Learning Accurate Belief Nets

Wei Zhou and Russell Greiner
Department of Computing Science

615 General Service Bldg, University of Alberta
Edmonton, AB T6G 2H1 Canada

{ wei, greiner }@cs.ualberta.ca

Abstract

Bayesian belief nets (BNs) are typically used
to answer a range of queries, where each
answer requires computing the probability
of a particular hypothesis given some spec-
ified evidence. An effective BN-learning al-
gorithm should, therefore, learn an accurate
BN, which returns the correct answers to
these specific queries. This report first mo-
tivates this objective, arguing that it makes
effective use of the data that is encountered,
and that it can be more appropriate than the
typical “maximum likelihood” algorithms for
learning BNs. We then describe several dif-
ferent learning situations, which differ based
on how the query information is presented.
Based on our analysis of the inherent com-
plexity of these tasks, we define three algo-
rithms for learning the best CPtables for a
given BN-structure, and then demonstrate
empirically that these algorithms work effec-
tively.

1 Introduction

Many tasks require answering questions; this model
applies, for example, to both expert systems that iden-
tify the underlying fault from a given set of symptoms,
and control systems that propose actions on the basis
of sensor readings. When the mapping from evidence
to fault /response is stochastic, it makes sense to repre-
sent it using a probabilistic model. One obvious can-
didate is a “(Bayesian) belief net” (BN), which suc-
cinctly encodes a distribution over a set of variables.

Often the underlying distribution, which is needed to
map questions to appropriate responses, is not known
a priori. In such cases, if we have access to training
examples, we can try to learn the model. Our goal,

of course, is an accurate BN — i.e., which returns the
correct answer as often as possible. While there are
many algorithms that learn BNs from data [Hec95,
Bun96], most of these systems attempt to maximize
another criteria — typically some variant of likelihood
— which is independent of the queries posed.

While a perfect model of the distribution will perform
optimally over all possible queries, a learner cannot
guarantee producing such a model without seeing a
very large number of samples. As most learners have
access to only a limited set of samples, it is impor-
tant that they use these samples effectively. Here, this
means focusing on those aspects of the distribution
that will contribute most to the accuracy.

For example, if we know that all of the queries will ask
for the probability of some specific disease (drawn from
a specified set), given a set of symptoms (read “specific
assignments to specified variables”), we clearly want
our learner to produce a BN Bg that answers these
questions correctly, even if this Bg would produce
completely wrong answers to other (unasked) ques-
tions — e.g., about the dependencies of one symptom
on another.

This paper therefore continues the argument, begun in
[GGS97], that BN-learning algorithms should consider
the distribution of queries, as well as the underlying
distribution of events, and should seek the BN with
the best performance over the query distribution. Be-
low we investigate the challenges of learning such ac-
curate BNs. Section 2 first overviews belief nets, then
presents the three specific learning models we are con-
sidering, which vary depending on what the learner is
given — i.e., what type of “training data” is available.
The next three sections explore these three models,
first using formal analyses (e.g., about the hardness
of various tasks) to motivate our specific leaning al-
gorithms, and then reporting the results obtained by
our implementations of such algorithms. Throughout,
we argue, both theoretically and empirically, that our
models often improve on the traditional (maximizing

likelihood) models and their associated algorithms.

2 Framework
2.1 Overview of Belief Nets

In general, we assume there is a stationary underly-
ing distribution P(-) over the N (discrete) variables
V = {Wi,...,Vn}. For example, perhaps V; is the
“Cancer” random variable, whose value ranges over
{true, false}; V5 is “Gender” € {male, female}, V3
is “Age” € [0..100], etc. We will refer to this as the
“underlying distribution” or the “tuple distribution”.

We can encode this as a “(Bayesian) belief net” (BN;
a.k.a. Bayesian network, probability net, causal net),
which is a directed acyclic graph B = (V, E, 0),
whose nodes V represent variables, and whose arcs F
represent dependencies. Each node V; € V also in-
cludes a conditional-probability-table (CPtable) 6; €
O, that specifies how V;’s values depends (stochasti-
cally) on the values of its parents. (Readers unfamiliar
with these ideas are referred to [Pea88].)

User interact with the belief net by ask-
ing queries, each being a term of the
form “P(X = x|Y = y) = 7 e.g.,
P(Cancer = true|Gender=fema1e, Age=35, Smoke=true
— where X, Y C V are subsets of V, and x (resp.,
y) is a legal assignment to the elements of X (resp.,
Y). (We of course allow Y = {}.) The numeric
value of each such query, called its “label”, is the
posterior probability value of this (conditional)
event, over the underlying distribution. For ex-
ample, “0.65” is the label of the labeled query
“P(cancer | female, 35yo0, smoker) = 0.65”.

We let SQ be the set of all possible legal statisti-
cal queries, and assume there is a (stationary) distri-
bution over SQ, written s¢(X = x; Y =y), where
s¢(X =x; Y =y) is the probability that the query
“What is the value of P(X = x|Y =y)?” will be
asked. To simplify our notation, we will often use a
single variable, say ¢, to represent the [X =x,Y =y]
query, and so will write sq(q) to refer to sq(X =

x;Y=y). We will also write a “labeled query” as
(X=x; Y=y; p), where p= P(X=x|Y=y).!
Notice the query distribution (sg(-)) can be

YA query sq(X=x; Y=y)is “legal” if P(Y=y) > 0.
Note also that we use CAPIT AL letters to represent single
variables, lowercase letters for the values that the variables
might assume, and the boldface font when dealing with
sets of variables or values. Also, within the query P(X =
x| Y =y) werefer to X as the “query variable(s)” and Y as
the “evidence variable(s)”. We also write sq(x; y) to refer
to the probability of the query “P(X=x|Y=y) =7
where the variable sets X and Y can be inferred from the
context.

