HFT: Ch 11

Artificial Neural Networks

R Greiner Cmput 466 / 551

Thanks: T Dietterich, R Parr, J Shewchuk

Outline

- Introduction
\square Historical Motivation, non-LTU, Objective
\square Types of Structures
■ Multi-layer Feed-Forward Networks
\square Sigmoid Unit
\square Backpropagation
- Tricks
\square Line Search
\square Conjugate Gradient
\square Alternative Error Functions
■ Hidden layer representations
\square Example: Face Recognition
- Recurrent Networks

Motivation for non-Linear Classifiers

- Linear methods are "weak"
\square Make strong assumptions
\square Can only express relatively simple functions of inputs

■ Need to learn more-expressive classifiers, that can do more!
\square What does the space of hypotheses look like?
\square How do we navigate in this space?

Non-Linear \Rightarrow Neural Nets

■ Linear separability depends on FEATURES!!
A function can be
\square not-linearly-separable with one set of features,
\square but linearly separable in another

- Have system to produce features, that make function linearly-separatable

■ ... neural nets ...

Why "Neural Network"

- Brains - network of neurons - are only known example of actual intelligence
- Individual neurons are slow, boring
- Brains succeed by using massive parallelism
- Idea: Use for building approximators!
- Raises many issues:
\square Is the computational metaphor suited to the computational hardware?
\square How to copy the important part?
\square Are we aiming too low?

Artificial Neural Networks

■ Develop abstraction of function of actual neurons
■ Simulate large, massively parallel artificial neural networks on conventional computers

- Some have tried to build the hardware too

■ Try to approximate human learning, robustness to noise, robustness to damage, etc.

Comparison...

Maybe computers should be more brain-like:

	Computers	Brains
Computational Units	10^{9} gates/CPU	10^{11} neurons
Storage Units	10^{10} bits RAM 10^{12} bits HD	10^{11} neurons 10^{14} synapes
Cycle Time	$10^{-9} \mathrm{~S}$	$10^{2} \mathrm{~S}$
Bandwidth	$10^{10} \mathrm{bits} / \mathrm{s}^{*}$	$10^{14} \mathrm{bits} / \mathrm{s}$
Compute Power	$10^{10} \mathrm{Ops} / \mathrm{s}$	$10^{14} \mathrm{Ops} / \mathrm{s}$

Natural Neurons

- Neuron switching time ≈ 0.001 second
- Number of neurons $\approx 10^{11}$
- Connections per neuron $\approx 10^{4-5}$
- Scene recognition time ≈ 0.1 second
- Only time for ≈ 100 inference steps
\square not enough if only 1 operation/time
\Rightarrow much parallel computation

Natural, vs Artificial, Neurons

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Artificial Neural Networks

- Mathematical abstraction!
- Units, connected by links; with weight $\in \mathfrak{R}$
- Each unit has
+ set of inputs links from other units
+ set of output links to other units

. . . computes activation at next time step
- Lots of simple computational unit
\Rightarrow massively parallel implementation
- Non-Linear function approximation

One of the most widely-used learning methods
"... neural nets are the second best thing for learning anything!" J Denker

Artificial Neural Networks

- Rich history, starting in early forties (McCulloch/Pitts 1943)
■ Two views:
\square Modeling the brain
\square "Just" rep'n of complex functions
- Much progress on both fronts
- Interests from:

Neuro-science, Cognitive science, Physics, Statistics, Engineering, CS / EE, ... and AI

Uses of Artificial Neural Nets

■ Trained to drive
\square No-hands across America (Pomerleau)

\square ARPA Challenge (Thrun)
■ Trained to pronounce English (NETtalk)
\square Training set: Sliding window over text, sounds
$\square 95 \%$ accuracy on training set
$\square 78 \%$ accuracy on test set

- Trained to recognize handwritten digits
$\square>99 \%$ accuracy

Applications of Neural Nets

Learn to. . .

- Control
\square drive cars
\square control plants
\square pronunciation: NETtalk ... mapping text to phonemes
$\square .$.
- Recognize/Classify
\square handwritten characters
\square spoken words
\square images (eg, faces)
\square credit risks
\square...
- Predict
\square Market forecasting
\square Trend analysis
\square...

Neural Network Lore

- Neural nets have been adopted with an almost religious fervor within the Al community
... several times
- Often ascribed near magical powers by people...
\square usually people who know the least about computation or brains ©
- For most Al people, magic is gone... but neural nets remain extremely interesting and useful mathematical objects

When to Consider Neural Networks

- Input is
\square high-dimensional (attribute-value pairs)
\square discrete or real-valued
\square possibly noisy [training, testing]
\square complete
\square (eg, raw sensor input)
- Output is
\square vector of values

\square discrete or real valued
\square "linear ordering"
$\Rightarrow \mathfrak{R}^{\mathrm{n}} \rightarrow \mathfrak{\Re}$
- . . . have LOTS OF TIME to train (performance is fast)
- Form of target function is unknown
- Human readability / Explanability is NOT important

Multi-Layer Networks

- Perceptrons GREAT if want SINGLE STRAIGHT SURFACE
- What about . . .

- Need NETWORK of nodes. . .

Types of Network Structures

- Single layer:
\square Linear Threshold Units
\square Linear Units, Sigmoid Units

General multi-layered feed-forward:
\square input / hidden units / output

- Recurrent + Cycles, to allow "state"
\square Hopfield networks (used for associative memory), Boltzmann machines, . . .

Threshold Functions

$g(x)=\operatorname{sign}(x)$ (perceptron)

$g(x)=\tanh (x)$ or $1 /(1+\exp (-x))$ (logistic regression; sigmoid)

Sigmoid Unit

- Sigmoid Function: $\quad \sigma(x)=\frac{1}{1+e^{-x}}$
- Useful properties:
$-\sigma: \Re \rightarrow[0,1]$
$-\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))$
- If $x \approx \frac{1}{2}$, then $\sigma(x) \approx x$

Feed Forward Neural Nets

- SET of connected Sigmoid Functions

Artificial Neural Nets

- Can Represent ANY classifier!
\square w/just 1 "hidden" layer...
\square in fact...

ANNs: Architecture

- Different \# of layers

Different structures

- what's connected to what..

