
Use of Off-line Dynamic Programming for Efficient Image Interpretation

Ramana Isukapalli
101 Crawfords Corner Road

Lucent Technologies
Holmdel, NJ 07733 USA

risukapalli@lucent.com

Russell Greiner
Department of Computing Science

University of Alberta
Edmonton, AB T6G 2E8 Canada
greiner@cs.ualberta.ca

Abstract

An interpretation system finds the likely mappings
from portions of an image to real-world objects. An
interpretation policy specifies when to apply which
imaging operator, to which portion of the image,
during every stage of interpretation. Earlier results
compared a number of policies, and demonstrated
that policies that select operators which maximize
the information gain per cost, worked most effec-
tively. However, those policies are myopic — they
rank the operators based only on their immediate
rewards. This can lead to inferior overall results: it
may be better to use a relatively expensive opera-
tor first, if that operator provides information that
will significantly reduce the cost of the subsequent
operators.
This suggests using some lookahead process to
compute the quality for operators non-myopically.
Unfortunately, this is prohibitively expensive for
most domains, especially for domains that have a
large number of complex states. We therefore use
ideas from reinforcement learning to compute the
utility of each operator sequence. In particular,
our system first uses dynamic programming, over
abstract simplifications of interpretation states, to
precompute the utility of each relevant sequence. It
does this off-line, over a training sample of images.
At run time, our interpretation system uses these es-
timates to decide when to use which imaging oper-
ator. Our empirical results, in the challenging real-
world domain of face recognition, demonstrate that
this approach works more effectively than myopic
approaches.

1 Introduction

Interpretation is the process of finding the likely mapping
from portions of an image to real-world objects. It is the
basis for a number of imaging tasks, including recognition
(“is objectX in the image?”) and identification (“which ob-
ject is in the image?”), as well as several forms of tracking
(“find all moving objects of typeX in this sequence of im-
ages”), etc. [PL95; HR96]. It is important that an interpre-
tation system (

���
) be efficient as well as accurate. Any

���

should have access to an inventory of “imaging operators” —
like edge detectors, region growers, corner locators, etc., each
of which, when applied to any portion of the image, returns
meaningful tokens (like circles, regions of the same color,
etc.). An “interpretation policy” specifies which operator to
apply to which portion of the image, during each step of the
interpretation process. Such policies must, of course, specify
the details: perhaps by specifying exactly which bottom-up
operators to use, and over what portion of the image, if and
when to switch from bottom-up to top-down, which aspects
of the model to seek, etc.

Our earlier work [IG01b] considered various types of poli-
cies, towards demonstrating that an “information theoretic
policy”, which selects operators that maximize the informa-
tion gain per unit cost of the imaging operator, work more
effectively than others. However, the [IG01b] policies evalu-
ate each operator ����� 	 myopically — i.e., independent of the
cost and effectiveness of subsequent operators that would be
applied, after performing this ���
��	 . To see why this is prob-
lematic, assume the task is to determine whether there is an
airplane in an image, by seeking the various parts of an air-
plane — e.g., the fuselage, wings, engine pods, tailpiece,
etc. Now consider the �
��� operator that detects and locates
the engine pods. As the engine pods are small and often
partially-occluded, � ��� is probably expensive. However, once
these parts have been located, we expect to find the associ-
ated wings very easily, and then the remaining parts required
to identify the entire airplane. A myopic policy, which evalu-
ates an operator based only on its immediate cost, would miss
this connection, and so would probably prefer a cheaper op-
erator over the expensive � ��� . A better policy would consider
“operator interactions” (here, relating � ��� to (say) the “wing
finder operator”) when deciding which operator to apply. The
data in Section 5 (related to the complex task of face recogni-
tion) shows that such non-myopic policies can be both more
accurate, and more efficient.

Of course, non-myopic policies must use some type of
lookahead to evaluate the quality of its operators; this can be
combinatorially expensive to compute. We address this con-
cern by (1) dealing with an abstract version of the “interpre-
tation state space”, and then by (2) using dynamic program-
ming techniques over this abstracted space, pre-computing
many relevant “utility” [SB98] values off-line [BDB00]. In
particular, our system computes the utility of imaging op-

erator sequences in each state � encountered, based on data
from a set of training examples. It produces a policy, which
maps each state � to the operator � �� that appears to be the
most promising, incorporating this lookahead. At run-time,
our system finds the best matching state and applies the op-
erator associated with that situation. Our empirical results, in
the domain of face recognition, show that such policies work
effectively — better than the best results obtained by any of
the earlier myopic systems.

