
Computational Learning Theory

R Greiner
Cmput 466 / 551

HTF: ?? (7.9)

B: Ch 7.1.5
RN, Chapter 18.5

Thanks to A Blum

3

Computational Learning Theory
� Inductive Learning

� Protocol
� Error

� Probably Approximately Correct Learning
� Consistency Filtering
� Sample Complexity
� Eg: Conjunction, Decision List

� Issues
� Bound
� Other Models

4

What General Laws
constrain Inductive Learning?

� Sample Complexity
� How many training examples are sufficient

to learn target concept?
� Computational Complexity

� Resources required to learn target concept?
� Want theory to relate:

� Training examples
� Quantity
� Quality
� How presented

� Complexity of hypothesis/concept space H
� Accuracy of approx to target concept ε
� Probability of successful learning δ

These results only useful wrt O(…) !

5

Protocol
� Given:

� space of examples X
� fixed (unknown) distribution D over X
� set of hypotheses H
� set of possible target concepts C

� Learner observes sample S = { 〈〈〈〈 xi , c(xi) 〉〉〉〉 }
� instances xi drawn from distr. D
� Labeled c(x) by target concept c ∈ C
(Learner does NOT know c(.), D)

� Learner outputs h ∈ H estimating c
� h is evaluated by performance on

subsequent instances drawn from D
� For now:

� C = H (so c ∈ H)
� Noise-free data

Learner

N

N

Y

So

…

…

…

…

NoPale8710

::::

Yes
Cle
ar

11
0

22

NoPale9535

dise
aseX

Col
our

Pr
es
s.

Te
m
p.

Classifier
P
a
l
e

…N
9
0

3
2

Color…
Sore-

Throat

Pres

s.
Temp

No

diseas
eX

6

True Error of Hypothesis

Def'n: The true error of hypothesis h wrt
� target concept c
� distribution D

≡ probability that h will misclassify instance
drawn from D
errD(h) = Prx∈D[c(x) ≠ h(x)]

7

Probably Approximately Correct
Goal:

PAC-Learner produces hypothesis ĥ that
is approximately correct,

errD(ĥ) ≈ 0
with high probability

P(errD(ĥ) ≈ 0) ≈ 1

� Double “hedging"
� approximately
� probably

Need both!

8

PAC-Learning
� Learner L can draw labeled instance 〈 x, c(x) 〉 in unit time

x ∈ X drawn from distribution D labeled by target concept c ∈ C

Def'n: Learner L PAC-learns class C (by H)
if
1. for any target concept c ∈ C,

any distribution D, any ε, δ > 0,
L returns h ∈ H s.t.

w/ prob. ≥ 1 – δ, errD(h) < ε
2. L's run-time (and hence, sample complexity)

is poly(size(x), size(c), 1/ε, 1/δ)

� Sufficient:
1. Only poly(…) training instances – |H| = 2poly()

2. Only poly time / instance …
Often C = H

9

Simple Learning Algorithm:
Consistency Filtering

� Draw mH(ε, δ) random (labeled) examples Sm

� Remove every hyp. that contradicts any 〈x, y〉 ∈ Sm

� Return any remaining (consistent) hypothesis

Challenges:
� Q1: Sample size: mH(ε, δ)
� Q2: Need to decide if h ∈ H is consistent w/ all Sm

... efficiently ...

10

Boolean Functions (≡ Concepts)

1

11

Bad Hypotheses

Idea: Find m = mH(ε, δ) s.t.
after seeing m examples,
every BAD hypothesis h (errD,c(h) > ε)

will be ELIMINATED
with high probability (≈ 1 – δ)

leaving only good hypotheses

… then pick ANY of the remaining good (errD,c(h) <ε) hyp’s

Find m large number that
very small chance that a “bad” hypothesis is consistent with m examples