Different "squashing function"

" Computing Network Output

- Two (non-input) layers: 2 input units +2 hidden units +1 output unit
- "Activation" passed from input to output:

$$
\begin{aligned}
\mathrm{o}= & \sigma\left(\sum_{\mathrm{r}} \mathrm{w}_{\mathrm{r}, 5} \cdot \mathrm{o}_{\mathrm{r}}\right)=\sigma\left(\mathrm{w}_{3,5} \cdot \mathrm{o}_{3}+\mathrm{w}_{4,5} \cdot \mathrm{o}_{4}\right) \\
= & \sigma\left(\mathrm{w}_{3,5} \cdot \sigma\left(\sum_{\mathrm{s}} \mathrm{w}_{\mathrm{s}, 3} \cdot \mathrm{o}_{\mathrm{s}}\right)+\mathrm{w}_{4,5} \cdot \sigma\left(\sum_{\mathrm{t}} \mathrm{w}_{\mathrm{t}, 4} \cdot \mathrm{o}_{\mathrm{t}}\right)\right) \\
= & \sigma\left(\mathrm{w}_{3,5} \cdot \sigma\left(\mathrm{w}_{1,3} \cdot \mathrm{o}_{1}+\mathrm{w}_{2,3} \cdot \mathrm{o}_{2}\right)\right. \\
& \left.+\mathrm{w}_{4,5} \cdot \sigma\left(\mathrm{w}_{1,4} \cdot \mathrm{o}_{1}+\mathrm{w}_{2,4} \cdot \mathrm{o}_{2}\right)\right)
\end{aligned}
$$

Node \#0 set to " 1 " is input to each node (using $w_{0, t}$)
Final unit (here "\#5") typically NOT $\sigma(\cdot)$

Representational Power

- Any Boolean Formula
\square Consider formula in DNF: $\left(x_{1} \& \neg x_{2}\right) v\left(x_{2} \& x_{4}\right) v\left(\neg x_{3} \& x_{5}\right)$
\square Represent each AND by hidden unit; the OR by output unit.
\square
... but may need exponentially-many hidden units!
- Bounded functions
\square Can approximate any bounded continuous function to arbitrary accuracy with 1 hidden sigmoid layer
+ linear output unit
\square... given enough hidden units.
(Output unit "linear" \Rightarrow computes $\hat{y}=W_{4} \cdot \mathrm{~A}$)
- Arbitrary Functions
\square Can approximate any function to arbitrary accuracy with 2 hidden sigmoid layers + linear output unit

Fixed versus Variable Size

- Network w/fixed \# of hidden unit represents fixed hypothesis space
- But iterative training process
- More steps \Rightarrow can "reach" more functions
- So... view networks as having a variable hypothesis space

```
If all }\mp@subsup{w}{i,\ell}{}\approx0\mathrm{ ,
then }y=\mp@subsup{y}{i}{}\approx\mp@subsup{\sum}{\ell}{}\mp@subsup{w}{i,\ell}{}\mp@subsup{O}{\ell}{
```


If $|y|<\epsilon$ then $\sigma(y) \approx y \quad \Rightarrow \approx$ LINEAR!
$\Rightarrow \quad \sum_{i} w_{i} \cdot \sigma\left(y_{i}\right) \underset{\sum_{i} w_{i} \sum_{j} w_{j} x_{j}}{\approx} \stackrel{\sum_{i} w_{i} \cdot y_{i}}{\equiv} \sum_{j} w_{j}^{\prime} x_{j}$
for new constant w_{j}^{\prime}

Learning Neural Networks

Neural Networks Can Represent Complex Decision

 Boundaries- \approx Stratified:

More "gradient descent" steps \Rightarrow reach more functions

- Deterministic
- Continuous Parameters

Learning algorithms for neural networks

- Local Search: same algorithm as for sigmoid threshold units
- Eager
- Batch (typically)

MultiLayerNetwork Learning Task

- Want to minimize error on training ex's [not quite. . . why?]
\Rightarrow function minimization problem.

$$
\operatorname{Err}(D, \vec{w})=\frac{1}{2} \sum_{\langle\vec{x}, y\rangle \in D}\left(y-o_{\vec{w}}(\vec{x})\right)^{2}
$$

- Err on outputs, for given input, is function of weights $\left\{w_{i j}\right\}$
- Minimize:
\square gradient descent in weight space:
\Rightarrow backpropagation algorithm (aka "chain rule")

Backpropagation

- Perceptron learning relied on direct connection between input value x_{j}, weight w_{j}, output value \Rightarrow could localize contribution \& determine change
- Not true for multilayer network!
- Still, can estimate effect of each weight
... and make small changes accordingly Use derivative of error, wrt weight $w_{i j}$!
Propagate backward (up net) using chain rule
- But no guarantees here... \exists many local minima!
- Need to take DERIVATIVE
\Rightarrow use "sigmoid" squashing function. . .

Error Gradient for Network

- $E=E([\mathbf{x} ; \mathrm{t}])=1 / 2\left(\mathrm{O}_{\mathrm{w}}(\mathbf{x})-\mathrm{t}\right)^{2}$

Let $\delta_{i} \triangleq \frac{\partial E}{\partial y_{i}}$

- $\frac{\partial E(\langle\vec{x}, \vec{t}\rangle)}{\partial w_{3,5}}=\frac{\partial E}{\partial y_{5}} \frac{\partial y_{5}}{\partial w_{3,5}}=\delta_{5} \frac{\partial y_{5}}{\partial w_{3,5}}$
- $\frac{\partial y_{5}}{\partial w_{3,5}}=\frac{\partial\left(\sum_{\ell} w_{\ell, 5} \cdot o_{\ell}\right)}{\partial w_{3,5}}=\frac{\partial\left(w_{3,5} \cdot o_{3}+w_{4,5} \cdot o_{4}\right)}{\partial w_{3,5}}={ }_{o}$

$$
\Rightarrow \quad \frac{\partial E(\langle\vec{x}, \vec{t}\rangle)}{\partial w_{3,5}}=\delta_{5} o_{3}
$$

Factoring Derivative

- Here: $\frac{\partial E(\langle\vec{x}, \vec{t}\rangle)}{\partial w_{3,5}}=\delta_{5} o_{3}$
- In General $\frac{\partial E(\langle\vec{x}, \vec{t})}{\partial w_{i, j}}=\frac{\partial E}{\partial y_{j}} \frac{\partial y_{j}}{\partial w_{i, j}}=\delta_{j} o_{i}$

$$
\frac{\partial E(\langle\vec{x}, \vec{t}\rangle)}{\partial w_{i, j}}=\delta_{j} o_{i}
$$

- Compute each o_{i} during FORWARD sweep

Compute each δ_{j} during BACKWARD sweep!