(Cancer = t; Gend=F, Age=35, Smoke=t; 0.65
(Cancer = t; Gend=M, Age=25, Smoke=f; 0.001
(Cancer = f; LivBio=true; 0.3

(Menin = t; Gend=F, BTest=true; 0.71
(Menin = t; Gend=F, LivBio=f, Temp=High; 0.002

Figure 1: Sample of Labeled Queries

completely wunrelated to the underlying dis-
tribution (P) — eg., even though “What
is P(Cancer| female, 35yo0, smoker)?” is
asked 35% of the time, the actual value of

P(Cancer | female, 35yo, smoker)
1, or any other value; see [GGS97].

could be 0, or

2.2 Learning Contexts and Algorithms

As motivated above, the goal of our learning system is
to produce a performance system (read “belief net”)
that can return the appropriate answers to queries
from this distribution. We describe below three dif-
ferent learners, each designed to accommodate a dif-
ferent class of training information. In all cases, we
will focus on the task of learning the CPtables for a
given BN-structure.

2.2.1 Explicitly-Labeled Queries

The most generous environment provides an ex-
plicit set of “labeled queries” to the learner: That
is, the learner sees data of the form IQ =
{Xi=x;, Y; =y, pi)}i=1..y, where p; € [0,1] is
the label of the query “P(X; =x;|Y; =y;)”. More
precisely, we assume these [X; = x;, Y; = y;] queries
are drawn at random from the query distribution SQ,
then each such query is “labeled” based on the under-
lying probability P. To illustrate the ideas, Figure 1
displays a small sample of labeled queries, Sr.g. No-
tice different queries can involve different query vari-
ables, as well as different types of evidence variables.
note also that this “labeled query sample” does not in-
clude every possible query, as it does not include other
combinations of test results: it omits cancer given
Gender=Female, Age=35, Smoke=false, and many
other combinations of values for these specific evidence
variables (but see “query forms” below), omits cancer
given other sets of symptoms, and omits many other
query/evidence combinations; e.g., it never deals with
BloodTest given Fever, nor with Meningitis given
Cancer, etc. Note that many of these possible queries
would not occur even in larger (or even infinite) sam-
ples, as sq(-) assigns them 0 probability.

We can evaluate any belief net B (or indeed, any can-
didate distribution) by its “(expected) Ls-accuracy”,
with respect to the actual query distribution sq(-)
and underlying distribution P:

Age Gend Smok Temp LivBio Btest EKG | Cancer Menin

err B = 35 F Y * * * * Yes *
Sq’P() 25 M N * * * * No *
>osalx;) Pa(xly) = POely)t (s e e e x| ves s
alse rue es

e * F % High True x % * No

where the sum is over all assignments x,y to all subsets
X,Y of variables, each P(x|y) corresponds to the
label for this query and Pg(x|y) to the value that B
assigns to this query. We will often write this simply
as err(BN) when the distributions sq and p are clear
from the context.

The learner’s goal is to find a belief net that minimizes
this score:
B* = argmin{ erryy ,(B) }
B

While we typically do not have this sq(-) distribu-
tion, our learners usually will have a sample LQ =
{(xi; ¥i; pi)}i from this “labeled query” distribution
(Figure 1), which they can use to produce an approx-
imation to this value for each net B:

=ﬁz

(x;¥; p)ELQ

&™) (B) [Ps(x|y)—p" (2)

and hence to identify a near-optimal B whose error is,
with high probability, close to the error of B*.

Section 3 presents our results for learning in this ELQ
(“explicitly labeled queries”) model.

2.2.2 Unlabeled Queries/Forms + Samples

This ELQ model applies best if only a small number
of queries will be asked (so we can explicitly enumer-
ate the different queries and their labels), and the
environment provides that relevant information. In
some situations, however, there are too many possible
queries, and the specific information is not available.
As a realistic example, suppose a physician knows
that 10% of his patients will complain of meningi-
tis, and that in this situation, he will perform the
k tests Uy x = {U1,Us,...,Ur}. Given the re-
sults 1. = {(ri,...,7k) € {t,f}* of these tests,
he will then ask the “completely specified” query
P(meningitis | Uy x = r1.x), and receive the label
for this query, V1.1 € [0,1].

In this situation, the physician may well know the (dis-
tribution over) these “query forms”; e.g., 10% will be
of the form P(meningitis|Uy. k) (for some setting
of the evidence); 23% will be P(meningitis|Xj. ,)
based on some other tests Xji. ., 5% will be
P(cancer | W1 m); etc. However, he does not know:

Issue#1. the distribution over the particular ry_ j re-
sult values that he will observe. E.g., of the 10% of
the time associated with this P(meningitis | U1, k)

Table 1: Sample of Implicitly Labeled Queries

form, how often will he see Uy x = (t,1,...,t,1),
as opposed to Uy x = (t,t,..., f), and so forth, to
Ui x= <fafaﬂf)7

Issue#2. the 2F labels {V1 1} for these 2% queries.

Of course, we could try to force this within the ELQ-
framework, by insisting that the learner also observe a
big set of labeled “completely specified” queries, and
use this sample to learn the required information about
both “complete queries” and their labels. However, we
would rather avoid the complication of getting such a
query sample, especially as the domain expert may
actually be able to explicitly supply the distribution
over query forms.

