Evaluating Predictors

Thanks to: T Dietterich

Evaluating Hypotheses

Given limited data . . .

- Estimating h's true error
\square Sample Error = True Error
\square Confidence intervals
\square Cross-Validation
- Comparing h_{1} to h_{2}
\square Paired-t tests
\square McNemar's Test
- Appendix
\square Binomial distribution

Problems Estimating Error

- Bias: Difference between value of estimator and true value

$$
\operatorname{bias} \equiv E\left[\underline{\operatorname{err}}_{s}(\mathrm{~h})\right]-\operatorname{err}_{\mathrm{D}}(\mathrm{~h})
$$

- If S is training set (used to produce h),
$\operatorname{err}_{s}(\mathrm{~h})$ is optimistically biased
- To get unbiased estimate,
\square choose h and S independently
\square NOT $h:=\mathrm{L}(\mathrm{S})$
- Variance: Even with unbiased estimator, err $_{s}(\mathrm{~h})$ may still vary from err $_{\mathrm{D}}(\mathrm{h})$
\square err $_{s}(\mathrm{~h})$ may be different from err $_{\mathrm{S}^{\prime}}(\mathrm{h})$
\square especially if $|S|,\left|S^{\prime}\right|$ small

Example

- Hypothesis h misclassifies 12 of 40 examples in S

$$
\underline{e r r}_{s}(h)=12 / 40=0.30
$$

- What is $\operatorname{err}_{\mathrm{D}}(\mathrm{h})$?
\square true error, over entire population?

Estimators

- Experiment: Given h

1. Draw sample S of size $|S|=n$ according to distribution D
2. Measure $\operatorname{err}_{s}(\mathrm{~h})$

- $\operatorname{err}_{s}(h)$ is a random variable
\square (ie, result of experiment)
- $\operatorname{err}_{s}(h)$ is unbiased estimator for $\operatorname{err}_{D}(\mathrm{~h})$
$\square \mathrm{E}\left[\operatorname{err}_{\mathrm{s}}(\mathrm{h})\right]-\operatorname{err} \mathrm{D}_{\mathrm{D}}(\mathrm{h})=0$
- Given (one) observation errs $_{s}(h)$, what can we conclude about err ${ }_{\mathrm{D}}(\mathrm{h})$?

Confidence Intervals (informal)

- If
\square S contains n examples, drawn independently of h and each other
$\square \mathrm{n}>30$
- Then, w/ $\approx 95 \%$ nrnhahilitv
$\operatorname{err}_{\mathcal{S}}(h)$ is in $\operatorname{err}_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{\operatorname{err}_{\mathcal{D}}(h)\left(1-\operatorname{err}_{\mathcal{D}}(h)\right)}{n}}$
- That is...

$$
\begin{aligned}
& \text { That is... } \begin{aligned}
\operatorname{err}_{\mathcal{D}}(h) & \in \widehat{\operatorname{err}}_{S}(h) \pm 1.96 \sqrt{\frac{\operatorname{err}_{\mathcal{D}}(h)\left(1-\operatorname{err}_{\mathcal{D}}(h)\right)}{n}} \\
& \approx \widehat{\operatorname{err}}_{S}(h) \pm 1.96 \sqrt{\frac{\widehat{e r r}_{S}(h)\left(1-\widehat{e r r}_{S}(h)\right)}{n}}
\end{aligned}
\end{aligned}
$$

Elaboration

- If S contains $\mathrm{n}>30$ examples
 drawn independently of h, each other,
- Then can assume $\operatorname{err}_{S}(h) \sim N\left(\operatorname{err}_{D}(h), \sigma^{2}\right)$
$\mathrm{err}_{s}(\mathrm{~h})$ drawn from Gaussian w/
mean $\mu=\operatorname{err}_{\mathrm{D}}(\mathrm{h})$, var $\sigma^{2}=\operatorname{err}_{\mathrm{D}}(\mathrm{h})\left(1-\operatorname{err}_{\mathrm{D}}(\mathrm{h})\right) / \mathrm{n}$
$\Rightarrow \mathrm{w} / \mathrm{prob} \approx \alpha \%$,
$\widehat{\operatorname{err}}_{S}(h) \in\left[\operatorname{err}_{\mathcal{D}}(h)-z_{\alpha} \cdot \sigma, \operatorname{err}_{\mathcal{D}}(h)+z_{\alpha} \cdot \sigma\right]$
ie, $\left|\widehat{\operatorname{err}}_{S}(h)-\operatorname{err}_{\mathcal{D}}(h)\right| \leq z_{N} \cdot \sigma$
As $\operatorname{err}_{\mathcal{D}}(h) \approx \widehat{\operatorname{err}}_{S}(h), \quad \sigma \approx \widehat{s}=\sqrt{\frac{\widehat{\operatorname{err}}_{s}(h)\left(1-\widehat{e r r s}_{s}(h)\right)}{n}}$
$\Rightarrow \mathrm{w} / \mathrm{prob} \approx \alpha \%$,

