

Thanks to A Blum

Computational Learning Theory

Inductive Learning

- Protocol
- Error
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: Conjunction, Decision List
- Issues
 - Bound
 - Other Models

What General Laws

constrain Inductive Learning?

- Sample Complexity
 - How many training examples are sufficient to learn target concept?
- Computational Complexity
 - Resources required to learn target concept?
- Want theory to relate:
 - Training examples
 - Quantity
 - Quality
 - How presented
 - These results only useful wrt O(...) ! Complexity of hypothesis/concept space
 - Accuracy of approx to target concept
 - Probability of successful learning

Protocol

- Given:
 - space of examples X
 - fixed (unknown) distribution *D* over *X*
 - set of hypotheses H
 - set of possible target concepts C
- Learner observes sample $S = \{ \langle x_i, c(x_i) \rangle \}$
 - instances x_i drawn from distr. D
 - Labeled c(x) by target concept $c \in C$ (Learner does NOT know c(.), D)
- Learner outputs h ∈ H estimating C
 - h is evaluated by performance on subsequent instances drawn from *D*
- For now:
 - C = H (so $C \in H$)
 - Noise-free data

- target concept c
- distribution D
- = probability that h will misclassify instance drawn from D

 $\operatorname{err}_{D}(h) = \operatorname{Pr}_{x \in D}[c(x) \neq h(x)]$

Probably Approximately Correct

Goal: PAC-Learner produces hypothesis \hat{h} that is approximately correct, $err_{D}(\hat{h}) \approx 0$ with high probability $P(err_{D}(\hat{h}) \approx 0) \approx 1$

- Double "hedging"
 - approximately
 - probably

Need both!

PAC-Learning

Learner L can draw labeled instance 〈 x, c(x) 〉 in unit time
 x ∈ X drawn from distribution D labeled by target concept c ∈ C

- Sufficient:
 - 1. Only poly(...) training instances $|H| = 2^{poly()}$
 - 2. Only poly time / instance ...

Often C = H

Simple Learning Algorithm: Consistency Filtering

- Draw $m_H(\epsilon, \delta)$ random (labeled) examples S_m
- Remove every hyp. that contradicts any $\langle x, y \rangle \in S_m$
- Return any remaining (consistent) hypothesis

Challenges:

- Q1: Sample size: $m_H(\epsilon, \delta)$
- Q2: Need to decide if $h \in H$ is consistent w/ all S_m ... efficiently ...

Boolean Functions (≡ Concepts)

... then pick ANY of the remaining good $(err_{D,c}(h) < \epsilon)$ hyp's

Find *m* large number that very small chance that a "bad" hypothesis is consistent with *m* examples

Sample Bounds – Derivation

- Let h_1 be ϵ -bad hypothesis ... err(h_1) > ϵ
 - \Rightarrow h₁ mis-labels example w/prob P(h₁(x) \neq c(x)) > ϵ
 - \Rightarrow h₁ correctly labels random example w/prob $\leq (1 \epsilon)$
- As examples drawn INDEPENDENTLY $P(h_1 \text{ correctly labels } m \text{ examples }) \le (1 - \varepsilon)^m$

Sample Bounds – Derivation II

Let h_2 be another ϵ -bad hypothesis

What is probability that *either* h₁ or h₂ survive m random examples?

P($h_1 v h_2$ survives)

- = $P(h_1 \text{ survives }) + P(h_2 \text{ survives })$ - $P(h_1 \& h_2 \text{ survives })$
- $\leq P(h_1 \text{ survives }) + P(h_2 \text{ survives })$ $\leq 2 (1 - \varepsilon)^m$
- If $k \varepsilon$ -bad hypotheses $\{h_1, ..., h_k\}$: P($h_1 v ... v h_k$ survives) ≤ k (1 - ε)^m

Sample Bounds – Derivation

- Let h_1 be ε -bad hypothesis ... err(h_1) > ε
 - \Rightarrow h₁ mis-labels example w/prob P(h₁(x) \neq c(x)) > ϵ
 - \Rightarrow h₁ correctly labels random example w/prob \leq (1 ε)
- As examples drawn INDEPENDENTLY

 $P(h_1 \text{ correctly labels } m \text{ examples }) \le (1 - \epsilon)^m$

- Let h₂ be another ε-bad hypothesis
- What is probability that either h₁ or h₂ survive m random examples?

 $P(h_1 v h_2 \text{ survives })$

= $P(h_1 \text{ survives }) + P(h_2 \text{ survives }) - P(h_1 \& h_2 \text{ survives })$ $\leq P(h_1 \text{ survives }) + P(h_2 \text{ survives })$ $\leq 2 (1 - \epsilon)^m$

Sample Bounds, con't

Let $H_{bad} = \{ h \in H \mid err(h) > \epsilon \}$ Probability that any $h \in H_{bad}$ survives is

P(any h_b in H_{bad} is consistent with m exs.) $\leq |H_{bad}| (1 - \varepsilon)^m \leq |H| (1 - \varepsilon)^m$