As an alternative, we could address Issue#1 by as-
suming that this “sub-distribution” is uniform, or that
it can be induced from the underlying distribution.
Issue#2 is trickier, as here we want to avoid the need
to explicitly specify an exponential amount of infor-
mation, viz., these 2% different {V;} values. Here, we
could instead use a set of samples from the underly-
ing distribution, then use this set of tuples to obtain
estimates of the query labels.

Section 4 discusses the issues related to learning in this
ULQS (“unlabeled queries plus samples”) model.

2.2.3 Implicitly-Labeled Queries

Imagine again that an MD has first obtained the age
and gender of his patient, together with the fact that
she is a smoker, and then asked for the probability
that this patient has cancer, given these symptoms
— i.e., posed the query “What is P(Cancer|Age =
35, Gender = F, Smoke = T)?”. As the value re-
turned (0.65) is above a threshold, he will record this
information in his log file, see (the first row of) Ta-
ble 1. Notice (from the labels of the table’s columns)
that there are tests that were not performed, as well
as other possible ailments not considered. As these
values are not known, they are recorded as “x” in the
first row.

The MD will later pose other queries, about this,
or other patients; each will be recorded on subse-
quent rows of this emerging table. Hence, each
row reflects a query about a single disease, based
on the observations. If we know which of the
attributes correspond to query variables (here the

diseases Cancer and Meningitis), as opposed to
the evidence nodes (Age, Gender, ..., EKG), we
can then recover these queries, from this table.
We can also get an idea of the label from that
query, based on the assumption that this value was
the argmax over the values of the query variables
(here, P(cancer=Yes|female, 35yo, smoke) >
P(cancer=No|female, 35yo, smoke)).

Note, in fact, that Table 1 corresponds to Figure 1,
differing in that the table does not show the precise
label of each query nor does it explicitly distinguish
the query from the evidence variables.

Here, the value entered in the “Cancer” column is a
deterministic function of the evidence: for each specific
assignment to the evidence variables, there is a single
value stored for the query variable. We also inves-
tigated an alternative “stochastic” model, where the
MD found the true value of this query variable for each
patient, and recorded that information. Hence, differ-
ent patients, with the same body of evidence, could
have different “cancer” values.

Notice this provides more information that in the
deterministic model: if the MD sees n patients with
the same symptoms (e.g., 30 patients, all female
35-year-old smokers), and k of them had the same
disease (e.g., 20 had cancer), we could estimate the
probability as k/n; e.g.,

~

P(cCancer | 35y0, Fem, Smoker) = 20/30
Under this condition, we could then use Section 2.2.1°s
“explicitly labeled query” model, based on the L, mea-
sure (Equation 1). In general, however, there are
so many possible evidence variables and values that
we anticipate getting (at most) one person with any
set of symptoms. This means (our empirical esti-
mates of) the labels would typically be 1/1. Moreover,
we would only see the high probability assignments.
We are therefore using a slightly different approach:
Given any such set of these “implicitly labled queries”
IQ = {{(X; =x%;,Y; =yi)}i (Table 1), we define the
“(empirical) conditional log likelihood” of a belief net
B as

= Q) 1 N
CLL(B) = o D log(Pe(x]y)) (3)

(x,y)€IQ

Of course, this is just an approximation to the “(true)
conditional log likelihood”

CLLy(B) = Y sq(x;y) x log(Ps(x|y)) (4)

(x,y)

Our learner will then try to find the the belief net that
maximizes this score. Section 5 investigates this ILQ
(“implicitly labeled queries”) learning framework.?

2This is, of course, an extremely simplistic model; see

2.3 Contrast with other Learning Models

Much of the work in Machine Learning corresponds
to function approximation: find a function that best
matches a given set of input/output pairs. The canon-
ical examples are learning classification or regression
functions from a set of training data, using formalisms
that range from neural nets to decision trees and rule
sets [Mit97]. While our task does resemble this de-
scription — c¢f., Equation 1 — our objective is differ-
ent, in several ways: First, we allow different variables
to serve as the classification variable for different in-
stances. (E.g., some queries may ask about the prob-
ability of cancer given some symptoms, while others
ask about meningitis, and yet others, perhaps about
someone’s financial status, etc.) While we could at-
tempt to learn k different classification functions, one
for each query variable, this is not data-efficient, as it
would be unable to exploit the rich structure of interre-
lations connecting these classification variables to each
other, and to the various different symptom/evidence
terms. (E.g., the information in the labeled queries
IQap = {P(A)=pi; P(A|B)=ps; P(A|-B)=
p3; P(B) = pp} is interrelated, and should be ex-
ploited [Nil86].) We therefore want to learn a single
structure that combines these different terms, which
can therefore allow the information obtained for ac-
commodating one class of queries to benefit the other
classes.

Belief nets (Section 2.1) provide this capability. They
also allow the eventual performance system to address,
in a reasonable fashion, queries that were not present
in the training sample. For example, a belief net that
matches the first three labeled queries in IQap will
provide the appropriate response to the unseen “What
is P(B)#%” query; this similarly applies to unseen
queries that involve subsets of the information present
in the “training” queries. These BN-structures are also
useful in other respects, as they provide a natural, and
useful description of many situations; see the argu-
ments in [Pea88], as well as the examples of deployed
belief-net—based systems that appear in the UAI pro-
ceedings and elsewhere. We are therefore encoding the
performance system as a belief net.

