Learning to Classify Incomplete Examples

Dale Schuurmans Russell Greiner
Department of Computer Science Siemens Corporate Research
University of Toronto Princeton, NJ 08540
TOI’Ol’ltO7 ON M5S 1A4 greiner@scr.siemens.com

dale@cs.toronto.edu

Abstract

Most research on supervised learning assumes the attributes of training and test
examples are completely specified. Real-world data, however, is often incomplete. This
paper studies the task of learning to classify incomplete test examples, given incomplete
(resp., complete) training data.

We first show that the performance task of classifying incomplete examples requires
the use of default classification functions which demonstrate nonmonotonic classifica-
tion behavior. We then extend the standard pac-learning model to allow attribute
values to be hidden from the classifier, investigate the robustness of various learning
strategies, and study the sample complexity of learning classes of default classification
functions from examples.

1 Introduction

The central task of most expert systems is classifying objects from some domain of appli-
cation; t.e., determining whether a particular object belongs to a specified class, given a
description of that object (Clancey, 1985). For example, a clinician must decide whether a
patient, with a specified set of symptoms, has a particular disease; a chess player must de-
termine whether a particular move is appropriate given a board configuration; and a planner
must determine whether to apply a particular action, given the perceived state. In prac-
tice, it is often difficult to specify an expert classifier directly (e.g., by explicitly extracting
the knowledge of domain experts), so it is often advantageous to automatically learn an
appropriate classifier from existing “solved” cases (i.e., supervised learning). In fact, most
successful real world applications of machine learning follow this paradigm.

Virtually all research on supervised learning addresses the task of learning to classify
completely described domain objects. However, in many real world situations we often have
to classify objects given only incomplete descriptions of their attributes. For example, in
medical diagnosis applications doctors seldom have access to every potentially relevant fact
about a patient (Porter, Bareiss and Holte, 1990). Here the patient is usually better off
if the doctor makes a credulous assessment and suggests some treatment based on what is
known, rather than skeptically withholding judgement until more information is obtained.

Many expert systems must classify such partially-described domain objects, even when the
available data is insufficient to unequivocally determine the appropriate classification.

Such tncomplete-data classifiers differ from standard complete data classifiers in a fun-
damental way: Since complete data classifiers specify necessary and sufficient conditions for
each class, they are unable to categorically classify “ambiguous” incomplete descriptions.!
By contrast, incomplete data classifiers can propose “default classifications” in such cases.
Since these default classifications may change in light of further information about a domain
object, incomplete-data classifiers are able to exhibit “nonmonotonic classification behav-
ior” (Reiter, 1987). This type of nonmonotonic classification behavior cannot be described
in terms of necessary and sufficient conditions, and hence cannot be encoded by a complete
data classifier (Schuurmans and Greiner, 1994).

The task of learning an accurate incomplete-data classifier from examples raises a number
of new issues which have not been addressed by traditional supervised learning research.
First, we have to consider the types of processes that can cause an object attribute to be
unobserved — for example whether this omission is uninformative, partially informative,
or even misleading. We will see that different assumptions here affect the types of training
strategies an effective learner should employ. Second, we can consider training on the natural
source of incomplete examples, versus training on the corresponding artificially-completed
examples. Intuitively, complete descriptions give the learner more information about each
object, and hence, should make learning easier. We will see however that this intuition is
only sometimes correct.

Although the task of learning classifiers for incomplete data has been considered in a few
empirical studies (Porter, Bareiss and Holte, 1990; Quinlan, 1989; Breiman et al., 1984), the
results of these studies have invariably been mixed: a number of techniques for handling
missing data have been investigated, but none has been found to be uniformly superior to
the others. Part of the problem is that this learning task has yet to receive the same degree
of theoretical treatment as learning complete data classifiers; so we have no explanation of
this phenomenon, nor any indication of which technique is best under specific circumstances.
We attempt to fill this void by studying the task of learning accurate default concepts in a
precise mathematical framework. The intent is to uncover a theoretical explanation of the
observed empirical phenomena, and provide effective guidance for practice.

Overview: We develop a theoretical framework along the lines of Valiant’s PAC-learning
framework for learning complete data classifiers (Valiant, 1984). After introducing the basic
classification framework in Section 2, Section 3 then extends Valiant’s random example model
to incorporate an “attribute blocking process”. Section 4 summarizes our results regarding
the efficacy of various learning strategies under particular circumstances, and Section 5
investigates the sample complexity of “PAC-learning” classes of incomplete data classifiers.
Finally, Section 6 discusses the main contributions and suggests directions for future research.

