Evaluating Predictors

Thanks to: T Dietterich

Evaluating Hypotheses

Given limited data . . .

Estimating h's true error

- □ Sample Error ≠ True Error
- Confidence intervals
- Cross-Validation
- Comparing h₁ to h₂
 - Paired-t tests
 - McNemar's Test
- Appendix
 - Binomial distribution

Problems Estimating Error

Bias: Difference between value of estimator and true value

bias = E[$\underline{err}_{s}(h)$] - $err_{D}(h)$

- If S is training set (used to produce h), err_s(h) is optimistically biased
- To get unbiased estimate,
 choose h and S independently

 \square NOT h := L(S)

- Variance: Even with unbiased estimator, <u>err_s(h)</u> may still vary from err_D(h)
 - err_s(h) may be different from err_s(h)
 especially if |S|, |S'| small

Example

Hypothesis h misclassifies 12 of 40 examples in S

$$err_{s}(h) = 12/40 = 0.30$$

What is err_D(h) ?

□ true error, over entire population?

Estimators

- Experiment: Given h
 - 1. Draw sample S of size |S| = n according to distribution D
 - 2. Measure err_s(h)
- err_s(h) is a random variable
 - □ (ie, result of experiment)
- $err_{s}(h)$ is unbiased estimator for $err_{D}(h)$ $\Box E[err_{s}(h)] - err_{D}(h) = 0$
- Given (one) observation <u>err_s(h)</u>, what can we conclude about err_p(h)?

Confidence Intervals (informal)

 S contains n examples, drawn independently of h and each other
 n > 30

If

Then, w/
$$\approx 95\%$$
 probability
 $err_{s}(h)$ is in $err_{D}(h) \pm 1.96 \sqrt{\frac{err_{D}(h)(1 - err_{D}(h))}{n}}$
That is...
 $err_{D}(h) \in \widehat{err_{S}}(h) \pm 1.96 \sqrt{\frac{err_{D}(h)(1 - err_{D}(h))}{n}}$
 $\approx \widehat{err_{S}}(h) \pm 1.96 \sqrt{\frac{err_{S}(h)(1 - err_{S}(h))}{n}}$

Elaboration

 If S contains n > 30 examples drawn independently of h, each other,

Then can assume <u>err_s(h)</u> ~ N(err_D(h), σ²)
 <u>err_s(h)</u> drawn from Gaussian w/

mean $\mu = \operatorname{err}_{D}(h)$, var $\sigma^{2} = \operatorname{err}_{D}(h)(1 - \operatorname{err}_{D}(h)) / n$ $\Rightarrow w/\operatorname{prob} \approx \alpha\%$,

 $\widehat{err}_{S}(h) \in [err_{\mathcal{D}}(h) - z_{\alpha} \cdot \sigma, err_{\mathcal{D}}(h) + z_{\alpha} \cdot \sigma]$

ie, $|\widehat{err}_{S}(h) - err_{D}(h)| \leq z_{N} \cdot \sigma$ As $err_{D}(h) \approx \widehat{err}_{S}(h)$, $\sigma \approx \widehat{s} = \sqrt{\frac{\widehat{err}_{S}(h) (1 - \widehat{err}_{S}(h))}{n}}$ $\Rightarrow \text{ w/prob } \approx \alpha\%$, $err_{D}(h) \in [\widehat{err}_{S}(h) - z_{\alpha} \cdot \widehat{s}, \ \widehat{err}_{S}(h) + z_{\alpha} \cdot \widehat{s}]$

Example, con't

- For 12-of-40:
 □ err_s(h) = 0.3
 - □ $\hat{s} = \sqrt{(0.3 \times 0.7/40)} \approx 0.072$
- 95% confident that true error err_D(h) ∈ err_s(h) ±1.96 ŝ
 ⇒ err_D(h) ∈ [0.3 – 0.14, 0.3+0.14]

"Two-sided interval"
 What about "one-sided interval"
 likelihood that err_D(h) < K ?