$$
\operatorname{err}_{\mathcal{D}}(h) \in\left[\widehat{\operatorname{err}}_{S}(h)-z_{\alpha} \cdot \widehat{s}, \widehat{\operatorname{err}}_{S}(h)+z_{\alpha} \cdot \widehat{s}\right]
$$

Example, con't

- For 12-of-40:
\square errs $_{\text {s }}(\mathrm{h})=0.3$
$\square \hat{s} \quad=\sqrt{ }(0.3 \times 0.7 / 40) \approx 0.072$
- 95\% confident that
true error $\operatorname{err}_{\mathrm{D}}(\mathrm{h}) \in \mathrm{err}_{s}(\mathrm{~h}) \pm 1.96$ s
$\Rightarrow \operatorname{err}_{\mathrm{D}}(\mathrm{h}) \in[0.3-0.14,0.3+0.14]$

■ "Two-sided interval"
\square What about "one-sided interval"
. . . likelihood that $\operatorname{err}_{\mathrm{D}}(\mathrm{h})<\mathrm{K}$?

Normal Probability Distribution

$p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{\bar{x}-\mu}{\sigma}\right)^{2}}$

- $P(a \leq X \leq b)$
\equiv probability that X in interval $(a, b)=\int_{a}^{b} p(x) d x$
- $E[X]=\mu=\int_{-\infty}^{+\infty} x p(x) d x$
- $\operatorname{Var}(X)=\sigma^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} p(x) d x$
- $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$

Normal Probability Distribution

 lies in $\mu \pm z_{N} \sigma$

$N \%:$	50%	68%	80%	90%	95%	98%	99%
$z_{N}:$	0.67	1.00	1.28	1.64	1.96	2.33	2.58

- If σ is small: Most of mass near mean μ If σ is large: Most of mass far from mean μ

One- vs Two- Sided Bounds

So far: "Constrain" μ to interval $\left[\hat{X}-z_{n} \sigma, \hat{X}+z_{n} \sigma\right]$

Eg, 80\% confidence

$$
\operatorname{err}_{\mathcal{D}}(h) \in\left[\widehat{\operatorname{err}}_{S}(h)-1.28 \widehat{s}, \widehat{\operatorname{err}}_{S}(h)+1.28 \widehat{s}\right]
$$

- What is prob that $\operatorname{err}_{\mathcal{D}}(h) \geq A$?

Distribution is symmetric:
... 10\% chance that

$$
\operatorname{err}_{\mathcal{D}}(h) \in\left(-\infty, \widehat{\operatorname{err}}_{S}(h)-1.28 \widehat{s}\right]
$$

... 10\% chance that

$$
\operatorname{err}_{\mathcal{D}}(h) \in\left[\widehat{\operatorname{err}}_{S}(h)-1.28 \widehat{s},+\infty\right)
$$

$\Rightarrow 90 \%$ chance

$$
\operatorname{err}_{\mathcal{D}}(h) \in\left(-\infty, \widehat{\operatorname{err}}_{S}(h)+1.28 \widehat{s}\right]
$$

One-Sided Bounds

If $100(1-\alpha) \%$ confident that $\mu \in[A, B]$,

Then $100\left(1-\frac{\alpha}{2}\right) \%$ confident that $\mu \in[A,+\infty)$ ie, $\mu \geq A$
and $100\left(1-\frac{\alpha}{2}\right) \%$ confident that $\mu \in(-\infty, B]$ ie, $\mu \leq B$

- Confidence of one-sided error is TWICE the confidence of two-sided!
Eg, For 12-of-40:
$\square 95 \%$ confident $\operatorname{err}_{D}(\mathrm{~h}) \in[0.3-0.14,0.3+0.14]$
$\square 97.5 \%$ confident err $_{\mathrm{D}}(\mathrm{h}) \leq 0.3+0.14$