Leave SOME
HGood = { h ∈ H | errD(h) ≤ ε }

Eliminate ALL
Hbad = { h ∈ H | errD(h) > ε }

12

Ok

Bad

13

Sample Bounds – Derivation

� Let h1 be ε-bad hypothesis … err(h1) > ε
⇒ h1 mis-labels example w/prob P(h1(x) ≠ c(x)) > ε
⇒ h1 correctly labels random example w/prob ≤ (1 – ε)

� As examples drawn INDEPENDENTLY
P(h1 correctly labels m examples) ≤ (1 – ε)m

14

Sample Bounds
– Derivation II

� Let h2 be another ε-bad hypothesis
� What is probability that either h1 or h2

survive m random examples?
P(h1 v h2 survives)
= P(h1 survives) + P(h2 survives)

– P(h1 & h2 survives)
≤ P(h1 survives) + P(h2 survives)
≤ 2 (1 –ε)m

� If k ε-bad hypotheses {h1, …, hk}:
P(h1 v … v hk survives) ≤ k (1 –ε)m

15

Sample Bounds – Derivation
� Let h1 be ε-bad hypothesis … err(h1) > ε

⇒ h1 mis-labels example w/prob P(h1(x) ≠ c(x)) > ε
⇒ h1 correctly labels random example w/prob ≤≤≤≤ (1 – ε)

� As examples drawn INDEPENDENTLY
P(h1 correctly labels m examples) ≤≤≤≤ (1 – ε)m

� Let h2 be another ε-bad hypothesis
� What is probability that either h1 or h2 survive

m random examples?
P(h1 v h2 survives)
= P(h1 survives) + P(h2 survives) – P(h1 & h2 survives)
≤≤≤≤ P(h1 survives) + P(h2 survives)
≤≤≤≤ 2 (1 –ε)m

16

Sample Bounds, con't
Let Hbad = { h ∈ H | err(h) > ε }
� Probability that any h ∈ Hbad survives is

P(any hb in Hbad is consistent with m exs.)
≤ |Hbad| (1 – ε)m ≤ |H| (1 – ε)m

� This is ≤ δ if |H| (1 – ε)m ≤ δ
⇒

| | 1 | |
(,) log log(1) log/

H

H H
m ε δ ε

δ ε δ

≥ − − ≥

� mH(ε, δ) is “Sample Complexity” of hypothesis space H
� Fact: For 0 ≤ ε ≤ 1, (1 – ε) ≤ e-ε

17

Sample Complexity
� Hypothesis Space (expressiveness): H
� Error Rate of Resulting Hypthesis: ε

� errD,c(h) = P(h(x) ≠ c(x)) ≤ ε

� Confidence of being ε-close: δ
� P(errD,c(h) ≤ ε) > 1 – δ

� Sample size: mH(ε, δ)

� Any hypothesis consistent with

examples,
has error of at most ε, with prob ≤ 1 – δ

1 | |
(,) log

H

H
m ε δ

ε δ

=

18

Boolean Function... Conjunctions

19

� Just uses +-examples!
� Finds “smallest” hypothesis (true for as few +examples as possible)
� … No mistakes on –examples

� As each step is efficient O(n), only poly(n, 1/ε, 1/δ) steps
⇒ algorithm is efficient!

Never true

True only for “101”

True only for “10*”

20

� Just uses +-examples!
� Finds “smallest” hypothesis (true for as few +examples as possible)
� … No mistakes on –examples

� As each step is efficient O(n), only poly(n, 1/ε, 1/δ) steps
⇒ algorithm is efficient!

Never true

True only for “101”

True only for “10*”

Does NOT explicitly
 build all 3

n conjunctions,

then throw some out…

21

PAC-Learning k-CNF

1-CNF ≡ Conjunctions

()k
nO

k

n
=

22

Decision Lists
� When to go for walk?

� Vars: rainy, warm, jacket, snowy
� Don't go for walk if rainy.

Otherwise, go for walk if warm or
if ¬jacket and it is snowy.