- This is $\leq \delta$ if $|\mathbf{H}| (1 \varepsilon)^{\mathsf{m}} \leq \delta$ \Rightarrow $m_{H}(\varepsilon, \delta) \geq \left(\log \frac{|\mathbf{H}|}{\delta}\right) / -\log(1 - \varepsilon) \geq \frac{1}{\varepsilon} \left(\log \frac{|\mathbf{H}|}{\delta}\right)$
- m_H(ε, δ) is "Sample Complexity" of hypothesis space H
 Fact: For 0 ≤ ε ≤ 1, (1 − ε) ≤ e^{-ε}

Sample Complexity

- Hypothesis Space (expressiveness):
- Error Rate of Resulting Hypthesis: ε ■ $err_{D,c}(h) = P(h(x) \neq c(x)) \leq ε$
- Confidence of being ε-close:

•
$$P(\operatorname{err}_{D,c}(h) \le \varepsilon) > 1 - \delta$$

Sample size:

 $m_{H}(\epsilon, \delta)$

δ

Any hypothesis consistent with

$$m_{H}(\varepsilon,\delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

examples,

has error of at most ε , with prob $\leq 1 - \delta$

Boolean Function... Conjunctions

- Boolean Instance: $\langle x_1, ..., x_n \rangle$ $\langle 1, 0, 1, 1 \rangle$ for $\langle x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1 \rangle$)
- Boolean Function: $f(\langle x_1, \ldots, x_n \rangle) \in \{0, 1\}$
- Conjunction (type of Boolean function)

$$\begin{aligned} f_{+-0-0+}(X) &= x_1 \, \bar{x_2} \, \bar{x_4} \, x_6 \\ &= \begin{cases} 1 & \text{if } x_1(X) = t, \, x_2(X) = f, \, x_4(X) = f \\ & \text{and } x_6(X) = t \\ 0 & \text{otherwise} \end{cases} \\ f_{+-0-0+}(\langle \underline{1}, \, \underline{0}, \, 1, \, \underline{0}, \, 0, \, \underline{1} \rangle) &= 1 \\ f_{+-0-0+}(\langle \underline{0}, \, \underline{0}, \, 1, \, \underline{0}, \, 0, \, \underline{1} \rangle) &= 0 \end{aligned}$$

(Ie, must match each literal mentioned)

 Only 3ⁿ possible conjunctions out of 2^{2ⁿ} boolean functions! • \mathcal{H}_C = conjunctions of literals

• $|\mathcal{H}_C| = 3^n$: $\begin{pmatrix} \text{Each variable can be} \\ \circ \text{ included positively "}x_i", \\ \circ \text{ included negatively "}\bar{x}_i", \\ \circ \text{ excluded} \end{pmatrix}$ $\Rightarrow m_{\mathcal{H}_C}(\epsilon, \delta) = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$ Alg: Collect $m_{\mathcal{H}_c}(\epsilon, \delta) = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$ labeled samples Let $h = x_1 \bar{x}_1 x_2 \bar{x}_2 \cdots x_n \bar{x}_n$ For each +-example $y = \bigwedge_i \pm_i x_i$ Remove from h any literal NOT included in y

- Just uses +-examples!
 - Finds "smallest" hypothesis (true for as few +examples as possible)
 - … No mistakes on –examples
- As each step is efficient O(n), only poly(n, $1/\epsilon$, $1/\delta$) steps
 - \Rightarrow algorithm is *efficient!*

- Just uses +-examples!
 - Finds "smallest" hypothesis (true for as few +examples as possible)
 - ... No mistakes on –examples
- As each step is efficient O(n), only poly(n, $1/\epsilon$, $1/\delta$) steps
 - \Rightarrow algorithm is *efficient!*

PAC-Learning k-CNF

- $CNF \equiv Conjunctive Normal Form$ $(x_1 \lor \bar{x}_2 \lor x_7) \land (x_2 \lor x_4 \lor \bar{x}_9) \land \ldots \land (x_7 \lor \bar{x}_8 \lor \bar{x}_9)$
- k CNF ≡ CNF where each clause has ≤ k literals
 1-CNF ≡ Conjunctions

• As
$$\exists O(\binom{n}{k} 3^k)$$
 possible $\leq k$ -clauses,
 $|\mathcal{H}_{k-CNF}| = 2^{O(\binom{n}{k} 3^k)}$
 $\Rightarrow m_{\mathcal{H}_{k-CNF}} = O\left(\frac{1}{\epsilon} \left[(3n)^k + \ln \frac{1}{\delta}\right]\right)$

Alg: Consistency Filtering: Let $T = \text{all } O(\binom{n}{k} 3^k)$ possible k-clauses. After each +-example y, Remove from T all clauses INCONSISTENT w/ yReturn $\bigwedge T$

Similar for Disjunctions, k-DNF, ...

? What about
$$CNF \equiv n-CNF$$
?

