!'_ Computational Learning Theory

R Greiner
Cmput 466 / 551

Thanks to A Blum

Computational Learning Theory

= Inductive Learning
= Protocol
= Error

= Probably Approximately Correct Learning
= Consistency Filtering
= Sample Complexity
= Eg: Conjunction, Decision List
= Issues
= Bound
= Other Models

What General Laws
constrain Inductive Learning?

= Sample Complexity

= How many training examples are sufficient
to learn target concept?

= Computational Complexity
= Resources required to learn target concept?

= Want theory to relate:
= Training examples
= Quantity
= Quality

= How presented
=« Complexity of hypothesis/concept space
= Accuracy of approx to target concept
= Probability of successful learning

= space of examples X

« fixed (unknown) distribution D over X
= set of hypotheses
= Set of possible target concepts C

Learner observes sample S = { (x;, ¢(x))) }
= instances x; drawn from distr. D
= Labeled c(x) by target conceptce C

(Learner does NOT know c(.), D)

Learner outputs h € A estimating ¢

= h is evaluated by performance on
subsequent instances drawn from D

For now:
s« C=H(soce H)
= Noise-free data

diseas

True Error of Hypothesis

Instance space X

Def'n: The true error of hypothesis h wrt
= target concept C
= distribution D

= probability that h will misclassify instance
drawn from D

errp(h) = Pry.pl ¢(X) # h(x)]

i Probably Approximately Correct

Goal:
PAC-Learner produces hypothesis h that
is approximately correct,
eer(ﬁ) =0
with high probability

P(erry(h)=0) = 1

= Double “hedging"
= approximately
= probably

Need both!

PAC-Learning

Learner L can draw labeled instance (x, c(x)) in unit time
X € X drawn from distribution D labeled by target concept c € C

Def'n: Learner L PAC-learns class C (by H)

if
1. for any target concept c € C,
any distribution D, anye, 6 > 0,
L returns he H s.t.
w/ prob. > 1 -9, errp(h) < ¢
2. L's run-time (and hence, sample complexity)
is poly(size(x), size(c), 1/¢, 1/0)

Sufficient:
1. Only poly(...) training instances — |H| = 2poV0
2. Only poly time / instance ...
Often C = H

Simple Learning Algorithm:
Consistency Filtering

= Draw my(€, 6) random (labeled) examples S,
= Remove every hyp. that contradicts any (x, yy € S,
= Return any remaining (consistent) hypothesis

Challenges:

= Q1: Sample size: m,(€, o)

= Q2: Need to decide if h € H is consistent w/ all S
... efficiently ...

Boolean Functions (= Concepts)

- - - 1 If Xv =X
Ea: fixyv-x (X1, X2, X3) = { 0 t:ﬂ:lwa-lrwuflsre2

X1 Xo Xzl hx,w-x. (X1, Xo, X3)
0 0 i 1
] 0 1 1
—t—

< o 1 1 o> | hxwx(0,1,1) = 0
1 I] 1
] o - ¥

L !9 ? hx,v-x(1,1.0) = 1

Note: Hypothesis maps unlabeled-tuple to {0, 1}

Labeled-tuple is {

So ({0,1,1), 1)

Consist
InConsistent

} w/ hyp.

s

InConsistent with hx,-x,

Consistent with hx_ux, 10

i Bad Hypotheses e,

Idea: Find m =my(¢, 9)s.t. \
after seeing /m examples,)
every BAD hypothesis h (errp (h) > €)
will be ELIMINATED Ellmlnate ALL
with high probability (= 1 — §) g = LN € A ermp(h) >e)
leaving only good hypotheses Leave SOME

Heoog =1 he H|errp(h)<e}

.. then pick ANY of the remaining good (errp (h) <g) hyp’s

Find /m large number that
very small chance that a "bad” hypothesis is consistent with /77 examples

11

H
L
Hpgd = {heH | errp(h) =€} / H._
Hgooda = {h€H | errp(h) <€} |
Note |[Hpad| = [H| T~
r{ To -+ Im | Good/Bad
h1 Voo W <€
ho vio— o < € Ok
Home (v v =] <
hpad1 | — — - =€ Bad
hbtld,?‘ - - T > €

Vi hiey) = elay)
— ¢ hi(ay) # elzy)

i Sample Bounds — Derivation

s Let h, be e-bad hypothesis ... err(h,) > ¢
—> h, mis-labels example w/prob P(h,(x) # c(x)) > €
—> h, correctly labels random example w/prob < (1 —¢)

