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Abstract

Decision-making in practical domains is usuallycomplex, as
a coordinated sequence of actions is needed to reach a sat-
isfactory state, andresponsive, as no fixed sequence works
for all cases – instead we need to select actions after sensing
the environment. At each step, alookahead control policy
chooses among feasible actions by envisioning their effects
into the future and selecting the action leading to the most
promising state.

There are several challenges to producing the appropriate
policy. First, when each individual state description is large,
the policy may instead use a low-dimensionalabstractionof
the states. Second, in some situations the quality of the final
state is not given, but can only be learned from data.

Deeper lookahead typically selects actions that lead to
higher-quality outcomes. Of course, as deep forecasts are
computationally expensive, it is problematic when compu-
tational time is a factor. This paper makes this accu-
racy/efficiency tradeoff explicit, defining a system’s effective-
ness in terms of both the quality of the returned response, and
the computational cost. We then investigate how deeply a
system should search, to optimize this “type II” performance
criterion.

Keywords: Decision-making, control policy, lookahead state
tree expansion, abstraction, responsive image recognition,
real-time best-first heuristic search, search horizon.

1 Real-time Decision-Making
We will start with a motivating practical example. Hav-
ing detailed inventories of forest resources is of tremen-
dous importance to forest industries, governments, and re-
searchers. It would aid planning wood logging (planting
and cutting), surveying against illegal activities, and eco-
system and wild-life research. Given the dynamic nature
of forest evolution, the task of forest mapping is a continu-
ous undertaking, with the objective of re-mapping the esti-
mated 344 million hectares of Canadian forests on a 10-20
year cycle. Remote-sensing based approaches appear to be
the only feasible solution to inventorizing the estimated1011

trees. Despite numerous previous attempts (Gougeon 1993;
Larsen et al. 1997; Pollock 1994), no robust forest mapping
system exists to date.

We have been developing such a forest inventory map-
ping system (FIMS) using a set of sophisticated computer
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vision operators. FIMS problem-solving state is represented
using a layered shared data structure as shown in Figure 1.
Initially, aerial images and LIDAR data are deposited at the
sensory input layer. As the computer vision operators are
applied, higher layers become populated with extracted data.
Finally, the top layer gains the derived 3D interpretation of
the forest scene. At this point the scene can be rendered
back onto the sensory layer to be compared with the original
imagery to assess the quality of the interpretation.

In nearly every problem-solving state several computer
vision operators can be applied. Furthermore, each of them
can be often executed on a subregion of interest in its in-
put datum. Escalating the choice problem complexity even
higher, the operators sometimes map a single input to several
alternative outputs to select from.

In order to address the numerous choice problems a con-
trol policy guiding operator application is necessary. As
demonstrated in (Draper et al. 2000), a dynamic control pol-
icy can outperform manually engineered fixed policies by
taking into account feedback from the environment. In each
cycle the control policy chooses among applicable operators
by selectivelyenvisioning their effects several plies ahead. It
then evaluates the states forecasted using itsheuristic value
functionand selects the operator leading to the most promis-
ing state.

Deeper lookahead can often increase the quality of the
approximate value function used to compare predicted
problem-solving states (Korf 1990). Unfortunately, the type
II performance (Good 1971) that explicitly takes computa-
tional costs into account is negatively affected as the num-
ber of envisioned states grows rapidly with the lookahead
depth. As we will show in section 6, an adaptive lookahead
depth selection might be necessary to optimize the overall
type II performance and make the system runnable inreal-
time(e.g., on-board a surveillance aircraft).

In FIMS operators are applied to traverse the problem-
solving state space. Furthermore, immediate rewards can
be assigned to operator applications. Therefore, FIMS can
be thought of as an extension of the classical Markov Deci-
sion Process (MDP) (Sutton et al. 2000) framework along
the following directions: (i) feature functions for state space
reduction, (ii) machine learning for the value function and
domain model, and (iii) explicit accuracy/efficiency tradeoff
for performance evaluation.