Example of Learning DL Label iτ Data: 63 1. When $x_1 = 0$, class is "B" Form $h = \langle \neg \mathbf{x}_1 \mapsto \mathbf{B} \rangle$ Eliminate i_2 , i_4 2. When $x_2 = 1$, class is "A" Form $h = \langle \neg \mathbf{x}_1 \mapsto \mathbf{B}; \mathbf{x}_2 \mapsto \mathbf{A} \rangle$ Eliminate i₃, i₅ 3. When $x_4 = 1$, class is "A" Form $h = \langle \neg \mathbf{x}_1 \mapsto \mathbf{B}; \mathbf{x}_2 \mapsto \mathbf{A}; \mathbf{x}_4 \mapsto \mathbf{A} \rangle$ Eliminate i₁ 4. Always have class "B" Form $h = \langle \neg \mathbf{x_1} \mapsto \mathbf{B}; \mathbf{x_2} \mapsto \mathbf{A}; \mathbf{x_4} \mapsto \mathbf{A}; \mathbf{t} \mapsto \mathbf{B} \rangle$ Eliminate rest (i_6)

PAC-Learning Decision Lists

Let: S = set of $m_{DL} = O(\frac{1}{\epsilon}[n\ln(n) + \ln\frac{1}{\delta}])$ training instances h = empty listR = all 4n possible rules While $S \neq \{\}$ do 1. Find $r \in R$ s.t. + consistent w/ S+ r applies to $> 1 s \in S$ (If none, halt w/ "Failure") 2. $h := h \circ r$ (Put rule at BOTTOM of hypothesis) 3. $S := S - \{s \mid s \text{ classified by } h\}$ (Throw out examples classified by current hypothesis)

Proof (PAC-Learn DL)

- Yes. $\frac{1}{\epsilon} \ln \frac{|\mathcal{H}_{DL}|}{\delta}$
- Correctness#2: Consistency?
 - If \exists DL consistent w/data...
 - $\exists \ge 1$ choice for step 1 (eg, first rule in L satisfied by ≥ 1 example)
 - ∃ DL consistent w/ remaining data: original DL!
- Efficiency: Algorithm runs in poly time, since
 - each iteration requires poly time, and
 - each iteration removes ≥ 1 example (only poly examples)
- Generalization: k-DL
 - ... whose nodes each contain CONJUNCTION of k literals (So earlier $DL \equiv 1$ -DL)

k-DL \supset k-CNF, k-DNF, k-depth DecTree, ...

Why Learning May Succeed

Learner L produces classifier h = L(S) that does well on training data S Why?

- 1. If x appears alot
 - then x probably occurs in training data S
 - As h does well on S, h(x) is probably correct on x

2. If example x appears rarely ϵ (P(x) ≈ 0)

then h suffers only small penalty for being wrong.

δ

- Assumption: Distribution is "stationary"
 - distr. for testing = distr. for training

Comments on Model

Simplify task:

$$m_{H}(\varepsilon,\delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- 1^* . Assume $c \in H$, where H known
 - (Eg, lines, conjunctions, . . .)
- 2*. Noise free training data
- 3. Only require approximate correctness:
 - h is " ϵ -good": P_x(h(x) \neq c(x)) < ϵ
- 4. Allow learner to (rarely) be completely off
 - If examples NOT representative, cannot do well.
 - P(h_L is ϵ -good) $\geq 1 \delta$

Complicate task:

- 1. Learner must be computationally efficient
- 2. Over any instance distribution

Comments: Sample Complexity

$$m_{H}(\varepsilon,\delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- If k parameters, $\langle v_1, ..., v_k \rangle$ $\Rightarrow |H_k| \approx B^k$ $\Rightarrow m_{H_k} \approx \log(B^k)/\epsilon \approx k/\epsilon$
- Too GENEROUS:
 - Based on pre-defined C = {c_{1,...}} = H Where did this come from???
 - Assumes $c \in H$, noise-free
 - If err \neq 0, need O($1/\epsilon^2$...)

Why is Bound so Lousy!

- Assumes error of all ε -bad hypotheses $\approx \varepsilon$ (Typically most bad hypotheses are really bad y It N. bad, takes = 112 to see evidence \Rightarrow get thrown out much sooner)
- Uses $P(A \text{ or } B) \leq P(A) + P(B)$.

(If hypotheses are correlated, then if one inconsistent, others probably inconsistent too)

- Assumes $|H_{bad}| = |H|$... see VC dimension
- WorstCase:
 - over all $c \in C$
 - over all distribution D over X
 - over all presentations of instances (drawn from D)
- Improvements
 - "Distribution Specific" learning Known single dist (ϵ -cover) Gaussian, ...
 - Look at samples! \Rightarrow Sequential PAC Learning

Fundamental Tradeoff in Machine Learning

$$m_{H}(\varepsilon,\delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- Larger H is more likely to include
 - (approx to) target f
 - but it requires more examples to learn
- w/few examples, cannot reliably find good hypothesis from large hyp. space
- To learn effectively (ϵ) from small # of samples (m), only consider H where $|H| \approx e^{\epsilon m}$
- Restrict form of Boolean function to reduce size of hypotheses space.
 - Eg, for $H_c = conjunctions$ of literals, $|H_c| = 3^n$, so only need poly number of examples!
 - Great if target concept is in H_c, but ...

Computational ComplexitySampling Issues:

Learning = Estimation + Optimization

- 1. Acquire required relevant information by examining enough labeled samples
- 2. Find hypothesis $h \in H$ consistent with those samples
 - ... often "smallest" hypothesis
- Spse H has 2^k hypotheses
 Each hypothesis requires k bits
 ⇒ log |H| ≈ |h| = k
 ⇒ SAMPLE COMPLEXITY not problematic
- But optimization often is... intractable!
 - Eg, consistency for 2term–DNF is NP-hard, ...
- Perhaps find best hypothesis in $F \supset H$
 - 2-CNF ⊃ 2term-DNF
 - ... easier optimization problem!