Normal Probability Distribution

0.4

• $Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x-\mu)^2 p(x) dx$

•
$$\sigma_X = \sqrt{Var(X)}$$

Normal distribution with mean 0, standard deviation 1

Normal Probability Distribution

- 80% of area (probability) $\frac{0.4}{0.35}$ lies in $\mu \pm 1.28\sigma$
 - \in [μ –1.28 $\sigma,$ μ +1.28 σ
- N% of area (probability) lies in $\mu \pm z_N \sigma$

<i>N</i> %:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

If σ is small: Most of mass near mean μ If σ is large: Most of mass far from mean μ

One- vs Two- Sided Bounds

0.4

• What is prob that $err_{\mathcal{D}}(h) \geq A$?

Distribution is symmetric:

- ... 10% chance that $err_{\mathcal{D}}(h) \in (-\infty, \ \widehat{err}_{S}(h) - 1.28\widehat{s}]$... 10% chance that $err_{\mathcal{D}}(h) \in [\widehat{err}_{S}(h) - 1.28\widehat{s}, +\infty)$
- \Rightarrow 90% chance $err_{\mathcal{D}}(h) \in (-\infty, \ \widehat{err}_{S}(h) + 1.28\widehat{s}]$

One-Sided Bounds

If $100(1-\alpha)\%$ confident that $\mu \in [A, B]$,

Then
$$100(1-rac{lpha}{2})\%$$
 confident that $\mu \in [A, +\infty)$ ie, $\mu \ge A$

and $100(1-\frac{\alpha}{2})\%$ confident that $\mu \in (-\infty, B]$ ie, $\mu \leq B$

Confidence of one-sided error is TWICE the confidence of two-sided! Eg, For 12-of-40:

□ 95% confident $\operatorname{err}_{D}(h) \in [0.3 - 0.14, 0.3 + 0.14]$ □ 97.5% confident $\operatorname{err}_{D}(h) \leq 0.3 + 0.14$ ¹²

Central Limit Theorem

• Let Y_1, \dots, Y_n be set of iid r.v.s

(independent, identically distributed random variables) all drawn from same arbitrary distribution with mean μ and finite variance σ^2 .

□ sample mean
$$\hat{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem
As n →∞, Ŷ ~ N(µ, σ²/n) $\frac{\hat{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

Distribution governing \hat{Y} approaches Normal distribution, w/ mean μ , variance σ^2/n

 \Box Y_i from ANY distribution, just same \forall Y_i

Typically apply when n > 30

Calculating Condence Intervals General Procedure

- Identify parameter p to estimate
 err_D(h)
- 2. Choose an estimator
 <u>err_s(h)</u>
- 3. Determine prob distr of estimator
 - \Box <u>err_s(h)</u> ~ Binomial distribution,
 - \Box ... approximated by Normal when n > 30
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
 - \Box Use table of z_N values

Truth...

•
$$\widehat{err}_S(h) = \overline{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$$

where $Y_i = \begin{cases} 1 & \text{if } i^{th} \text{ instance mislabeled} \\ 0 & \text{otherwise} \end{cases}$

m

• $\widehat{err}_{S}(h)$ is ASYMPTOTICALLY normal

As
$$|S| \to \infty$$
, $\widehat{err}_{S}(h) \sim \mathcal{N}(err_{\mathcal{D}}(h), \sigma^{2})$
 $\sqrt{|S|} \frac{\widehat{err}_{S}(h) - err_{\mathcal{D}}(h)}{\sigma} \sim \mathcal{N}(0, 1)$

• If σ^2 not known, then

$$- \hat{\sigma} := \sqrt{\frac{\widehat{err}_{S}(h) (1 - \widehat{err}_{S}(h))}{|S| - 1}}$$
$$- \sqrt{|S|} \frac{\widehat{err}_{S}(h) - err_{D}(h)}{\widehat{\sigma}} \sim t_{|S| - 1}$$
$$- \text{"students t" distribution}$$

