrow brain is recurrent network, with Cycles!
- Recurrent nets:
 - Can capture internal state.
 - (activation keeps going around)
 - More complex agents
 - □ Much harder to analyze.
 - ... Unstable, Oscillate, Chaotic
- Main types:
 - Iterative model
 - □ Hopfield networks
 - Boltzmann machines

Iterative Recurrent Network

(c) Recurrent network unfolded in time

Hopfield Networks

- Symmetric connections (W_{i,j} = W_{j,i})
 - \Box Activation only {+1, -1 }
 - $\Box \sigma(.)$ is sign-function
- Train weights to obtain associative memory
 - eg, store patterns
- After learning, can "retrieve" patterns:
 - □ Set some node values,
 - other nodes settle to best pattern match

Theorem:

An N-unit Hopfield net can store up to 0.138N patterns reliably.

Note: No explicit storage; all in the weights!

Boltzmann Machines

- Symmetric connections $(W_{i,j} = W_{j,i})$
- Activation only {+1, -1 }, but stochastic
- P(n_i = 1) depends on inputs
 Network in constant motion, computing average output value of each node
 ... like simulated annealing
 Has pice (but clow) learning algorithm
- Has nice (but slow) learning algorithm.
- Related to probabilistic reasoning ... belief networks!

Other Topics

- Architecture
- Initialization
 - □ Incorporating Background Knowledge
 - □ KBANN, ...
- Better statistical models
 - □ When to use which system?
 - Other training techniques
 - Regularizing
- Other "internal" functions
 - □ Sigmoid
 - □ Radial Basis Function

What to Remember

- Neural Nets can represent arbitrarily complex functions
- It can be challenging to LEARN the parameters, as multiple local optima

□ ... gradient descent ... using backpropagation

Many tricks to make gradient descent work!

Line search

Conjugate gradient

... useful for ANY optimization (not just NN)