Extensions to this Model

- Ockham Algorithm: Can PAC-learn H iff
 - can "compress" samples
 - have efficient consistency-finding algorithm
- Data Efficient Learner

Gathers samples sequentially, autonomously decides when to stop & return hypothesis

- Exploiting other information
 - Prior background theory
 - Relevance

 Degradation of Training/Testing Information
 {
 Error
 Omissions
 }
 in
 {
 Training
 }
 {
 Attribute Value
 ClassLabel
 }
 3

Other Learning Models

- Learning in the Limit [Recursion Theoretic]
 - Exact identification, no resource constraints
- On-Line learning
 - After seeing each unlabeled instance, learner returns (proposed) label
 - Learner then given correct label provided (penalized if wrong)
 - Q: Can learner converge, after making only k mistakes?
- Active Learners
 - Actively request useful information from environment
 - "Experiment"
- "Agnostic Learning"
 - What if target $\neg [f \in H]$?
 - Want to find CLOSEST hypotheses...
 - Typically NP-hard. . .
- Bayesian Approach: Model Averaging, . . .

Computational Learning Theory

- Inductive Learning is possible
 - With caveats: *error*, *confidence*
 - Depends on complexity of hypothesis space
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: Conjunctions, DecisionLists
- Many other meaningful models

Terminology

- Labeled example: Example of form (x, f(x))
- Labeled sample: Set of { (x_i; f(x_i)) }
- Classifier: Discrete-valued function. Possible values f(x) ∈ { 1, ..., K } called "classes"; "class labels"
- **Concept**: Boolean function.
 - x s.t. f(x) = 1 called "positive examples"
 - x s.t. f(x) = 0 called "negative examples"
- Target function (target concept): "True function" f generating the labels
- Hypothesis: Proposed function h believed to be similar to f.
- Hypothesis Space: Space of all hypotheses that can, in principle, be output by a learning algorithm
Computational Learning Theory

- Framework/Protocols
- 1. Finite *H*, Realizable case
- 2. Finite *H*, Unrealizable case
 - 3. Infinite \mathcal{H}

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- 5. Data-dependent Bounds

(Max Margin)

- 6. Mistake Bound (Winnow)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms

Case 2: Finite *H*, Unrealizable

- What if perfect classifier \notin hyp. space \mathcal{H} ?
 - either none exists (data inconsistent) or
 - hypothesis space is restricted
- Let: $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{D}(h) \}$ be optimal $h \in \mathcal{H}$
- Want: \hat{h} s.t. $err_{D}(\hat{h}) \leq err_{D}(h^{*}) + \varepsilon$

Case 2: Finite *H*, Unrealizable

- What if perfect classifier \notin hyp. space \mathcal{H} ?
 - either none exists (data inconsistent) or
 - hypothesis space is restricted
- Let: $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{D}(h) \}$ be optimal $h \in \mathcal{H}$
- Want: \hat{h} s.t. $err_{D}(\hat{h}) \leq err_{D}(h^{*}) + \varepsilon$

Draw $m = m(\varepsilon, \delta)$ instances S

• Alg: Return $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{S}(h) \}$ with optimal empirical score, over S

 $(\underline{err}_{S}(h) = 1/m \sum_{x \in S} err(h, x)$ is EMPIRICAL score)

Issues:

- How many instances?
- Computational cost of argmin_{h∈ H} { err_s(h) }

40

Sample Complexity

• Step1: Sufficient to estimate ALL h's to within $\varepsilon/2$. $|\operatorname{err}_{D}(h) - \operatorname{err}_{S}(h)| \le \varepsilon/2$ If so, then $e_{D}(\hat{h}) - e_{D}(h^{*})$ $= e_{D}(\hat{h}) - \underline{e}_{S}(\hat{h}) + \underline{e}_{S}(\hat{h}) - \underline{e}_{S}(h^{*}) + \underline{e}_{S}(h^{*}) - e_{D}(h^{*})$ $\le \varepsilon/2 + 0 + \varepsilon/2 = \varepsilon$

Sample Complexity, con't

Ġoal: Want enough instances that, w/prob $\geq 1 - \delta$

 $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{S}(h) \}$ is within ε of $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{D}(h) \}$

• Step2: Sufficient to estimate EACH h's to within $\varepsilon/2$ with prob $\ge 1 - \delta / |\mathcal{H}|$ If so, then $P(\exists h \in \mathcal{H} | err_D(h) - err_S(h) | \le \varepsilon/2)$ $\le \sum_{h \in \mathcal{H}} P(err_D(h) - err_S(h) | \le \varepsilon/2)$ $\le |\mathcal{H}| - \delta / |\mathcal{H}| = \delta$

• Step3: How many instances s.t. $P(|err_D(h) - err_S(h)| \le \varepsilon/2) \le \delta / |\mathcal{H}|$?

Complexity of "Agnostic Learning"

Sample Complexity: Good news!

• Hoeffding Inequality \Rightarrow Need only m

$$(\varepsilon, \delta) = \frac{2}{\varepsilon^2} \ln \frac{2|H|}{\delta}$$

 $\leq 2 \exp(-2 m (\epsilon/2)^2) \leq \delta / |\mathcal{H}|$

• **Computational Complexity**: Bad news!