Students t Distribution

t distribution like unit normal N(0, 1) but larger spread (longer tail)
 ⇒ interval (for given α) is larger

... additional uncertainty due to unknown variance

	Confidence Level N			
	90%	95%	98%	99%
$\nu = 2$	2.92	4.30	6.96	9.92
$\nu = 5$	2.02	2.57	3.36	4.03
$\nu = 10$	1.81	2.23	2.76	3.17
$\nu = 20$	1.72	2.09	2.53	2.84
$\nu = 30$	1.70	2.04	2.46	2.75
$\nu = 120$	1.66	1.98	2.36	2.62
$\nu = \infty$	1.64	1.96	2.33	2.58
z_N	1.64	1.96	2.33	2.58

IIa. Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

 $\Box d = err_D(h_1) - err_D(h_2)$

2. Choose an estimator

 $\Box \underline{d} = \underline{\operatorname{err}}_{s}(\underline{h}_{1}) - \underline{\operatorname{err}}_{s}(\underline{h}_{2})$

(Btw, $E[\underline{d}] = d$)

3. Datarmina nroh dietr of actimator

 $\sigma_{\widehat{d}} \approx \sqrt{\frac{\widehat{err}_{S_1}(h_1)\left(1 - \widehat{err}_{S_1}(h_1)\right)}{|S_1|}} + \frac{\widehat{err}_{S_2}(h_2)\left(1 - \widehat{err}_{S_2}(h_2)\right)}{|S_2|}$ (Diff of 2 Normals is Normal)

4. Find interval (L, U) s.t. N% of probability mass in interval

$$\widehat{d} \pm z_N \sqrt{\frac{\widehat{err}_{S_1}(h_1) \left(1 - \widehat{err}_{S_1}(h_1)\right)}{|S_1|}} + \frac{\widehat{err}_{S_2}(h_2) \left(1 - \widehat{err}_{S_2}(h_2)\right)}{|S_2|}$$
Tighter bound [better] if use S₁ = S₂)

Example (con't)

- Spse $\underline{err}_A(\underline{h}_A) = 0.3$; $\underline{err}_B(\underline{h}_B) = 0.4$; given $|S_A| = 100 = |S_B|$
- As $\underline{d} = \underline{err}_A(\underline{h}_A) \underline{err}_B(\underline{h}_B) = 0.1 > 0$ \underline{h}_B appears better that \underline{h}_A
- Q: Is h_B truly better than h_A...
 ie, Is err_D(h_B) < err_D(h_A) ?
 ... ie what is prob that d < 0 given observed d = 0.1?
- A: Assume null-hypothesis: $d = \mu_d < 0$.
 - □ What is chance that P(d = 0.1 | d < 0)?
 - ... bounded by chance that estimate \underline{d} is OFF by > 0.1

□ . . . <u>d</u>in 1-sided interval <u>d</u> ∈ [μ_d +0.1, ∞)

Examples . . . Hypothesis Testing

- What is chance that $\underline{d} \in [\mu_d + 0.1, \infty)$
- Here: <u>σ</u>_d ≈ 0.061.
 - \Box With prob > 0.95, <u>d</u> < <u>d</u> + 1.64 <u> σ_d </u>
- \Rightarrow Given <u>d</u> = 0.1,
 - 95% confident that prob that d > 0
 - ... ie, $err_{D}(h_{A}) > err_{D}(h_{B})$

Hypothesis Test:

□ Accept hyp $err_D(h_A) \le err_D(h_B)$ with confidence 0.95

□ Reject null hyp (that $err_D(h_A) > err_D(h_B)$) at 1 – 0.95 = 0.05 level of significance

Paired-t Test to compare h_A, h_B

Given: data T; alg's h_A ; h_B ; confidence α :

