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Abstract

This paper applies Probabilistic Relational
Models (PRMs) to the Collaborative Filter-
ing task, focussing on the EachMovie data
set. We first learn a standard PRM, and
show that its performance is competitive with
the best known techniques. We then de-
fine a hierarchical PRM, which extends stan-
dard PRMs by dynamically refining classes
into hierarchies, which improves the expres-
siveness as well as the context sensitivity of
the PRM. Finally, we show that hierarchical
PRMs achieve state-of-the-art results on this
dataset.

1 Introduction

Personlized recommender systems, which recommend
specific products (e.g., books, movies) to individuals,
have become very prevalent. The challenge faced by
these system is predicting what each individual will
want.

A pure content-based recommender will base this on
only facts about the products themselves and about
the individual (potential) purchaser. This enables us
to express each possible purchase as a simple vector of
attributes, some about the product and others about
the person. If we also know who previously liked what,
we can view this as a standard labelled data sample,
and use standard machine learning techniques [Mit97]
to learn a classifier, which we can later use to deter-
mine whether a (novel) person will like some (novel)
item.

To make this concrete, consider a movie recommenda-
tion system which tries to determine whether a spec-
ified person will like a specified movie — e.g., will
George like SoundOfMusic (SoM)? A content-based
system could use a large People×Movies database,

where each tuple lists facts about a person, then facts
about a movie, together with a vote (e.g., a number
between 1 and 5). We could build a classifier that
predicts this vote, based on facts about a person and
movie — here about George and about SoM.

Notice this prediction does not consider other people
(e.g., people “similar” to George) or other movies (like
SoM).

The other main type of recommender system, “collab-
orative filtering”, addresses this deficiently, by using
associations: If person P1 appears similar to person
P2 (perhaps based on their previous “liked movies”),
and P2 liked X, then perhaps P1 will like X as well. A
pure collaboration-only system would use only a ma-
trix, whose 〈i, j〉 element is the vote that person i gives
to movie j, which could be blank. The challenge, then,
is using this matrix effectively, to acquire the patterns
that will help us predict future votes. While there
are a number of other techniques that have proven ef-
fective here, such as clustering, PCA, and K-nearest-
neighbor [UF98b] [UF98a], notice classical Machine
learning techniques do not work here, as there is no
simple way to map this matrix into a simple fixed-size
vector of attributes.

Of course, we would like to use both content and collab-
orative information. Here, we can include, as training
data, facts about the people, facts about the movies,
and a set of 〈P, M, V〉 records, which specifies that
person P gave movie M the vote of V.

The challenge is how to use all of this information
to predict how George will vote on SoM. Here, we
want to use facts about George and about SoM, and
also find and exploit collaborative properties, that deal
with people similar to George (in terms of liking sim-
ilar movies), and movies similar to SoM (in terms of
being liked by similar people).

Stepping back, the challenge here is learning a distri-
bution over a set of databases, here descriptions of sets
of people and sets of products, as well as their votes.



This is quite different from the classical machine learn-
ing challenge of learning distributions over tuples (i.e.,
individual rows of a single relational database).

Addressing this type of relational learning and infer-
ence problem is exactly the kind of problem Probabilis-
tic Relational Models (PRMs) [KP98] were designed to
do. In this paper we show how PRMs can be success-
fully applied to this learning scenario, for addressing
the Collaborative Filtering (CF) problem. We exam-
ine the effectiveness of standard PRMs applied to the
CF task on the EachMovie [Eac] dataset, then we eval-
uate the effectiveness of an extended version of PRMs
called hierarchical PRMS (hPRMs) [Get02]. We show
that standard PRMs can be used to achieve competi-
tive results on the CF task. Furthermore, we demon-
strate that hPRMs can outperform standard PRMs on
the CF task.

In the remainder of this section we will provide an
overview the CF problem. In Section 2 we describe
standard PRMs and our application of the PRM
framework to the CF domain. Section 3 introduces
our implementation of hierarchial PRMs, and shows
how an hPRM can provide a more expressive model
of the EachMovie dataset. Finally, Section 4 demon-
strates the overall effectiveness of PRMs in the CF
problem domain, and in particular the superiority of
hPRMs over standard PRMs.