= As examples drawn INDEPENDENTLY
P(h, correctly labels mexamples) < (1 —¢)™

13

Sample Bounds

i _ Derivation II

= Let h, be another e-bad hypothesis
= What is probability that e/itherh, or h,
survive m random examples?
P(hy v h, survives)
= P(h, survives) + P(h, survives)
— P(h; & h, survives)
< P(h, survives) + P(h, survives)
<2(1—-¢)m
s If Ke-bad hypotheses {h,, ..., h }:
P(hy v ... v h, survives) <k (1 —¢)™

14

i Sample Bounds — Derivation

= Let h, be e-bad hypothesis ... err(hy) > ¢
= h, mis-labels example w/prob P(h,(x) = c(x)) > ¢
= h, correctly labels random example w/prob < (1 — €)
= As examples drawn INDEPENDENTLY
P(h, correctly labels m examples) < (1 —¢)™
= Let h, be another e-bad hypothesis
= What is probability that either h, or h, survive
m random examples?
P(h; v h, survives)
= P(h, survives) + P(h, survives) — P(h, & h, survives)
< P(h, survives) + P(h, survives)
<2 (1-¢)m

15

i Sample Bounds, con't &)

Let H4y={heH]|err(h)>¢e}
= Probability that any h € H,_, survives is

P(any hy in H,_4 is consistent with /m exs.)
S |Hpaal (1 =€) = [H] (1 —¢)"

= Thisis <& if |[H|(1-¢e)m<$§
- | H | 1 | H |
mH(8,5) 2(10g7j/ —log(l—g) ZE(IQgTJ

= my(e, 0)is“Sample Complexity” of hypothesis space H
= Fact: ForO<e<1, (1-¢)<es
16

i Sample Complexity

= Hypothesis Space (expressiveness): H

= Error Rate of Resulting Hypthesis: ¢
= errp (h) =P(h(x) #c(x)) s e

= Confidence of being e-close: 0
n P(errp (h) < ¢)>1-9
= Sample size: my(e, 9)

= Any hypothesis consistent with

m,(€,0) = l(logﬂj
£ o

examples,
has error of at most ¢, with prob<1 -0

‘L Boolean Function... Conjunctions

¢ Boolean Instance: {(xy,on)
'::1,[:':,1:,1} for '::E]_Zl:, Ty = 0, T3:1:. 1421'3}

e Boolean Function: f({xq, ...,zn)) € {0, 1}

e Conjunction (type of Boolean function)
fy—o0—o4(X) = =z a27276

{ 1 Tx(X)=t, z2(X)=f, z2(X) = T,

and (X)) =1t
0 otherwise

f—l——D—D—I—E'::l! g, 1,0, 0, ll:'} - 1
f4+-0-04((0, 0, 1, 0, 0, 1)) = 0

(Ie, must match each literal mentioned)

e Only 3™ possible conjunctions
out of 22" boolean functions! 18

s Ho = conjunctions of literals

Each variable can be
_ an. o Included positively “z;",
* [Hel = 3™ o Included negatively “I,",
o excluded
= mpy(e.8) = L[nin3+ni

Collect my, (e, 6) = 2 [nIn3 4 In 3] labeled samples
Alg: let h = ®1 T T2X2 -+ TnIn
For each 4-example y = A, +im
Remove from h any literal NOT Included in y

Data Current Hyp

Ty I1 T2 Tz T3 T3 Never true
True only for 101"

True only for “10*"

= Just uses +-examples!
= Finds “smallest” hypothesis (true for as few +examples as possible)
= ... No mistakes on —examples

= As each step is efficient O(n), only poly(n, 1/¢, 1/5) steps

= algorithm is efficient! 19

s Ho = conjunctions of literals

Each variable can be
o [Ho| = 3™ o included positively “z;",

o excluded

= mpy(e.8) = L[nin3+1ni

T
e

T
o

-
e

Ty I1 T2 Tz T3 T3 Never true
1 0 1) 4 Iy Tz T3 True only for “101”
01 ll:l — I:I T EE o =1
1 0 0) 4 T Ta True only for “10*”
00 0) —) 1 T2

= Just uses +-examples!
= Finds “smallest” hypothesis (true for as few +examples as possible)
= ... No mistakes on —examples

= As each step is efficient O(n), only poly(n, 1/¢, 1/5) steps

= algorithm is efficient! 20

PAC-Learning k-CNF

e (INF = Conjunctive Mormal Form

[:!I‘]_VEQVE?} e (EEVSEA_VSEQ:] S s ™ [:I?VSEE.VE;]

e i —ONF = CNF where each clause has < k literals
1-CNF = Conjunctions

e As I D((’;:}E'{‘) possible < k-clauses, (

k
Hi ong| = 200637

= MH_ony — O (% [(3'?1-);“ + In %] j

Alg: Consistency Filtering:

Let T = all @((})3%) possible k-clauses.
After each 4-example y,

FRemove from T all clauses INCONSISTEMNT w/ v
Return AT

e Similar for Disjunctions, E-DMNF, . ..