Section 2 presents relevant related work, to help frame our
contributions. Section 3 discusses the salient features of inter-
pretation strategies. Section 4 then presents our approach, of
using reinforcement learning in image interpretation, within
the domain of face recognition, using operators that each cor-
respond to types of eigenfeatures. Section 5 provides empiri-
cal results that support our claims.
2 Related work

We produce an interpretation of an image by applying a se-
quence of operators, where each operator maps the current
state (typically a partial interpretation) to a new state. As
the effects of an operator may depend on information not
explicitly contained in the state description, this mapping is
stochastic. Moreover, each operator has a cost, and the state
associated with the final interpretation has a “quality” (i.e., its
accuracy as an interpretation). As such, we view this image-
interpretation task as a “Markov Decision Problem” (MDP).
This means we can apply the host of reinforcement learning
techniques [SB98] to this problem. This specific application
area, of image interpretation, follows the pioneering work of
Draper [BDB00], which shows that dynamic control policies
can outperform hand-coded policies. We extend their work
by addressing and exploiting the issue of operator interactions
and by doing a systematic analysis of the cost and accuracy
tradeoffs in face recognition.

While we could encode each state as the entire image, this
would be too unwieldy. Boutilier et al. [BDH99] survey sev-
eral types of representations in planning problems and discuss
ways to exploit them to ease the computational cost of poli-
cies or plans. Their work focuses on abstraction, aggregation
and decomposition techniques. We use abstractions to reduce
the size of each state, and hence of the state space we are
exploring; moreover, we are not concerned with the general
planning problem. Our system is similar to the “forest in-
ventory management system” [BDL02]. In their system, the
output of some operators provide the input to some other op-
erator, while in our system the result of one operator is used
to narrow the search for some other operator. Moreover, our
system can exploit the structure specific to our task to bound
the lookahead depth.
3 Framework

As suggested above, our overall objective is to produce an ef-
fective interpretation policy — e.g., one that efficiently returns
a sufficiently accurate interpretation, where accuracy and effi-
ciency are each measured with respect to the underlying task
and the distribution of images that will be encountered. This
section makes this framework more precise. Subsection 3.1
specifies our particular task; Subsection 3.2 lists the strategies

we will evaluate; Subsection 3.3 outlines our performance do-
main, face recognition; and Subsection 3.4 describes the spe-
cific operators we will use.
3.1 Input to the Interpretation System
We assume that our interpretation system “ ��� ” is given the
following information:� The distribution

�
of images that the

���
will encounter,

encoded in terms of the distribution of objects and views that
will be seen, etc. For our face recognition task, this corre-
sponds to the distribution of all people the system will see,
which varies over race, gender and age, as well as poses and
sizes. We approximate this using the images given in the
training set. See Figure 1.� The task ���	��

������������������� � includes two parts:
First,
 specifies the objects that the ��� should seek, and what���

should return. Second, the task specification also provides
the “evaluation criteria” for any policy, which is based on
both the expected “accuracy” (�������) and the maximum in-
terpretation “cost” (� �����), which the ��� should not exceed.

Here,
 specifies our task is to identify the person from
his/her given test image (wrt the people included in the train-
ing set), subject to the accuracy � ����� and cost requirements
� ����� .� The set of possible “operators” !"�$# �%�'& includes (say)
various edge detectors, region growers, graph matchers, etc.
For each operator � � , we must specify(its input and output,(its “effectiveness”, which specifies the accuracy of the

output, as a function of the input.(its “cost”, as a function of (the size of) its input and pa-
rameter setting.

We will use a specific set of operators in our face recognition
task; we describe these in detail in Section 3.4.

Borrowing from the MDP literature, we view the main in-
put to each operator as its “state”. As we are dealing with
scenes, we could use the entire pixel image as (part of) the
state. However, for reasons of efficiency, we will often use an
abstracted view) �*� 	 of (our interpretation of the) the scene
� . Section 3.4 presents the specific abstraction we are using.
3.2 Strategies

Strategy INFOGAIN: selects the operator that provides the
largest information gain (per unit cost) at each step. This
myopic strategy first computes the expected information gain+ �-, � � 	 for each possible operator and argument combina-
tion � , as well as the cost . ��� 	 . It then executes the operator
that maximizes their ratio, � � �0/*132546/%798:# + �-, � � 	<;=. ��� 	>& .

We focus on this strategy as a number of earlier em-
pirical studies have demonstrated that it was the best of
all of the (myopic) strategies considered, across a num-
ber of task-contexts and domains, including simple blocks
world [IG01a], car recognition (identifying the make and
model of a car based on its tail light assembly [IG01a]), as
well as the face recognition system considered here [IG01b].
Strategy BESTSEQ: selects an operator � �?�@ that appears to
be the most promising in the current abstract state) �*� 	 , as
given by the utility � �?�@ �BA � �C) �5� 	 	 , where A � is the (opti-
mal) mapping from state to actions. See Section 4 for details.

3.3 Face recognition task
We investigate the efficiency and accuracy of the strategies
listed above in the domain of face recognition [TP91; PMS94;
PWHR98; EC97]. This section briefly discusses the promi-
nent “eigenface” technique of face recognition that forms the
basis of our approach; then presents our framework, describ-
ing the representation and the operators we use to identify
faces; and finally presents our face interpretation algorithm,
for identifying a person from a given image of his/her face.