NP-hard to find CONJUNCTION $h \in \mathcal{H}$ that is BEST FIT to DNF $c \in C$

(target space = DNF; hypothesis space = Conjunctions)

 Note: Sample size typically poly; Hardness tends to be Consistency/Optimization

Case 3: ∞ Hypothesis Spaces \Rightarrow VC Dim

Learning an initial subinterval.
 "Factory is ok *iff* Temperature ≤ a" for some (unknown) a ∈ [0, 100]
 ⇒ target concept is some initial interval C = H = { [0, a] | a ∈ [0, 100] }

Clearly poly time per example.
 How many examples?

Uniform Convergence

- Simultaneously estimating all { $[a_{\varepsilon}, a] \mid a \in [0, 100]$ }!
- Q: Why possible?
- A: Only one "degree of freedom"
 - \Rightarrow each sample provides LOTS of information about many hypothesis
- Q: How much is a degree of freedom worth? Are they all worth the same?
- A: Look at "effective number" of concepts, as fn of number of data points seen. Only grows linearly....
- Number of "effective degrees of freedom": called "VC-dimension"

Shattering a Set of Instances

• Hypothesis class \mathcal{H} trivially fit

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$$

if

 \forall labeling of examples in **X**,

 $\exists h \in \mathcal{H}$ matching labeling

■ k instances;
$$|\mathcal{H}| \ge 2^k$$

Any subset of size k – 1 is unconstrained!

- Defn: Set of points $\mathbf{X} = \{x_i\}$ is shattered by hypothesis class \mathcal{H} if
 - $\forall \mathbf{S} \subset \mathbf{X}, \exists \mathbf{h}_{\mathbf{S}} \in \boldsymbol{\mathcal{H}} \text{ s.t.}$
 - $h_{S}(x) = 1 \quad \forall x \in S$
 - $h_{S}(x) = 0 \quad \forall \ x \notin S$

Example of Shattering

H = { [a, b] | a < b } = intervals on real line Can shatter (any!) 2 points:

■ ∃ 3 points that can NOT be shattered:

Vapnik-Chervonenkis Dimension

- Def'n: VCdim of concept class *H*
 - \equiv largest # of points shattered by \mathcal{H}
 - If arbitrarily large finite sets of X shattered by ℋ, then VCdim(ℋ) = ∞
 - VCdim(\mathcal{H}) = d \Leftrightarrow

 \exists set of d points that can be shattered, but no set of d+1 points can be shattered

- Note: $VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$
- VCdim(\mathcal{H}) measures complexity of \mathcal{H}

... how many distinctions can its elements exhibit

VC-dimension: Linear Separator

- $\mathcal{H}_{\underline{es2}} = \{ [w_0, w_1, w_2] \in \Re^3 \}$ = linear separators in 2-D
- Trivial to fit (any non-linear!) 3 points

- But cannot shatter ANY set of 4 points
 - If one point inside convex hull of others, can not make inside "-" and outsides "+"
 - Otherwise, label alternatingly in cycle
 - \Rightarrow VC (\mathcal{H}_{LS2})=VC(LinearSeparator in 2Dim) = 3

Some VC Dims

- VCdim(LinearSeparator in k-Dim) = k + 1
- Multi-layer perceptron network over n inputs of depth s:

 $d \le 2(n+1)s(1+ln s)$

- Exact value for sigmoid units is ?unknown?
 ... probably slightly larger...
- Typically VCdim(model) ≈
 # of non-redundant tunable parameters

H_{box} = {axis-parallel boxes in 2-D}

Consider 5 points. Draw smallest enclosing axis-parallel box. For each side of box, pick one point.. colorded red. Must be at least one pt left – blue. Can't have Red=+, Blue = —

H_{md} = {monotone disjunctions (*n* features) }

n

Clearly \geq n as {100, 010, 001}. Can not be >n as only 2ⁿ monotone disjunctions

H_{all} = {all boolean functions on n features }
 2ⁿ

How does VCdim measure Complexity?

- Def'n: H[m] = maximum number of ways to split m points using concepts in H
- For $m \leq VCdim(H)$, $H[m] = 2^m$ For $m \geq VCdim(H)$, ...
- Theorem: H[m] = O(m^{VCdim(H)})
 - Ie, only C[m] "different" concepts in H wrt any set of m examples.

⇒[?] Replace ln(|H|) by ln(H[m]) in PAC bounds YES (kinda)! . . . but NOT OBVIOUS, since different data ⇒ different concepts

Upper/Lower Bounds using VCdim

Theorem 1: Given class C, for any distribution D, target concept in C, given a sample size:

 $\frac{1}{\epsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \operatorname{VCdim}(\mathcal{C}) \log_2 \left(\frac{13}{\epsilon} \right) \right)$

then with prob $\geq 1-\delta$, any consistent $h\in C$ has error $\leq \epsilon.$

 Theorem 2: If |C| ≤ 2, then for any learning alg A,
 ∃ distribution D over X, distribution over C s.t. expected error of A is > ε if A sees sample of size under
 VCdim(C) - 1 32ε

Comments on VC Dimension

VCdim provides good measure of complexity of class:

Upper/Lower (worst case) bounds:

 $\widetilde{\Theta}(VC\dim(C))$

- Does this mean. . .
 - … can't learn classes of infinite VCdimension?
 - A: No: just use poly dependence on size(c)
 - ... complicated hypotheses are bad?
 - A: No. Just need a lot of data to learn complicated concept classes...