This work provides a general, unifying framework for studying the task of learning in-
complete data classifiers. By making various modeling assumptions explicit we are able
to analyze various learning strategies and determine which are best (and which fail) under
specific conditions, and also determine which conditions are conducive to efficient learning.

1 An “ambiguous” incomplete description is a partial description that can be completed (e.g., by filling in
values for the currently-unspecified attributes) in different ways, to produce different classifications.

(z, c) (z*, c)
Examples Blogker Learner

Gt

Figure 1: Blocking Process

These observations are important for synthesizing effective learning systems for real world
applications where missing data is prevalent.

Related Work: Valiant’s PAC-learning model (Valiant, 1984), and the subsequent research
it inspired (Blumer et al., 1989; Haussler, 1992), has greatly advanced our understanding of
learning complete data classifiers from examples. Many generalizations of Valiant’s frame-
work have been introduced in the learning theory literature, including: learning from noisy
concept labels (Angluin and Laird, 1988; Kearns and Li, 1988), learning with attribute noise
(Shackelford and Volper, 1988), learning probabilistic concepts (Kearns and Schapire, 1990),
and general decision-theoretic learning (Haussler, 1992). However, our task differs from each
of these, in that we address a fundamentally different form of classification task. For ex-
ample, a system that learns with attribute noise will not know which attribute values have
been corrupted; by contrast, we know explicitly which values are missing. Also, a system
that learns a probabilistic concept will produce a mapping from the space of complete object
descriptions to probability values; such a mapping does not directly handle missing attribute
values.?

Classifying incomplete examples is closely related to the problem of reasoning from partial
information, a problem which has been extensively studied in the default and nonmonotonic
reasoning literature, cf., (Reiter, 1987; Ginsberg, 1987). There are a number of connections
between the problem of learning default concept definitions from examples and related work
in Al and philosophy of statistics (Kyburg, 1991); these are explored in detail elsewhere
(Schuurmans and Greiner, 1994).

2 Missing-data classifiers

We begin by formalizing the performance task of classifying incomplete examples, before
going on to the task of learning such classifiers. For simplicity, we assume each domain
object is described by a vector of boolean attributes & = (x1,...,2,), x; € {0,1}; thus, the
set of domain objects is given by X, = {0,1}". Also, we consider a simple two-category
classification task, where domain objects are classified as members or non-members of some
concept over the domain. A (complete) test example is specified by a pair (z, ¢), consisting
of a domain object z € X,, and its actual class ¢ € {0,1}. In standard classification models,
this domain object & would be passed “as is” to the classifier; here, however, we assume
the classifier only sees a degraded version of z in which certain attribute values have been

?(Kearns and Schapire, 1990) consider the problem of learning the probabilistic concept induced by
observing a fixed subset of the available attributes. Note that this does not address the issue at hand, as
they are in effect learning a complete-data classifier over the fixed subset of visible attributes; clearly there
is no potential for nonmonotonicity here.

replaced by the “unknown” value *. Thus, the set of possible object descriptions is given by
X ={0,1,+}". We model this degradation using a (possibly stochastic) blocking process
that may hide some of the attribute values: replacing certain values with *, but otherwise
leaving intact; see Figure 1. Thus, x; =0 can get mapped to =¥ € {0,%}, and z; =1 to
a7 € {1,*}. An example (z*,c) then consists of a (partial) description z* of some domain
object z, along with z’s true classification ¢ € {0,1}; so the space of possible examples is
given by X* x {0,1}.

A complete-data classifier (CDC) is an indicator function ¢: X,, — {0, 1} for some concept
over the domain, i.e., ¢(z) = 1 iff the complete description z belongs to the concept. A
missing-data classifier (MDC) d: X} — {0,1}, on the other hand, takes a partial description
z* as its input and returns d(z*) = 1 if the object described by z* belongs to the concept
by default, and returns d(z*) = 0 otherwise. Given a test example (z*,¢), an MDC d makes
a correct classification if d(z*) = ¢, otherwise it makes an error.

Structure and representation: Abstractly, an MDC is just a function d: X* — {0, 1}.
Notice we are assuming d makes a classification given any possible object description (even
T* = (x,%,...,%)), so there are 23" distinct MDCs possible on n boolean attributes. Repre-
senting an MDC on X is far more complicated than just representing a ¢DC on X,,. MDCs
have been implemented in a number of different ways in practice, based on different concep-

tualizations of the structure of a default classifier.

Perhaps the most common strategy for representing an MDC is based on first filling in
the missing attributes with some default values, and then applying a standard cDC to the
completed description (Quinlan, 1989; Little and Rubin, 1987; Breiman et al., 1984).