7 What about CNF = n-CNF 7

21

Decision Lists

= When to go for walk?
= Vars: rainy, warm, jacket, snowy
= Don't go for walk if rainy.
Otherwise, go for walk if warm or
if —jacket and it is snowy.

Yes

Mo es Mo Mo

Def'n: A DL = list of “if-then rules”

condition = a literal
where .
consequent is + or —

(= decision tree with just one long path)

= How many DLs?
4n possible “rules”, each of form “+x, = "
= (4n)! orderings, so |Hy, | - (4n)!
(Actually: < n! 4")

22

Example of Learning DL

ry Tz T3 x4 Ts Label

ir T O — 0 —1 1 e

: 5 | | P i L]

L% L E AL L L= A

Data. =—tr—r—1+—%* = ~+
-4 L
—_-— -1

1 U L W) 1 B

[

1. When x; = 0, class is "B”
Form A= (—X%;—> B)
Eliminate i, i,

2. When x, = 1, class is “A”
Formh = (—x, > B; X, > A)
Eliminate i, is

3. When x, = 1, class is “A”
Form h = (—X; > B; X, > A; X, —> A)
Eliminate i,

4. Always have class “B”
Formh=(-X; > B; X, > A; X, > A; t—> B)
Eliminate rest (i)

23

"L PAC-Learning Decision Lists

Let: § = set of

1 1
mpy, = D(?[-n. In(n) 4+ In 3])
training instances

h = empty list
H = all 4n possible rules

While S#{} do

1. Find r&£ R s.t.
+ consistent w/ S
+ r appliesto =21s£ 5

(If none, halt w,/ "Failure”)

2.h (= h o v
(Put rule at BOTTOM of hypothesis)

3. 5 ;= 8§ — {s|s classified by h}

(Throw out examples classified by current hypothesis)

24

Proof (PAC-Learn DL)

Correctness#1: Enough data?
Yes. 1 [Hol

)

Correctness#2: Consistency?
If 3 DL consistent w/data...

= 3 2>1 choice for step 1 (eg, first rule in L satisfied by > 1 example)
= 3 DL consistent w/ remaining data: original DL!

Efficiency: Algorithm runs in poly time, since
= each iteration requires poly time, and
= each iteration removes > 1 example (only poly examples)

Generalization: k-DL
= ... whose nodes each contain CONJUNCTION of k literals
(So earlier DL = 1-DL)

k-DL > k-CNF, k-DNF, k-depth DecTree, ...

25

Why Learning May Succeed

= Learner L produces classifier h = L(S)
that does well on training data S
Why?

1. If x appears alot

= then x probably occurs in training data S
= As h does well on S, S
h(x) is probably correct on x
2. If example x appears rarely £

(P(x) =0)
then h suffers only small penalty for being wrong.

= Assumption: Distribution is “stationary"
= distr. for testing = distr. for training 26

i Comments on Model

1 | H |
mH(8,5) = ;(logTJ

Simplify task:

— 1 Assume-ec = Hwhere - H-rown—
= (Eg, lines, conjunctions, . . .)
s—2¥ Noise freetrainingdata—
= 3. Only require approximate correctness:
= his%e-good”: P,(h(x)#c(x)) <e
= 4. Allow learner to (rarely) be completely off

= If examples NOT representative, cannot do well.
» P(h ise-good)>1-6

Complicate task:

= 1. Learner must be computationally efficient
= 2. Over any instance distribution

27

Comments: Sample Complexity

1 | H |
mH(8,5) — 8(10g5j

= If K parameters, (v, ..., V,)

= [Hy| = Bk
— msz log(B¥)/e = k/e

= Too GENEROUS:
= Based on pre-defined C ={c; }=H

Where did this come from?7??

= Assumes c € H, noise-free

« Iferr#0, need O(1/2...)

28

Why is Bound so Lousy!