Eigenface and EigenFeature Method: Many of today’s
face recognition systems use Principal Component Analysis
(PCA) [TP91]: Given a set of training images of faces, the
system first forms the covariance matrix � of the images, then
computes the � main eigenvectors of � (“eigenfaces”). Every
training face � � is then projected into this coordinate space
(“facespace”), producing a vector � � ��� ��� �	�
 ����� ���
 ������� ����� �	���� .

During recognition, the test face ��� � � � is similarly projected
into the facespace, producing the vector � � � � � , which is then
compared with each of the training faces. The best matching
training face is taken to be the interpretation [TP91].

Following [PMS94], we extend this method to recognize
facial features — eyes, nose, mouth, etc. — which we then
use to help identify the individual in a given test image. We
partition the training data into two sets, �"� #��
�� � & for con-
structing the eigenfeatures and � � #��
�� � & for collecting
statistics, where each set contains at least one face of each of
the � people. (Feature regions for the training data � were
extracted using the operators explained in 3.4 and verified
manually for correctness). Letting id ��� 	 denote the person
whose face is given by � , we have id ���
�� � 	 ��� � id ���
�� � 	 for� � �!��� � ; each remaining �
"� # and �
�� # ($&%'�) also maps to�(�	� � ; i.e., id ���
�� # 	 � id ���
�� � 	*) #!�*������� �+��&

We use PCA on the mouth regions of each � image, to pro-
duce a set of eigenvectors; here eigen-mouths. For each face
image � � , let � � �,�� be the “feature space” encoding of � � ’s
mouth-region. We will later compare the feature space encod-
ing � � �,�� � � � of a new image � � � � � against these #�� � �*�� & vectors,
with the assumption that � � �*�� � � �,- � � �*�� suggests that �.� � � � is
really person � — i.e., finding that /�� � �*�� � � �10 � � �*�� / is small
should suggest that id ���.� � � � 	 �'� . (Note / �2/ refers to the 3

norm, aka Euclidean distance.) To quantify how strong this
belief should be, we compute 4 �65 �75.895 � 5 values #�: � � # &
where each : � � # �;/�� � �*�
"� � 0 � � �*�
�� # / is the Euclidean distance
between the “eigen-mouth encodings” of � ’s �
"� � and

�
’s�
�� # . Using the � training data, we can learn a mapping from

these values to probabilities � �./��<� �,�� � � � 0 �=� �*�� />5 id ��� � � � � 	 �
��	 , which we can use to estimate � �!� � �*�� � � � 5 id ���.� � � ��	 �?��	 .
(See [IG01b] for details.)

We compute similar estimates for the other facial features,
such as nose (�), left eye (@BA) and right eye (CDA). We then use
the Naı̈ve-Bayes assumption [DH73] (that features are inde-
pendent, given a specific person) 1 to compute a cumulative

1Of course, this assumption is almost assuredly false in our sit-
uation. However, this classification has been found to work well in
practice [Mit97].

“face probability” from these “feature probabilities”: the val-
ues /�� �	E �� � � � 0 � �	E �� / for each feature F , corresponding to a set
of � �(� � �*�� � � � 5 id ��� � � � � 	6�G� 	 values (one for each individual�). We then compute

� � id ��� � � � � 	 ���H5+� � �,�� � � � �I� �KJ �L�� � � � �M� � �N�� � � � 	
�PO � � � id ��� � � � � 	 �'��	 �

� �(� � �*�� � � � �Q� �KJ ���� � � � ��� � �N�� � � � 5 id ��� � � � � 	 ����	
�PO � � � id ��� � � � � 	 �'��	 � � �(�=� �*�� � � � 5 id ��� � � � � 	 ��� 	 �
� �(� ��J �L�� � � � 5 id ��� � � � � 	 ��� 	 � � �(� � �N�� � � � 5 id ��� � � � � 	 �'� 	

(1)

where O is a scaling constant.
3.4 Operators
We use four classes of operators, ! �
# � J � ��� �+R%�+C 	�� �DS � ��� �+R%�+C 	�� �=� ��� �+R%�+C 	�� �=� ��� �+R%�+C 	 & to
detect respectively “left eye”, “right eye”, “nose” and
“mouth”. Each specific operator also takes several pa-
rameters: �T) #DU(V��XW(Y��XWZV9�+[ZY��X[ZV & specifies the number
of eigen-vectors being considered; the other parametersR � �\R ���+R�]=� and C6� �^C ���XC�]%� specify the space this operator
will sweep, looking for this feature: It will look in the
rectangle �\R �`_ C � �aR]*_ C] � ; i.e., sweep C � 8bC] pixels,
centered at �\R �9�cR�]%� .