Proof of Theorem#2 (Sketch)

Theorem 2: ... need at least m

 $\frac{\operatorname{VCdim}(\mathcal{C})-1}{8\epsilon}$

(#examples needed for uniform convergence

... for all bad $h \in C$ to look bad ...)

Proof: Consider d = VCdim(C) points { $x_1, x_2, ..., x_d$ } that can be shattered by target concepts { c_i }_{i=1}^{2^k}

- Define distribution D:
 - $1 4\epsilon$ on x_1
 - $4\epsilon / (d 1)$ on each other
- Given m instances, expect to see only $\frac{1}{2}$ of { x_2 , ..., x_d } so $E[\#notSeen] \ge (d 1) / 2$
- As can only do 50/50 on instances NOT seen, expected error is $\# \text{notSeen } \frac{1}{2} \frac{4\epsilon}{d-1} = \epsilon$

56

- $\epsilon~=$ "true" error of hyp h
 - $\epsilon^*~=$ minimum true error of any member of ${\mathcal H}$
 - ϵ_T = "training set" error of hyp h
- After *m* examples, w/ probability $\geq 1 \delta$, ...
 - Finite Hypothesis Class; "Realizable"

$$\epsilon \leq \frac{1}{m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]$$

- Finite Hypothesis Class; "UnRealizable"

$$\epsilon \leq \epsilon^* + \sqrt{\frac{1}{2m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]}$$

 $- d = \mathsf{VCdim}(\mathcal{H})$

$$\epsilon \leq 2\epsilon_T + \frac{4}{m} \left[d \log \frac{2em}{d} + \ln \frac{4}{\delta} \right]$$

Case 4: Why SINGLE Hypothesis Space?

- Large H is likely to include (approx to) target c
 but . . .
- w/few examples, cannot reliably find good hypothesis from large hypothesis space
- That is...
 - Underfitting: Every $h \in H$ has high ε_T ⇒ consider larger hypothesis space $H' \supset H$
 - Overfitting: Many $h \in H$ have $\varepsilon_T \approx 0$

 \Rightarrow consider smaller $H'' \subset H$ to get lower d

⇒ To learn effectively (> $1 - \epsilon$) from m instances, only consider H s.t. | H | ≈ $e^{\epsilon m}$

How Learning Algorithms Manage This Tradeoff

S1: Start with small hypothesis space \mathcal{H}_1

S2: Grow hypothesis space $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \dots$ until finding a good (nearly consistent) hypothesis

Eg1 \mathcal{H}_1 = "leaf", then \mathcal{H}_2 = "one DecTree node", then \mathcal{H}_3 = "two DecTree nodes", then ...

Eg2 \mathcal{H}_1 = "constants", then \mathcal{H}_2 = "linear functions", then \mathcal{H}_3 = "quadratic functions", then ...

Approaches

- 1. Easy: $\bigcup_i \mathcal{H}_i$ countable, and realizable
- 2. General: Structural Risk Minimization
- 3. "Occam Algorithms"

#4a: Dealing w/∞ Set of Hypotheses

• Incremental algorithms: $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \ldots \subset \mathcal{H}_n \subset \ldots$ $1 - DNF \subset 2 - DNF \subset 3 - DNF \subset \ldots$

Assume: $m(\mathcal{H}_i, \epsilon, \delta)$ instances sufficient to $PAC(\epsilon, \delta)$ -learn \mathcal{H}_i

```
Alg? Assume target in \mathcal{H}_{1}

Draw m(\mathcal{H}_{1}, \epsilon, \delta) ) instances

Stop if find good h_{1} \in \mathcal{H}_{1}

Otherwise...

Assume target in \mathcal{H}_{2}

Draw m(\mathcal{H}_{2}, \epsilon, \delta) ) more instances

Stop if find good h_{2} \in \mathcal{H}_{2}

Otherwise...

...

Assume target in \mathcal{H}_{i}

Draw m(\mathcal{H}_{i}, \epsilon, \delta) ) more instances

Stop if find good h_{i} \in \mathcal{H}_{i}

Otherwise...
```

. . .

Correct Algorithm?

- Q: Suppose find "good" h_k at iteration k.
 What is prob of making mistake?
- A: P(mistake) = $\sum_{i=1..k}$ P(mistake @ iteration i) $\leq \sum_{i=1..k} \delta \leq k \delta$
- \Rightarrow Need to use δ_i s.t. $\sum_{i=1..k} \delta_i \leq \delta$ for any k
- Eg: $\delta_i = \delta/2^i$
 - Note: P(mistake) $\leq \sum_{i=1..k} \delta_i = \delta \sum_{i=1..k} \frac{1}{2} i = \delta$
- Takes k bits to identify member of 2^k-size hypothesis space
 - takes k bits just to express such a hypothesis
- \Rightarrow reasonable to allow learning alg'm time poly in $1/\epsilon$, $1/\delta$ and SIZE OF HYPOTHESIS

