The Budgeted M ulti-Armed Bandit Problem

Omid Madani?, Daniel J. Lizotte?, and Russell Greiner?

1Yahoo! Research Labs 2Dept. of Computing Science
74 N. Pasadena Ave, University of Alberta
Pasadena, CA 91101 Edmonton, T6J 2E8
omid.madani@overture.com {dlizotte|greiner} @cs.ualberta.ca

The following coins problem is a version of a multi-armed bandit problem where
one has to select from among a set of objects, say classifiers, after an experimenta-
tion phase that is constrained by a time or cost budget. The question is how to spend
the budget. The problem involves pure exploration only, differentiating it from typical
multi-armed bandit problems involving an exploration/exploitation tradeoff [BF85]. It
is an abstraction of the following scenarios: choosing from among a set of alternative
treatments after a fixed number of clinical trials, determining the best parameter settings
for a program given a deadline that only allows a fixed number of runs; or choosing a
life partner in the bachelor/bachelorette TV show where time is limited. We are inter-
ested in the computational complexity of the coins problem and/or efficient algorithms
with approximation guarantees.

1 The Coins Problem

We are given:

— A collection of n independent coins, indexed by the set Z, where each coin is spec-
ified by a probability density function (prior) over its head probability. The priors
of the different coins are independent, and they can be different for different coins.

— A budget b on the total number of coin flips.

We assume the tail and the head outcomes correspond to receiving no reward and a
fixed reward (1 unit) respectively. We are allowed a trial/learning period, constrained
by the budget, for the sole purpose of experimenting with the coins, i.e, we do not
collect rewards in this period. At the end of the period, we are allowed to pick only a
single coin for all our future flips (reward collection).

Let the actual head probability of coin i be ;. We define the regret from picking
coin i to be 6* —6;, where * = max;c7 6;. As we have the densities only, we basically
seek to make coin flip decisions and a final choice that lead to minimizing our expected
regret. It is easy to verify that when the budget is 0, the choice of coin that minimizes
expected regret is one with maximum expected head probability over all the coins, i.e,
max; E(6;), where ©; denotes the random variable corresponding to head probability
of coin 4, and the expectation E(©;) is taken over the density for coin :.

A strategy is a prescription of which coin to flip given all the coins’ flip outcomes so
far. A strategy may be viewed as a finite directed rooted tree, where each node indicates
a coin to flip, each edge indicates an outcome (heads or tails), and the leaves indicate
the coin to choose [MLGO04]. No path length from root to leaf exceeds the budget. Thus
the set .S of such strategies is finite. Associated with each leaf node j; is the (expected)



regret r;, computed using the densities (one for each coin) at that node. Let p; be
the probability of “reaching” leaf j: p; is the product of the probabilities of coin flip
outcomes along the path from root to that leaf. We define the regret of a strategy to
be the expected regret, where the expectation is taken over the coins’ densities and the
possible flip outcomes: Regret(s) = ZjeTree Leafs of s Pi7;- The optimal regret
r* is then the minimum achievable (expected) regret and an optimal strategy s* is one
achieving it*

r" =min Regret(s), s arg min Regret(s) 1)

We assume the budget is no larger than a polynomial in n, and that we can represent
the densities and update them (when the corresponding coin yields a heads or tails
outcome), and compute their expectation efficiently (e.g., the family of beta densities).

With these assumptions, the problem is in PSPACE [MLGO04].

Open Problem 1 Is computing the first action of an optimal strategy NP-hard?
2 Discussion and Related Work

We explore budgeted learning in [MLGO04,LMGO03]. We show that the coins problem is
NP-hard under non-identical coin flip costs and non-identical priors, by reduction from
the Knapsack problem. We present some evidence that the problem remains difficult
even under identical costs. We explore constant-ratio approximability for strategies and
algorithms?: an algorithm is a constant ratio approximation algorithm if its regret does
not go above a constant multiple of the minimum regret. We show that a number of
algorithms such as round-robin and greedy cannot be approximation algorithms. In the
special case of identical priors (and coin costs), we observe empirically that a simple
algorithm we refer to as biased-robin beats the other algorithms tested, and furthermore,
its regret is very close to the optimal regret on the limited range of problems for which
we could compute the optimal. Biased-robin sets ¢ = 1, and continues flipping coin i
until the outcome is tails, at which time it sets i to (¢ mod n) + 1, and repeats until the
budget is exhausted. Note that biased-robin doesn’t take the budget into account except
for stopping! An interesting open problem is then:

Open Problem 2 Is biased-robin a constant-ratio approximation algorithm, for iden-
tical priors and budget of b = O(n)?

References

[BF85] D. Berry and B. Fristedt. Bandit Problems. Sequential Allocation of Experiments.
Chapman and Hall, New York, NY, 1985.
[LMGO3] D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of Naive Bayes classifi ers.

In UAI-2003, 2003.
[MLGO4] O. Madani, D. Lizotte, and R. Greiner. Active model selection (sub-
mitted). Technical report, University of Alberta and AICML, 2004

http://www.cs.ual berta.ca/ ~madani/budget.html .

! No randomized strategy has regret lower than the optimal deterministic strategy [MLG04].
2 An algorithm defi nes a strategy (for each problem instance) implicitly, by indicating the next
coin to fip [MLGO4].