Each instantiated operator ����� 	d) ! takes as input the im-
age of a test face � � � � � , and returns a probabilistic distribution
over the individuals. It has three subtasks: SubTask#1 locates
the feature � �	E �� � � � from within the entire face ��� � � � . Here we
use a simple template matching technique in which we search
in the fixed region C of size C � 8eC] pixels, centered at pixel R .
SubTask#2 then projects the relevant region of the test image
� �	E �� � � � into the feature space — computing � �	E �� � � � of dimen-
sion � . SubTask#3 uses this � �	E �� � � � to compute first the values
: � � � � � � �f/�� �	E �� � � �g0 � �hE �� / for each person � and then to com-
pute the probability � � id ��� � � � � 	 �'�i5X� �	E �� � � � 	 for each person� . We use Equation 1 to update the distribution when consid-
ering the 2nd and subsequent features; see [IG01b]. For each
eigenspace dimension � , we empirically determined the cost
(in milliseconds) of the four operators —j<k\lnmpo�k^qsrLt�r�u�vLvxw yNz {�|}q�~x�Nz {n|>� t!�n�������(z ���j<k\ln��o�k^qsrLt�r�u�vLv�wG�"�Nz �n|}q�~x�Nz {n�>� t!�n����|��!z {��j<k\ln�.k^qsr�t�r�u�vLv�w yNz yn|}q�~x�Nz {��1� t!�n���n�n�(z |D�j<k\ln�=k^qsrLt�r�u�vLv�w �Q�!z �Iq�~x�Nz {��1� t!�n�����n�(z ���
where 5 Cc5 �bC ��8�C�] is the size of the range. While increas-
ing the dimensionality � of the feature space should improve
the accuracy of the result, here we see explicitly how this will
increase the cost.
4 Use of Dynamic Programming

This section briefly overviews MDPs, presents “state abstrac-
tion” in face recognition and shows how dynamic program-
ming can be used to compute the utility of operators in ab-
stracted states. We also discuss operator interaction and de-
scribe how it can be exploited in face recognition.
4.1 Markov Decision Problem
A Markov Decision Problem can be described as a 4-tuple
�\� �X� ��4 �X� � where � � #:�
 �<�
 ������� �<� � & is a finite set

of states, � � #��
 ���
 ������� ��� � & is a finite set of actions,4��D�'8 �b8 ��� � Y���� � is the state transition probability
function (4 �� � �	� � � �*�
 53�*��� 	 is the probability that tak-
ing action � in situation � leads to being in state �
) and���I��8 � �
�

is the reward an agent gets for taking an
action �) � in state �) � . The Markov property holds if
the transition from state � � to � # using action � depends only
on � � and not the previous history. A policy A���� � � is
a mapping from states to actions. For any policy A , we can
define a utility function ��� such that

� � ��� 	 � 4 /=7�
�
� ���5��� 	����

�	� 4 �� � ��� 8�� � ���
 	��
which corresponds to the expected cumulative rewards of ex-
ecuting the apparently-optimal action � in state � , then fol-
lowing policy A after that.

Given an MDP, we naturally seek an optimal policy A � —
i.e., a policy that produces the optimal cumulative reward for
each state, � � ��� 	 . Dynamic programming provides a way to
compute this optimal policy, by computing the utilities of the
best actions. Of course, given the values of � � ��� 	 , the optimal
action at each state � is simply A � ��� 	 � /*13254 /=7 � #�� ���5����	��� � �N4 �� � �	� 8�� � ���
 	>& .

This can be challenging in the general setting, where se-
quences of actions can map one state to itself; much of the
work in Reinforcement Learning [SB98] is designed to ad-
dress these issues. In our current case, however, we will see
there is a partial order on the states, meaning no sequence of
actions can map a state to itself. Here, we can use dynamic
programming to compute the optimal utility for each “final
step”, then use these values to compute the optimal action
(and utility) for each penultimate state, and so forth.
4.2 State abstraction
An MDP involves “states”. In our face recognition task, any
attempt to define states in terms of the pixel values of an im-
age would be problematic, as there will be far too many states
to enumerate. Following [BDB00; BDL02], we use the no-
tion of “abstract states”, which basically redefines an original
state in a much more compact form, using only the certain
aspects of the state. Since we recognize a person using the
features, we define an abstraction function

) �*� 	 � � � ���� � � J �:�"! J �:�#� S �:��!(S � �$� � �"!*� � � � �"!*� � (2)

where � is the actual complex state as present in the image and
�%� �'��!*� � denotes the location (center) of feature F*� (left eye,
right eye, nose or mouth) in the image. (Here � is the total
cost we have spent so far, and ��$� �C� � id ��	 �&��5��+ 	3� � is the
current posterior distribution over the possible faces, based on
the current evidence �+ .) The location of some feature F%� may
not yet be known in an image; here, we use the value of '
for both � � and ! � . Further, we say two abstractions are “ (-
equivalent”, written) �*�
 	 -*)) �5�
 	 , iff
(�
 and �
 have located the same set of features — i.e.,� � � �
 	 �+' iff � � ���
 	 ��' and
(�
�-, �/. � �"0 ��12#3 /4� ��� �
 	 0 � � ���
 	�/5� /4!5�
���
 	 0 !*��� �
 	�/&67(

— i.e., when the distance (in pixels) between the centers
of feature F � in �
 and �
 is small (68().