This paper presents work in progress with the follow-
ing research objectives: (i) creating a theory and a practi-
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Figure 1:Forest Inventory Mapping System (FIMS) is based on a layered data representation. Raw sensory data such as aerial
images are deposited at the bottom layer. As various computer vision operators are applied higher layers become populated
with derived data. The output of the system is formed at the top layer and is then projected back into 2D for quality assurance. In
addition to deciding among operators (e.g., feature extractor #5 vs. feature extractor #12) their inputs often need to be decided
on as well (e.g., image subregion #1 vs. image subregion #87).

cal implementation of an adaptive lookahead depth selec-
tion module, (ii) studying machine learning methods for
value function and domain model approximation within the
large-scale FIMS application, (iii) comparing the adaptive
envisionment-based control policy for FIMS with traditional
hand-crafted scene interpretation strategies.

The rest of the paper is organized as follows. Section 2
describes the challenges we faced in producing this system
– many due to our efforts to make the real-world system,
with its mega-byte state information, run efficiently. We
then (section 3) present a best-first lookahead control pol-
icy guided by an approximate MDP value function. The
section discusses its advantages over optimal goal-seeking
algorithms such as A* as well as the challenges in the form
of value function inaccuracies. Section 4 discusses type II
optimality which explicitly combines performance quality
and computational time and poses the specific problem we
will address in this paper: automatically determining the ap-
propriate depth of the search. Section 5 then provides an
empirical study to help us address this problem. Here we
first present the artificial ”grid world” domain, and explain
why this domain is rich enough to capture the challenges of
the FIMS system, while remaining sufficiently constrained
that we can obtain precise numbers. We then draw several
important conclusions in section 6 and consider related re-
search in section 7.

2 Challenges
Like many real-world systems, the FIMS control policy is
faced with several formidable challenges including:

Ill-defined goal states. In FIMS, a goal system state con-
tains an accurate interpretation of the forest scene ob-
served. Unfortunately, such a state is impossible to recog-
nize since the sought forest maps are typically unknown.
The lack of recognizable goal states means that we cannot
use optimal goal-searching algorithms such as A*, IDA*,
RBFS, etc. (Korf 1990).

Partial state observability. Raw states are often enormous
in size – FIMS requires on the order of107 bytes to de-
scribe asingleproblem-solving state. Thus, the raw state
space is infeasible to handle. A common remedy is to em-
ploy a state abstraction functionF that maps large raw
states to smaller abstracted states specified via extracted
feature values. ADORE (Draper et al. 2000) uses fea-
ture functions to reduce multi-megabyte raw images to a
handful of real-valued parameters such as the average im-
age brightness or edge curvature. As a result, the control
policy operates over the abstracted state space which usu-
ally requires extensions beyond the classical MDP.

Value function inaccuracies. In order to help select an op-
erator to apply we need a value function which maps a
problem-solving state to a numeric score, thereby setting



a preference relation over the set of reachable states. It is
typically defined as the reward the system would get from
that state on, by acting optimally. If the control policy
had access to the actual optimal value functionV ∗ (Sut-
ton et al. 2000) it would be able to act optimally in a
simple greedy fashion. Unfortunately, as the true value
function is usually unavailable, we use an approximation
Ṽ ∗ (denoted with a tilde). Various inaccuracies in the ap-
proximateV ∗ often lead to sub-optimal action choices
and force back-tracking (Draper et al. 2000). Section 3
describes several kinds of value function errors in more
detail.

Limited decision-making time. Value function inaccura-
cies can often be compensated by carrying out a deeper
lookahead (Hsu et al. 1995). On the other hand, the run
time of state expansion can be exponential in the num-
ber of plies, thereby severely limiting the depth possible
under time constraints (Korf 1990). This trade-off be-
comes especially pressing if real-time performance is de-
sired (e.g., on-board a surveillance aircraft).

Inaccurate domain models.Advanced computer vision
operators involving EM algorithms (Cheng et al. 2002)
can take hours to compute on large images. The exponen-
tial number of operator applications often needed for the
lookahead makes the actual operators unusable for envi-
sionment. Thus, approximate versions of such operators
comprising the domain model are employed for the looka-
head. Consequently, such simplified models are inaccu-
rate and, therefore, unable to foresee future states pre-
cisely. Sequential noisy predictions introduce errors into
envisioned states and thus into approximate state values
thereby off-setting the benefits of looking ahead.