Computing "Terminal" $\delta_{\mathrm{i}} \mathrm{s}$

- $\delta_{5}=\frac{\partial E}{\partial y_{5}}=\frac{\partial E}{\partial o_{5}} \frac{\partial o_{5}}{\partial y_{5}}$
- $\frac{\partial E(\langle\vec{x}, t\rangle)}{\partial o_{5}}=\frac{\partial}{\partial o_{5}}\left[\frac{1}{2}\left(o_{5}-t\right)^{2}\right]=\left(o_{5}-t\right) \cdot \frac{\partial}{\partial o_{5}}\left(o_{5}-t\right)=\left(o_{5}-t\right)$
- $\frac{\partial o_{5}}{\partial y_{5}}=\frac{\partial \sigma\left(y_{5}\right)}{\partial y_{5}}=\sigma\left(y_{5}\right)\left(1-\sigma\left(y_{5}\right)\right)=o_{5}\left(1-o_{5}\right)$

$$
\Rightarrow \delta_{5}=\left(o_{5}-t\right) o_{5}\left(1-o_{5}\right)
$$

Computing Non-Terminal $\delta_{i} \mathrm{~s}$

As $\frac{\partial E(\langle\vec{x}, t\rangle)}{\partial w_{1,3}}$ depends only on o_{3}, and hence y_{3}
$\Rightarrow \quad \frac{\partial E(\langle\vec{x}, t\rangle)}{\partial w_{1,3}}=\frac{\partial E}{\partial y_{3}} \frac{\partial y_{3}}{\partial w_{1,3}}=\delta_{3} o_{1}$

- $\frac{\partial y_{3}}{\partial w_{1,3}}=\frac{\partial\left(\sum_{\ell} w_{\ell, 3} o_{\ell}\right)}{\partial w_{1,3}}=o_{1}$
- $\delta_{3}=\frac{\partial E}{\partial y_{3}}=\frac{\partial E}{\partial o_{3}} \frac{\partial o_{3}}{\partial y_{3}}$

Computing δ_{3}

- $\delta_{3}=\frac{\partial E}{\partial y_{3}}=\frac{\partial E}{\partial o_{3}} \frac{\partial o_{3}}{\partial y_{3}}$
- $\frac{\partial E}{\partial o_{3}}=\frac{\partial E}{\partial y_{5}} \frac{\partial y_{5}}{\partial o_{3}}=\delta_{5} \frac{\partial\left(\sum_{\ell} w_{\ell, 5} \cdot o_{\ell}\right)}{\partial o_{3}}=\delta_{5} \cdot w_{3,5}$
- $\frac{\partial o_{3}}{\partial y_{3}}=\frac{\partial \sigma\left(y_{3}\right)}{\partial y_{3}}=\sigma\left(y_{3}\right)\left(1-\sigma\left(y_{3}\right)\right)=o_{3}\left(1-o_{3}\right)$

$$
\Rightarrow \quad \delta_{3}=\left[\delta_{5} w_{3,5}\right] o_{3}\left(1-o_{3}\right)
$$

What if Many Children?

- As before...

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{1, A}}=\frac{\partial E}{\partial y_{A}} \frac{\partial y_{A}}{\partial w_{1, A}}=\delta_{A} o_{1} \\
& \delta_{A}=\frac{\partial E}{\partial y_{A}}=\frac{\partial E}{\partial o_{A}} \frac{\partial o_{A}}{\partial y_{A}}=\frac{\partial E}{\partial o_{A}}\left[o_{A}\left(1-o_{A}\right)\right]
\end{aligned}
$$

- Notice $\frac{\partial E}{\partial o_{A}}$ depends only on BOTH

$$
\begin{aligned}
& \star B\left(\text { via } y_{B}\right) \\
& \star C\left(\text { via } y_{C}\right)
\end{aligned}
$$

Multiple Children (con't)

Here: $\delta_{A}=o_{A}\left(1-o_{A}\right)\left[\delta_{B} w_{A, B}+\delta_{C} w_{A, C}\right]$

- In general:

$$
\delta_{\ell}=o_{\ell}\left(1-o_{\ell}\right) \sum_{k \in \operatorname{child}(\ell)} \delta_{k} w_{\ell, k}
$$

Basic Computations

- 1. Sweep FORWARD, from input to output
\square For each node n, compute "output" o_{n}
- 2. Sweep BACKWARD, from output to input
\square For each node n, compute

$$
\begin{aligned}
& \delta_{n}=\frac{\partial E}{\partial y_{n}} \\
& = \\
& =o_{n}\left(1-o_{n}\right) \begin{cases}(t-o) & \text { if terminal } \\
\sum_{k \in \text { child }(n)} \delta_{k} w_{n, k} & \text { othemwise }\end{cases} \\
& \frac{\partial E}{\partial w_{\ell, n}}=\delta_{n} o_{\ell}
\end{aligned}
$$

■ Notice everything is trivial to compute!