1.1 Collaborative Filtering

Collaborative Filtering is an area that has attracted in-
creasing attention in recent years. In the most general
sense, the CF problem involves predicting a user’s pref-
erence for a particular item, such as a movie or a book.
This prediction is based on both the user’s known
preferences on other items, and also on the known
preferences that other, similar, users have demon-
strated. Widely used collaborative filtering systems in-
clude Amazon.com’s book recommender and Yahoo!’s
LAUNCHcast music recommender system.

Traditionally, CF algorithms are divided into two
major groups: memory-based algorithms and model-
based algorithms. Memory-based algorithms operate
over the entire dataset; when a new prediction is re-
quired, a memory-based algorithm generally iterates
over the entire user database to arrive at a prediction.
Breese et al. provide an excellent overview of several
memory-based algorithms in [BHK98]. Model-based
algorithms, on the other hand, use the user database
to create a model of which factors influence help pre-
dict a user’s preferences, and use this learned model to
make predictions for a new user. Clustering [BHK98]
and Bayesian Models [CHM97] are two examples of
model-based methods that have been used in the past.

(See also [Aha97].)

2 Standard Probabilistic Relational
Models

A PRM can be viewed as an extension of Bayesian
Networks to a relational setting. PRMs learn class-
level dependencies that can subsequently be used to
make inferences about a particular instance of a class.
For example, we might connect (the class of) teenage
boys to (the class of) action movies, then use that
to infer that the teenage boy Fred likes the action
movie Terminator. Of course, we could do some-
thing like that in a standard Bayesian Network, by
first transforming this relational information into a
non-structured, propositionalized form. While this is
useful for inference (and in fact is what we will do),
this is not an effective way to learn the interrelation-
ships. A PRM can be learned directly on a relational
database, thereby retaining and leveraging the rich
structure contained therein.

We base our notation and conventions for PRMs on
those used in [Get02]. A PRM operates on a Relational
Schema, which consists of two fundamental elements:
a set of classes, X = X1, . . . , Xn, and a set of reference
slots that define the relationships between the classes.

Each class X is composed of a set of descriptive at-
tributes, A(X), which in turn take on a range of val-
ues V (X.A). For example, consider a schema de-
scribing a domain describing votes on movies. This
schema has three classes called Vote, Person, and
Movie. For the Vote class, the descriptive attribute is
Score with values {0, . . . , 5}; for Person the descrip-
tive attributes are Age and Gender, which take on val-
ues {young, middle-aged, old} and {Male, Female}
respectively; and for Movie the single descriptive at-
tribute is Rating which takes on values {G, PG, M, R}.
Furthermore, a class can be associated with a set of
reference slots, R(X). A particular reference slot, X.ρ,
describe how objects of class X are related to objects
in other classes in the relational schema. One or more
reference slots can composed to form a reference slot
chain, τ , and attributes of related objects can be de-
noted by using the shorthand X.τ.A, where A is a
descriptive attribute of the related class. Continuing
our example, the Vote class would be associated with
two reference slots: Vote.ofPerson, which describes
how to link Vote objects to a specific Person; and
Vote.ofMovie, which describes how to link Vote ob-
jects to a specific Movie object.

A PRM Π defines a probability distribution over all
possible instantiations I of the relational schema. It
is made of of two components: the dependency graph,



S, and its associated parameters, θS . The dependency
structure defines the parents Pa(X.A) for each at-
tribute X.A. The parent for an attribute X.A can
be a descriptive attribute within the class X, or it can
be a descriptive attribute in another class Y that is
reachable through a reference slot chain. For instance,
in the above example, Vote.Score could have the par-
ent Vote.ofPerson.Gender. Note that in most cases
the parent of a given attribute will take on a multiset
of values S in V (X.τ.A). For example, we could dis-
cover a dependency of a Person’s age on their rating
of movies in the Children genre. However, we cannot
directly model this dependency since the user’s rat-
ings on Children’s movies is a multiset of values, say
{4, 5, 3, 5, 4}. For such a numeric attribute, we may
choose to use the Median database aggregate operator
to reduce this multiset to a single value, in this case
4. In this paper we reduce S to a single value using
various types of aggregation functions.