Unknown lookahead depth. Shallow lookahead can lead
to suboptimal operator applications that will have to be
undone (e.g., (Draper et al. 2000), Figure 2). Overly deep
lookahead severely harms type-II performance by taking
excessive amounts of computational resources. There-
fore, the optimal ply depth lies somewhere in between
the extremes. Unfortunately, it cannot be reliably deter-
mined by a mere inspection of the changes in lookahead
tree node values. Producing automated methods fordy-
namicoptimal ply depth determination is one of the pri-
mary objectives of this research.

3 Best-First Heuristic Search
3.1 Basic Algorithm
Best-first heuristic real-time search has been successfully
used in response to the challenges outlined above (Korf
1990; Schaeffer et al. 1992; Hsu et al. 1995; Draper et
al. 2000). FIMS control policy uses a depth-limited heuris-
tic search algorithm (called MLVA*) that expands the state
tree in the best-first fashion guided by an approximate MDP
value functionṼ ∗ and action costs.

As with most best-first search algorithms, we evaluate in-
ner nodes of the tree and, thus, expand the most promising
branches first. This suggests gradual improvement of the
expected quality of the running solution. MLVA*, therefore,
doesnot require: (i) well-defined goal states, (ii) an expo-
nential time to produce a meaningful solution, (iii) a precise

value function, (iv) a perfect domain model, and (v) fully
observable states.

3.2 Value Function Approximation
Value function plays a critical role in the best-first search
by guiding it towardssupposedlymore promising states. In
fact, given an optimal value functionV ∗ a policy can select
the best action (a∗) with a 1-ply lookahead:

a∗ = arg max
a

∑
s′

δ(s, a, s′) [r(s, a, s′) + V ∗(s′)] (3.1)

here probabilistic state transition (or domain model) func-
tion δ(s, a, s′) = P (s′|s, a) defines the probability of arriv-
ing at states′ by applying actiona in states. The reward of
getting to states′ by taking actiona in states is represented
by r(s, a, s′).

Unfortunately, even in well-defined domains such as
board games, the actualV ∗ is usually unavailable. Thus,
an approximatẽV ∗ (manually designed or machine learned)
is used instead. In the following we consider two important
kinds of errors found in approximate value functions.

3.3 Inaccuracies due to State Abstraction
A non-trivial feature functionF abstracts irrelevant state de-
tails (i.e., is a many-to-one mapping) and is used to reduce
an unmanageably large actual state spaceS to a more man-
ageable abstracted state or feature spaceF(S). In doing
so,F will unavoidably put several raw states into a single
abstracted state bucket. The bucketing process introduces
the first kind of inaccuracies into theV ∗

F (F(·)) function –
namely, merging two raw states that have differentV ∗ val-
ues into one abstracted state:

∃s1, s2[V ∗(s1) 6= V ∗(s2) & F(s1) = F(s2) &
V ∗
F (F(s1)) = V ∗

F (F(s2))]. (3.2)

3.4 Inaccuracies due to Machine Learning
State abstraction via feature functionF brings the deci-
sion process into a more manageable abstracted state space
F(S). On the negative side, it makes it even more difficult
to hand-engineer value functionV ∗

F (F(·)). Often, machine
learning methods are then used to induce an approximation
to V ∗

F (F(·)). Consequently, the second type of inaccuracies
is caused by the application of machine learning algorithms.
In other words, even though the feature functionF may
mapV ∗

F -distinct raw statess1 ands2 to distinct abstracted
statesF(s1) andF(s2), a machine-induced value function
Ṽ ∗
ML may still misestimate their values. For instance:

∃s1, s2[V ∗(s1) < V ∗(s2) & F(s1) 6= F(s2) &

¬(Ṽ ∗
ML(F(s1)) < Ṽ ∗

ML(F(s2)))]. (3.3)

Remarkably, a lookahead search is able to remedy some of
these inaccuracies as illustrated in Figure 2 and also dis-
cussed in (Korf 1990).

4 Automatic Lookahead Depth Selection
Many (Korf 1990; Schaeffer et al. 1992; Hsu et al. 1995)
have argued and experimentally verified that deeper looka-
head can improve the quality of action selection. On the



Figure 2:Deeper lookahead can address inaccuracies in the
approximate value function Ṽ ∗

F . The actual values of the op-
timal value function V ∗ are displayed by the nodes while the
action costs are shown by the edges. Feature function F
fails to distinguish between distinct states s1 and s2 (F(s1) =

F(s2)) resulting in Ṽ ∗
F (F(s1)) = Ṽ ∗

F (F(s2)). Consequently,
a single-ply expansion (i.e., generating only s1 and s2) will
choose less expensive a1 since Ṽ ∗

F (F(s1)) = Ṽ ∗
F (F(s2)).