� How many DLs?
4n possible “rules”, each of form “±xi ⇒ ±”
⇒ (4n)! orderings, so |HDL| · (4n)!

(Actually: ≤ n! 4n)

23

1. When x1 = 0, class is “B”
Form h = 〈〈〈〈 ¬¬¬¬x1 aaaa B 〉〉〉〉
Eliminate i2, i4

2. When x2 = 1, class is “A”
Form h = 〈〈〈〈 ¬¬¬¬x1 aaaa B; x2 aaaa A 〉〉〉〉
Eliminate i3, i5

3. When x4 = 1, class is “A”
Form h = 〈〈〈〈 ¬¬¬¬x1 aaaa B; x2 aaaa A; x4 aaaa A 〉〉〉〉
Eliminate i1

4. Always have class “B”
Form h = 〈〈〈〈 ¬¬¬¬x1 aaaa B; x2 aaaa A; x4 aaaa A; t aaaa B 〉〉〉〉
Eliminate rest (i6)

Example of Learning DL

24

PAC-Learning Decision Lists

Covering Algorithm

25

Proof (PAC-Learn DL)
� Correctness#1: Enough data?

Yes.

� Correctness#2: Consistency?
If ∃ DL consistent w/data...
� ∃ ≥ 1 choice for step 1 (eg, first rule in L satisfied by ≥ 1 example)
� ∃ DL consistent w/ remaining data: original DL!

� Efficiency: Algorithm runs in poly time, since
� each iteration requires poly time, and
� each iteration removes ≥ 1 example (only poly examples)

� Generalization: k-DL
� ... whose nodes each contain CONJUNCTION of k literals

(So earlier DL ≡ 1-DL)

k-DL ⊃ k-CNF, k-DNF, k-depth DecTree, ...

26

Why Learning May Succeed
� Learner L produces classifier h = L(S)

that does well on training data S
Why?

� Assumption: Distribution is “stationary"
� distr. for testing = distr. for training

1. If x appears alot
� then x probably occurs in training data S
� As h does well on S,

h(x) is probably correct on x
2. If example x appears rarely

(P(x) ≈ 0)
then h suffers only small penalty for being wrong.

δ

ε

27

Comments on Model

Simplify task:
� 1*. Assume c ∈ H, where H known

� (Eg, lines, conjunctions, . . .)

� 2*. Noise free training data
� 3. Only require approximate correctness:

� h is “ε-good”: Px(h(x) ≠ c(x)) < ε

� 4. Allow learner to (rarely) be completely off
� If examples NOT representative, cannot do well.
� P(hL is ε-good) ≥ 1 - δ

Complicate task:
� 1. Learner must be computationally efficient
� 2. Over any instance distribution

1 | |
(,) log

H

H
m ε δ

ε δ

=

28

Comments: Sample Complexity

� If k parameters, 〈v1, …, vk〉
⇒ |Hk| ≈ Bk

⇒ mHk
≈ log(Bk)/ε ≈ k/ε

� Too GENEROUS:
� Based on pre-defined C = {c1, …} = H

Where did this come from???

� Assumes c ∈ H, noise-free

� If err ≠ 0, need O(1/ε2 …)

1 | |
(,) log

H

H
m ε δ

ε δ

=

29

Why is Bound so Lousy!
� Assumes error of all ε-bad hypotheses ≈ ε

(Typically most bad hypotheses are really bad
⇒ get thrown out much sooner)

� Uses P(A or B) ≤ P(A)+P(B).
(If hypotheses are correlated, then if one inconsistent,
others probably inconsistent too)

� Assumes |Hbad| = |H| … see VCdimension
� WorstCase:

� over all c ∈ C
� over all distribution D over X
� over all presentations of instances (drawn from D)

� Improvements
� “Distribution Specific” learning

Known single dist (ε-cover)
Gaussian, . . .