Central Limit Theorem

- Let $Y_{1}, \ldots Y_{n}$ be set of iid r.v.s
(independent, identically distributed random variables) all drawn from same arbitrary distribution with mean μ and finite variance σ^{2}.
\square sample mean

$$
\hat{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

- Central Limit Theorem As $n \rightarrow \infty, \hat{Y} \sim N\left(\mu, \sigma^{2} / n\right)$

$$
\frac{\hat{Y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

- Distribution governing \hat{Y} approaches Normal distribution, w/ mean μ, variance $\sigma^{2 / n}$
$\square \mathrm{Y}_{\mathrm{i}}$ from ANY distribution, just same $\forall \mathrm{Y}_{\mathrm{i}}$
\square Typically apply when $n>30$

Calculating Condence Intervals General Procedure

- 1. Identify parameter p to estimate
$\square \operatorname{err}_{\mathrm{D}}(\mathrm{h})$
- 2. Choose an estimator
$\square \operatorname{err}_{s}(\mathrm{~h})$
- 3. Determine prob distr of estimator
\square err $_{s}(\mathrm{~h}) \sim$ Binomial distribution,
$\square \ldots$ approximated by Normal when $\mathrm{n}>30$
- 4. Find interval (L, U) such that N\% of probability mass falls in the interval
\square Use table of Z_{N} values

Truth. . .

- $\widehat{e r r}_{S}(h)=\bar{Y}=\frac{1}{m} \sum_{i=1}^{m} Y_{i}$
where $Y_{i}= \begin{cases}1 & \text { if } i^{\text {th }} \text { instance mislabeled } \\ 0 & \text { otherwise }\end{cases}$
- $\widehat{\operatorname{err}}_{S}(h)$ is ASYMPTOTICALLY normal As $|S| \rightarrow \infty, \quad \widehat{\operatorname{err}}_{S}(h) \sim \mathcal{N}\left(\operatorname{err}_{\mathcal{D}}(h), \sigma^{2}\right)$

$$
\sqrt{|S| \frac{\widehat{e r r}_{s}(h)-e r r_{0}}{}(h)} \sigma \mathcal{N}(0,1)
$$

- If σ^{2} not known, then assuming σ^{2} is known!

$$
\begin{aligned}
& -\widehat{\sigma}:=\sqrt{\frac{\widehat{e r r}_{S}(h)\left(1-\widehat{e r r}_{S}(h)\right)}{|S|-1}} \\
& -\sqrt{|S|} \frac{\widehat{e r r r}_{S}(h)-\operatorname{err}_{\mathcal{D}}(h)}{\hat{\sigma}} \sim t_{|S|-1}
\end{aligned}
$$

- "students t" distribution

Students t Distribution

- t distribution like unit normal $\mathrm{N}(0,1)$ but larger spread (longer tail)
\Rightarrow interval (for given α) is larger
... additional uncertainty due to unknown variance
$\lim _{k \rightarrow \infty} t_{\alpha, k}=z_{\alpha}$

	Confidence Level N			
	90%	95%	98%	99%
$\nu=2$	2.92	4.30	6.96	9.92
$\nu=5$	2.02	2.57	3.36	4.03
$\nu=10$	1.81	2.23	2.76	3.17
$\nu=20$	1.72	2.09	2.53	2.84
$\nu=30$	1.70	2.04	2.46	2.75
$\nu=120$	1.66	1.98	2.36	2.62
$\nu=\infty$	1.64	1.96	2.33	2.58
z_{N}	1.64	1.96	2.33	2.58

Ila. Difference Between Hypotheses

Test h_{1} on sample S_{1}, test h_{2} on S_{2}

1. Pick parameter to estimate
$\square d=\operatorname{err}_{D}\left(h_{1}\right)-\operatorname{err}_{D}\left(h_{2}\right)$
2. Choose an estimator
$\square \underline{\mathrm{d}}=\underline{\operatorname{err}}_{s}\left(\mathrm{~h}_{1}\right)-\underline{\operatorname{err}}\left(\mathrm{h}_{2}\right)$
(Btw, $\mathrm{E}[\underline{d}]=\mathrm{d}$)
3. Dotarmino nrah dictr nf actimotnr

$$
\sigma_{\hat{d}} \approx \sqrt{\frac{\widehat{e r r}_{S_{1}}\left(h_{1}\right)\left(1-\widehat{e r r}_{S_{1}}\left(h_{1}\right)\right)}{\left|S_{1}\right|}+\frac{\widehat{e r r}_{S_{2}}\left(h_{2}\right)\left(1-\widehat{e r r}_{S_{2}}\left(h_{2}\right)\right)}{\left|S_{2}\right|}}
$$