Of course, there are other BN-learning algorithms,
that each attempt to produce a belief net from a set of
data. These other algorithms, however, use a different
type of training data — only from tuple data (but see
the 1ILQ model, Section 5) — and have the different
goal of finding the BN that is the best “match” to the
training data; e.g., whose likelihood (or posterior prob-
ability) is maximal [Hec95, Bun96], or which embodies

the discussion in Section 6. Also, [ZG99] relates the err(-)
and CLL.(-) scores, and explains why we used the first for
the ELQ and ULQS contexts, but the second for 1LQ.

all-and-only the conditional dependencies [GSSK87].

As discussed above, our goal is different: our learn-
ers seek the BN that produces the most accurate re-
sponses, over a distribution of queries. While this ob-
jective is weaker (as a BN that is a perfect model of
the distribution will also have the most accurate possi-
ble responses), we argue that our model is often more
appropriate. Of course, when the information in our
training data (read “labeled queries”) is not sufficient
to completely specify the answer to the unseen queries,
our learning algorithms, like all non-trivial learning
algorithms, must generalize from the information pre-
sented. While the bias of our algorithm differs from
that of most other BN-learning algorithms, it appears
quite effective.

Our 1LQ approach connects with [FGG97], which also
seeks the BN that is best for some known distri-
bution of queries, as it is trying to learn the opti-
mal BN-based classifier. They also explain why the
BN with maximal log-likelihood may not be the one
with optimal performance on their specific task, and
so evaluate BNs using a formula that is very similar
to Equation 4’s) log(P(x|y)) expression (see also
[BKRK97]). However, (1) we allow different variables
to serve as the “classification variable” in different in-
stances, while they consider only a single variable for
all instances; (2) our sum depends on the query dis-
tribution; and (3) our actual algorithms explicitly try
to optimize the conditional likelihood. Note also that
they require each training tuple to be complete, while
our model exploits the missing attribute values, as
these omissions help define the actual query involved.

Finally, this paper extends our earlier [GGS97], which
also claims the goal of a BN-learner should be a sys-
tem that provides the appropriate answer to a set
of queries. Here, we extend those earlier results by
(1) providing additional theoretical results; (2) pro-
viding empirical validation, to both our earlier claims
and the new ones; and (3) (also) considering slightly
different models, including one based on the “condi-
tional likelihood” score (Equation 4), which is more
meaningful in many cases.

3 Learning in the ELQ Model

In [GGS97], we investigated this ELQ model in the
PAC-framework [Val84], also focusing on the task of
learning the CPtables for a given BN-structure. After
proving that (typically) relatively few labeled-query
tuples are required to provide the necessary informa-
tion, that paper then proved it is NV P-hard to find the
values for the CPtables of a fixed BN-structure that
have minimal error (Equation 2), wrt a given set of

labeled queries.

3.1 ELQ Algorithm

[GGS97] therefore outlined a “hill-climbing” algorithm
for this task, which we call “ELQ":

Let B be a belief net whose CPtable includes the
value eg—qr=r = €qr € [0,1] as the value for the
conditional probability of) = ¢ given R = r. Let
[x,y] = [X=x,Y =y] be a query, to which B
assigns the probability Pg(x|y). Then the gradient
of the empirical error function (Equation 2), for this
single query, is

(%))

Lol
get (B = 2(Pa(x|y) - p) x

Lo) [Po(g,r|x,y) = Pa(g,r|y)]

9Ps(x|y)
€q|r)

(5)

(Note the second line corresponds to

The ELQ algorithm adds up the contributions from
all of the queries in our I() sample, and then modifies
the value of e, by climbing some distance along this
cumulative derivative, using straightforward and well-
known techniques — see [BKRK97].

Optimizations: Unfortunately, evaluating the gradi-
ent requires computing conditional probabilities from
a BN — a task known to be NP-hard to solve [Co090],
or even to approximate [Rot96, DL93]. We therefore
looked for ways to avoid the need to compute these
quantities. Equation 5 shows that we do not need to
update ey, (at least, not due to the [x,y] query) if
the difference Pp(x|y)—pis 0 (i.e., if Pp(x]|y) is
correct) or if Pp(q,r|x,y) — Pg(g,r|y) is 0 (i.e, if
y “d-separates” x and ¢,r). As our implementation
includes these checks, it can avoid needless computa-
tions by updating only the other CPtables. In our
experiments with the ALARM system (Section 3.2) for
example, we found that only ~ 10% of the CPtable en-
tries were relevant to any query, which meant we could
avoid doing 90% of these expensive computations! Qur
implementation, based on JAVABAYES,? employs sev-
eral other important optimizations, including the use
of appropriate variable ordering, and caching of inter-
mediate results; see [ZG99] for details.

Theoretical Claims: This process will climb to a
CPtable whose empirical error is a local minimum. It
is easy to show [GGS97] that, given a sufficiently large
set of labeled query samples, this empirical error will
be close to the true error, and hence ELQ will typically
find good CPtable entries.

3.2 Experimental Results

We performed a set of experiments to validate the ef-
fectiveness of this ELQ algorithm.

3http:/ /www.cs.cmu.edu/~javabayes/Home/

Exzample 1 (from [GGS97]) As a simple “finger
exercise”, we considered the trivial belief net structure
Baxc = and specified that half of
the labeled queries would be “P(C|A), with label 1,
and half would be P(C|—~A) with label 0. (That is, A
should be equivalent to C'.)