Assumes error of all e-bad hypotheses = ¢
(Typically most bad hypotheses are really bad
— get thrown out much sooner)
Uses P(Aor B) < P(A)+P(B).
(If hypotheses are correlated, then if one inconsistent,
others probably inconsistent too0)

Assumes |H,_4| = |H| ... see VCdimension

WorstCase:
= overallce C
= over all distribution D over X
= over all presentations of instances (drawn from D)

Improvements
= Distribution Specific” learning
Known single dist (e-cover)
Gaussian, . . .
= Look at samples! — Sequential PAC Learning

29

Fundamental Tradeoff .
in Machine Learning ™“” - 2 (o'

= Larger H is more likely to include
= (approx to) target f
= but it requires more examples to learn

= w/few examples,
cannot reliably find good hypothesis from large hyp. space

= To learn effectively (¢) from small # of samples (m),
only consider H where |H| = @ €M

s Restrict form of Boolean function

to reduce size of hypotheses space.
= Eg, for H- = conjunctions of literals,
|H:| = 3", so only need poly humber of examples!
« Great if target concept is in H., but ...

30

i Issues

= Computational Complexity
= Sampling Issues:

Finite Countable Uncountable
Realizable l1n% Nested Class VC dim
E

82

Agnostic 0(I 1n|H lj — VC dim

31

Learning =
Estimation + Optimization

1. Acquire required relevant information
by examining enough labeled samples
2. Find hypothesis h € H consistent with those samples

= ... Often “smallest” hypothesis
Spse H has 2k hypotheses
Each hypothesis requires k bits

= log |[H| = |h| =k

— SAMPLE COMPLEXITY not problematic

= But optimization often is... intractable!
= Eg, consistency for 2term—DNF is NP-hard, ...

Perhaps find best hypothesisin F > H
= 2-CNF o 2term-DNF
= ... easier optimization problem! 32

Extensions to this Model

= Ockham Algorithm: Can PAC-learn H iff

= Can “compress” samples
= have efficient consistency-finding algorithm

= Data Efficient Learner

Gathers samples sequentially, autonomously decides
when to stop & return hypothesis

= EXxploiting other information
= Prior background theory
= Relevance

= Degradation of Training/Testing Information

Error - Training Attribute Value
Omissions Testing ClassLabel 33

i Other Learning Models

= Learning in the Limit [Recursion Theoretic]
= Exact identification, no resource constraints

= On-Line learning
= After seeing each unlabeled instance,
learner returns (proposed) label
= Learner then given correct label provided (penalized if wrong)
= Q: Can learner converge, after making only & mistakes?

= Active Learners
= Actively request useful information from environment
= EXperiment”

= Agnostic Learning”
= Whatif target —-[f e H] ?
=« Want to find CLOSEST hypotheses. . .
= Typically NP-hard. . .

= Bayesian Approach: Model Averaging, . . . 34

Computational Learning Theory

= Inductive Learning is possible
= With caveats: error, confidence
= Depends on complexity of hypothesis space
= Probably Approximately Correct Learning
= Consistency Filtering
=« Sample Complexity
= Eg: Conjunctions, DecisionLists

= Many other meaningful models

35

i Terminology

Labeled example: Example of form (x, f(x))
= Labeled sample: Set of { { x; f(x)) }

= Classifier: Discrete-valued function.
Possible values f(x) € { 1, ..., K } called “classes";
“class labels”

= Concept: Boolean function.
= X S.t f(x) = 1 called “positive examples”
= X S.t. f(x) = 0 called “negative examples”

= Target function (target concept): “True function” f
generating the labels

= Hypothesis: Proposed function h believed to be
similar to f.

= Hypothesis Space: Space of all hypotheses that
can, in principle, be output by a learning algorithm

37

omputational Learning Theory

.

~
3.

4.
5.

Framework/Protocols

Finite %, Realizable case
Finite %, Unrealizable case
Infinite €

(Vapnik-Chervonenkis Dimension)
Variable size Hypothesis Space
Data-dependent Bounds

(Max Margin)

. Mistake Bound (Winnow)

Topics:
= Extensions to PAC
= Other Learning Models
= Occam Algorithms

38

i Case 2: Finite %, Unrealizable

= What if perfect classifier ¢ hyp. space F€?
= either none exists (data inconsistent) or
= hypothesis space is restricted

s Let: h™ = argmin,_,, { erry(h) } be
optimal he ¢

=« Want: h s.t. eer(ﬁ) <erry(h®) + ¢

errp(h®)

i Case 2: Finite %, Unrealizable

What if perfect classifier ¢ hyp. space €?
= either none exists (data inconsistent) or
= hypothesis space is restricted

s Let: h* = argmin,_, { errp(h) } be optimal he ¢
« Want: h s.t. errg(h) <erry(h®) + ¢

Draw m = m(g,d) instances S

Return h = argmin,_,4 { errs(h) }
with optimal empirical score, over S

O Alg

(errs(h) = 1/m X, _c err(h, x) is EMPIRICAL score)

= [ssues:
= How many instances?