As we are using normalized images that contain only faces,
denoting the distance in absolute pixel values is not an issue.
In general, (is a small, predefined constant; we used �nY .2

The result of abstraction is that a large number of complex
states can be described by a small number of compact state
descriptions. Of course, the same abstract state can represent
multiple states —) �5�
 	 �) �5�
 	 when �
:9�B�
 .

We use a lookahead algorithm to compute the � -values.
Since we consider only four features, we need a lookahead of
only depth four. Moreover, we can do this during the training
phase. We will use the reward function

� ���5��� 	 �<;>=? k id kBv w�@BA}� =C v if D w Stop��EGFIHQk D v otherwise (3)

that penalizes each operator � by O times the time J �K� 	 it
required (in seconds) as well as a positive score for obtain-
ing the correct interpretation (here � � represents that correct
identity of the person in the image.) We used O �bYs�pU . Dur-
ing the training phase, our system finds the optimal opera-
tor sequence — i.e., the one that has the maximum �
 � � 	 �� �C) �*� 	�	 value, based on the abstracted state) �*� 	 .
4.3 Dynamic Programming
This section shows how to compute � � � 	 utility values.
Tree expansion: We use four classes of operators ! �
# � J � ��� �+R%�+C 	�� �DS � ��� ��R%�+C 	 � �=� ��� ��R%�+C 	 � �=� ��� ��R%�XC 	 & , each
with V different values of �) #�U(V��cW(Y��sWZV9�c[ZY��c[ZV9& , for a
total of UNY operators (see Section 3.4). The parameters R �
�\R � ��R] � and C � �BC � �+C] � specify the rectangular area where
the operator will search. Our system does not have to search
over their values; instead, it directly computes their values
from the locations of the features ��F
 ��F
 ������� �QF � � (�ML'[) we
have already detected; see Section 4.4.

Our system expands the operator tree exhaustively using a
depth-first search. Of course, the depth of the tree is at most[(not U(Y), as we only consider at most one instance of each
operator along any path.
Computing � �*� 	 : We compute the various utility values us-
ing a dynamic programming approach:

(i) We first apply every sequence of 4 different operators to
the original image, to produce the set of all possible � �ON � leaf
states. Then set � � � �PN � 	 � � � id ��	
�Q� � 5��+ 	 , where � � is
the correct interpretation, and �+ is the observed locations of
the various features.

(ii) Now consider each state � �PR � that involves some set of
3 operators. For each, we can consider all VS� � possible
actions: either Stop, or apply the remaining operator (with
one of the V possible � values). We can trivially compute the
utility of each option: as � �T� � 5��+
 	 for the Stop action,
and 0 O�J �K��	8�U� ��� �PN � 	 if the action � takes time J �V��	 and
produces the state � �ON � . We set � �*� �PR � 	 to be the largest of
these 6 values, and A ?�@ �*� �PR � 	 to the action which produced
this largest values.

2For this value of W , we found that there were about
���n���

entries
of X kZYiv totally.

Figure 1: Training images (top); test images (bottom)
After computing � �*� �PR � 	 for all “depth-3” states, we then

recur, to deal with depth-2 states, and so forth.
Of course, these states here actually refer only to the ab-

stracted state) �*� 	 . Moreover, we “bin” these values: Sup-
pose we have encountered some abstracted state) �5�
 	 . If
we later find a state �
 , where) �*�
 	 -*)) �*�
 	 , and de-
termine � �C) �*�
 	�	 L � �) �*�
 	�	 , we would then reset the
value of � �) �*�
 	 	 and A ?�@ �) �*�
 	�	 to be the values found
for) �*�
 	 .
Retrieving the most promising operator during interpre-
tation: This entire procedure of computing the optimal pol-
icy A ?�@ is done off-line, during the training phase. During
interpretation (performance phase), in any state � � we (i) find
the “nearest neighbour”) �*� # 	 , such that the sum of the
distances between the corresponding features in) �5�=�
	 and
) �*� # 	 is the minimum over all possible entries; and (ii) re-
turn the operator A ?�@ �C) �5� # 	 	 , which is either “Stop”, or
an instantiated operator — say � � ��U!V9� ��V(Y�� ��� ��� � � Y��QV!U=� 	 . If
not-Stop, the run-time system then executes this operator to
locate another feature, which produces a new state (updating
the total cost and posterior distribution as well). It then deter-
mines the next action to perform, and so forth.

There is one place where our system might perform differ-
ently from what the policy dictates: As we are maintaining
the actual cost so far, and the actual posterior distribution
over interpretations, our run-time system will actually termi-
nate if either the actual cost has exceeded our specs, or if the
highest probability is above the minimal acceptable value.

Notice, given our specific set-up — e.g., only 4 types of op-
erators that can only be executed once, and which always suc-
ceed, etc. — the policy obtained can be viewed as a “straight-
line” policy: seek one specific feature, than another, until
achieving some termination condition; see Figure 2 for an ex-
ample. In general, this basic dynamic programming approach
could produce more complex policies.