Query Prob of asking Label
P(CTA) /2 1.0 (6)
P(C|-A) 1/2 0.0

We found that ELQ very quickly (typically in under
/4 iterations) found the appropriate CPtables, with en-
tries ex|a = ecjx = 1.0 and ex i =¢€cx =00 —
ie., making X = A and C = X.* We will refer to the
resulting BN as B,,. |

Ezample 2 (ALARM belief net Byigrm [BSCC89])
We first defined a realistic distribution over the
queries: From [HC91], we know that a particular 8
of the wvariables typically appear as query variables,
and a disjoint set of 16 variables appear as evidence.
We therefore generated queries by uniformly selecting,
as query, one of the 8 query variables, and then,
for each of the 16 evidence wvariables, including it
with probability 1/4 — hence on average a query
will include 16/4 evidence variables. We then specify
values for these evidence variables based on the natural
joint distribution for these evidence variables. For
example, suppose we have selected () for the query
variables, and Ey,E> as evidence variables. Then if
P(E, =t, Es =£) = 0.2, then the probability (given
this form) of the query P(Q =?|E1 =t, Es =1f) is
0.2. If Q has k values (e.g., boolean variables have the
k = 2 values {t,£}), then we actually produce k copies
of this specific query, e.g., P(Q =t|E;1 =t, E3 =1)
andP(Q :f|E1 =t, F3 :f).

We use this generator to produce a set of 500 queries,
each labeled with the true answer from Bgiarm. We
then evaluated this, using 10-fold cross-validation (i.e.,
10 splits of 450 training elements and 50 testing); for
each fold, we considered 3 different sets of initial CPt-
able entries — hence, we considered 30 runs. We then
ran ELQ on each training set, to fill in the CPtables
of the given Bgjarm-structure. The “ELQ” line in Fig-
ure 2a shows how quickly this algorithm converged to
near optimal err(-) values. To avoid further clutter,
we did not plot the error-bars around the points; they
were however extremely small — see [ZG99] for the
details.’ |

40f course, sometimes ELQ converged to the other op-
timum: X = -A and C = -X.

SExcept for the APN data, every point on every graph
considers 30 runs, over various datasets.

Ezample 3 (As1A belief net B,si, [LS88]) We

also experimented with the ASIA dataset. Here, we
generated queries completely at random; i.e., each of
the 8 nodes was the query with probability 1/8, then
each of the other nodes was selected as an evidence
node with probability 1/2 (so there were on average
7/2 evidence nodes); they were assigned values ac-
cording to the underlying probability. Figure 2b shows
the converge rates, again averaged over 30 runs. |

4 Learning in the uLQs Model

The ULQS learner has access to a set of unlabeled
queries UQ, perhaps induced (see below) from a set
of query-forms (which may be given explicitly, or al-
ternatively induced from a set of observations, of ei-
ther queries or, of query forms). It also has a sample
of complete tuples S, drawn the underlying distribu-
tion P. The learner then tries to find the most accu-
rate set of CPtable values, for a given BN-structure,
based on the “expected Ls-accuracy” evaluation crite-
rion (Equation 1).

One obvious approach is to reduce this task to the ELQ
model, presented above. As noted above, we need to
consider two issues: If we begin with a distribution
over query forms, then the first challenge is finding the
“subdistribution”: for each query form, find the prob-
ability of asking each associated “completed query”,
which specifies all of the values of the evidence vari-
ables. As this will typically not be given (and even
if such complete queries were given, it is still cum-
bersome to learn from them) we would need to make
some assumptions. Two obvious candidate subdistri-
butions are uniform (i.e., all possible assignments are
equally likely) or induced by underlying distribution,
ie, sq(X=x;Y=y) = aP(Y=y) for some value
of a = a(X,x,Y) € RT. Note this model is mean-
ingful if, for example, the MD asks everyone a certain
set of questions.

Unfortunately, both approaches are prob-
lematic: Imagine the only query form was
P(Pregnant|Gender) and imagine that 50% of
patients are male. Both of the scheme mentioned
above would therefore assume that the “probability
of asking P(Pregnant | Gender = male)” would equal
the “probability of asking P(Pregnant|Gender =
female)”. Of course, no MD’s queries would match
this pattern.

Fortunately, however, this “subdistribution” issue may
be irrelevant. This comes from examining the second
issue: finding the labels for the (unlabeled) queries in
UQ. Here, we can use the sample S to estimate the
required label for each “What is P(X=x|Y =y)?”

o
N
a

o
o 2 o
= (5] N

Mean square error

°
&

o
Q
>

T 0.2 T T *
ELQ -¢ ELQ -©
) Lo = 0184 S 51 sl © ULQS *
. APN & : .
1 ol APN 4|
BB LD DDA DD DD DA DD DD DD D DDA 5 5
a 5 0¥ A 12 o0t
< a, o]
40 012 [0 %an, g % *
)
e B g o1 °] S o0t
=] Y =3
o 1B o0t 5 B
g o § 002 - «
o 006 F , @ 1s
o = =] *
o q 004 - @) B 001
(=] > DE‘D . o o *
* g 002 - 00g, DB 1 e o R
<‘> o 00 & ‘? =S E‘I 8888 ? 8--8--8:-8 <>0<>oooooeoo<>e<>o<>oooooooooo%eooeooo%%o 0 L L L L B T -
0 \ \ | | i i i i |
5 10 15 20 2 o 5 10 15 25 30 3 40 45 50 0 2 40 60 80 0 120

Number of iterations

Figure 2: (a) Convergence Rates wrt Bgiarm;

query, as the ratio of the number of examples in S
that match both X =x and Y =y, divided by the
number that match Y = y. (And perhaps using a
Laplacian correction to avoid dividing by 0.) We could
then use our ELQ algorithm, using these P (x; |y;)
estimates as the needed labels.