- 1. Partition data into k disjoint test sets { T₁, T₂, ..., T_k } of ≈equal size (size ≥ 30)
- 2. For i = 1... k, do $\delta_i := \operatorname{err}_{T_i}(h_A) \operatorname{err}_{T_i}(h_B)$

3. Le

$$s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)}} \sum_{i=1}^{k} (\delta_i - \overline{\delta})^2$$

(empirical estimate of standard deviation)

- 4. Return α % confidence estimate for d: $\underline{\delta} \pm \mathbf{t}_{\alpha,k-1} \mathbf{s}_{\delta}$
- Hypothesis test:

Is $\underline{\delta} + \mathbf{t}_{\alpha,k-1} \mathbf{s}_{\underline{\delta}} > 0$?

Note: When each δ_i is \approx Normally distributed... $\delta \sim$ "Students T" 20

IIb. Comparing Two Classifiers

- Goal: decide which of two classifiers h₁ vs h₂ has lower error rate
- Method: Run both on same test data set, recording following numbers:

		classified by h_A		
		correct	incorrect	
classified	correct	n_{00}	n_{10}	
by h_B	incorrect	<i>n</i> 01	n_{11}	

McNemar's Test

		clussified by n_A		
		correct	incorrect	
classified	correct	n_{00}	<i>n</i> ₁₀	
by h_B	incorrect	<i>n</i> 01	n_{11}	

classified by h.

$$M = \frac{(n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}} > \chi_{1,\alpha}^2$$

- M is distributed approximately as χ² w/ 1 degree of freedom
- For 95% confidence: $\chi^2_{1, 0:95} = 3.84$
- So if *M* > 3.84

reject null hyp that " h_A , h_B have same error rate"

Confidence Interval... Difference Between Two Classifiers

• $p_{ij} = \frac{n_{ij}}{n}$ be 2x2 contingency table, as probabilities

$$SE = \sqrt{\frac{p_{01} + p_{10} + (p_{01} - p_{10})^2}{n}}$$
$$p_A = p_{10} + p_{11}$$
$$p_B = p_{01} + p_{11}$$
$$\Delta = 1.96(SE + \frac{1}{2n})$$

• 95% confidence interval on difference in true error $\epsilon_A - \epsilon_B$ between two classifiers:

$$(p_A - p_B) \in [\epsilon_A - \epsilon_B - \Delta, \epsilon_A - \epsilon_B + \Delta]$$

$$\begin{array}{c} \bullet \Delta \bullet \bullet \Delta \bullet \bullet \\ \bullet & \bullet \\ 0 & \epsilon_A - \epsilon_B \end{array}$$

23

Estimate Diff Between Two Alg's: the 5x2CV F test

for *i* from 1 .. 5 do %perform 2-fold cross-validation split *S* evenly and randomly into S_1 , S_2 for $j \in \{1,2\}$ do Train algorithm A on S_j , measure error rate $p_A^{(i,j)}$ Train algorithm B on S_j , measure error rate $p_B^{(i,j)}$ $p_i^{(j)} = p_A^{(i,j)} - p_B^{(i,j)}$ % diff in err rates on fold *j*

$$\begin{split} \bar{p}_i &:= \frac{p_i^{(1)} + p_i^{(2)}}{2} \qquad \% \text{ ave diff in err rates in iteration } i \\ s_i^2 &= \left(p_i^{(1)} - \bar{p}_i \right)^2 + \left(p_i^{(2)} - \bar{p}_i \right)^2 \qquad \% \text{ var in diff, for iter } i \\ F &:= \frac{\sum_i \bar{p}_i^2}{2\sum_i s_i^2} \end{split}$$

■ If F > 4.47, then

 \Box with 95% confidence,

reject null hypothesis that

alg's A and B have the same error rate

when trained on data sets of size m/2

Other Topics

- Hypothesis testing, in general
- "False discovery rate" ...permutation tests, ...
- Prior knowledge of Distributions
- ROC curves
- ANOVA
- Running "experiments" to obtain data . . .