= Computational cost of argmin,_, { errs(h) } 40

Sample Complexity

Goal: Want enough instances that, w/prob>1 -5
h = argmin,_,, { errs(h) } IS within € of h™ = argminy,_4 { errp(h) }

= Stepl: Sufficient to estimate ALL h's to within ¢/2.
| errp(h) — erre(h)| < ¢/2
If so, then
ep(h) - ep(h”) A
= ep(h) — es(h) + es(h) — es(h™) + e5(h™) — ep(h”)
< g/2 - 0 + ¢/2 =€

41

Sample Complexity, con't

Goal: Want enough instances that, w/prob>1 -5

N

= argmin,_,{ errs(h) } IS within € of h™ = argminy,_4 { erry(h) }

= Step?: Sufficient to estimate EACH h's to within €/2
with prob > 1 — &/ | %]

If so, then
P(3 he g€ | errp(h) —errs(h)| <¢/2)

< The s Plerro(h) — errg(h)| < /2)
< || o/ |FH| =9

= Step3: How many instances s.t.
P(|errp(h) —errs(h)| <e/2) < o8/ |%|?

42

Complexity of “Agnostic Learning”

ample Complexity: Good news!
Hoeffding Inequality = Need only |m(e.6) = 8—111@

instances to estimate EACH h's to within ¢/2
with prob>1 - 6/ | %]

P(erry(h) —errs(h)| <¢/2)
< 2exp(-2m(e/2)?) < &/ |¥]
Computational Complexity: Bad news!

NP-hard to find
CONJUNCTION he #tthat is BEST FIT to DNF c e C

(target space = DNF; hypothesis space = Conjunctions)

Note: Sample size typically poly;
Hardness tends to be Con5|stency/0pt|m|zat|on

43

Case 3: « Hypothesis Spaces
= VC Dim

= Learning an initial subinterval.
“Factory is ok /ff Temperature <a”
for some (unknown) a € [0, 100]
— target concept is some initial interval
C=H={]0,a]|ae [0, 100] }

|
0

!
d

Observe M instances
Return [0, b],
where b is largest positive example seen.

= Clearly poly time per example.
How many examples?

100

44

Sample Complexity of
Learning Initial Segment

= Approach#1: Use

m, (€,0) = %(log@j

o

But #€ is UNCOUNTABLE!

= Approach#?2:

instances ?

= Let a; be real value < as.t. [a., a] has probability &
P([a.,a]l)=¢

0 e
s Alg succeeds /ff it sees examplein [a,

& a

|
100

, a]

P(failure) = P(none of M examplesin [a,, a]) = (1 —¢)™

So for P(failure) <98, need

1

M =>—In—
%)

E

1

45

i Uniform Convergence

= Simultaneously estimating all { [a. , a] | a € [0, 100] }!
Q: Why possible?
A: Only one “degree of freedom”
— each sample provides LOTS of information
about many hypothesis
Q: How much is a degree of freedom worth?
Are they all worth the same?

A: Look at “effective number” of concepts,
as fn of number of data points seen.

Only grows linearly....
= Number of “effective degrees of freedom”:

called “VC-dimension”

46

Shattering a Set of Instances

= Hypothesis class # trivially fit

X — {Xll e g Xk} hi ha - hoi_y hok
if x1[0 0 --- 1 1
]] > 0O O 1 1

V labeling of examples in X,
x| 0O 1 O 1

1 h € %€ matching labeling

= k instances; |%| > 2k
Any subset of size k — 1 is unconstrained!

s Defn: Set of points X = {x;} is shattered by
hypothesis class # if
VScX dhse Fs.t.
m hS(X)= 1 VYxe S

« hx)=0 VxeS 47

i Example of Shattering

s 3¢ ={[a, b] | a < b} =intervals on real line
= Can shatter (any!) 2 points:

T)
* *

—

= = O O|&
= O = O|M

= 3 3 points that can NOT be shattered:

i Aidp, L3 : : :
» & & 45 11 12 13
1 0 1

+t -+

48

i Vapnik-Chervonenkis Dimension

s Def'n: VCdim of concept class F

= largest # of points shattered by ¢

« If arbitrarily large finite sets of X shattered by %,
then VCdim(#€) = «

1 set of d points that can be shattered,
but no set of d+1 points can be shattered

= Note: VCdim(%€) < log, | #|
= VCdim(J€) measures complexity of #
... how many distinctions can its elements exhibit

49

i VC-dimension: Linear Separator

o s, = { [Wo, Wy, Wy] €RP}
= linear separators in 2-D

= Trivial to fit (any non-linear!) 3 points

o | o O

I R O O O
S E— © O ®

= But cannot shatter ANY set of 4 points
= If one point inside convex hull of others,

can not make inside "-" and outsides “+"
= Otherwise, label alternatingly in cycle

= VC (¥4,)=VC(LinearSeparator in 2Dim) = 3

50

i Some VC Dims

= VCdim(LinearSeparator in k-Dim) = k +1

= Multi-layer perceptron network over n inputs
of depth s:

d <2(n+1)s(1+In s)

= Exact value for sigmoid units is 2unknown?
... probably slightly larger...