� Look at samples! ⇒ Sequential PAC Learning

If λ-bad, takes ≈
1/λ

to see evidence

30

Fundamental Tradeoff
in Machine Learning

� Larger H is more likely to include
� (approx to) target f
� but it requires more examples to learn

� w/few examples,
cannot reliably find good hypothesis from large hyp. space

� To learn effectively (ε) from small # of samples (m),

only consider H where |H| ≈ e ε m

� Restrict form of Boolean function
to reduce size of hypotheses space.
� Eg, for HC = conjunctions of literals,

|HC| = 3n, so only need poly number of examples!
� Great if target concept is in HC, but ...

1 | |
(,) log

H

H
m ε δ

ε δ

=

31

Issues

� Computational Complexity
� Sampling Issues:

VC dim–Agnostic

VC dimNested ClassRealizable

UncountableCountableFinite

δε

||
ln

1 H

δε

||
ln

1
2

H
O

32

Learning =
Estimation + Optimization

1. Acquire required relevant information
by examining enough labeled samples

2. Find hypothesis h ∈ H consistent with those samples
� ... often “smallest” hypothesis

� Spse H has 2k hypotheses
Each hypothesis requires k bits
⇒ log |H| ≈ |h| = k
⇒ SAMPLE COMPLEXITY not problematic

� But optimization often is... intractable!
� Eg, consistency for 2term–DNF is NP-hard, ...

� Perhaps find best hypothesis in F ⊃ H
� 2-CNF ⊃ 2term-DNF
� ... easier optimization problem!

33

Extensions to this Model
� Ockham Algorithm: Can PAC-learn H iff

� can “compress” samples
� have efficient consistency-finding algorithm

� Data Efficient Learner
Gathers samples sequentially, autonomously decides
when to stop & return hypothesis

� Exploiting other information
� Prior background theory
� Relevance

� Degradation of Training/Testing Information

LabelClass

ValueAttribute

Testing

Training
in

Omissions

Error

34

Other Learning Models
� Learning in the Limit [Recursion Theoretic]

� Exact identification, no resource constraints

� On-Line learning
� After seeing each unlabeled instance,

learner returns (proposed) label
� Learner then given correct label provided (penalized if wrong)
� Q: Can learner converge, after making only k mistakes?

� Active Learners
� Actively request useful information from environment
� “Experiment”

� “Agnostic Learning”
� What if target ¬[f ∈ H] ?
� Want to find CLOSEST hypotheses. . .
� Typically NP-hard. . .

� Bayesian Approach: Model Averaging, . . .

35

Computational Learning Theory

� Inductive Learning is possible
� With caveats: error, confidence
� Depends on complexity of hypothesis space

� Probably Approximately Correct Learning
� Consistency Filtering
� Sample Complexity
� Eg: Conjunctions, DecisionLists

� Many other meaningful models

36

37

Terminology
� Labeled example: Example of form 〈 x, f(x) 〉
� Labeled sample: Set of { 〈 xi; f(xi) 〉 }
� Classifier: Discrete-valued function.

Possible values f(x) ∈ { 1, …, K } called “classes";
“class labels”

� Concept: Boolean function.
� x s.t. f(x) = 1 called “positive examples”
� x s.t. f(x) = 0 called “negative examples”

� Target function (target concept): “True function” f
generating the labels

� Hypothesis: Proposed function h believed to be
similar to f.

� Hypothesis Space: Space of all hypotheses that
can, in principle, be output by a learning algorithm

38

Computational Learning Theory
� Framework/Protocols
1. Finite H, Realizable case
2. Finite H, Unrealizable case
3. Infinite H

(Vapnik-Chervonenkis Dimension)

4. Variable size Hypothesis Space
5. Data-dependent Bounds

(Max Margin)

6. Mistake Bound (Winnow)
� Topics:

� Extensions to PAC
� Other Learning Models
� Occam Algorithms

39

Case 2: Finite H, Unrealizable
� What if perfect classifier ∉ hyp. space H?