(Diff of 2 Normals is Normal)
4. Find interval (L, U) s.t. N\% of probability mass in interval

$$
\begin{aligned}
& \widehat{d} \pm z_{N} \sqrt{\frac{\widehat{e r r}_{S_{1}}\left(h_{1}\right)\left(1-\widehat{e r r}_{S_{1}}\left(h_{1}\right)\right)}{\left|S_{1}\right|}+\frac{\widehat{\operatorname{err}}_{S_{2}}\left(h_{2}\right)\left(1-\widehat{\operatorname{err}}_{S_{2}}\left(h_{2}\right)\right)}{\left|S_{2}\right|}} . . \\
& \text { inter bound [better] if use } \left.\mathrm{S}_{1}=\mathrm{S}_{2}\right)
\end{aligned}
$$

Example (con't)

- Spse $\operatorname{err}_{A}\left(h_{A}\right)=0.3 ; \operatorname{err}_{B}\left(h_{B}\right)=0.4 ;$ given $\left|S_{A}\right|=100=\left|S_{B}\right|$
- As $\underline{d}=\operatorname{err}_{A}\left(h_{A}\right)-\operatorname{err}_{B}\left(h_{B}\right)=0.1>0$
h_{B} appears better that h_{A}
- Q: Is h_{B} truly better than $h_{A} \ldots$ ie, Is $\operatorname{err}_{D}\left(h_{B}\right)<\operatorname{err}_{D}\left(h_{A}\right)$?
... ie what is prob that $\mathrm{d}<0$ given observed $\mathrm{d}=0.1$?
- A: Assume null-hypothesis: $\mathrm{d}=\mu_{\mathrm{d}}<0$.
\square What is chance that $P(d=0.1 \mid \underline{d}<0)$?
\ldots. . bounded by chance that estimate \underline{d} is OFF by >0.1
$\square \ldots$ d in 1-sided interval $\underline{d} \in\left[\mu_{\mathrm{d}}+0.1, \infty\right)$

Examples . . . Hypothesis Testing

- What is chance that $\underline{d} \in\left[\mu_{d}+0.1, \infty\right)$
- Here: $\underline{\sigma}_{d} \approx 0.061$.
\square With prob $>0.95, \underline{d}<\underline{d}+1.64 \underline{\sigma}_{d}$
■ \Rightarrow Given $\underline{d}=0.1$,
95% confident that prob that $d>0$
\ldots ie, $\operatorname{err}_{D}\left(h_{A}\right)>\operatorname{err}_{D}\left(h_{B}\right)$
- Hypothesis Test:
\square Accept hyp $\operatorname{err}_{D}\left(\mathrm{~h}_{\mathrm{A}}\right) \leq \operatorname{err}_{\mathrm{D}}\left(\mathrm{h}_{\mathrm{B}}\right)$ with confidence 0.95
\square Reject null hyp (that err $\left(h_{A}\right)>\operatorname{err}\left(h_{B}\right)$) at $1-0.95=0.05$ level of significance

Paired-t Test to compare h_{A}, h_{B}

Given: data T; alg's $h_{A} ; h_{B}$; confidence α :

- 1. Partition data into k disjoint test sets $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of \approx equal size (size ≥ 30)
- 2. For $i=1 . . k$, do $\quad \delta_{i}:=\operatorname{err}_{\mathrm{Ti}}\left(\mathrm{h}_{\mathrm{A}}\right)-\operatorname{err}_{\mathrm{Ti}}\left(\mathrm{h}_{\mathrm{B}}\right)$

(empirical estimate of standard deviation)
- 4. Return $\alpha \%$ confidence estimate for $\mathrm{d}: \underline{\delta} \pm \mathrm{t}_{\alpha, k-1} \mathrm{~S}_{\underline{\delta}}$
- Hypothesis test:

$$
\text { Is } \underline{\delta}+\mathrm{t}_{\alpha, k-1} \mathrm{~s}_{\underline{\delta}}>0 ?
$$