#4b: Structural Risk Minimization

Consider

- nested series: $H_1 \subset H_2 \subset ... \subset H_k \subset ...$
- with VCdim: $d_1 \leq d_2 \leq \ldots \leq d_k \leq \ldots$
- training errors: $\varepsilon_1 \ge \varepsilon_2 \ge \ldots \ge \varepsilon_k \ge \ldots$

• Choose $h_k \in H_k$ that minimizes

$$\epsilon \leq 2\epsilon^k + \frac{4}{m} \left[d_k \log \frac{2em}{d_k} + \ln \frac{4}{\delta} \right]$$

Structural Risk Minimization

For $h \in \mathcal{H}$ L(h) Probability of miss-classification $\hat{L}_n(h)$ Empirical fraction of miss-classifications **Vapnik and Chervonenkis 1971:** For **any** distribution with prob. $1 - \delta$, $\forall h \in \mathcal{H}$,

An Improved VC Bound II

Canonical hyper-plane:

$$\min_{1 \le i \le n} |\mathbf{w}^\top \mathbf{x}_i + b| = 1$$

(No loss of generality)

Improved VC Bound (Vapnik 95) VC dimension of set of canonical hyper-planes such that

 $\|\mathbf{w}\| \le A$ $\mathbf{x}_i \in \text{Ball of radius } L$

is

 $\operatorname{VCdim} \leq \min(A^2L^2,d) + 1$

Observe:	Constraints reduce VC-dim boun			
	Canonical hyper-planes with mini- mal norm yields best bound			
Suggestion:	Use	hyper-plane	with	minimal
	norm	L		

Case 5: Data Dependent Bounds

- So far, bounds depend only on
 - 8_T
 - quantities computed prior to seeing S (eg, size of H)
 - \Rightarrow "worst case"

as must work for all but δ of possible training sets

- Data dependent bounds consider how h fits data
 - If S is not worst case training set
 - \Rightarrow tighter error bound!

g(x) is real-valued function
 "thresholded at 0" to produce h(x):

 $\begin{array}{rcl} g(x) > 0 & \Rightarrow & h(x) = +1 \\ g(x) < 0 & \Rightarrow & h(x) = -1 \end{array}$

• Margin of h(x) wrt S is $\gamma(g,S) = \min_i \{y_i g(x_i)\}$

Margin Bounds: Key Intuition

Let $G = \{g(x)\}$ = set of real-valued functions that can be thresholded at 0 to give h(x).

 \bullet Consider "thickening" each $g\in G$

... must correctly classify every point w/ margin $\geq~\gamma$

• fat shattering dimension: $fat_{\gamma}(G)$ \equiv VCdim of these "fat" separators

Note $fat_{\gamma}(G) \leq VCdim(G)$

Noise Free Margin Bound

- Spse find $g \in G$ with margin $\gamma = \gamma(g, S)$ for a training set of size m
- Then, with probability $1-\delta$

$$\epsilon \quad \leq \quad \frac{2}{m} \left[d \log \frac{2e \, m}{d \gamma} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right]$$

 $d = \operatorname{fat}_{\gamma/8}(G)$ with margin $\gamma/8$

• Note fat.(G) kinda-like VCdim(G) !

Soft Margin Classification (2)

- Error rate of linear separator with unit weight vector and margin γ on training data lying in a sphere of radius R
 - is, with probability $\geq 1 \delta$,

$$\epsilon \leq \frac{C}{m} \left[\frac{R^2 + \|\xi\|^2}{\gamma^2} \log^2 m + \log \frac{1}{\delta} \right]$$

(constant C)

- \Rightarrow we should
 - maximize margin γ
 - minimize slack $\|\xi\|^2$
 - ... see support vector machines!

Fat Shattering for Linear Separators: Noise-Free

Spse support for $P(\mathbf{x})$ within sphere of radius R $\|\mathbf{x}\| \leq R$ $G = \{g | g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} \& \|w\| = 1\}$ Then $\operatorname{fat}_{\gamma}(G) = \left(\frac{R}{\gamma}\right)^2$

$$\Rightarrow \quad \epsilon \quad \leq \quad \frac{2}{m} \left[\frac{64R^2}{\gamma^2} \log \frac{em\gamma}{8R^2} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right] \\ \in \quad \tilde{O}\left(\frac{R^2}{m\gamma^2}\right)$$

 $\Rightarrow \text{ For fixed } R, m:$ seek g that maximizes γ !
maximum margin classifier

• Even with kernel $K(\cdot, \cdot)$... where $||\mathbf{x}|| = \sqrt{K(\mathbf{x}, \mathbf{x})}$

Soft Margin Classification

- Extension of margin analysis: When data is not linearly separable:
- $\xi_i = \max\{0, \gamma y_i, g(\mathbf{x}_i)\}$ "margin slack variable" for $\langle \mathbf{x}_i, y_i \rangle$

Note: $\xi_i > \gamma \implies \mathbf{x}_i$ misclassified by h

• $\xi = \langle \xi_1, \dots, \xi_m \rangle$ "margin slack vector for h on S"