Backpropagation Alg

Initialize all weights to small random numbers
Until satisfied, do

- For each training example [x, t] , do

1. Sweep forward

Compute network outputs o_{k} for \mathbf{x} for each hidden/output node
2. Sweep backward

For each output unit k

$$
\delta_{k} \leftarrow o_{k}\left(1-o_{k}\right)\left(t_{k}-o_{k}\right)
$$

For each hidden unit h

$$
\delta_{\mathrm{h}} \leftarrow \mathrm{o}_{\mathrm{h}}\left(1-\mathrm{o}_{\mathrm{h}}\right) \sum_{\mathrm{k} \in \operatorname{child}(\mathrm{~h})} \mathrm{w}_{\mathrm{h}, \mathrm{k}} \delta_{\mathrm{k}}
$$

3. Update each network weight

$$
w_{i, j} \leftarrow w_{i, j}+\eta \delta_{j} o_{i}
$$

Empirical Results (MultiLayer Net)

"Restaurant Domain"

More on Backpropagation

- Gradient descent over entire network weight vector $\left\{\mathrm{W}_{\mathrm{ij}}\right.$ \}

■ Can be either: "Incremental Mode" Gradient Descent or "Batch Mode":

$$
\frac{\partial E}{\partial w_{i}}=\sum_{d \in D} \frac{\partial E^{(d)}}{\partial w_{i}}
$$

- Easily generalized to arbitrary directed graphs
\square If have > 1 OUTPUTs: Just add them up!
\square Can have arbitrary connections
Not just "everything on level 3 to everything on level 4"

Issues

Backprop will (at best)...
■ ... slowly ...
\square Faster? Line search, Conjugate gradient, ...
■ ... converge to LOCAL Opt ...
\square Multiple restart, simulated annealing, ...
■ ... wrt Training Data
\square Early stopping, regularization

Outline

- Introduction
\square Historical Motivation, non-LTU, Objective
\square Types of Structures
■ Multi-layer Feed-Forward Networks
\square Sigmoid Unit
\square Backpropagation
- Tricks for Effectiveness
\square Efficiency: Line Search, Conjugate Gradient
\square Generalization: Alternative Error Functions
- Hidden layer representations
\square Example: Face Recognition
- Recurrent Networks

Gradient Descent

$$
\begin{aligned}
& \text { Initialize } \mathrm{w}^{(0)} \\
& \text { For } k=1 . . m \\
& \qquad \mathrm{w}^{(k+1)} \quad:=\quad \mathrm{w}^{(k)}+\alpha^{(k)} \times \mathrm{d}^{(k)}
\end{aligned}
$$

- General description: Want w^{*} that minimizes function $\mathrm{J}(\mathrm{w})$
- So far. . .
$\square w^{(0)}$ is random
$\square \alpha^{(k)}=0.05$
$\square \mathrm{d}^{(\mathrm{k})}=\nabla \mathrm{J}=\left\langle\frac{\partial J \mathrm{~J}^{\left({ }^{(i)}\right)}}{\partial w_{i}^{(i)}}\right\rangle_{i} \quad$ is derivative
$\square m=$ until bored...
- Alternatively...

1. Use small random values for $w^{(0)}$
2. Use line search for distance $\alpha^{(k)}$
3. Use conjugate gradient for direction $\mathrm{d}^{(k)}$
4. Use "cross tuning" for stopping criteria m ... overfitting

1. Proper Initialization (variables)

- Put all of the variables on same scale
- Standardize all feature values
\square Mean $=0$, Standard Deviation $=1$
\square (ie, subtract mean, divide by std.dev.)

1. Proper Initialization (w)

■ Start in "linear regions"
\square Keep all weights near 0,

\Rightarrow sigmoid units in linear regions.
\Rightarrow whole net one linear threshold unit
(very simple function)
■ Break symmetry
\square Ensure each unit has different input weights (so hidden units move in different directions)
\square Set weight to random number in range

$$
\left[\begin{array}{ll}
-1, & +1
\end{array}\right] \times \frac{1}{\sqrt{\text { fan-in }}}
$$

Why BackProp tends to Work?

- Only guaranteed to converge
$\square E V E N T U A L L Y$
\square to a LOCAL opt
- Why does it work so well in practice?

As start $\mathrm{w} / \mathrm{w}_{\mathrm{ij}} \approx 0$, network \approx linear in weights... so moves quickly

... until in "correct region"

Efficiency

■ Number of Iterations: Very important!
\square If too small: high error
\square If too large: overfitting \Rightarrow high gen'l error

- Learning: Intractable in general
\square Training can take thousands of iterations .. slow!
\square Learning net w/ single hidden unit is NP-hard
\square In practice: backprop is very useful.
- Use: Using network (after training) is very fast

2. Line Search

- Task: Seek w that minimize $\mathrm{J}(\mathbf{w})$
- Approach: Given direction $d \in \mathfrak{R}^{n}$
\square New value $\mathbf{w}^{(r+1)}:=\mathbf{w}^{(r)}+\eta \mathbf{d}$
\square But what value of η ?
- Good news: $\eta \in \mathfrak{R} \Rightarrow 1$ dim search!
- Let $\mathrm{e}(\eta)=\mathrm{J}(\mathbf{w}+\eta \cdot \mathbf{d})$

Want $\eta^{*}=\operatorname{argmin} e(\eta)$

- Line Search:

Near 0, e(η) \approx quadratic

Line Search, con't

$■$ Set $\eta_{A}=0$, and guess 2 other values:
$\mathrm{Eg}, \eta_{\mathrm{B}}=0.2 \quad \eta_{\mathrm{C}}=0.5$ s.t. $e\left(\eta_{A}\right), e\left(\eta_{C}\right)>e\left(\eta_{B}\right)$

- Fit 2-D poly $h(\eta)=r \eta^{2}+s \eta+t$
 to $\left[\eta_{A}, e\left(\eta_{A}\right)\right],\left[\eta_{B}, e\left(\eta_{B}\right)\right],\left[\eta_{C}, e\left(\eta_{C}\right)\right]$
- Take min of this poly... the new η^{*}
- Compute $\mathrm{e}\left(\eta^{*}\right)$

Line Search, III

- Let $\eta^{*}=\operatorname{argmin}_{\eta} h(\eta)$

Iteration $\left\langle\eta_{A}^{\prime}, \eta_{B}^{\prime}, \eta_{C}^{\prime}\right\rangle:=$

$$
\begin{array}{ll}
\left\langle\eta^{*}, \eta_{B}, \eta_{C}\right\rangle & \text { if } \eta^{*}<\eta_{B} \& e\left(\eta^{*}\right)>e\left(\eta_{B}\right) \\
\left\langle\eta_{A}, \eta^{*}, \eta_{C}\right\rangle & \text { if } \eta^{*}<\eta_{B} \& e\left(\eta^{*}\right)<e\left(\eta_{B}\right) \\
\left\langle\eta_{B}, \eta^{*}, \eta_{C}\right\rangle & \text { if } \eta^{*}>\eta_{B} \& e\left(\eta^{*}\right)<e\left(\eta_{B}\right) \\
\left\langle\eta_{A}, \eta_{B}, \eta^{*}\right\rangle & \text { if } \eta^{*}>\eta_{B} \& e\left(\eta^{*}\right)>e\left(\eta_{B}\right)
\end{array}
$$