� either none exists (data inconsistent) or
� hypothesis space is restricted

� Let: h* = argminh∈H { errD(h) } be
optimal h∈H

� Want: ĥ s.t. errD(ĥ) ≤ errD(h*) + ε

errD(h*)

h* ĥ

ε

40

Case 2: Finite H, Unrealizable
� What if perfect classifier ∉ hyp. space H?

� either none exists (data inconsistent) or
� hypothesis space is restricted

� Let: h* = argminh∈H { errD(h) } be optimal h∈H

� Want: ĥ s.t. errD(ĥ) ≤ errD(h*) + ε

� Alg:

(errS(h) = 1/m ∑x∈S err(h, x) is EMPIRICAL score)

� Issues:
� How many instances?

� Computational cost of argminh∈H { errS(h) }

Draw m = m(ε,δ) instances S
Return ĥ = argminh∈H { errS(h) }

with optimal empirical score, over S

41

Sample Complexity
Goal: Want enough instances that, w/prob ≥ 1 – δ

� Step1: Sufficient to estimate ALL h's to within ε/2.
| errD(h) – errS(h)| ≤≤≤≤ ε/2

If so, then
eD(ĥ) – eD(h*)
= eD(ĥ) – eS(ĥ) + eS(ĥ) – eS(h*) + eS(h*) – eD(h*)
≤≤≤≤ ε/2 + 0 + ε/2 = ε

ĥ = argminh∈H { errS(h) } is within ε of h* = argminh∈H { errD(h) }

42

Sample Complexity, con’t
Goal: Want enough instances that, w/prob ≥ 1 – δ

� Step2: Sufficient to estimate EACH h's to within ε/2
with prob ≥ 1 – δ / |H|
If so, then

P(∃ h∈H | errD(h) – errS(h)| ≤≤≤≤ ε/2)
≤≤≤≤ ∑h∈H P(errD(h) – errS(h)| ≤≤≤≤ ε/2)
≤≤≤≤ |H| δ / |H| = δ

� Step3: How many instances s.t.
P(|errD(h) – errS(h)| ≤ ε/2) ≤≤≤≤ δ / |H| ?

ĥ = argminh∈H { errS(h) } is within ε of h* = argminh∈H { errD(h) }

43

Complexity of “Agnostic Learning”
� Sample Complexity: Good news!

� Hoeffding Inequality ⇒ Need only

instances to estimate EACH h's to within ε/2
with prob ≥ 1 – δ / |H|

P(errD(h) – errS(h)| ≤≤≤≤ ε/2)
≤≤≤≤ 2 exp(-2 m (ε/2)2) ≤≤≤≤ δ / |H|

� Computational Complexity: Bad news!
NP-hard to find
CONJUNCTION h∈H that is BEST FIT to DNF c ∈ C

(target space = DNF; hypothesis space = Conjunctions)

� Note: Sample size typically poly;
Hardness tends to be Consistency/Optimization

δε
δε

H
m

2
ln

2
),(

2
=

44

Case 3: ∞ Hypothesis Spaces
⇒ VC Dim
� Learning an initial subinterval.

“Factory is ok iff Temperature ≤≤≤≤ a”
for some (unknown) a ∈∈∈∈ [0, 100]
⇒ target concept is some initial interval

C = H = { [0, a] | a ∈∈∈∈ [0, 100] }

0 100a

Observe M instances
Return [0, b] ,

where b is largest positive example seen.

� Clearly poly time per example.
How many examples?

45

Sample Complexity of
Learning Initial Segment

� Approach#1: Use instances ?

But H is UNCOUNTABLE!

� Approach#2:
� Let aε be real value < a s.t. [aε , a] has probability ε

1 | |
(,) log

H

H
m ε δ

ε δ

=

� Alg succeeds iff it sees example in [aε , a]

P(failure) = P(none of M examples in [aε , a]) = (1 – ε)M

So for P(failure) ≤≤≤≤ δ, need

0 100a

P([aε , a]) = ε

aε

δε

1
ln

1
≥M

46

Uniform Convergence

� Simultaneously estimating all { [aε , a] | a ∈ [0, 100] }!
Q: Why possible?
A: Only one “degree of freedom”
⇒ each sample provides LOTS of information
about many hypothesis

Q: How much is a degree of freedom worth?
Are they all worth the same?