■ Note: When each δ_{i} is \approx Normally distributed... $\underline{\delta} \sim$ "Students T" 20

IIb. Comparing Two Classifiers

- Goal: decide which of two classifiers h_{1} vs h_{2} has lower error rate
- Method: Run both on same test data set, recording following numbers:

		classified by h_{A}	
classified clat by h_{B}	correct	correct	incorrect
	n_{00}	n_{10}	
		n_{01}	n_{11}

\section*{~~~ classified $\begin{gathered}\text { by } h_{B}\end{gathered}$	correct	incorrect	
incorrect	n_{00}	n_{10}	}

$$
M=\frac{\left.\left|n_{01}-n_{10}\right|-1\right)^{2}}{n_{01}+n_{10}}>\chi_{1, \alpha}^{2}
$$

- M is distributed approximately as
χ^{2} w/ 1 degree of freedom
■ For 95% confidence: $\chi^{2}{ }_{1,0: 95}=3.84$
■ So if $M>3.84$
reject null hyp that
" h_{A}, h_{B} have same error rate"

Confidence Interval... Difference Between Two Classifiers

- $p_{i j}=\frac{n_{i j}}{n}$ be 2×2 contingency table, as probabilities

$$
\begin{aligned}
S E & =\sqrt{\frac{p_{01}+p_{10}+\left(p_{01}-p_{10}\right)^{2}}{n}} \\
p_{A} & =p_{10}+p_{11} \\
p_{B} & =p_{01}+p_{11} \\
\Delta & =1.96\left(S E+\frac{1}{2 n}\right)
\end{aligned}
$$

- 95\% confidence interval on
difference in true error $\epsilon_{A}-\epsilon_{B}$
between two classifiers:

$$
\begin{aligned}
& \left(p_{A}-p_{B}\right) \in\left[\epsilon_{A}-\epsilon_{B}-\Delta, \epsilon_{A}-\epsilon_{B}+\Delta\right] \\
& \underset{0}{\stackrel{r \Delta \rightarrow \Delta \rightarrow}{+}} \underset{\epsilon_{A}-\epsilon_{B}}{+}
\end{aligned}
$$

Estimate Diff Between Two Alg's: the $5 \times 2 \mathrm{CV}$ F test

for i from 1 .. 5 do
\%perform 2-fold cross-validation
split S evenly and randomly into S_{1}, S_{2}
for $j \in\{1,2\}$ do
Train algorithm A on S_{j}, measure error rate $p_{A}^{(i, j)}$
Train algorithm B on S_{j}, measure error rate $p_{B}^{(i, j)}$

$$
p_{i}^{(j)}=p_{A}^{(i, j)}-p_{B}^{(i, j)} \quad \% \text { diff in err rates on fold } j
$$

$\bar{p}_{i}:=\frac{p_{i}^{(1)}+p_{i}^{(2)}}{2} \quad \%$ ave diff in err rates in iteration i
$s_{i}^{2}=\left(p_{i}^{(1)}-\bar{p}_{i}\right)^{2}+\left(p_{i}^{(2)}-\bar{p}_{i}\right)^{2} \quad \%$ var in diff, for iter i
$F:=\frac{\sum_{1}, \vec{P}_{2}^{2}}{2 \sum_{i} s_{-}^{2}}$

- If $\mathrm{F}>4.47$, then
\square with 95\% confidence,
\square reject null hypothesis that
alg's A and B have the same error rate
when trained on data sets of size $\mathrm{m} / 2$

Other Topics

- Hypothesis testing, in general
- "False discovery rate" ...permutation tests, . . .
- Prior knowledge of Distributions
- ROC curves
- ANOVA
- Running "experiments" to obtain data . . .

$\mathrm{err}_{s}(\mathrm{~h})$ is a Random Variable

- Rerun experiment w/ different randomly drawn S (of size $|S|=n$)
- Prob of observing r misclassified examples:

$$
\begin{aligned}
& P(r)=\binom{n}{r} \operatorname{err}_{\mathcal{D}}(h)^{r}\left(1-\operatorname{err}_{\mathcal{D}}(h)\right)^{n-r} \\
& \binom{n}{r} \equiv \frac{n!}{r!(n-r)!}
\end{aligned}
$$