■ ... for ONE ITERATION of general search
Search can involve m iterations,
Each iteration may involve 10's of eval's to get η^{*}

- Issues:
\square How to find first 3 values?
\square Many other tricks... (Brent's Method)
\square Given assumptions, ANALYTIC form

3. Conjugate Gradient

- At step r, searching along gradient $\mathbf{d}^{(r)}$
\ldots using $q(\eta)=J\left(\mathbf{w}^{(r)}+\eta \cdot \mathbf{d}^{(r)}\right)$
At minimum $\eta^{*}: \frac{\partial}{\partial \eta} J\left(w^{(r)}+\eta d^{(r)}\right)=0$
Let $\mathbf{w}^{(r+1)}=\mathbf{w}^{(r)}+\eta^{*} \cdot \mathbf{d}^{(r)}$
$\Rightarrow \nabla J\left(\mathbf{w}^{(r+1)}\right)^{\top} \mathbf{d}^{(r)}=0$
- Gradient $\nabla J\left(\mathbf{w}^{(r+1)}\right)$ at $r+1^{\text {st }}$ step is ORTHOGONAL to previous search direction $\mathbf{d}^{(r)}$!
- Is this the best direction??

Problem with Steepest Descent

■ Steepest Descent... from $[-2,-2]^{\top}$ to $[2,-2]^{\top}$

- Path "zigzag"s as each gradient is orthogonal to the previous gradient

Does Gradient always work??

- Each green line is gradient...
- Problematic when going down narrow canyon
- Red is better...

Better...

- Problem: Gradients $\left\{\mathbf{g}_{\mathbf{i}}\right\}$ are NOT orthogonal to each other
\square so can "repeat" same directions
- Suppose directions $\left\{\mathbf{d}_{i}\right\}$ were Conjugate
\square Spanning
\square "Orthogonal" (wrt matrix)
■ Then after n moves (dim of space), must be at optimum!!

Make Descent Directions Orthogonal

- At step r, searching along gradient \mathbf{d}_{r}
$\underset{\text { Át }}{\text { using }} \mathrm{minimum}(\eta): J\left(\mathbf{w}_{r}+\eta \cdot \mathbf{d}_{r}\right)$
Let $\mathrm{w}_{\mathrm{r}+1}=\mathrm{w}_{\mathrm{r}}+\eta^{*} \cdot \mathrm{~d}_{\mathrm{r}}$
$\Rightarrow \nabla J\left(\mathbf{w}_{r+1}\right)^{\top} \mathrm{d}_{\mathrm{r}}=0$
- Gradient $\nabla J\left(\mathrm{w}_{\mathrm{r}+1}\right)$ at $\mathrm{r}+1^{\text {st }}$ step is ORTHOGONAL to previous search direction d_{r} !

Direction \mathbf{d}_{r+1} is conjugate to direction d_{r} if component of gradient parallel to d_{r} remains 0 as move along $\mathrm{d}_{\mathrm{r}+1}$

Conjugate Gradient, Ila

$g=\nabla J=\left\langle\frac{\partial J}{\partial w_{1}}, \ldots, \frac{\partial J}{\partial w_{n}}\right\rangle \quad$ Later. $\ldots \mathbf{g}_{\mathrm{r}}=\nabla J\left(\mathbf{w}^{(r)}\right)$ on $\mathrm{r}^{\text {th }}$ iteration

- Let \mathbf{d} be DIRECTION of change.

Could have $\mathbf{d}=\mathbf{g}$ but . . .

- At time r, require $g\left(\mathbf{w}_{r+1}\right)^{\top} \mathbf{d}_{\mathrm{r}}=0$ Want this to be true for next direction as well:

$$
g\left(\mathbf{w}_{r+2}\right)^{\top} \mathbf{d}_{r}=0
$$

... want $\mathrm{d}_{\mathrm{r}+1}$ s.t.

$$
\begin{aligned}
& \mathbf{w}_{r+2}:=\mathbf{w}_{r+1}+\lambda \mathbf{d}_{r+1} \\
& g\left(\mathbf{w}_{r+1}+\lambda \mathbf{d}_{r+1}\right)^{\top} \mathbf{d}_{r}=0
\end{aligned}
$$

Conjugate Gradient, IIb

- First order Taylor expansion:

$$
\begin{aligned}
0 & =g\left(\mathbf{w}_{r+1}+\lambda \mathbf{d}_{r+1}\right)^{\top} \\
& =g\left(\mathbf{w}_{r+1}\right)^{\top}+\lambda \mathbf{d}_{r+1}^{\top} g^{\prime}\left(\mathbf{w}_{r+1}+\gamma \mathbf{d}_{r+1}\right)
\end{aligned}
$$

for some $\gamma \in(0, \lambda)$

- Post-Multiply by \mathbf{d}_{r} \& use $\mathrm{g}\left(\mathbf{w}_{\mathrm{r}+1}\right)^{\top} \mathbf{d}_{\mathrm{r}}=0$ to get
$\lambda \mathbf{d}_{\mathrm{r}+1}{ }^{\top} \mathrm{g}^{\prime}\left(\mathbf{w}_{\mathrm{r}+1}+\gamma \mathbf{d}_{\mathrm{r}+1}\right) \mathbf{d}_{\mathrm{r}}=0$
- Let $\mathscr{H}\left(\mathbf{w}_{\mathbf{r}}\right)=\mathrm{g}^{\prime}\left(\mathbf{w}_{\mathrm{r}}\right)=\nabla\left(\nabla J\left(\mathbf{w}_{\mathbf{r}}\right)\right)$

Hessian Matrix (Second Derivatives)

