Introduction

This is the fourth and final volume in a series of edited volumes that explore
the recent landscape of Learning Systems Research, which spans theory and
experiment, symbols and signals. Volume 1 of this series introduced our gen-
eral focus and goal of exploring the intersection of three historically distinct
areas of learning research: Computational Learning Theory (COLT), Neu-
ral Networks (NN) and AI’s Machine Learning (ML). The second volume
focused on specific areas of interaction between theory and experiment. In
particular, there is a healthy history of theoretical work that has a continuity
with complexity theory in computer science and maintains a life of its own.
For many years there has also been a very empirical enterprise known as
Machine Learning. Until recently, these two trends had generally diverged
and done little to inform one another. Volume 2 was an attempt to provide
clear examples of how theory can be tested with the careful experiment and
how empirical work can be guided in meaningful ways by theory. Recently,
there has been more work towards testing theory and rationalizing experi-
ments. We hope these volumes contributed to that trend, at least in some
small way.

The final two volumes (including the present one) focus on certain key
areas of learning systems research that have developed recently. Volume
3 provided examples of how researchers have conceptualized the problem
of “Selecting Good Models.” This is a central problem, as any learning
approach must specify, identify or select a model from a set of possible
models, given data arising from the world and some prior beliefs about the
how the data may have been generated.

This volume explores the terrain of “Making Learning Systems Practical.”
Although there are many factors that may render a learning system useless
or impractical, the submissions to this workshop identified three general
problems as critical: (1) Scaling up from small problems to realistic ones with
large input dimension (e.g., > 10) and examples (e.g., 1000s); (2) increasing
efficiency and robustness of learning methods; and (3) strategies to take in
obtaining good generalization from limited or small data samples. These,
plus a section on specific examples, form the four categories in this volume.

The earlier history of Machine Learning Research was motivated by prob-
lems that focused on the basic complexity of learning concept descriptions,
rather than on their scaling or potential statistical properties. For example,
Winston (1975) illustrated that it was easy to identify the target concept
if the training set included (carefully chosen) examples that were just at
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the decision boundary between the positive and negative sets. This telling
example set the stage for both interest in pedagogy (i.e., intelligent tutors)
and learning theory. Others (Mitchell, 1980; Michalski & Stepp, 1983) dis-
cussed the difficulty of learning complex concepts without significant bias in
the representation language. These trends tended to supplant more exper-
imental approaches of using difficult real-world problems (e.g., robotic con-
trol, optical character recognition, speech recognition) until the mid-1980s
when Neural Networks exploded into the Machine Learning scene (Rumel-
hart et al., 1986). Unlike Machine Learning, which tended to define its own
problems, the field of Neural Networks (in order to transcend its checkered
past) had to solve, or at least do as well as any methods on, some hard prob-
lem, such as speech recognition; here, this often means competing against
approaches that had been fine-honed for 20 years (e.g., HMMs). This orien-
tation toward difficult problems has set standards that any learning method
now has to meet in order to be taken seriously.

A current focus in learning research is identifying what makes a learning
task difficult and then tracking how the performance of the learning system
varies as this aspect increases. This “scaling problem” is the main focus
of a number of papers in this volume: Banerjee (chapter 1) shows that
initializing a neural net using a decision tree can improve both the system’s
accuracy and efficiency. In a similar vein, Obradovic (chapter 2) evolves his
system online, by increasing the number of elements in the network’s hidden
layer whenever the current topology cannot capture the dynamics of the
new data. Shklar & Hirsh (chapter 3) show how to increase the efficiency
of a well-known conceptual clustering approach by supplying information
about the number of expected clusters in the domain. Finally, Langley &
Sage (chapter 4) provide a general analysis of learning rate of two algorithms
in the presence of increasing number of irrelevant features.

Other articles directly attack some problem that makes scaling hard — in
particular, the robustness and efficiency of the learning system. Again, few
if any of the early Machine Learning researchers considered the robustness
of their learning system against, for example, irrelevant or noisy features.
The focus, instead, was on the nature of the algorithm’s behavior on data
obtained in the best of worlds; hence these early machine learning systems
were almost always given complete, consistent and noise-free data sets —
i.e., every observation is composed of all-and-only the relevant features —
all feature values are included, and each value is 100% correct. Of course,
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data is rarely so complete in the real world. Similarly, many machine learn-
ing researchers did not appreciate that their training data might be only
a sample from a larger population, or even from a potentially infinite data
generation sources; nor that the asymptotic analysis from statistics always
favored acquiring more data in order to achieve the most robust estimates
of the learning systems parameters. However, it is also rare for a real-world
learning system to have access to a sufficient amount of data to identify
uniquely the target concept that was the source of the data.

Efficient use of data invokes a tradeoff between exact fitting of the limited
sample now present, versus extrapolation to any out-of-sample data not
yet seen. If the sample is too small, sampling errors will bias the learning
system to be overly sensitive to the noise present and therefore produce
errors on other unseen samples. On the other hand, if the learning system
underfits the training sample, it runs the risk of missing relevant patterns
in the data that suggest the nature of the process that produced that data.
Maximum Likelihood is one approach to resolve this tradeoff: here, the data
is conditioned on the model which in turn is maximized in order to produce
parameter estimates of the model that are most likely to have given rise to
the observed data. Assuming a parameterization of the model contains the
target concept, Maximum Likelihood can be a very powerful approach.