Clearly, a1 is a suboptimal choice as the maximum reward
reachable via a1 is 7 while a2 can deliver as much as 26.
Suppose the differences between s3, s4, s5, and s6 are pro-
nounced enough for F to map them into different buckets.
Thus, by expanding the tree two plies deep, the control pol-
icy will optimally pick a more expensive action (a2) since it
leads to a higher reward.

negative side, the number of states expanded can be as high
asb p whereb is the effective branching factor andp is the
ply depth. Furthermore, even an efficient implementation,
operating inO(b p) time, quickly incurs severe penalties on
computational resources asp increases. Additionally, deeper
envisionment amplifies noise in the approximate versions of
the operators (i.e.,̃δ) used for state tree expansion. Running
Ṽ ∗ on inaccurate envisioned states adds to the overall error
of the value function.

Therefore, a core control problem in using a best-first
any-time search is the expansion depth as a function of ap-
proximate value function and domain model inaccuracies.
Ideally, the lookahead search has to be conducted just deep
enough to enhance thẽV ∗ values and therefore increase the
quality of the action selected without taking an excessive
amount of time and introducing further inaccuracies. Sec-
tion 7 links this concept to limited rationality.

Knowing the optimal ply depth for a lookahead policy
would optimize the lookahead search performance. Unfor-
tunately, the fine interplay between computational costs ofδ

andδ̃ and inaccuracies of̃V ∗ andδ̃ makes the ”golden mid-
dle” a complex function of many domain-specific parame-
ters. Thus, it would be very useful to have a meta-control
module that dynamically selects the ply depth for a best-first
lookahead action-selection policy.

This paper takes a step towards creating the theory and
implementation of such an adaptive ply-depth selector by in-
vestigating the relationship between the degree of state ab-
straction, lookahead depth, and the overall performance of
best-first search.

Figure 3:Agent’s actions in the maze domain: λ = 24, τ = 2.
Cells occupied by walls are inaccessible (shown in grey).

5 Experimentation: The Maze Domain
Many Reinforcement Learning projects have used the grid
world domain as a testbed (Sutton et al. 2000). In the
following we refine the classical definition by introducing
state abstraction in a particular fashion compatible with the
real-world FIMS domain. This compatibility enables fur-
ther scalability studies via transitioning from the grid world
to the actual FIMS system. The refined grid world is referred
to as the Maze Domain.

• The mazeis represented by anN × N two-dimensional
matrix M with each cell being in two possible states:
emptyM(x, y) = 0 or wall M(x, y) = 1. There is a
singleagentin the maze that can occupy any of the empty
cells. Additionally, one of the empty cells(xg, yg) con-
tains agoal. The maze is surrounded by a solid wall pre-
venting the agent from wandering off the map.

• The proportion of the wall-occupied cells is called the
density of the maze and denoted byd.

• An agent’s raw stateis a pair of coordinates(x, y) with
0 6 x, y 6 N − 1. Formally: S = {0 . . . N − 1} ×
{0 . . . N − 1}.

• The setA of agent’s actions is comprised ofλ equally
spaced directions and a special action ’quit’. Each of the
λ move actions transports the agent along a ray shot from
the agent’s current location at the angle of360·a

λ degrees
wherea ∈ [0, 1, . . . , λ− 1]. The Euclidean distance trav-
elled is deterministically upper-bounded byτ and walls
encountered (Figure 3). We represent this with a deter-
ministic state transition functionδd(s, a) = s′. The prob-
abilistic transition function is then defined appropriately
as:

δ(s, a, s′) = P (s′|s, a) =
∑
a′∈A

P (a′|a)I{s′ = δd(s, a)},

where probabilitiesP (a′|a) are based on an a priori spec-
ified Normal distribution centered over actiona.

• The MDPimmediate rewardfunction is defined as:

r(s, a, s′) =
{
R(s′), if a = ’quit’ ,
−‖s, s′‖, otherwise.