■ Consider $J(x, y)=x^{2}+3 x y-5 x$

- $\mathrm{g}(x, y)=\nabla J=\left\langle\frac{\partial J(x, y)}{\partial x}, \frac{\partial J(x, y)}{\partial y}\right\rangle=\langle 2 x+3 y-5,3 x\rangle$
- $\mathcal{H}=\nabla \nabla J=\left[\begin{array}{ll}\frac{\partial \partial J(x, y)}{\partial x} \partial x & \frac{\partial \partial J(x, y)}{\partial y} \partial x \\ \frac{\partial \partial J(x, y)}{\partial x} & \frac{\partial \partial J(x, y)}{\partial y}\end{array}\right]$

$$
=\left[\begin{array}{cc}
\frac{\theta}{\partial x}(2 x+3 y-5) & \frac{\theta}{\partial y}(2 x+3 y-5) \\
\frac{\theta}{\partial x}(3 x) & \frac{\partial}{\partial y}(3 x)
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
3 & 0
\end{array}\right]
$$

- As $J(x, y)$ is quadratic, \mathscr{H} is constant If $J(x, y)=x^{3} y^{2}+\ldots$, then is function of args_{59}

$$
\lambda \mathbf{d}_{r+1}^{\top} g^{\prime}\left(\mathbf{W}_{r+1}+\gamma \mathbf{d}_{r+1}\right) \mathbf{d}_{r}=0
$$

- Using $\mathscr{H}\left(\mathbf{w}_{\mathrm{r}}\right)=\mathrm{g}^{\prime}\left(\mathbf{w}_{\mathrm{r}}\right)=\nabla\left(\nabla J\left(\mathbf{w}_{\mathrm{r}}\right)\right)$

$$
\begin{aligned}
0 & =\mathbf{d}_{\mathrm{r}+1}{ }^{\top} g^{\prime}\left(\mathbf{W}_{\mathrm{r}+1}+\gamma \mathbf{d}_{\mathrm{r}+1}\right) \mathbf{d}_{\mathrm{r}} \\
& =\mathbf{d}_{\mathrm{r}+1}^{\top} \mathscr{H}\left(\mathbf{W}_{\mathrm{r}+1}+\gamma \mathbf{d}_{\mathrm{r}+1}\right) \mathbf{d}_{\mathrm{r}} \\
& \approx \mathbf{d}_{\mathrm{r}+1}^{\top} \quad \underset{H}{ } \quad \mathbf{d}_{\mathrm{r}}
\end{aligned}
$$

$■$ Challenge: How to find such \mathbf{d}_{r} vectors?
■ Assuming $J(\mathbf{w})=J_{0}+b^{\top} \mathbf{w}+1 / 2 \mathbf{w}^{\top} \mathscr{H} \mathbf{w}$ then $\mathbf{g}(\mathbf{w})=\nabla \mathrm{J}(\mathbf{w})=\mathrm{b}+\mathscr{H} \mathbf{w}$
$■ \mathrm{~J}$ is \min at \mathbf{w}^{*} s.t. $g\left(\mathbf{w}^{*}\right)=\mathrm{b}+\mathscr{H} \mathbf{w}^{*}=0$

Conjugate Gradient, IV

- Spse $\exists \mathrm{k}$ vectors "mutually conjugate wrt \mathscr{H} "

$$
\mathbf{d}_{\mathrm{j}}^{\top} \mathscr{H} \mathbf{d}_{\mathrm{i}}=0 \quad \mathrm{j} \neq \mathrm{i}
$$

Then $\left\{\mathbf{d}_{\mathbf{i}}\right\}$ linearly independent (if \mathscr{H} pos def)

- Starting from \mathbf{w}_{1}; want minimum \mathbf{w}^{*}

As $\left\{\mathbf{d}_{\mathrm{i}}\right\}$ spanning, $\mathbf{w}^{*}-\mathbf{w}_{1}=\sum_{\mathrm{i}=1}{ }^{\mathrm{k}} \alpha_{\mathrm{i}} \mathbf{d}_{\mathrm{i}}$

- Let $\mathbf{w}_{\mathrm{j}}=\mathbf{w}_{1}+\sum_{\mathrm{i}=1}{ }^{\mathrm{j}-1} \alpha_{\mathrm{i}} \mathbf{d}_{\mathrm{i}}$
$\Rightarrow \mathbf{w}_{\mathrm{j}+1}=\mathbf{w}_{\mathrm{j}}+\alpha_{\mathrm{j}} \mathbf{d}_{\mathrm{j}}$
- Series of steps, each parallel some conjugate direction, of magnitude $\alpha_{j} \in \mathfrak{R}$
- Earlier: computed optimal α_{j} by line search. But given above assumptions...

To find α_{j}

- To find value for α_{j} :
\square multiply $\quad \mathbf{w}^{*}-\mathbf{w}_{1}=\sum_{i=1}{ }^{k} \alpha_{i} \mathbf{d}_{\mathbf{i}}$
\square by $\mathbf{d}_{\mathrm{j}}{ }^{\top} \mathcal{H}$:
$\mathbf{d}_{\mathbf{j}}{ }^{\top}\left(-\mathbf{b}-\mathscr{H} \mathbf{w}_{\mathbf{1}}\right)=\sum_{\mathrm{i}=1}{ }^{\mathrm{k}} \alpha_{\mathrm{i}} \mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H} \mathbf{d}_{\mathbf{i}}=\alpha_{\mathrm{j}} \mathbf{d}_{\mathbf{j}}{ }^{\top} \mathscr{H} \mathbf{d}_{\mathbf{j}}$
As \mathbf{w}^{*} is optimum, $0=g\left(\mathbf{w}^{*}\right)=\mathscr{H}\left(\mathbf{w}^{*}\right)+b$

$$
\text { As } \mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H} \mathbf{d}_{\mathbf{i}}=0 \text { unless } \mathrm{i}=\mathrm{j}
$$

$$
\alpha_{j}=-\frac{\mathbf{d}_{j}^{T}\left(\mathbf{b}+\mathbf{H} \mathbf{W}_{\mathrm{j}}\right)}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}=-\frac{\mathbf{d}_{j}^{T}\left(\mathbf{b}+\mathbf{H} \mathbf{w}_{j}\right)}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}=-\frac{\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}
$$

$$
\begin{aligned}
\mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H} \mathbf{w}_{\mathbf{j}} & =\mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H}\left[\mathbf{w}_{\mathbf{1}}+\sum_{\mathrm{i}=1}^{(j-1)} \alpha_{\mathrm{i}} \mathbf{d}_{\mathbf{i}}\right] \\
& =\mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H} \mathbf{w}_{\mathbf{1}}+\sum_{\mathrm{i}=1}{ }^{(\mathrm{j}-1)} \alpha_{\mathrm{i}} \mathbf{d}_{\mathbf{j}}^{\top} \mathcal{H} \mathbf{d}_{\mathbf{i}}=\mathbf{d}_{\mathbf{j}}^{\top} \mathscr{H} \mathbf{w}_{\mathbf{1}}
\end{aligned}
$$