A number of papers in this volume deal with robustness and efficiency.
Two papers deal explicitly with learning classifiers that can handle miss-
ing attribute values: Ghahramani & Jordan (chapter 5) discuss how
the EM algorithm can cope with such omissions, and Schuurmans &
Greiner (chapter 6) formally investigate the various ways in which attribute
values can be blocked to determine when (PAC) learning is possible. Tow-
ell (chapter 7) considers learning from training data that includes both
labeled and unlabeled examples. Liu (chapter 8) considers robustification
approaches that allow learning from a sample that includes inappropriate
data. The final two papers in this set deal with data efficiency: Deco &
Schiirmann (chapter 9) show how to dealing efficiently with given data in
a difficult chaotic time series; and Schuurmans & Greiner (chapter 10)
define “sequential learning,” a new paradigm for learning, and show it can
be much more sample efficient than standard PAC results.

In some sense scaling, robustness and efficiency all depend on our un-
derstanding of a learning system’s ability to generalize correctly to unseen
examples. The analysis and understanding of generalization then poses a key
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problem for how learning systems could be made practical. Unless we can
specify how well our learning system will generalize to out-of-sample cases,
there is little chance the system will be accepted in standard engineering
domains, where the predictability of the system is crucial.

Once again, we can compare the present focus to early concepts in the
machine learning field. Initially, the notion of generalization was neither
appreciated nor studied. The main focus of the early Machine Learning
researcher was to provide algorithms that could correctly induce the un-
derlying concept that was generating the examples shown it. Whether the
system would generalize was irrelevant at that point, since once it had cor-
rectly acquired the underlying concept, it could then use this concept to
label any further examples. This research bias was most likely inherited
from language learning research, where theoreticians had decided that the
benchmark problem was building learners that, when exposed to sentences
produced by a grammar, could correctly identify the grammar. Here, the
learner had to be errorless. Further analysis of such cases showed that, un-
fortunately, learning grammar with no errors and with perfect probability
was usually intractable. This was the dominant model until the mid-1980s,
when Valiant introduced in the so-called “PAC learning” paradigm (Valiant,
1984). This model weakened many of the language learning assumptions,
allowing the learner to make some errors, provided the errors were usually
very small. As learning under this model is tractable in many domains (such
as language learning), many machine learning practitioners are beginning to
investigate and appreciate other statistical interpretations of learning.

Presently, generalization within a learning system is an intense area of
study from both theoretical points of view (see the work on Vapnik-Chervo-
nenkis dimension (Vapnik & Chervonenkis, 1971b), Bayesian learning (Haus-
sler et al., 1992; Neal, 1993; Cheeseman et al., 1988), Statistical Mechanics
(Seung et al., 1992), etc.) and from many empirical settings (cross valida-
tion (Moore & Lee, 1994; Craven & Wahba, 1979; Liu, 1993), regularization
(Shizawa, 1993; Moody, 1992), etc.). In this volume, generalization is stud-
ied in a number of model systems. Murphy & Pazzani (chapter 11) inves-
tigate whether the smallest decision tree necessarily has the smallest gener-
alization error; Rao & Oblow (chapter 12) consider methods for fusing the
results of NV learners, showing when this can approach the optimal Bayesian
fuser; Zador & Pearlmutter (chapter 13) study the computational capac-
ity of dynamic systems, especially systems defined by networks of spiking
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neurons; Golea (chapter 14) presents an average-case analysis of unions of
non-overlapping perceptrons; and Garvin & Rayner (chapter 15) proba-
bilistically analyzes combinations of Volterra expansion functions. Finally,
Klenin (chapter 16) provides a new set of tools for the analysis of general-
ization, especially related to the variance in generalization error, which can
be calculated directly in many systems.

The last, and definitely the most important, section of the book presents
real-world learning systems themselves: Bhansali & Harandi (chapter 17)
show how to use derivational analogies to speedup a system that synthesizes
UNIX shell scripts from program specifications; Almuallim, Akiba, Ya-
mazaki & Kaneda (chapter 18); show how to learn rules for translating
Japanese verbs to appropriate English verbs; Brazma (chapter 19) presents
a technique for restoring a regular expression from a given “nearby” string of
characters and shows how this can apply in analysis of biosequential data;
Schlang, Abraham-Fuchs, Neuneier & Uebler (chapter 20) investi-
gates ways to classify biomagnetic fields; and Vaina, Sundareswaran &
Harris (chapter 21) present a computationally realistic model of human
motion detection.

This volume completes the four-volume “Computational Learning Theory
and ‘Natural’ Learning Systems” series, which has covered the vast array
of theoretical and empirical results across the multiple fields represented by
Machine Learning, Neural Networks and Computational Learning Theory.
It thus contains a fairly comprehensive snapshot of the mainstream learning
research over the last 5 years and, to that end, encompasses the trends (and
perhaps suggests the future) of the dynamic landscapes of Learning System
Science.