(5.1)

Here the cost‖s, s′‖ of actiona is defined as the Euclidian
distance along the shortest path between the new (s′) and
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Figure 4:Terminal reward R for a 48× 48 maze of d = 0.0.

the old (s) cells. Figure 4 illustrates the terminal reward
R(s) of quitting in states defined as:

R(s) = eΘ−‖s,sg‖ (5.2)

whereΘ is a constant andsg = (xg, yg).

• An episode terminates whenever the agent executes the
’quit’ action or a move quota is exhausted.

• We define the optimal value functionV ∗ on states in
the standard fashion as the maximum expected cumula-
tive reward the agent can get from states to the end of the
episode. The top plot in figure 6 demonstratesV ∗ for a
particular maze.

5.1 Policy Evaluation
Policy score. As motivated above, a policy is evaluated ac-

cording to the total reward it collects during an episode
(Rg) as well as the computational resources it takes
(NGg). The combined policy score for an episode is de-
fined as:

Sg(V, p) =
Rg(V, p)

NGg(V, p)
. (5.3)

Here the total reward for an episode can be computed as:

Rg(V, p) =

J∑
j=1

rj

= R(sJ)−
J−1∑
j=1

‖sj , sj+1‖

= eΘ−‖sJ ,sg‖ −
J−1∑
j=1

‖sj , sj+1‖, (5.4)

wheres1 → s2 → · · · → sJ is the actual sequence of
states visited by the agent during the game episode. Com-
putational resources taken during the game episode are
defined in terms of the number of nodes expanded by the

lookahead policy:

NGg(V, p) =
J∑

j=1

NGj (5.5)

whereNGj is the number of the lookahead tree nodes
expanded to select actionaj .

Policy error. The relative error of the lookahead policy de-
fined with the value functionV and the lookahead depth
p is computed as:

η(V, p) =
E[Rg(V ∗, 1)]− E[Rg(V, p)]

E[Rg(V ∗, 1)]
(5.6)

where E[Rg(V, p)] is the expected episode reward the
agent would gain by starting at a random state and us-
ing thep-ply lookahead policy based on a value function
V . Likewise, E[Rg(V ∗, 1)] is the expected episode re-
ward the agent would gain by starting at a random state
and using a 1-ply lookahead policy that follows theopti-
malvalue functionV ∗.

5.2 State Abstraction
Within the maze domain, the state abstraction is simulated
via fixed tiling. Specifically, if the raw state iss = (x, y) the
abstracted state is given as:

Fk(x, y) =
(⌊x

k

⌋
· k,

⌊y

k

⌋
· k

)
(5.7)

where the floor functionb c returns the integer part of its
argument. Parameterk = 1, 2, . . . , N is thedegree of ab-
straction. Effectively, the entire maze is divided into non-
overlapping rectangulark × k tiles.

The maze domain is fairly simple and compact and
doesn’t require state abstraction to make its state space man-
ageable. Rather, the underlying motivation of this particular
abstraction scheme is compatibility with state abstraction in
FIMS. Namely, in a computer vision system like FIMS and
ADORE (Draper et al. 2000), most operators add an infor-
mation datum of a different category to the problem-solving
state (e.g., add extracted edges to an image). The state ab-
straction features used for various types of data vary consid-
erably (e.g., average brightness for images and mean curva-
ture for extracted edges) making it unlikely that an opera-
tor application leaves the agent in the same abstraction tile.
On the other hand, several similar operators can move the
agent to a single tile (different from the current one). Cor-
respondingly, as shown in Figure 3, several actions along
neighboring rays can end up in the same tile. Furthermore,
some computer vision operators are not applicable in certain
problem-solving states which is modelled by certain angles
being blocked off by the maze walls.

5.3 Inaccuracies inṼ ∗ due to Fixed-tiling
The abstracted version of the value functionṼ ∗ is defined as
follows:

Ṽ ∗
FT,k(Fk(s)) = avg

st∈NFT,k(s)

V ∗(st) (5.8)

=
1

|NFT,k(s)|
∑

st∈NFT,k(s)

V ∗(st).
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Figure 5:Policy error η(Ṽ ∗
FT,k, 1) increases as the tile size k

goes up.

HereNFT,k(s) is the non-wall subset of thek × k fixed tile
that states = (x, y) belongs to.