Obtaining \mathbf{d}_{i} from \mathbf{g}_{i}

- Given gradient \mathbf{g}_{j+1} let $\mathbf{d}_{j+1}:=-\mathbf{g}_{j+1}+\beta_{j} \mathbf{d}_{\mathbf{j}}$
- Find β_{j} such that: $\quad \mathbf{d}_{\mathrm{j}+1}{ }^{\top} \mathcal{H} \mathbf{d}_{\mathrm{j}}=0$
$\Rightarrow \mathbf{g}_{\mathrm{j}+1}{ }^{\top} \mathscr{H} \mathbf{d}_{\mathrm{j}}=\beta_{\mathrm{j}} \mathbf{d}_{\mathrm{j}}^{\top} \mathscr{H} \mathbf{d}_{\mathrm{j}}$
$\Rightarrow \beta_{j}=\frac{g_{j+1}^{T} H d_{j}}{d_{j}^{T} H d_{j}}$

Simpler version of
 - Observe
 $$
\beta_{j}=\frac{g_{j+1}^{T} H d_{j}}{d_{j}^{T} H d_{j}}
$$

$$
\begin{aligned}
& \mathbf{g}_{\mathrm{j}+1}-\mathbf{g}_{\mathrm{j}}=\left[\mathscr{H} \mathbf{w}_{\mathrm{j}+1}+\mathrm{b}\right]-\left[\mathscr{H} \mathbf{w}_{\mathrm{j}}+\mathrm{b}\right] \\
& =\mathscr{H}\left[\mathbf{w}_{\mathrm{j}+1}-\mathbf{w}_{\mathrm{j}}\right]=\mathscr{H}\left[\alpha_{\mathrm{j}} \mathbf{d}_{\mathrm{j}}\right]=\alpha_{\mathrm{j}} \mathscr{H} \mathbf{d}_{\mathrm{j}}
\end{aligned}
$$

- So $\ldots \mathscr{H} \mathbf{d}_{\mathrm{j}}=\left[\mathbf{g}_{\mathrm{j}+1}-\mathbf{g}_{\mathrm{j}}\right] / \alpha_{\mathrm{j}}$
$\beta_{j}=\frac{g_{j+1}^{T} H d_{j}}{d_{j}^{T} H d_{j}}=\frac{g_{j+1}^{T}\left[g_{j+1}-g_{j}\right] / \alpha_{j}}{d_{j}^{T}\left[g_{j+1}-g_{j}\right] / \alpha_{j}}=\frac{g_{j+1}^{T}\left[g_{j+1}-g_{j}\right]}{d_{j}^{T}\left[g_{j+1}-g_{j}\right]}$
- Note $\mathbf{d}_{\mathrm{j}}{ }^{\mathbf{T}} \mathbf{g}_{\mathrm{k}}=0 \quad \forall \mathrm{j}<\mathrm{k}$

Computing Actual Direction d

- $\mathbf{d}_{\mathrm{j}+1}:=-\mathbf{g}_{\mathrm{j}+1}+\beta_{\mathbf{j}} \mathbf{d}_{\mathbf{j}}$ where $\quad \beta_{j}=\frac{g_{j+1}^{T} H d_{j}}{d_{j}^{T} H d_{j}}$
- Assuming \mathbf{J} is quadratic...
\square Hestenes-Stiefel: $\quad \beta_{j}=\frac{g_{j+1}^{T}\left[g_{j+1}-g_{j}\right]}{d_{j}^{T}\left[g_{j+1}-g_{j}\right]}$
\square Polak-Ribiere:

$$
\beta_{j}=\frac{g_{j+1}^{T}\left[g_{j+1}-g_{j}\right]}{g_{j}^{T} g_{j}}
$$

Fletcher-Reeves:

$$
\beta_{j}=\frac{g_{j+1}^{T} g_{j+1}}{g_{j}^{T} g_{j}}
$$

- If \mathbf{J} is NOT quadratic, Polak-Ribiere seems best [If gradients similar, $\beta \approx 0$, so \approx restarting!]

Conjugate Gradient Algorithm

■ Update parameters: $\mathbf{w}_{\mathrm{j}+1}:=\mathbf{w}_{\mathrm{j}}+\alpha_{\mathrm{j}} \mathbf{d}_{\mathrm{j}}$
\square To get DIRECTION $\mathbf{d}_{\mathbf{j}}$
$-d_{1} \quad:=-g_{1}$

$$
\beta_{j}=\frac{g_{j+1}^{T}\left[g_{j+1}-g_{j}\right]}{g_{j}^{T} g_{j}}
$$

- $d_{j+1}:=-\mathbf{g}_{\mathrm{j}+1}+\mathrm{\beta}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}$

$$
\alpha_{j}=-\frac{\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H d _ { j }}}
$$

To find appropriate distance

- If \mathbf{J} quadratic, converge in n steps!

If not... sometimes reset: $\boldsymbol{d}_{\mathbf{t}}:=-\mathbf{g}_{\mathrm{t}}$
= חnnnotnnodtn nnmnitn பnoninn \mathbb{K} fnr R

Local $=$ Global Optimum

- Techniques so far: Seek LOCAL minimal
- For Linear Separators: PERFECT
$\exists 1$ minimum
... if everything nearby looks "bad" \Rightarrow Done!
- Not true in general!
- Simulated Annealing

Go wrong-way sometimes ...
with diminishing probabilities

4. Stopping Criteria

- After N iterations? (for fixed N)
- When resubstitution error is suff. small? $B A D$: often overfits
- Use "validation data set" 1. Do many iterations,
 then use weights from high-water mark

2. Cross validation:

Plot \# iterations vs error $\rightarrow \mathrm{opt}=\mathrm{r}_{\mathrm{i}}$
Let $\underline{r}=$ median $\left(r_{i}\right)$
Use all data, for \underline{r} iterations

Regularized Error Functions

- Penalize large weights: "Regularizing"
... "weight decay"

$$
\begin{aligned}
& E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text { ouppus }}\left(t_{k d}-o_{k d}\right)^{2}+\gamma \sum_{i, j} w_{i j}^{2} \\
& E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text { outpups }}\left(t_{k d}-o_{k d}\right)^{2}+\gamma \sum_{i, j} \frac{w_{i j}^{2}}{1+w_{i j}^{2}}
\end{aligned}
$$

- \approx ridge regression

Example

No Weight Decay

Weight Decay $=0.02$

Neural Network - 10 Units

Other Ideas

■ Train on target slopes as well as values: (more constraints...)