= [ypically VCdim(model) =
of non-redundant tunable parameters

51

i VCdim of .

o 2

= { intervals of real line }

= H,,, = {axis-parallel boxes in 2-D}
= 4

Consider 5 points. Draw smallest enclosing axis-parallel box.
For each side of box, pick one point.. colorded red.

Must be at least one pt left — blue.

Can't have Red=+, Blue = —

= H_4 = {monotone disjunctions (7 features) }

n

n

Clearly > n as {100, 010, 001}.
Can not be >n as only 2" monotone disjunctions

H,, = {all boolean functions on n features }

52

How does VCdim
i measure Complexity?

= Def'n: HIm] = maximum number of ways to split
m points using concepts in H

s For m < VCdim(H), Hlm] = 2m
For m > VCdim(H) , ...
= Theorem: H[m] = O(mVcdim(H))
= Ie, only C[m] “different” concepts in H)

wrt any set of m examples.

—?Replace In(|H|) by In(H[m]) in PAC bounds

YES (kinda)! . . . but NOT OBVIOUS,
since different data = different concepts

53

i Upper/Lower Bounds using VCdim

= Theorem 1: Given class C,
for any distribution D, target concept in C,
given a sample size:

L (41005 (2) + 8VCdim(C)log, (12))

then with prob>1 -39,
any consistent h € C has error < ¢,

= Theorem 2: If |C| < 2, then
for any learning alg A,
3 distribution D over X, distribution over C s.t.
expected error of Ais > ¢
if A sees sample of size under

VCdim(C) -1
32¢

54

i Comments on VC Dimension

= VCdim provides good measure of complexity of
class:

Upper/Lower (worst case) bounds:

O(VCdim(C))

= Does this mean. . .
= ... can't learn classes of infinite VCdimension?
A: No: just use poly dependence on size(c)
= ... complicated hypotheses are bad?

A: No. Just need a lot of data to learn complicated
concept classes...

55

Proof of Theorem#2 (Sketch)

VCdim(C)—1
= Theorem 2: ... need at least m = m(c)

S€

(#examples needed for uniform convergence
...forallbad he Ctolook bad...)

Proof: Consider d = VCdim(C) points { Xy, X5, ..., X4 J

that can be shattered by target concepts { ¢ },_,2"¥

= Define distribution D:
= 1—-4eonx,
= 4¢/(d - 1) on each other
« Given m instances, expect to see only 2 of { x,, ..., X4 }
so E[#notSeen]>(d-1)/2
= As can only do 50/50 on instances NOT seen,

expected erroris #notSeen 2 4¢/(d—1) =¢ ,

‘L Summary of Training vs Test Error

e ¢ = “true" error of hyp h
e* = minimum true error of any member of 'H

er = ‘training set" error of hyp h

e After m examples, w/ probability > 1 —4, ...

— Finite Hypothesis Class; “Realizable”

e < i{ln|ﬁ|+ln£}
m d

— Finite Hypothesis Class; “UnRealizable”

e < e+ i{lnﬁﬂ—klnﬂ

- 2m

— d=Vcdim(H)

e 4
{dlog Edm +1n _]

4
e < 27+ — 5

m 57

Case 4:
i Why SINGLE Hypothesis Space?

= Large H is likely to include (approx to) target c

but . ..

= W/few examples, cannot reliably find good
hypothesis from large hypothesis space

= Thatis...
= Underfitting: Every h € H has high ¢;
— consider larger hypothesis space H' > H
= Overfitting: Many h € H have e =0
= consider smaller H” < H to get lower ¢
— To learn effectively (> 1 — ¢) from m instances,

only consider Hs.t. | H | = egm -

How Learning Algorithms
Manage This Tradeoff

S1: Start with small hypothesis space Hq

S2: Grow hypothesis space
Hi{ CHr CHz C...
until finding a good (nearly consistent) hypothesis

Egl H; ="leaf”, then
H> ="one DecTree node”, then
‘Hz ="two DecTree nodes”, then ...