The following definition summarizes the key elements
of a PRM:

Definition 1 ([Get02]) A probabilistic relational
model (PRM) Π for a relational schema S is defined as
follows. For each class X ∈ X and each descriptive at-
tribute A ∈ A(X), we have a set of parents Pa(X.A),
and a conditional probability distribution (CPD) that
represents PΠ(X.A|Pa(X.A))

2.1 Applying Standard PRMs to the
EachMovie Dataset

PRMs provide an ideal framework for capturing the
kinds of dependencies a recommender system needs
to exploit. In general, model-based collaborative fil-
tering algorithms try to capture high-level patterns in
data that provide some amount of predictive accuracy.
For example, in the EachMovie dataset, one may want
to capture the pattern that young males tend to rate
Action movies quite highly, and subsequently use this
dependency to make inferences about unknown votes.
PRMs are able to model such patterns as class-level
dependencies, which can subsequently be used at an
instance level to make predictions on unknown ratings.
— i.e., how will George vote on SoM.

In order to use a PRM to make predictions about an
unknown rating, we must first learn the PRM from
data. In our experiments we use the PRM learn-
ing produce described in [FGKP99], which provides
an algorithm for both learning a legal structure for a
PRM and estimating the parameters associated with
that PRM. Figure 1(a) shows a sample PRM structure
learned from the EachMovie dataset.

With the learned PRM in hand, we are left with the

task of making an inference about a new, previously
unseen Vote.score. To accomplish this task, we lever-
age the ground Bayesian Network [Get02] induced by
a PRM. Briefly, a Bayesian Network is constructed
from a database using the link structure of the as-
sociated PRM’s dependency graph, together with the
parameters that are associated with that dependency
graph. For example, for the PRM in Figure 1(a), if we
needed to infer the Score value for a new Vote object,
we simply construct a ground Bayesian Network using
the appropriate attributes retrieved from the associ-
ated Person and Movie objects; see Figure 1(b). The
PRM’s class-level parameters for the various attributes
are then tied to the ground Bayesian Network’s param-
eters, and standard Bayesian Network inference proce-
dures can be used on the resulting network [Get02].

3 Hierarchical Probabilistic Relational
Models

In this section we describe our approach to extend-
ing standard PRMs to include class hierarchies. The
concept of learning PRMs with class hierarchies is in-
troduced in [Get02].

3.1 Motivation

The collaborative filtering problem presents two ma-
jor motivations for hPRMs. First, in the above model,
Vote.Score can depend on attributes of related ob-
jects, such as Person.Age, but it is not possible to have
Vote.Score depend on itself in any way. This is due to
the fact that the class-level PRM’s dependency struc-
ture must be a directed acyclic graph (DAG) in order
to guarantee that the instance-level ground Bayesian
Network forms a DAG [FGKP99], and thus a well-
formed probability distribution. Without the ability
to have Vote.Score depend probabilistically on itself,
we lose the ability to have a user’s rating of an item de-
pend on his rating of other items or on other user’s rat-
ings on this movie. For example, we may wish to have
the user’s ratings of Comedies influence his rating of
Action movies, or his rating of a specific Comedy movie
influence his ratings of other Comedy movies. Second,
in the above model we are restricted to one depen-
dency graph for Vote.Score; however, depending on
the type of object the rating is for, we may wish to
have a specialized dependency graph to better model
the dependencies. For example, the dependency graph
for an Action movie may have Vote.Score depend on
Vote.PersonOf.Gender, whereas a Documentary may
depend on Vote.PersonOf.Age.



Figure 1: (a) Standard PRM learned on EachMovie dataset (b) Ground Bayesian Network for one Vote object

Figure 2: Sample class hierarchy

3.2 Overview

To address the problem described above, we must in-
troduce a class hierarchy that applies to our dataset,
and modify the PRM learning procedure to leverage
this class hierarchy in making predictions. In general,
the class hierarchy can either be provided as input, or
can be learned directly from the data. We refer to the
class hierarchy for class X as H[X]. Figure 2 shows
a sample class hierarchy for the EachMovie domain.
H[X] is a DAG that defines an IS-A hierarchy using
the subclass relation ≺ over a finite set of subclasses
C[X] [Get02]. For a given c, d ∈ C[X], c ≺ d indicates
Xc is a direct subclass of Xd (and Xd is a direct su-
perclass of Xc). The leaf nodes of H[X] represent the
basic subclasses of the hierarchy, denoted basic(H[X]).
In this paper we assume all objects are members of a
basic subclass, although this is not a fundamental limi-
tation of hPRMs. Each object of class X has a subclass
indicator X.Class ∈ basic(H[X]), which can either be
defined manually or learned automatically by a sup-
plementary algorithm. By defining a hierarchy for a
class X in a PRM, we also implicitly specialize the
classes that are reachable from X via one or more ref-