Irrelevant Features

- Consider learning CD(n) = disjunction of n features
 - "List-then-Eliminate" makes O(n) mistakes
 - PAC-learning: O($n/\epsilon \log(1/\delta)$)
- Spse n is HUGE
 - Words in text
 - Boolean combination of "atomic" features
 - Features extracted in 480x560 image
 - ... but only r << n features "relevant"
 - Eg: concept $x_4 \vee \neg x_{91} \vee \neg x_{203} \vee x_{907}$
- ∃ learning alg that makes O(r ln n) mistakes! "Winnow"

Winnow Algorithm

- Initialize weights w₁, ..., w_n to 1
- Do until bored:
 - Given example $\mathbf{x} = [x_1, ..., x_n]$, If $w_1x_1 + w_2x_2 + ... + w_nx_n \ge n$ output 1 otherwise 0
 - If mistake:
 - (a) If predicts 0 on 1-example, then for each x_i = 1, set w_i := w_i × 2
 - (b) If predicts 1 on 0-example, then for each x_i = 1, set w_i := w_i / 2
Winnow's Effectiveness

Theorem Winnow MB-learns CD(n), making at most 2+3r(1+lg n) mistakes when target concept is disjunction of r var's.

Proof: 1. Any mistake made on 1-example must double params

- ≥ 1 weights in target function (the relevant weights),
- & mistake on 0-example will not halve these weights.
- Each "relevant" weight can be doubled ≤ 1+lg n times, since only weights ≤ n can be doubled. (Never double any weight w_i > n as that weight alone ⇒ class is 1)
- \Rightarrow Winnow makes $\leq r(1+lg n)$ mistakes on 1-examples
- 2. Negative examples?
- Let sw_t be sum of weights $\sum w_i = n$, at time t. Initially $sw_0 = n$.

Each mistake on 1-example increases sw by $\leq n$

(. . . before doubling, we know $w_1x_1+w_2x_2+...+w_nx_n < n$) Each mistake on 0-example decreases sw by $\geq n/2$

(. . . before halving, we know $w_1x_1 + w_2x_2 + ... + w_nx_n \ge n$)

- As sw ≥ 0, number of mistakes made on 0-examples
 ≤ 2+ 2number of mistakes made on 1-examples.
- So total # of mistakes is $r(1+\ln n) + [2+2r(1+\lg n)]$

Incorporating Winnow Into PAC Model

- Given a MB(M)-learner, can PAC(ε , δ)-learn
 - Return any h_i that makes $\frac{1}{\epsilon} \log(\frac{M}{\delta})$ correct predictions
 - Requires $m = \frac{M}{\epsilon} \log(\frac{M}{\delta}) = \frac{r \log(n)}{\epsilon} \log(\frac{r \log(n)}{\delta})$ instances

• Better PAC-learner: $O(\frac{1}{\epsilon}[r \log(n) + \log(\frac{1}{\delta})])$

- 1. Draw $m_1 = 4/\epsilon \max \{ M, 2 \ln(2/\delta) \}$ instances, S_1
- 2. Run Winnow (a MB-learner) on S_1 , generating \leq M hypotheses H = { h_1 , ..., h_M }
- 3. Draw $m_2 = O(8/\epsilon \log(2M/\delta))$ more instances S_2
- 4. Use S_2 to find best hypothesis, h^* in H
- 5. Return h^{*}
- Why: Most ε -bad hypotheses have error >> ε \Rightarrow reveal "badness" in < $\frac{1}{\epsilon} \log(\frac{M}{\delta})$ instances

Proof

- m_1 guarantees that ≥ 1 of H is good m_2 distinguishes good h^* from bad members of H.
- After m₁ instances, ≥ 1 of H has error ≤ ε/2
 PROOF: Spse first k 1 hyp's all have error > ε/2, and h_k had error ≤ ε/2
 What is prob that h_k occurs after m₁ instances?

Worst if k = M and each $err_D(h_i) = \epsilon/2$ Chernoff bounds $\Rightarrow \delta/2$:

- Consider flipping (sequence of M) $\varepsilon/2$ weighted coins
- (each "head" \equiv error)
- After m_1 flips, expect $m_1 \ge \epsilon/2 \le 2M$ "heads"
- Prob of getting under M (≤ $\frac{1}{2}$ exp. number) heads ≤ P(Y_M ≤ (1 - $\frac{1}{2}$) $\frac{\epsilon}{2}$) ≤ exp(- M $\frac{\epsilon}{2}$ $\frac{1}{2}$)/2) ≤ exp(- M $\frac{\epsilon}{8}$) ≤ δ

Use m₂, select h^{*} w/ err_S(h^{*}) $\leq \frac{3}{4} \epsilon$ With prob $\geq 1 - \frac{\delta}{2} \operatorname{err}_{D}(h^{*}) \leq \epsilon$

PROOF: Need to show err_s(h_i)

[average # mistakes made by h_i over m₂ samples]

is within 3/4 of $\mu_i = err_D(h_i)$

- $P(err_{S}(h_{i}) < err_{D}(h_{i}) \times (1 1/4)) \le exp(-(m_{2} \varepsilon \frac{1}{4})/2) \le \delta / (2M)$
- So prob ANY $h_i \in H$ is off by < 3/4 is under $\delta / 2$
- m_1 is leading term $\Rightarrow O(1/\epsilon [r \log(n) + \log(1/\delta)])$
- Best known bound for learning r of n disjuncts!
- Note: Might NOT find 0 error r-disjunction...