A: Look at “effective number” of concepts,
as fn of number of data points seen.
Only grows linearly....

� Number of “effective degrees of freedom”:

called “VC-dimension”

47

Shattering a Set of Instances
� Hypothesis class H trivially fit

X = {x1, … , xk}
if

∀ labeling of examples in X,
∃ h ∈ H matching labeling

� k instances; |H| ≥ 2k

Any subset of size k – 1 is unconstrained!

� Defn: Set of points X = {xi} is shattered by
hypothesis class H if
∀ S ⊂ X, ∃ hS ∈ H s.t.
� hS(x) = 1 ∀ x ∈ S
� hS(x) = 0 ∀ x ∉ S

48

Example of Shattering
� H = { [a, b] | a < b } = intervals on real line

� Can shatter (any!) 2 points:

� ∃ 3 points that can NOT be shattered:

+ +–

49

Vapnik-Chervonenkis Dimension
� Def'n: VCdim of concept class H

≡ largest # of points shattered by H
� If arbitrarily large finite sets of X shattered by H,

then VCdim(H) = ∞
� VCdim(H) = d ⇔

∃ set of d points that can be shattered,
but no set of d+1 points can be shattered

� Note: VCdim(H) ≤ log2 |H|
� VCdim(H) measures complexity of H

... how many distinctions can its elements exhibit

50

VC-dimension: Linear Separator
� H

LS2
= { [w0, w1, w2] ∈ℜ3 }

= linear separators in 2-D
� Trivial to fit (any non-linear!) 3 points

� But cannot shatter ANY set of 4 points
� If one point inside convex hull of others,

can not make inside “–” and outsides “+”
� Otherwise, label alternatingly in cycle
⇒ VC (H

LS2
)=VC(LinearSeparator in 2Dim) = 3

51

Some VC Dims
� VCdim(LinearSeparator in k-Dim) = k +1

� Multi-layer perceptron network over n inputs
of depth s:
d ≤ 2(n+1)s(1+ln s)

� Exact value for sigmoid units is ?unknown?
… probably slightly larger...

� Typically VCdim(model) ≈
of non-redundant tunable parameters

52

VCdim of . . .
� Hint = { intervals of real line }

� 2

� Hbox = {axis-parallel boxes in 2-D}
� 4

� Hmd = {monotone disjunctions (n features) }
� n

� Hall = {all boolean functions on n features }
� 2n

Consider 5 points. Draw smallest enclosing axis-parallel box.

For each side of box, pick one point.. colorded red.

Must be at least one pt left – blue.

Can’t have Red=+, Blue = —

Clearly ≥ n as {100, 010, 001}.
Can not be >n as only 2n monotone disjunctions

53

How does VCdim
measure Complexity?

� Def'n: H[m] = maximum number of ways to split
m points using concepts in H

� For m ≤ VCdim(H), H[m] = 2m

For m ≥ VCdim(H) , ...
� Theorem: H[m] = O(mVCdim(H))

� Ie, only C[m] “different” concepts in H
wrt any set of m examples.

⇒? Replace ln(|H|) by ln(H[m]) in PAC bounds
YES (kinda)! . . . but NOT OBVIOUS,
since different data ⇒ different concepts

≈ O(VCdim(H))

54

Upper/Lower Bounds using VCdim
� Theorem 1: Given class C,

for any distribution D, target concept in C,
given a sample size:

then with prob ≥ 1 – δ ,
any consistent h ∈ C has error ≤ ε.