Intuitively, Ṽ ∗
FT,k suffers from state abstractiononly and,

thus, lower values ofk bringṼ ∗
FT,k closer to the optimal value

functionV ∗. Figure 5 presents the increase in policy error
η(Ṽ ∗

FT,k, 1) as the degree of abstractionk goes up (section 5.1
defines the policy error formally). Figure 6 demonstrates the
step-function nature of the approximation.

5.4 Inaccuracies inṼ ∗ due to Machine Learning
One of the common approaches to machine learning an ap-
proximation to value functionV ∗ is to expand the state tree
completely on each pre-labelled training datum during a des-
ignated off-line learning phase (Draper et al. 2000). The
complete off-line expansion delivers a body of training data
in the form of pairs{〈F(s), V ∗(s)〉}. Supervised machine
learning methods can be then used to generalize the set into
a value function approximation:

Ṽ ∗
ML,k(Fk(·)) = ML ({〈Fk(s), V ∗(s)〉}) (5.9)

In our experiments presented we used backpropagation for
Artificial Neural Networks (Haykin 1994). Note that, un-
like Ṽ ∗

FT,k, the induced approximatioñV ∗
ML,k suffers from

both state abstraction and generalization inaccuracies (e.g.,
caused by an insufficient training data set).

Figure 6 presents a plot of ANN-induced value function
(Ṽ ∗

ML,k) for a48×48 maze with no walls. A comparison with
the fixed-tiling approximation (in the same figure) reveals
additionalinaccuracies due to the machine learning process.

6 Analysis
In spite of the exponential nature ofR, deeper lookahead
is not necessarily an advantage since: (i) the quality of the
solution found is upper-bounded by the quality of the opti-
mal solution, (ii) the resources consumed can grow virtually
unlimitedly (Figure 7), and (iii) the accuracy of the envi-
sioned future states can degrade rapidly given a noisy do-
main model approximatioñδ.

0
10

20
30

40
50

0

10

20

30

40

50
2.196

2.197

2.198

2.199

2.2

2.201

2.202

2.203

x 10
4

0
10

20
30

40
50

0

10

20

30

40

50
2.197

2.198

2.199

2.2

2.201

2.202

2.203

x 10
4

0
10

20
30

40
50

0

10

20

30

40

50
2.198

2.1985

2.199

2.1995

2.2

2.2005

2.201

2.2015

x 10
4

Figure 6:Inaccuracies in value function approximations. The
plots demonstrate (top to bottom): the original V ∗, fixed-tiling
averaged Ṽ ∗

FT,k, and ANN-learned Ṽ ∗
ML,k.
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We are currently working on an analytical study of the
empirical evidence. Preliminary results are as follows:

1. As expected, lookahead reduces the policy error. Figure
8 presents the empirical results for the policies guided
by a fixed-tiling abstracted approximatioñV ∗

FT,k and a

machine-learned approximatioñV ∗
ML,k.

2. Lookahead initially improves overall policy performance
in the presence ofinadmissiblevalue function inaccu-
racies induced bystate abstractionor machine learning
(Figures 9 and 10). While deeper values of lookahead do
decrease the policy error (Figure 8) they also result in the
larger numbers of nodes expanded (Figure 7) thereby ad-
versely affecting the overall score.

3. The optimal lookahead search horizon (p∗) is reached
fairly rapidly. Figure 11 presents the empirical results for
a fixed-tile approximation toV ∗. Note, as the value func-
tion approximatioñV ∗

FT,k becomes progressively more in-

accurate (i.e., its policy errorη(Ṽ ∗
FT,k, 1) increases), the

optimal ply depth decreases again partly due to the com-
binatorial explosion ofNGg.

4. Remarkably, the nature of ANN-induced inaccuracies in
Ṽ ∗
ML,k, doesnot call for deeper lookahead as the policy

error increases. Indeed, figure 10 demonstrates that the
best score is always reached atp∗ = 3 regardless of the
initial η(Ṽ ∗

ML,k, p). The attributes of̃V ∗
ML,k leading to this

phenomenon are yet to be better characterized.

7 Related Work
As our evaluation criteria depends on both the quality of the
outcome, and the computational time required, it is clearly
related to ”type II optimality” (Good 1971), ”limited ratio-
nality” (Russell et al. 1991), and ”meta-greedy optimiza-
tion” (Russell et al. 1993; Isukapalli et al. 2001). Our re-
sults differ as we are considering a different task (depth of
search in the context of an image interpretation task), and we
are isolating the problem of adaptively selecting the optimal
lookahead depth.