However, there may be a more efficient approach: If
the given BN-structure is correct — that is, is an accu-
rate I-map of the distribution — then we avoid using
ELQ, and instead use the trivial “OFE’ algorithm,
which simply fills each CPtable with the “observed
frequency estimates”. This is, of course, the same al-
gorithm that [CH92] proved would optimize the like-
lihood of the net, for a given structure, wrt a given
set of training data. Notice this OFFE algorithm is in-
dependent of the queries, and so it does not matter
how we convert a distribution over query-forms to a
distribution over completed queries.

To understand why OFFE would be sufficient, just ob-
serve that the net obtained using these frequency esti-
mates corresponds to the training data, and so would
produce just those labels for the queries observed.

Of course, this news seems too good to be true, as
it suggests we can replace the expensive iterative ELQ
algorithm, which can only produce an approximate an-
swer to the (in general NP-hard) task using a trivial
algorithm, that requires only a single traversal of the
training data, and which is guaranteed to produce the
optimal solution. There are, however, two caveats:
First, OFFE is only correct if the net structure
is correct. To illustrate this. ..

Example 1, con’t: Consider again asking the Equa-
tion 6 queries to the Baxc network, but now imagine
this structure was serious wrong, in that the interven-
ing X is completely independent of A and C — i.e.,
P(X|A)=P(X|-A)=P(C|X)=P(C|-X)=
0.5.

In this situation, the BN that most faithfully follows

Number of iterations

(b) Convergence Rates, wrt Bysia;

Number of samples

the underlying distribution, Bp, would have CPtable
entries ex|4 = ex|1 = ec|x = eg|x = 0.5, with a per-
formance score of err(BNp) = 0.25. Now consider
Byy. While By clearly has the X -dependencies com-
pletely wrong, its score is perfect — err(Bsg) = 0.0. 1

To confirm that our ELQ-based approach would work
here, we implemented a simple ULQS learner:
1. Use the sample of the underlying distribution to
produce estimates of the query labels, then

2. use ELQ to find the best CPtable entries.

The ULQ@S line in Figure 2c shows how quickly this
algorithm learned, as a function of the number of tuple
samples observed.

Note this “only correct structure caveat” explains why
the general ELQ (and ULQS) task is NP-hard: Other-
wise, there would be a trivial polynomial time algo-
rithm (OFE) for computing an optimal CPtable for
any fixed net structure — which cannot be (unless
P = NP)! Of course, the OFF’s simplicity comes from
the constraint that it must match every component
of the distribution (i.e., each CPtable entry). When
the structure is wrong, however, a smarter ULQS al-
gorithm can ignore this constraint for the irrelevant
parts of the underlying distribution — in essense, it
can use them as additional degrees of freedom, to use
to better match the queries. As shown above, this is
quite useful when the structure is wrong.

Of course, in this situation, a better approach would
be to use the samples to produce a better belief net
structure — one better matched to the data — and
then using OFF (or actually, the ULQS' variant pre-
sented below) to fill in the CPtable entries.

The second problem with using OFF here is that
OFE can be very (sample) inefficient.

Ezxzample 4 (from [GGS97]) Assume the “re-
verse” naive-bayes structure Bpnp, shown in Figure 4,

(¢) Sample Complexity, wrt Baxc

S o9 9o o o o o o
N oW D N © Pk

Average negative conditional log likelihood

=]
38
‘ ELQ o é 08 ' i a2 ' fo ‘O
ELQ &
L IQ o | B 07 g ”_8 o 1gss} Lo o
APN & = ok AR o S| APN &
3 TrueBN -x--- 1 o x = 34 7
il S 3 True BN &,
8w 8, N
7AAAAAAAAAAAAAAAAAAAAAAAA’TE 06 L2 %, =32 %an,]
s 18 sl B
oo % 055 . @ 7 6
o
Foog 1§ os5F° % 1228}, 1
8 o ®| =]
boe Pa e Jooss % 8 1826t o 1
'S DDE\E\DEIDDDDDBDE\BD~2 e, O50pag, = ? E
oo B 04r o 1o -
L 000666600000000000078)035 o 832_47 > a 4
.35 - . b
c 9000666.60000090000000600600600 00 ° Ho
R AR E St e S S S S I TR R Aad oo ©00000 00907 § 22 > DDDDDDDDggggg@gagggggaﬁéaggmﬁggﬁﬁﬁﬁﬁlﬁ
K XXXXX XOXORHHXKRHXXKNK | L 9060000000670
I I I 1 T 025 | | | | | | | | 2 I I I I I I I I I
0 5 10 15 20 252 0 5 10 15 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45

Number of iterations

Figure 3: (a) CLL score for ALARM,;

Figure 4: Belief net structure for Example 4

is a correct I-map. We therefore know OFE will
produce the correct CPtable entries here, eventually.