� Theorem 2: If |C| ≤ 2, then
for any learning alg A,
∃ distribution D over X, distribution over C s.t.
expected error of A is > ε

if A sees sample of size under

55

Comments on VC Dimension
� VCdim provides good measure of complexity of

class:
Upper/Lower (worst case) bounds:

� Does this mean. . .
� ... can't learn classes of infinite VCdimension?

A: No: just use poly dependence on size(c)
� ... complicated hypotheses are bad?

A: No. Just need a lot of data to learn complicated
concept classes...

))dim((
~

CVCΘ

56

Proof of Theorem#2 (Sketch)
� Theorem 2: ... need at least

(#examples needed for uniform convergence
. . . for all bad h ∈ C to look bad . . .)

Proof: Consider d = VCdim(C) points { x1, x2, …, xd }
that can be shattered by target concepts { ci }i=1

2^k

� Define distribution D:
� 1 – 4ε on x1

� 4ε / (d – 1) on each other
� Given m instances, expect to see only ½ of { x2, …, xd }

so E[#notSeen] ≥ (d – 1) / 2
� As can only do 50/50 on instances NOT seen,

expected error is #notSeen ½ 4ε / (d – 1) = ε

57

Summary of Training vs Test Error

58

Case 4:
Why SINGLE Hypothesis Space?

� Large H is likely to include (approx to) target c
but . . .

� w/few examples, cannot reliably find good
hypothesis from large hypothesis space

� That is...
� Underfitting: Every h ∈ H has high εT

⇒ consider larger hypothesis space H’ ⊃ H

� Overfitting: Many h ∈ H have εT ≈ 0
⇒ consider smaller H’’ ⊂ H to get lower d

⇒ To learn effectively (> 1 – ε) from m instances,
only consider H s.t. | H | ≈ eεm

59

How Learning Algorithms
Manage This Tradeoff

60

#4a: Dealing w/∞ Set of Hypotheses

61

Correct Algorithm?
� Q: Suppose find “good” hk at iteration k.

What is prob of making mistake?
� A: P(mistake) = ∑i=1..k P(mistake @ iteration i)

≤ ∑i=1..k δ ≤ k δ

⇒ Need to use δi s.t. ∑i=1..k δi ≤ δ for any k

� Eg: δi = δ/2i

� Note: P(mistake) ≤ ∑i=1..k δi = δ ∑i=1..k ½ i = δ

� Takes k bits to identify member of 2k-size hypothesis space
� . . . takes k bits just to express such a hypothesis

⇒ reasonable to allow learning alg’m time poly in
1/ε, 1/δ and SIZE OF HYPOTHESIS

62

#4b: Structural Risk Minimization
� Consider

� nested series: H1 ⊂ H2 ⊂ … ⊂ Hk ⊂ …
� with VCdim: d1 ≤ d2 ≤ … ≤ dk ≤ …
� training errors: ε1 ≥ ε2 ≥ … ≥ εk ≥ …

� Choose hk ∈ Hk that minimizes

63

Structural Risk Minimization

64

An Improved VC Bound II

65

Case 5: Data Dependent Bounds
� So far, bounds depend only on

� εT

� quantities computed prior to seeing S
(eg, size of H)

⇒ “worst case”
as must work for all but δ of possible training sets

� Data dependent bounds consider how h fits data
� If S is not worst case training set

⇒ tighter error bound!

66

Margin Bounds

67

Margin Bounds: Key Intuition

68

Noise Free Margin Bound

69

Soft Margin Classification (2)

70

Fat Shattering for Linear Separators:
Noise-Free

71

Soft Margin Classification

72

Irrelevant Features
� Consider learning CD(n) = disjunction of n features

“List-then-Eliminate” makes O(n) mistakes
� PAC-learning: O(n/ε log(1/δ))

� Spse n is HUGE
� Words in text
� Boolean combination of “atomic” features
� Features extracted in 480x560 image
. . . but only r << n features “relevant”
� Eg: concept x4 v ¬x91 v ¬x203 v x907