7.1 ADORE
Adaptive image recognition system ADORE (Draper et al.
2000) is a well-known MDP-based control policy imple-
mentations in computer vision. The FIMS prototype can
be considered as a testbed for several significant extensions
over ADORE. The extension most relevant to this paper
is the emphasis on internal lookahead. In other words,
ADORE selects operators in a greedy (i.e., the lookahead
of depth 1) fashion guided by its MDP value function. As a
result, the existing inaccuracies in the value function caused
by state abstraction or machine learning deficiencies, often
force ADORE to undo its actions and backtrack. On the
other hand, FIMS attempts to predict effects ofaction se-
quencesand is expected to be less sensitive to value function
inaccuracies.

7.2 Minimax and Minimin
Most board game-playing programs use a lookahead search.
In particular, the first computer program to ever win a

man-machine world championship, Chinook (Schaeffer et
al. 1992), and the first system to defeat the human world-
champion in chess, Deep Blue (Hsu et al. 1995) utilized
a minimax-based lookahead search. Like FIMS, they com-
pensate for the insensitivity of̃V ∗ via envisioning the fu-
ture states many plies ahead. The core differences between
minimax and minimin (Korf 1990) algorithms and FIMS in-
clude minimax’s easily recognizable goal states, perfect do-
main modelδ, fully deterministic actions, and the use of full
unabstracted states for the lookahead. Additionally, some
algorithms (e.g., branch and bound or minimax with alpha
pruning) leave out entire search subtrees by assuming an ad-
missible heuristic function which is unavailable in FIMS.
An interesting study of minimax pathologies is presented in
(Nau 1983).

7.3 Minerva
Real-time ship-board damage control system Minerva (Bu-
litko 1998) demonstrated a 318% improvement over human
subject matter experts and was successfully deployed in the
US Navy. It selects actions dynamically using an approx-
imate Petri Nets based domain model (δ̃) and a machine-
learned decision-tree-based value function (Ṽ ∗). The key
distinctions between Minerva and FIMS include a fixed
lookahead depth and fixed state abstraction features used for
envisionment. Therefore, the focus of this paper – the in-
terplay between the lookahead depth and the degree of state
abstraction – is not considered in the research on Minerva.

8 Summary and Future Research
This paper describes the practical challenges of produc-
ing an efficient and accurate image interpretation system
(FIMS). We first indicate why this corresponds to a Markov
decision process, as we apply asequenceof operators to go
from raw images to an interpretation, and moreover must de-
cide on the appropriate operatordynamically, based on the
actual state.

At each stage, FIMS uses a real-time best-first search to
determine which operator to apply. Due to the size of indi-
vidual states, FIMS actually usesabstractionsof the states,
rather than the states themselves making the entire process
POMDP. The heuristic value function, used to evaluate the
quality of the predicted states, depends on the correctness
of the final interpretation; as FIMS is dealing with novel
images, this information is not immediately available. In-
stead, we first learn an approximation to this heuristic func-
tion given a small set of pre-labelled training images. In ad-
dition, as FIMS must select the appropriate operator quickly,
we want a search process that is both accurate and efficient.

This paper investigates the effectiveness of the lookahead
policy given these challenges. In particular, we take a step
towards determining, automatically, the appropriate looka-
head depth we should use, as a function of inaccuracies due
to the state abstractions as well as the machine-learned es-
timates of the heuristic, with respect to our specific ”type II
optimality”. Applications of this research range from time-
constrained game playing and path-finding to real-time im-
age interpretation and ship-board damage control.

The empirical study in a FIMS-compatible variant of the
grid world testbed gives us a better understanding of the fine



interplay between various factors affecting performance of a
lookahead best-first control policy. It therefore sets the stage
for developing a theory and an implementation of a dynamic
and automated lookahead depth selection module. One of
the immediate open questions is the relation between inac-
curacies in theapproximatedomain model̃δ, the approxi-
mate value functioñV ∗, and the optimal lookahead search
depth. Likewise, better understanding of the optimal looka-
head depth in the presence of machine-learning inaccuracies
is needed.
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