It may however be very inefficient, for a given class
of queries. For example, suppose we are only inter-
ested in the single query “P(C = 1|{}) =?”. The
simple OFE learner will not produce a good BN, capa-
ble of returning a good answer to this query, until it
has obtained good estimates for (most of) C’s 2™ CPt-
able entries. As each tuple-sample can contribute to
the value of only a single such entry, this will require
> 2™ samples. (Note that this problem is not solved by
using LaPlacian adjustments, as the accuracy of the
resulting net B will produce an estimate Pg(C = 1)
that is poor unless P(C = 1) happens to be near 0.5.)
|

The general approach of using OFFE here remains a
good idea; the problem is the BN is too large. Here, it
might make sense to first shrink the net, to a smaller
structure that continues to “cover” all of the queries.
Note that the (unlabeled) query forms — which may
be given explicitly, and so be guaranteed to be ex-
haustive — are sometimes sufficient to determine this
smallest size. This suggests the following ULQS' algo-
rithm:
ULQS (UQ: Unlabeled Query/QueryForms,

S: tuple-sample,

G = (N, E): BN-structure): BeliefNet

1. Find the smallest net-structure (perhaps a subset of

G) that is sufficient to answer all of the query/query
forms UQ

2. Use OFE to fill in the values of the CPtable entries.
3. Return resulting net (structure + CPtables)

Number of iterations

(b) CLL Score for Asia;

Number of iterations

(c¢) Log Likelihood for Asia

For the B,.,; example, this algorithm would work won-
derfully: The first step would reduce the structure to
simply , and the second would use the sample to
fill in its (single) CPtable entry.

Unfortunately, this shrinking task is difficult, espe-
cially when we consider the details of the queries in-
volved. That is,

Definition 1 1. A belief net B “entails” a set of la-
beled queries LQ = {{(gi,vi)}i if B(q;) = v; holds for
all {gi,v;) € IQ.

2. The size of a belief net is the total number of pa-
rameters in all of its CPtables.

3. Belief net By is a subset of belief net By if By and
B, share the same nodes (variables) but By’s arcs are
a subset of By'’s arcs. |

Unfortunately,®

Theorem 1 Given a belief net B that entails a set of
labeled queries LQ), it is NP-hard to find the smallest
entailing subset of B. |

Of course, one might argue the problem with the above
approach is the constraint that forces the structure to
be a substructure of the given network. However,

Theorem 2 It is NP-hard to find the smallest be-
lief met that is consistent with a given set of labeled
queries I). This is true even if the labeled queries
are known to be consistent (i.e., the labels were gener-
ated by some distribution), and when the conditioning

part of each labeled query is an event of non-0 proba-
bility. |

5 All proofs appear in [ZG99].

50

5 Learning in the 1L.Q Model

Here, we consider the ILQ learner, which takes as in-
put a belief net structure, and a set of “partial tuples”
(Table 1), together with an annotation that identi-
fies which variables are query variables, and which are
evidence. It then tries to find the CPtable entries
that produce the largest empirical conditional likeli-
hood (Equation 3); given a sufficiently large set of
implicitly-labeled query samples this will correspond
to the BN with the best CLL;,(-) score.

Unfortunately,

Theorem 3 It is NP-hard to find the values for the
CPtables of a fixed BN-structure that produce the
largest (empirical) conditional likelihood (Equation 3)
for a given set of implicitly-labeled queries. |

5.1 ILQ Algorithm

We therefore defined a simple hill-climbing algorithm,

— (K
called IL(), which uses the derivative of CLL(9 (BN)

wrt egr

o CLL ' (srn) _
6eq\r1 - (7)
[PB(quliy) _PB(quly)]

€q|r

We then fitted this into a gradient ascent function,
as with the ELQ algorithm. (Note again that this
derivative is 0 if) and R are d-separated from X and
Y.)

5.2 Empirical Exploration

We implemented this system, and explored its effec-
tiveness in the various cases (all in the “stochastic”
model”). After using this algorithm to instantiate a
belief net structure, we evaluated the resulting BN
B in two ways: either by computing its empirical
&t'®) (") score on a hold-out dataset S', or by com-

. A= (S)
puting CLL" "(B) on that dataset.

Example 1, con’t: Consider again the Baxc net
and Equation 6 queries, in the context when the X
variable is never present; hence the data looked like

A X C
0 x 0
1 * 1
1 * 1
0 * 0

Suppose we knew that C was a query variable, and A
was evidence. Qur ILQ algorithm correctly instanti-
ated the Baxc network by making A = X = C (i.e.,
producing Bsg), as desired. Figure 2¢c shows the de-
pendency on the number of tuple-samples. |

There are many other algorithms for filling-in CPta-
bles, from such “partial information”. For example,
the APN gradient ascent algorithm [BKRK97] com-
putes the derivative of the “log likelihood” function,
wrt each CPtable entry, then climbs along this gradi-
ent.

We therefore implemented APN7, but found it did ex-
tremely poorly here, repeatedly returning e, |, = €44
(i.e., staying at the initial random assignment of these
entries) and e, = e.|-, = 0.5. While this seems sur-
prising, notice the log-likelihood derivative is O here.
Unfortunately for APN, this is a saddle point and not
a maximum. In essence, there is a huge basin collaps-
ing to this manifold and associated local optimum,
while the global optima at (e;|q,€z|-a>€clz) €c|-a) =
(1,0,1,0) or (0,1,0,1) have extremely small basins.

We also found the exact same behavior for the obvious
EM algorithm; see [ZG99).

Curiously, our algorithm, which is not trying to max-
imize likelihood, is doing better at maximizing likeli-
hood than either the APN or EM, which are trying to
maximize this score! The fault, of course, is not with
the idea of maximizing likelihood, but instead with the
shape and curvature of the space, and the ways these
algorithms explore it.

Other Examples: We also experimented with the
ALARM and ASIA datasets in this context. The re-
sults, when evaluated using the ér\r(')(-) score, appear
in Figures 2a,b labeled ILQ. Figure 3a,b show the

associated C/L\L(. () scores.