4.4 Operator dependencies
Our face recognition system will exploit a certain type of op-
erator interactions, viz., using the result of one operator to
simplify a subsequent one. That is, after detecting some fea-
ture (say the left eye), we expect to have some idea where to
find the other features (e.g., the right eye). We model this as
a linear function, mapping from the location of the left eye
to the expected location of the right eye. If the left eye was

����� k	�Bj,r =? r
�-@ mpo r�� mpo r @c��o�r
�n�+o"r�@ � r
� � r	@c��r
�����
� v
If
j��xj �
��� � ? ��� ��������� � ? k id kBvaw�@=� =C vThen Return(Stop)

Else Case
�-@ mpo r
� mpo r @ ��o r
� ��o r	@c�cr
�n�.r	@ � r
� � �

of
 �"!<r#!<r�! r�!<r�!<r�!<r#! r�!$� :

Return(
l mpo kB{n|&%��^�(�nrX|�{'�)(*�B{D�nrX{�{+�Lv

)
 �-@ mpo r
� mpo r,!<r�! r�!<r#!<r�!<r�!-� :

Return(
l ��o kB{�|&%
�-@cmpo ~��n�(r��nmpo ~ �.��(/�B{n|Dr"���+�Lv

)
 �-@ mpo r
� mpo r�@c��o"r
����o�r,!<r#!<r�!<r�!-� :

if
�-@cmpo�r
��mpo�r�@ ��o r0� ��o �21435���"�Nr����NrX|��(r+���.�

then Return(
l � k^����%��-@2�+oM���Nr�����o ~ {�{'�)(*�B{��!rX{�{+�Lv

)
else Return(

ln�skB{n|.%6�-@ ��o �&�(r
� �+o ~ {n{'��(/�B{��(r+{n{+�Lv
)

 �-@ mpo r
� mpo r�@c��o"r
����o�r	@ � r
� � r,!<r�!7� :
if
�-@ mpo r
� mpo r�@ ��o r0� ��o r	@2�sr
�n�8�21 3 ���"yNr��!��rX|n{Nr��(�nr����(rX|D���

then Return(
ln�<k^�n�&%��-@ � ~ �Q�!r�� � ~ ���.��(/�^�(��r��"y+�Lv

)
else Return(

ln�`kB{n|&%��-@ � ~����!r0� � ~��n�+�)(/�^�(�nr"���.�Lv
) Return(Stop)

Figure 2: Policy A ?�@ learned by BESTSEQ, for
��� ����� �:90�<� ��� � �'Y.� ;*�
detected at �%� J � �"! J � � , then the expected location of the right
eye would be the window �%� J � � [� ��! J � �*<-� _ ��U(V����+=%� . We
also model the “variance” — i.e., the size of the search win-
dow around this expected position. To be more precise, let
us assume that the search window for some feature F
 is of
size C �
 8 C�]
 pixels. After detecting feature F
 , we instead
search for F
 in a smaller region C
�
 8�C
]
 , centered at the lo-
cation that we computed from F
 ’s location, using that linear
function.

After observing several features (say nose and left eye),
we will have several estimates for the location of the current
feature (here right eye). Here we take the smallest bounding
box and use that as the search area for locating the current
feature. This “factoring” means we need only consider a set
of [�8 W transformations (of each of the four feature versus
the other three features), rather than deal with all possible
subsets.

To make these ideas more concrete: Initially, given no
other information, we would look for the right eye in the
region � � = ��V(U=� _ ��U(V��QU(U=� . However, after finding the left
eye at location R J � � ��U(V9��VNY%� our system knows that, if
asked to look for the right eye, it should search in the re-
gion �>=c�*��V&<%� _ ��U(V����+=:� . (We are not committing to looking
for the right eye at this time; just indicating where to search,
if requested.) Notice this region is different from the one we
would consider if we had not located the left eye; moreover,
if we also knew that the nose was at location R � � ��W(Y��QVNY5�
(as well as left eye), we would use a yet more refined region
— here � � �*��V(V%� _ ����V9����U%� .
4.5 Image interpretation policies
During interpretation, INFOGAIN and (the policy produced
by) BESTSEQ each iteratively select an operator �����) ! .
(Recall that the values of C and R are determined from the con-
text (of other detected features); we therefore do not need to
specify them here.) INFOGAIN chooses an instantiated op-
erator � � �.?A@ ����?A@ 	 that has the maximum

+ �-, � � 	3;%. � � 	
value. BESTSEQ selects an operator � �?�@ � A ?�@ �C) �*� 	�	

where � is the current state and A ?�@ is the (optimal) mapping
from state to actions. In each case, the operator is applied
to the appropriate region in the given test face image and the
distribution is updated. . . until one face is identified with suf-
ficiently high probability (% � ��� �) or the system fails (by
exhausting all the possible operators, or cost %0� �����).