Eg2 Hi =‘“constants”, then
‘H- ="“linear functions", then
‘Ha =*"quadratic functions', then ...

Approaches
1. Easy: |J, H: countable, and realizable

2. General: Structural Risk Minimization

3. "Occam Algorithms"

59

#4a: Dealing w/~ Set of Hypotheses

e Incremental algorithms:
HiCH>zC...CHoC ...

1-DNF Cc 2—-DNF C 3—DNF C ...

Assume: m(H,;, e, 6) instances sufficient to PAC(e, é)-learn H;

Alg? Assume target in H

Draw m(Hq, e,) instances
Stop if find good hy € 'H1
Otherwise. . .

Assume target in 'H

Draw m(Ha, e,) more instances
Stop if find good ha € H2
Otherwise. . .

Assume target in ‘H;

Draw m(H;, e,) more instances
Stop if find good h; € 'H;
Otherwise. . .

60

i Correct Algorithm?

= Q: Suppose find “good” h, at iteration k.
What is prob of making mistake?

s A: P(mistake) = >._; P(mistake @ iteration i)
< 21 k0 <ko

— Need touse o, s.t. 2., 0, <06 foranyk

m Eg Bi = 5/2'
= Note: P(mistake) < >._, 6 =d2_;, V21 =9

= Takes k bits to identify member of 2k-size hypothesis space
= ... takes k bits just to express such a hypothesis

— reasonable to allow learning alg’'m time poly in
1/e, 1/6 and SIZE OF HYPOTHESIS

61

‘L #4b: Structural Risk Minimization

= Consider

= nested series: H cH,c... cH, c.
= With VCdim: d; < d, £ ... £d, <.
= training errors: ¢, >¢, > > € > ..
s Choose h, € H, that minimizes
. 4 [2em 4
e < 2" 4+ —|d;log - In—
m | dj, d

62

Structural Risk Minimization

For h € ' H

L(h) Probability of miss-classification

L, () Empirical fraction of miss-classifications

Vapnik and Chervonenkis 1971: For any
distribution with prob. 1 — 0, Vh € 'H.

. VCdim(H)logn + log §

CINP. EITOT —— !
complexity penalty

63

‘L An Improved VC Bound II

Canonical hyper-plane:

min |w'x, +b/ =1
1<i<n

(No loss of generality)

Improved VC Bound (Vapnik 95) VC
dimension of set of canonical hyper-planes such

that
wif = A
x; € Ball of radius L
is
‘ VCdim < min(A%L?,d) + 1 ’
Observe: Constraints reduce VC-dim bound

Canonical hyper-planes with mini-
mal norm vields best bound
Suggestion: Use hyper-plane with minimal

11OTINn

64

i Case 5: Data Dependent Bounds

= So far, bounds depend only on
= €7
= quantities computed prior to seeing S
(eg, size of H)
— “worst case”
as must work for all but & of possible training sets

= Data dependent bounds consider how h fits data
« If S is not worst case training set

— tighter error bound!

65

Margin Bounds

e ¢g(x) is real-valued function
“thresholded at 0" to produce h(x):

g(z) >0 = h(z) =41
g(z) <0 = h(z)=-1

e Margin of h(z) wrt S is
1(9,5) = mini{y;g(zi)}

66

$ Margin Bounds: Key Intuition

Let G = {g(x)} = set of real-valued functions
that can be thresholded at 0 to give h(x).

e Consider “thickening” each g e &G
... must correctly classify every point w/ margin = -~

e fat shattering dimension: fat,(G)

= VCdim of these “fat” separators
Note fat,(G) < VCdim(G)

67

‘L Noise Free Margin Bound

e Spse find ge G
with margin v = ~(g, S)
for a training set of size m

e [hen, with probability 1 — &

2em 32m 4

log > + log —

2
< —|dlo
€ =~ d 5

m dy

d = fat ,5(G) with margin ~/8

e Note fat.(G) kinda-like VCdim(G) !

68

Soft Margin Classification (2)

e Error rate of linear separator with
unit weight vector and
margin v on training data
lyving in a sphere of radius R
is, with probability = 1 — 9,

C [B24]€l2 |02 1
e =< = —z log<m + log 5

(constant C')

= we should
— maximize margin -y

— minimize slack [|£]|2

.. .See support vector machines!