� ∃ learning alg that makes O(r ln n) mistakes!
“Winnow”

73

Winnow Algorithm
� Initialize weights w1, …, wn to 1
� Do until bored:

� Given example x = [x1, …, xn] ,
If w1x1 +w2x2 + …+wnxn ≥ n
output 1 otherwise 0

� If mistake:
� (a) If predicts 0 on 1-example, then

for each xi = 1, set wi := wi ×××× 2
� (b) If predicts 1 on 0-example, then

for each xi = 1, set wi := wi / 2

74

Winnow's Effectiveness
Theorem Winnow MB-learns CD(n), making at most

2+3r(1+lg n) mistakes when target concept is
disjunction of r var's.

Proof: 1. Any mistake made on 1-example must double params
� ≥1 weights in target function (the relevant weights),
� & mistake on 0-example will not halve these weights.

� Each “relevant” weight can be doubled ≤ 1+lg n times,
since only weights ≤ n can be doubled.
(Never double any weight wi > n as that weight alone ⇒ class is 1)

⇒ Winnow makes ≤ r(1+lg n) mistakes on 1-examples
2. Negative examples?
� Let swt be sum of weights ∑ wi = n, at time t.

Initially sw0 = n.
Each mistake on 1-example increases sw by ≤ n

(. . . before doubling, we know w1x1 +w2x2 + …+wnxn < n)
Each mistake on 0-example decreases sw by ≥ n/2

(. . . before halving, we know w1x1 +w2x2 + …+wnxn ≥ n)
� As sw ≥ 0, number of mistakes made on 0-examples

≤ 2+ 2number of mistakes made on 1-examples.

� So total # of mistakes is r(1+ln n) + [2+2r(1+lg n)]

75

Incorporating Winnow
Into PAC Model

� Given a MB(M)-learner, can PAC(ε,δ)-learn
� Return any hi that makes correct predictions
� Requires instances

� Better PAC-learner:
1. Draw m1 = 4/ε max { M, 2 ln(2/ δ) } instances, S1
2. Run Winnow (a MB-learner) on S1,

generating ≤ M hypotheses H = { h1, …, hM }
3. Draw m2 = O(8/ ε log(2M / δ)) more instances S2
4. Use S2 to find best hypothesis, h* in H
5. Return h*

� Why: Most ε-bad hypotheses have error >> ε
⇒ reveal “badness” in < instances

76

Proof
� m1 guarantees that ≥ 1 of H is good

m2 distinguishes good h* from bad members of H.

� After m1 instances, ≥ 1 of H has error ≤ ε/2
PROOF: Spse first k – 1 hyp's all have error > ε/2,
and hk had error ≤ ε/2

What is prob that hk occurs after m1 instances?

Worst if k = M and each errD(hi) = ε/2
Chernoff bounds ⇒ δ/2:
� Consider flipping (sequence of M) ε/2 weighted coins
� (each “head” ≡ error)
� After m1 flips, expect m1 x ε/2 ≤ 2M “heads”
� Prob of getting under M (≤ ½ exp. number) heads

≤ P(YM ≤ (1 – ½) ε/2) ≤ exp(– M ε/2 ½)/2)
≤ exp(– M ε/8) ≤ δ

77

Proof (II)
Use m2, select h* w/ errS(h*) ≤ ¾ ε

With prob ≥ 1 – δ/2 errD(h*) ≤ ε

PROOF: Need to show errS(hi)
[average # mistakes made by hi over m2 samples]

is within 3/4 of µi = errD(hi)
� P(errS(hi) < errD(hi) x (1 – 1/4)) ≤ exp(– (m2 ε ¼)/2) ≤ δ / (2M)
� So prob ANY hi ∈ H is off by < 3/4 is under δ /2
� m1 is leading term

⇒ O(1/ε [r log(n)+log(1/δ)])

� Best known bound for learning r of n disjuncts!

� Note: Might NOT find 0 error r-disjunction. . .