5 Experiments

We used face images of �nY!U different people, each ;ZU 8��(��U
pixels. We assigned � < = images to the set � , another � <8= im-
ages to

�
and used another W!W(W as test images.3 As shown

in Figure 1, the faces are more or less in the same pose (fac-
ing front), with some small variation in size and orientation.4
We considered all UNY operators based on the four features
listed above and �) #�U(V��XW!Y��XWZV9�X[!Y��X[ZV9& for each feature.
The BESTSEQ interpretation policy decides precisely what
operator � � ��� �+R%�+C 	 to apply on which portion of the image,
given each state (which here corresponds to a specific set of
information gathered); see Figure 2.
Basic Experiment: We set � ��� � ��Y.� ; and � ����� � 9 (i.e.,
no upper limit on identification cost).5 In each “set-up”, we
assigned a random probability to each person (correspond-
ing to drawing a sample with replacement). On each run, we
picked one face randomly from the test set as the target, and
identified it using each of the policies. We repeated this for a
total of W(Y runs per set-up, then changed the probability dis-
tribution and repeated the entire process again, for a total of�nV set-ups. The accuracy of identification for INFOGAIN and
BESTSEQ are < ;s� =.< �

and ;(Ys� [([�
, respectively. (Recall both

were required to obtain at least ������� � ;!Y �
.) The average

cost of identification was �!� Y([ZV (*�Nz ���n� and Ys� =2�.= (*�Nz �n�n� sec-
onds6 for INFOGAIN and BESTSEQ respectively. Hence, we
see BESTSEQ took much less time than INFOGAIN to obtain
this level of accuracy.

The first two rows of Table 1 shows how often INFOGAIN
(resp., BESTSEQ) used one (resp., two, three, four) operators
before terminating, over these 450 runs. We observe the IN-
FOGAIN applied slightly more operators than BESTSEQ on
the average. More importantly, as BESTSEQ can exploit sim-
ple operator interactions, the search area it uses for the sub-
sequent operators can be narrower than INFOGAIN’s. These
two factors result in a much lower cost for BESTSEQ.
Bounding the Cost: In many situations we need to impose a
hard restriction on the total cost; we therefore considered var-
ious values of � ��� � in the range [0.25–2.0] seconds. We then

3We assume that any test face-image belongs to one of the people
in the training set, but probably with a different facial expression or
in a slightly different view, and perhaps with some external features
not in the training image (like glasses, hat, etc.), or vice versa.

4 k��"v These faces were downloaded from the web
sites whitechapel.media.mit.edu and www.cam-
orl.co.uk.

kB{�v
This work assumes the head has already been

located and normalized; if not, we can use standard techniques
[TP91] first.

5The other part of the task, � , is “identifying people”; this is true
for all of the experiments discussed here.

6All the experiments reported in this paper were run on a Pentium
866 MHz. PC with 128 MB RAM running Linux OS 2.2.19-12.

Table 1: How often BESTSEQ (INFOGAIN) used � Operators
����� � 1 2 3 4 ave

IG 9 7.11 57.56 10.00 25.33 2.54
BS 9k ? ��� � w �Nz ynv 8.89 56.00 15.33 19.79 2.46

BS 2.00 11.33 64.89 3.78 20.00 2.32
BS 1.50 11.33 64.89 3.78 20.00 2.32
BS 1.00 11.33 64.89 5.33 19.11 2.34
BS 0.50 65.33 34.67 0.00 0.00 1.35
BS 0.25 100.0 0.00 0.00 0.00 1.00
BS = BESTSEQ; IG = INFOGAIN

picked one face randomly from the test set, and identified the
test image for each of these maximal costs, using INFOGAIN
and BESTSEQ.

As always, we terminate whenever the probability of any
person exceeds � ����� or if the cost exceeds � ����� , returning
the most likely interpretation.

We repeated this experiment for a total of ��V set-ups (each
with a different distribution over the people) and with W!Y ran-
dom runs (target face images) per set-up. We found that
74.29% of the policies produced matched the policy shown
in Figure 2.

Figure 3(a) plots the accuracy (the percentage of correct
identifications) for the policies found for various values of
������� . In general, the policies produced by BESTSEQ had
better accuracy than the ones produced by INFOGAIN. BEST-
SEQ found different policies for different costs. The bottom
5 rows of Table 1 show how often BESTSEQ used one (resp.,
two, three, four) operators for different values of ������� before
terminating.

For low cost values (under Ys�pV seconds), BESTSEQ per-
forms much better than INFOGAIN (accuracy of - 65.33%,
versus - 1.78%). As BESTSEQ was able to exploit operator
interactions. it was able to apply a second (and probably a
third) operator by using a smaller sweep area (R , C) within
the allotted time. Since INFOGAIN does not exploit this, it
needed significantly more time.