- Tie together weights:
- eg, in phoneme recognition network (Fewer weights, ...)
- Multiple restarts
- Change structure

Dynamically Modifying Network Structure

- So far, assume structure FIXED.. ... only learning values of WEIGHTS
- Why not modify structure as well?
"Cascade Correlation"

1. Initially: NO hidden units
. . . just direct connections from input-output
2. Find best weights for this structure
3. If good fit: STOP.

Otherwise. . . if significant residual error:
4. Produce new hidden unit
from previous units, and to all output units w/weights CORRELATED to residual error
Goto 2
"Optimal Brain Damage" start w/ complex network, prune "inessential" connections Inessential if $\mathrm{w}_{\mathrm{i}} \approx 0$ \ldots or $\mathrm{dE} / \mathrm{dw}_{\mathrm{i}} \approx 0$

Neural Network Evaluation

Criterion	LMS	Logistic	LDA	DecTree	NeuralNets	
Mixed data	No	No	No	Yes	No	
Missing values	No	No	Yes	Yes	No	
Outliers	No	Yes	No	Yes	Yes	
Monotone transforms	No	No	No	Yes	kinda	
Scalability Irrelevant inputs	Yes	Yes	Yes	Yes	Yes	
Linear combinations Interpretable Predictive power	Yes	Yes	Yes	Yo	kinda	No
	Yes	Yes	Yes	No	Yes	

Outline

- Introduction
\square Historical Motivation, non-LTU, Objective
\square Types of Structures
■ Multi-layer Feed-Forward Networks
\square Sigmoid Unit
\square Backpropagation
- Tricks
\square Line Search
\square Conjugate Gradient
\square Alternative Error Functions
■ Hidden layer representations
\square Example: Face Recognition
- Recurrent Networks

Learning Hidden Layer Repr'n

■ Auto-encoder:

■ Goal: Learn

Input		Output
10000000	\rightarrow	100000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Hidden Layer Representations

- Learned hidden layer representation:

Input	Hidden				Output	
	Values					
10000000	\rightarrow	1	0	0	\rightarrow	10000000
01000000	\rightarrow	0	0	1	\rightarrow	01000000
00100000	\rightarrow	0	1	0	\rightarrow	00100000
00010000	\rightarrow	1	1	1	\rightarrow	00010000
00001000	\rightarrow	0	0	0	\rightarrow	00001000
00000100	\rightarrow	0	1	1	\rightarrow	00000100
00000010	\rightarrow	1	0	1	\rightarrow	00000010
00000001	\rightarrow	1	1		\rightarrow	00000001

Training Curve \#1

Training Curve \#2

Training Curve \#3

Neural Nets for Face Recognition

- Performance Task: Recognize DIRECTION of face

■ Framework: Different people, poses, "glasses", different background, . . .

- Design Decisions:
\square Input Encoding:
- Just pixels? (subsampled? averaged?)
- or perhaps lines/edges?
\square Output Encoding:
- Single output ($[0,1 / \mathrm{n}]=\# 1, \ldots$)
- Set of n-output (take highest value)
\square Network structure: \# of layers
- Connections (training time vs accuracy)
\square Learning Parameters: Stochastic?
- Initial values of weights?
- Learning rate η, Momentum α, \ldots
- Size of Validation Set, . . .

Neural Nets Used

Typical input images

left strt rght up

90\% accurate learning head pose, and recognizing 1-of-20 faces

Recurrent Networks

- Brain needs short-term memory, ...
\Rightarrow feedforward network not sufficient.
- Brain has many feed-back connections.
\Rightarrow brain is recurrent network, with Cycles!
- Recurrent nets:
\square Can capture internal state. (activation keeps going around)
\square More complex agents
\square Much harder to analyze.
... Unstable, Oscillate, Chaotic
- Main types:
\square Iterative model
\square Hopfield networks
\square Boltzmann machines

Iterative Recurrent Network

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time

Hopfield Networks

- Symmetric connections $\left(\mathrm{W}_{\mathrm{i}, \mathrm{j}}=\mathrm{W}_{\mathrm{i}, \mathrm{j}}\right)$
\square Activation only $\{+1,-1\}$
$\square \sigma($.$) is sign-function$
- Train weights to obtain associative memory
\square eg, store patterns
■ After learning, can "retrieve" patterns:
\square Set some node values,
\square other nodes settle to best pattern match
- Theorem:

An N-unit Hopfield net can store up to 0.138 N patterns reliably.

- Note: No explicit storage; all in the weights!

Boltzmann Machines

- Symmetric connections $\left(\mathrm{W}_{\mathrm{i}, \mathrm{j}}=\mathrm{W}_{\mathrm{i}, \mathrm{j}}\right)$
- Activation only $\{+1,-1\}$, but stochastic
- $P\left(n_{i}=1\right)$ depends on inputs
\square Network in constant motion, computing average output value of each node . . . like simulated annealing
- Has nice (but slow) learning algorithm.
- Related to probabilistic reasoning
... belief networks!

Other Topics

- Architecture
- Initialization
\square Incorporating Background Knowledge
\square KBANN, ...
- Better statistical models
\square When to use which system?
\square Other training techniques
\square Regularizing
- Other "internal" functions
\square Sigmoid
\square Radial Basis Function

What to Remember

- Neural Nets can represent arbitrarily complex functions
- It can be challenging to LEARN the parameters, as multiple local optima
$\square \ldots$ gradient descent ... using backpropagation
- Many tricks to make gradient descent work!
\square Line search
\square Conjugate gradient
... useful for ANY optimization (not just NN)