All of the above figures also show APN’s performance,
at these tasks.® Of course, this was unfair to APN, as
its goal was to maximize likelihood }_,In(x;), where
each z; is the (partial) tuple present in the S samples
— a goal that differs from our query-based error, and
conditional likelihood, measures. Given our observa-
tions about the B 4x¢ situation, however, we decided
to check how well these various algorithms did, evalu-
ated using APN’s (log)likelihood measure. Figure 3c
shows the results; notice here too our ILQ algorithm
did significantly better that APN! We are currently
investigating why this should be so.

"Our version differed slightly, by not using the conjugate
gradient method.

8These results were based “simple” 10-fold CV, consid-
ering only one initial CPtable. We used a limited number
of runs as we found this algorithm ran very slowly; this is
partially because APN is forced to consider every CPtable;
see Section 3.1.

6 Conclusions

Future Work: First, the above analyses deal with the
task of filling in the CPtables of a given BN-structure.
While this is an important subtask, a general learner
should be able to use the available information (con-
cerning both query and underlying distributions) to
learn that structure as well.

Second, as noted above, the ILQ model is very naive;
e.g., each row of a realistic Table 1 will probably cor-
respond to sequence of several queries, based on the
successive tests run, until definitively confirming (or
disconfirming) some disease. Each row may also re-
flect the MD’s attempt to consider several diseases.
Finally, the decision recorded (e.g., “Cancer = Yes”)
should be based on utilities as well as probabilities.

Extending these observations, there may be ways to
determine the query distribution from “first princi-
ples”, based only on the underlying distribution and
a cost model — perhaps by determining the decision-
theoretic best queries in each situation, and assuming
the diagnostician will ask these.

Finally, while we have presented three interrelated
models for learning, there may well by others — that
perhaps exploit both labelled queries and tuple sam-
ple. (For example, perhaps the learner should not
“overfit” the learned BN to just the example queries
it has seen; but should “extend” the BN, based on the
tuple distribution.)

Which learning model is “correct”, of course, depends
critically on exactly what information is available to
the learner, which is an empirical question. We re-
cently posted a general call for additional real-world
log-files and other sources that may reveal query dis-
tributions; we are eagerly awaiting responses.

Contributions: As noted repeatedly in Machine
Learning and elsewhere, the goal of a learning al-
gorithm should be to produce a “performance ele-
ment” that will work well on its eventual performance
task [SMCB77]. This paper considers the task of learn-
ing an effective belief net within this framework, and
argues that the goal of a BN-learner should be to pro-
duce a BN whose “score” (Ls or log-likelihood), over
the distribution of queries, is optimal.

Our earlier paper [GGS97] proved that some parts of
this task appear harder than the corresponding tasks,
in the context of producing a BN that is optimal in
more familiar “maximize likelihood” context. This pa-
per advances our general understanding of these chal-
lenges, by considering other realistic learning models,
and by demonstrating, empirically, that many of the
associated algorithms do work well in practice — in
some cases, actually work better than the algorithms

developed for the other model. Such empirical evi-
dence motivates us to continue exploring this rich, and
potentially very useful, area.

References

[BKRK97] J. Binder, D. Koller, S. Russell, and
K. Kanazawa. Adaptive probabilistic networks with hid-
den variables. Machine Learning, 29:213-244, 1997.

[BSCC89] I. Beinlich, H. Suermondt, R. Chavez, and
G. Cooper. The ALARM monitoring system. In Proceed,
Second European Conference on Artificial Intelligence in
Medicine, 1989.

[Bun96] W. Buntine. A guide to the literature on learning
probabilistic networks from data. IEEE KDE, 1996.

[CH92] G. Cooper and E. Herskovits. A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9:309-347, 1992.

[Co090] G.F. Cooper. The computational complexity of
probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42(2-3):393-405, 1990.

[DL93] P. Dagum and M. Luby. Approximating proba-
bilistic inference in Bayesian belief networks is NP-hard.
Artificial Intelligence, 60:141-153, April 1993.

[FGG97] N. Friedman, D. Geiger, and M. Goldszmidt.
Bayesian network classifiers. Machine Learning, 29,
1997.

[GGS97] R. Greiner, A. Grove, and D. Schuurmans. Learn-
ing Bayesian nets that perform well. In UAI-97, 1997.

[GSSK87] C. Glymour, R. Scheines, P. Spirtes, and
K. Kelly. Discovering Causal Structure. Academic Press,
Inc., London, 1987.

[HC91] E. Herskovits and C. Cooper. Algorithms for
Bayesian belief-network precomputation. In Methods of
Information in Medicine, pages 362—-370, 1991.

[Hec95] D. Heckerman. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-95-06,
Microsoft Research, 1995.

[LS88] S. Lauritzen and D. Spiegelhalter. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. J. Royal Statistical Soci-
ety, 50:157-224, 1988.

[Mit97] T. Mitchell.
1997.

[Nil86] N. Nilsson. Probabilistic logic. Artificial Intelli-
gence, 28(1):71-88, February 1986.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

Machine Learning. McGraw-Hill,

[Rot96] D. Roth. On the hardness of approximate reason-
ing. Artificial Intelligence, 82(1-2), April 1996.

[SMCB77] R. Smith, T. Mitchell, R. Chestek, and
B. Buchanan. A model for learning systems. In IJCAI77,
pages 338-343, August 1977.

[Val84] Leslie G. Valiant. A theory of the learnable. Comm.
of ACM, 27(11):1134-1142, 1984.

[ZG99] W. Zhou and R. Greiner. Learning accurate belief
nets. Technical report, UofAlberta CS, 1999.