err_s(h) is a Random Variable

 Rerun experiment w/ different randomly drawn S (of size |S| = n)
 Prob of observing r misclassified examples:

$$\binom{n}{r} \equiv \frac{n!}{r!(n-r)!}$$

Binomial Probability Distribution

• If p = P(heads), prob of r heads in n coin flips

Let:
$$Y_i = \begin{cases} 1 & i^{th} \text{ flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $X = \sum_{i=1}^n Y_i$
 $P(X = r) = \binom{n}{r} p^r (1-p)^{n-r}$
• $E[X] \equiv \text{Expected value of } X$:
 $\equiv \sum_{r=0}^n r \times P(X = r) = n \times p$

• $Var(X) \equiv Variance of X$

$$\equiv E[(X - E[X])^2]$$

=
$$\sum_{\substack{r=0\\r=0}}^{n} (r - E[X])^2 \times P(X = r)$$

=
$$n p (1 - p)$$

•
$$\sigma_X \equiv \text{standard deviation of } X$$

 $\equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)}$

27

Binomial Distribution, con't

et:
$$Y_i = \begin{cases} 1 & i^{th} \text{ flip is head} \\ 0 & \text{otherwise} \end{cases}$$

 $S = \sum_{i=1}^n Y_i \qquad \bar{Y} = \frac{S}{n}$

•
$$E[\overline{Y}] \equiv$$
 Expected value of \overline{Y} :
= $\frac{1}{n}E[S] = \frac{n \times p}{n} = p$

•
$$Var(\overline{Y}) \equiv Variance \text{ of } \overline{Y}$$

= $E[(\frac{S}{n} - E[\frac{S}{n}])^2] = \frac{1}{n^2}E[(S - E[S])^2]$
= $\frac{1}{n^2}np(1-p) = \frac{p(1-p)}{n}$

• $\sigma_{\overline{Y}} \equiv \text{standard deviation of } \overline{Y}$ $\equiv \sqrt{Var(\overline{Y})} = \sqrt{\frac{p(1-p)}{n}}$

Proofs $E[S] = \sum_{n=1}^{n} r \times P(r, n)$ $= \sum_{r=1}^{n} r \times \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$ $= \sum_{r=1}^{n} \frac{n \times (n-1)!}{(r-1)!(n-r)!} \ p \times p^{r-1} \ (1-p)^{n-r}$ $= n p \sum_{r=1}^{n} \frac{(n-1)!}{(r-1)!((n-1)-(r-1))!} p^{r-1} (1-p)^{(n-1)-(r-1)}$ $= n p \sum_{n=1}^{n-1} \frac{(n-1)!}{s!((n-1)-s)!} p^s (1-p)^{(n-1)-s}$ $= n p (p + (1 - p))^{n-1} = n p$ $Var(S) = E[(S - \mu)^2] = E[S^2 - 2\mu S + \mu^2]$ $= E[S^2] - 2\mu E[S] + \mu^2 = E[S^2] - E[S^2]^2$

Binomial Approximates Normal Distribution

- $\widehat{err}_{S}(h)$ follows a *Binomial* distribution:
 - Mean $\mu_{\widehat{err}_S(h)} = err_{\mathcal{D}}(h)$

- Standard deviation $\sigma_{\widehat{err}_S(h)}$

$$\sigma_{\widehat{err}_{S}(h)} = \sqrt{\frac{err_{\mathcal{D}}(h) (1 - err_{\mathcal{D}}(h))}{n}}$$

- Can approximate as Normal distribution:
 - Mean $\mu_{\widehat{err}_S(h)} = err_D(h)$
 - Standard deviation

$$\sigma_{\widehat{err}_S(h)} \approx \sqrt{\frac{\widehat{err}_S(h) (1 - \widehat{err}_S(h))}{n}}$$