Varying the Minimum Accuracy: In this experiment, we
varied ����� � from Ys�	� to Ys� ; . For each of these values, we
chose a face randomly from the test set as the target and iden-
tified it using each of the two policies. During the process, the
first person � in the training set for which � � id ��� 	 � �i5 � 	,%
����� � is returned (or if cost % ������� , the most probable face
is returned). We repeated this for W!Y different faces (runs) per
set-up, and repeated the entire process for a total of ��V differ-
ent set-ups. About =DY.� [�

of these policies matched Figure 2.
We evaluated the results in two different ways. First, Fig-

ure 3(b) compares the percentage of wrong identifications of
each policy, for each � ��� � value. We see no significant differ-
ence in error between BESTSEQ and INFOGAIN. The second
graph, Figure 3(c), compares the average cost of each policy,
for each ������� value. Here we see that BESTSEQ has much
lower cost than INFOGAIN. Again, this is because BESTSEQ
can use operator interactions to sweep a narrower region.

Y
UNY
[!Y
� Y
<(Y

Y Y�� [Y�� < ��� U ��� � U

�
�
�

���
	�� � 	�
 � ������	 	

���
���

�������
�

� � �

�

��U
� �
U(Y
UN[
U�<W!Y

Y���� Y�� W Y��pV Y�� = Y�� ;

�

1
1�
1�

� �����

���
����

�

�

�
� �

�

Y����
Y�� U
Y�� W
Y�� [
Y�� V

Y��	� Y�� W Y�� V Y�� = Y�� ;

�
�
	
�

� ��� �

���
���

�
�

�
�

�
�

�

Figure 3: (a) Cost vs. Accuracy (b) Min. Accuracy vs. Error (c) Min. Accuracy vs. Cost
6 Conclusions

Future Work: This paper explored one type of operator in-
teraction: where the output of one operator can be used to
help a subsequent operator — here by reducing the time it
will require to search. Moreover, our operators were rela-
tively simple, as they always succeeded (or at least, think that
they succeed), and they could be run in any order. As a con-
sequence, our policy was quite simple — just straight-line
sequence of operators.

There are many ways to extend our analysis. First, it might
be useful to allow each operator to return not just a position,
but also other information, such as confidence (which would
become part of the state). The best policy, then, could use
that information when deciding on the proper future action to
take. If the abstracted state also included other information
about the image, such as average intensity, the policy could
use that information as well. This could result in a policy that
was more complicated and, presumably, more accurate.

Finally, it would be interesting to consider operators that
have some explicit dependency — e.g., one cannot run the
“connect edgel” operator unless we have already run some
“produce edgel” operator. These precedence constraints
would add yet other challenges to our framework.
Contributions: This paper shows how dynamic program-
ming can be used to build efficient interpretation systems. We
argue that computing the utility of operator sequences, which
incorporate the benefits of operator interactions, can play a
significant role towards building efficient interpretation sys-
tems. However, in several real world situations, such systems
may have (i) to deal with complex and unwieldy states, and
(ii) to explore the operator space to find the most promising
operator sequence, which is expensive. We addressed the first
issue by using simplified abstract states in face recognition,
and addressed the second by using an off-line limited looka-
head search to find the most promising operator sequence.

We framed the image interpretation task as a Markov Deci-
sion Problem and used ideas from reinforcement learning to
compute the utility of imaging operators non-myopically over
a finite lookahead depth in an operator space. We built an in-
terpretation system that uses these concepts and compared its
performance with a successful myopic system in face recog-
nition. Our results show that the former has a much better
performance in various experiments that address the cost and
accuracy tradeoffs.

Acknowledgments
The authors gratefully acknowledges the generous support
from Canada’s Natural Science and Engineering Research
Council and the Alberta Ingenuity Centre for Machine Learn-
ing.

References
[BDB00] J. Bins B. Draper and K. Baek. Adore: Adaptive

object recognition. In Videre, 1(4), pages 86–99, 2000.
[BDH99] C Boutilier, T Dean, and S Hanks. Decision-

theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence, 1999.

[BDL02] V Bulitko, B Draper, and I. Levner. Mr adore con-
trol policies. Technical report, Dept. of Computing Sci-
ence, University of Alberta, 2002.

[DH73] R.O. Duda and P.E. Hart. Pattern Classification and
Scene Analysis. Wiley, New York, 1973.

[EC97] K Etemad and R Chellappa. Discriminant analysis
for recognition of human faces. Journal of Optical Society
of America, 1997.

[HR96] R Huang and S Russell. Object identification: A
bayesian analysis with application to traffic surveillance.
Artificial Intelligence, 1996.

[IG01a] R. Isukapalli and R. Greiner. Efficient car recogni-
tion policies. In ICRA, pages 2134–2139, Seoul, 2001.

[IG01b] R. Isukapalli and R. Greiner. Efficient interpretation
policies. In IJCAI, Seattle, 2001.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[PL95] A R Pope and D Lowe. Learning object recognition
models from images. In Early Visual Learning, 1995.

[PMS94] A Pentland, B Moghaddam, and T Starner. View-
based and modular eigenspaces for face recognition. In
IEEE CVPR, 1994.

[PWHR98] P Phillips, H Wechsler, J Huang, and P Rauss.
The feret database and evaluation procedure for face recog-
nition algorithms. Image and Vision Computing, 1998.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press (A Bradford Book), Cam-
bridge, MA, 1998.

[TP91] M Turk and A Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 1991.