69

Fat Shattering for Linear Separators:
Noise-Free

Spse support for P(x) within sphere of radius R
x| =R

G={glg(x)=w -x & ||lw|| =1}

=2 [

Then fat,(G) = (&)

SR2

— P < %{Gdﬁ log ey log 32?1’1 4 |C|'QE;
— R2
< o)

— For fixed R, m:
seek g that maximizes ~ |

maximum margin classifier

e Even with kernel K(-,-)... where ||x| = v/ K(x,x)
70

‘L Soft Margin Classification

e Extension of margin analysis:
VWhen data is not linearly separable:

e & = max{0, v — v, g(x;}
“margin slack variable’ for (x;.y;)

Note: & >+ = x; misclassified by h

¢ & = (E1,.. .. Em)
“margin slack vector for h on S”

Irrelevant Features

= Consider learning CD(n) = disjunction of n features

“List-then-Eliminate” makes O(n) mistakes
= PAC-learning: O(n/e log(1/d))
= Spse n is HUGE
= Words in text
= Boolean combination of “atomic” features
= Features extracted in 480x560 image
... butonly r << n features “relevant”
» Eg: concept X, V —Xg; V —1X503 V Xgq7
= Jlearning alg that makes O(r In n) mistakes!

“Winnow"”

72

i Winnow Algorithm

= Initialize weights w,, ..., w to 1

= Do until bored:
= Given example x =[xy, ..., X,],
If wiX; +W,o%X, + ...+W X, > n
output 1 otherwise 0
« If mistake:
= (@) If predicts 0 on 1-example, then
foreach x, = 1, set w, := w, x 2
= (b) If predicts 1 on 0-example, then
foreach x, = 1, setw, :=w, / 2

73

Winnow's Effectiveness

Theorem Winnow MB-learns CD(n), making at most

2+3r(1+Ig n) mistakes when target concept is
disjunction of r var's.

Proof: 1. Any mistake made on 1-example must double params

= >1 weights in target function (the relevant weights),
= & mistake on 0-example will not halve these weights.

Each “relevant” weight can be doubled < 1+Ig n times,
since only weights < n can be doubled.

(Never double any weight w; > n as that weight alone = class is 1)

= Winnow makes < r(1+Ig n) mistakes on 1-examples
2. Negative examples?

Let sw; be sum of weights > w; = n, at time t.
Initially swy = n.
Each mistake on 1-example increases sw by < n

(. . . before doubling, we know w;x; +W,X, + ...+W_ X, < n)
Each mistake on 0-example decreases sw by > n/2

(. . . before halving, we know w;x; +W,X, + ...+W.X,>n)
As sw > 0, number of mistakes made on 0-examples
< 2+ 2number of mistakes made on 1-examples.

So total # of mistakes is r(1+In n) + [2+2r(1+Ig n)] 74

Incorporating Winnow
Into PAC Model

= Given a MB(M)-learner, can PAC(g,0)-learn
= Return any h. that makes :'ea(f) correct predictions
= Requires m =2log(d) =28 jog(m2)) jnstances

s Better PAC-learner: ©¢:lrlea(n) +loa(5)])

1. Draw m, = 4/e max { M, 2 In(2/ 8) } instances, S,
2. Run Winnow (a MB-learner) on S,,

generating < M hypotheses H = { h, ..., hy }
3. Draw m, = O(8/ ¢ log(2M / &)) more instances S,
4. Use S, to find best hypothesis, h™ in H
5. Return h*

= Why: Most e-bad hypotheses have error >> ¢
= reveal "badness” in < lloa(X) instances

75

Proof

= M, guarantees that > 1 of H is good
m, distinguishes good h* from bad members of H.

m After m, instances, > 1 of H has error < ¢/2

PROOF: Spse first k — 1 hyp's all have error > ¢/2,
and h, had error <¢g/2

What is prob that h, occurs after m, instances?

Worst if kK = M and each erry(h,) = ¢/2

Chernoff bounds = 6/2:

= Consider flipping (sequence of M) e/2 weighted coins

= (each “head” = error)

= After m, flips, expect m, x ¢/2 < 2M “heads”

= Prob of getting under M (< %2 exp. number) heads
< P(Yy<(1-=")¢/2) < exp(—Meg/2 2)/2)
< exp(—Mg/8) <o

76

i Proof (II)

Use m,, select h* w/ errg(h*) <34 ¢
With prob > 1 -8/2 erry(h™) <e

PROOF: Need to show err¢(h;)
[average # mistakes made by h. over m, samples]
is within 3/4 of y, = erry(h;)
s P(errg(h) <erryg(h) x (1 - 1/4))< exp(—(m, e ¥4)/2) < &6/ (2M)
= So prob ANY h.e€ H is off by < 3/4 is under & /2
= m, is leading term

= O(1/¢ [r log(n)+log(1/0)])
= Best known bound for learning rof n disjuncts!

= Note: Might NOT find 0 error r-disjunction. . .

77