erence slots. For example, if we specialize the Movie
class, we implicitly specialize the related V ote table
into a hierarchy as well. For example, in Figure 3, the
V ote class is refined into four different pseudo-classes,
each associated with one of the hierarchy elements in
basic(H[X]).

Definition 2 A Hierarchical Probabilistic Relational
Model (hPRM) ΠH is defined as:

• A class hierarchy H[X] = (C[X],≺)

• A set of basic, leaf-node elements basic(H[X]) ∈
H[X]

• A subclass indicator attribute X.Class ∈
basic(H[X])

• For each subclass c ∈ C[X] and attribute A ∈
A(X) we have a specialized CPD for c denoted
P (Xc.A|Pac(X.A))

• For every class Y reachable via a reference slot
chain from X we have a specialized CPD for c
denoted P (Y c.A|Pac(Y.A))

The algorithm for learning an hPRM is very similar to
the algorithm for learning a standard PRM. Instead of
dealing with the standard set of classes X when evalu-
ating structure quality and estimating parameters, our
hPRM algorithm dynamically partitions the dataset
into the subclasses defined by H[X]. For inference, a
similar technique is used, as for any given instance i
of a class, i’s place in the hierarchy is flagged through
X.Class; using this flag it is possible to associate the
proper CPD with a given class instance.

3.3 Applying hPRMs to the EachMovie
Dataset

Applying the hPRM framework to the EachMovie
dataset requires a hierarchy to be defined, which is



Figure 3: Example hPrm for EachMovie dataset

then used to build an hPRM that is ultimately used
to make predictions for unknown votes.

In our experiments we automatically learn a hierarchy
to be used in the learning procedure. In the Each-
Movie database, a movie can belong to zero or more
of the following genre categories: action, animation,
art foreign, classic, comedy, drama, family, horror, ro-
mance, thriller.

We denote the set of genres that a movie belongs
to with G. For example, G(WhenHarryMetSally) =
{comedy, drama, romance}. To build our hierarchy dy-
namically, we first enumerate all combinations of gen-
res that appear in the EachMovie database, and de-
note this set G. We then proceed to greedily partition
G by the number of movies a given element of G is
associated with until we reach a predefined limit of
k partitions. We define one additional noisy-or–type
partition that is used to for movies that do not fall
into one of the predefined partitions. This partition,
together with the other k partitions, are used to create
a k + 1-element hierarchy.

With the hierarchy defined, the hPRM is applied to the
EachMovie dataset just as the standard PRM model
was in Section 2.1, with the exception that the learning
procedure is modified as outlined above.

4 Experimental Results

In this section we outline our results in applying both
standard PRMs and hPRMs to the collaborative filter-

ing task for the EachMovie dataset. We also compare
our results to other CF algorithms.

4.1 Experimental Design

One of the main challenges in designing an experiment
to test the predictive accuracy of a PRM model is
in avoiding resubstitution error. If a PRM is learned
on the entire EachMovie database, and subsequently
used to make predictions on objects from the same
database, we are using the same data for testing as we
used for training.

We address this issue by applying a modified cross-
validation procedure to the dataset. While the tradi-
tional method of dividing data into cross-validation
folds cannot be applied directly to a relational
database, we extend the basic idea to a relational set-
ting as follows. For n-fold cross validation, we first
create n new datasets D1 . . . Dn with the EachMovie
data schema. We then iterate over all the objects in
the Person table, and randomly allocate the indi-
vidual to one of Di ∈ Di . . . Dn. Finally, we add
all the V ote objects linked to that individual, and all
the Movie objects linked to those V ote objects, to
Di. When this procedure is complete, n datasets with
roughly balanced properties (in terms of number of in-
dividuals, number of votes per person, etc.) will have
been created. In our experiments we use 5-fold cross
validation.