Binomial Probability Distribution

- If $p=P$ (heads), prob of r heads in n coin flips

Let: $Y_{i}= \begin{cases}1 & i^{\text {th }} \text { flip is heads } \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& X=\sum_{i=1}^{n} Y_{i} \\
& P(X=r) \quad=\quad\binom{n}{r} p^{r}(1-p)^{n-r}
\end{aligned}
$$

- $E[X] \equiv$ Expected value of X :

$$
\equiv \sum_{r=0}^{n} r \times P(X=r) \quad=\quad n \times p
$$

- $\operatorname{Var}(X) \equiv$ Variance of X

$$
\begin{aligned}
& \equiv E\left[(X-E[X])^{2}\right] \\
& =\sum_{r=0}^{n}(r-E[X])^{2} \times P(X=r) \\
& =n p(1-p)
\end{aligned}
$$

- $\begin{aligned} \sigma_{X} & \equiv \text { standard deviation of } X \\ & \equiv \sqrt{E\left[(X-E[X])^{2}\right]}=\sqrt{n p(1-p)}\end{aligned}$

Binomial Distribution, con't

- If $p=P($ head $)$, prob of r heads in n coin flips

Let: $Y_{i}= \begin{cases}1 & i^{\text {th }} \text { flip is head } \\ 0 & \text { otherwise }\end{cases}$
$S=\sum_{i=1}^{n} Y_{i} \quad \bar{Y}=\frac{S}{n}$

- $E[\bar{Y}] \equiv$ Expected value of \bar{Y} :

$$
=\frac{1}{n} E[S]=\frac{n \times p}{n}=p
$$

- $\operatorname{Var}(\bar{Y}) \equiv$ Variance of \bar{Y}

$$
\begin{aligned}
& =E\left[\left(\frac{S}{n}-E\left[\frac{S}{n}\right]\right)^{2}\right]=\frac{1}{n^{2}} E\left[(S-E[S])^{2}\right] \\
& =\frac{1}{n^{2}} n p(1-p)=\frac{p(1-p)}{n}
\end{aligned}
$$

- $\sigma_{\bar{Y}} \equiv$ standard deviation of \bar{Y}

$$
\equiv \sqrt{\operatorname{Var}(\bar{Y})}=\sqrt{\frac{p(1-p)}{n}}
$$

Proofs

$$
\begin{aligned}
& E[S]=\sum_{r=0}^{n} r \times P(r, n) \\
& =\sum_{r=1}^{n} r \times \frac{n!}{r!(n-r)!} p^{r}(1-p)^{n-r} \\
& =\sum_{r=1}^{n} \frac{n \times(n-1)!}{(r-1)!(n-r)!} p \times p^{r-1}(1-p)^{n-r} \\
& =n p \sum_{r=1}^{n} \frac{(n-1)!}{(r-1)!((n-1)-(r-1))!} p^{r-1}(1-p)^{(n-1)-(r-1)} \\
& =n p \sum_{s=0}^{n-1} \frac{(n-1)!}{s!((n-1)-s)!} p^{s}(1-p)^{(n-1)-s} \\
& =n p(p+(1-p))^{n-1}=n p \\
& \\
& =\operatorname{Var}(S)=E\left[(S-\mu)^{2}\right]=E\left[S^{2}-2 \mu S+\mu^{2}\right] \\
& \quad=E\left[S^{2}\right]-2 \mu E[S]+\mu^{2}=E\left[S^{2}\right]-E[S]^{2}
\end{aligned}
$$

Binomial Approximates Normal Distribution

- $\widehat{\operatorname{err}}_{S}(h)$ follows a Binomial distribution:
- Mean $\mu_{\widehat{\text { ert }}(h)}=\operatorname{err}_{\mathcal{D}}(h)$
- Standard deviation $\sigma_{\widehat{e r r}_{S}}(h)$

$$
\sigma_{\widehat{e r T}_{S}}(h)=\sqrt{\left.\frac{e r r_{\mathcal{D}}(h)\left(1-e r r_{\mathcal{D}}\right.}{}(h)\right)} n
$$

- Can approximate as Normal distribution:
- Mean $\mu_{\overparen{\text { err }}(}(h)=\operatorname{err}_{\mathcal{D}}(h)$
- Standard deviation

$$
\sigma_{\widehat{e r t}_{S}}(h) \quad \approx \sqrt{\frac{\widehat{\operatorname{ert}}_{S}(h)\left(1-\widehat{e r t}_{S}(h)\right)}{n}}
$$