4.2 Evaluation Criteria

In this paper we adopt the Absolute Deviation metric
[MRK97, BHK98] to assess the quality of our CF algo-
rithms. We divide the data into a training and test set
using the method described above, and build a PRM
using the training data. We then iterate over each user
in the test set, allowing each user to become the active
user. For the active user we then iterate over his set
of votes, Pa, allowing each vote to become the active
vote; the remaining votes are used in the PRM model
(if needed). The predicted vote for the active user a
on movie j is denoted pa,j , whereas the actual vote is
denoted va,j . The average absolute deviation, where
ma is the number of vote predictions made, is:

Sa =
1

ma

∑

j∈Pa

|pa,j − va,j| (1)

The absolute deviation for the dataset as a whole is
arrived at by averaging this score over all the users in
the test set of users.

4.3 Standard PRMs

Algorithm Absolute Deviation
CR 1.257
BC 1.127
BN 1.143

VSIM 2.113
PRM 1.26

Table 1: Absolute Deviation scoring results for Each-
Movie dataset. Lower scores are better.

In our experiments we were able to achieve an abso-
lute deviation error of 1.26. For comparison, we have
included the results from [BHK98]; in this paper four
CF algorithms were tested: correlation (CR), Bayesian
Clustering (BC), a Bayesian Network model (BN), and
Vector Similarity (VSIM). We have elected to include
the results from [BHK98] where algorithms were given
two votes out of the non-active votes to use in making
the prediction, since the standard PRM model does
not have any direct dependency on other V otes.

In this experiment standard PRMs are able to outper-
form the VSIM algorithm, and is competitive with the
correlation-based algorithm. However, both Bayesian
Clustering and the Bayesian Network model have su-
perior results in this context.

4.4 Hierarchical PRMs

The first part of the experiment for hPRMs was
constructing a class hierarchy from the EachMovie

dataset. In our experiment we set the size of the hi-
erarchy to be 12. Our greedy partitioning algorithm
arrived at the following basic classes: drama, comedy,
classic, action, art-foreignDrama, thriller, romance-
comedy, none, family, horror, actionThriller, other.

Algorithm Absolute Deviation
CR 0.994
BC 1.103
BN 1.066

VSIM 2.136
hPRM 1.060

Table 2: Absolute Deviation scoring results for Each-
Movie dataset. Lower scores are better.

By applying hPRMs to the EachMovie dataset, we are
able to reduce the absolute deviation error from 1.26
(with standard PRMs) to 1.06. Again, for comparison
we include results from [BHK98]; however, in since
hPRMs are able to leverage other votes the user has
made in making predictions, we use the All-But-One
results presented in [BHK98], where the prediction al-
gorithm is able to use all of the active user’s votes
(except for the current active vote) in making a pre-
diction. As one can see by comparing Table 1 to Table
2, including the additional voting information results
in a substantial reduction in error rate for most of the
other four algorithms.

hPRMs not only provide a significant performance ad-
vantage over standard PRMs, but are also able to out-
perform all but one of the other four algorithms.

5 Future Work

In this paper we learned a fairly broad hierarchy based
on various sub-genres in the EachMovie dataset. How-
ever, hPRMs allow for arbitrarily specific class hierar-
chies, where a leaf-node entry for H[X] might be a
handful (or even just one) movie. This could be ex-
ploited when there are certain indicator movies in a
Genre that may accurately predict a user’s votes on
other movies in that (or other) Genres, and that fur-
thermore most users have seen. For example, whether
a user likes science fiction movies or not, they have
likely seen the Star Wars Trilogy; this fact could be
leverage by making the Star Wars movies a basic sub-
class in the class hierarchy, and subsequently used to
learn new dependencies of the type if a user likes the
Star Wars movies, they will in general like science fic-
tion movies. Learning such a hierarchy is a challenging
task that would likely significantly improve the perfor-
mance of hPRMs.



6 Conclusion

In this paper we outlined a framework for modelling
the collaborative filtering problem with PRMs. We
model the CF problem first using a standard PRM,
then we extend model to account for hierarchical rela-
tionships that are present in the data. hPRMs improve
the expressiveness and context-sensitivity of standard
PRMs, and also realize real-world performance bene-
fits.
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