IM (Imputation) Represent a MDC d by a single CDC ¢ and a list of default attribute values
U1, Vg, ..., U,. Lo classify a description z*, first fill in each of z*’s missing attributes

xf = * with its default value v;, obtaining a complete description z, and then determine

c(@).

Unfortunately, this technique is quite limited in the range of MDCs it can actually represent
(see Proposition 1 below), which has lead many researchers to consider alternative, more
general representation strategies. For example, one can implicitly represent a MDC over X,
by defining a total joint probability distribution Px¢ over the space of complete examples
X, x {0,1}.

JT (Joint distribution) Represent a MDC d by a domain distribution Pyxc. To classify a
description z*, determine the most likely class given *’s observed attributes.

Popular techniques for representing joint distributions over {0, 1}" include Bayes and Markov
nets (Neal, 1992; Pearl, 1988), and Bernoulli mixture models (Ghahramani and Jordan,
1994). These representations provide compact and intuitive representations of MDCs, but
they have the drawback that actually determining their classifications can often be com-
putationally expensive (Roth, 1993; Pearl, 1988). Furthermore, this strategy is still not
fully general in the range of MDCs it can represent; for example, JT can only represent
MDCs satistying a certain “inheritance” constraint in the hierarchy of default classifications
(Schuurmans and Greiner, 1994).

*kk — 0 “thing = —photo, by default”
0x — 0 *0 — 0 ¥l — 1 I* = 0 “plant = photo, by default”

00 —0 01 -0 10— 0 11 -1 “green A plant < photo”

Figure 2: DR representation of an MDC

The simplest way to conceptualize an MDC is just as a direct mapping from partial
descriptions z* to classifications. In fact, this approach can be implemented simply by
treating * as a third attribute value, and specifying a classification for each description z*;
a strategy which is often adopted in decision tree approaches to missing data classification

(Quinlan, 1989; Breiman et al., 1984).

DR (Default rules) Represent a MDC d as a collection of 3" default classification rules of
the form z*—¢, where for each description * € X either z*=»1 € dor =0 € d but
not both. A description z* is then classified according to the matching rule z*—¢ € d.

To illustrate, consider the example of an MDC on two attributes shown in Figure 2, where the
first attribute is “green”, the second “plant”, and the class is “photosynthetic”. Each node
in the graph represents a rule; e.g., *1 — 1 encodes the rule that a plant, of unspecified color,
is classified as photosynthetic. Notice this collection of rules specifies nonmonotonic classi-
fication behavior, as its assessment of concept membership can change as more attributes
are specified. For example, even though non-green—plants C plants C things, the predicted
photosynthesis properties are 0, 1, 0, respectively, which means that such a classifier cannot
be specified by a ¢DC. This default hierarchy perspective actually provides a revealing view
of the structure of a MDC; e.g., as in the JT example above.

An alternative view of MDCs, which will prove useful in Section 5, is to think of a MDC
as a collection of CDCs, one defined on each subset of observed attributes.

CL (Classifier lattice) Represent an MDC d as a set of 2" complete-data classifiers, one
defined on each subset s of visible attributes. A description z* is classified according
to the ¢DC d, defined on the observed set of attributes.

To illustrate, Figure 3 shows the CL representation for the same MDC on two attributes as
shown in Figure 2. Of course explicitly representing 2" CDCs is infeasible in general, but

Observed

attributes Local ¢DC

{ }le=0 “thing = —photo, by default”
{1 }le=0 “green = —photo, by default”
{ Ta} | €= g “plant = photo, by default”
{x1, x3} | c=ax1 ANxy | “green A plant < photo”

Figure 3: CL representation of an MDC

feasible representations can be based on choosing only a small subset of the attributes as
relevant and only representing CDCs on those attributes.

There are clearly a wide number of ways to represent MDCs. In fact, other representations
of MDCs are possible; for example based on finding best matches to prototype objects (Porter,
Bareiss and Holte, 1990) (i.e., case-based reasoning), but these will not be considered here.
The choice among these many different representation paradigms is largely a matter of
taste and/or convenience, and should be dictated by the application at hand. However,
an important observation is that these strategies differ in their fundamental representation
capacities.

Proposition 1 IM C JT C DR = CL (inclusions are strict).

There are many unexpected similarities between MDCs and existing nonmonotonic knowledge
representation formalisms; see (Schuurmans and Greiner, 1994) for more details. We now
turn to the problem of learning effective MDCs from training examples.

3 Learning missing-data classifiers

Our model of supervised learning in this missing-data context is analogous to the standard
complete-data case: given a sequence of training examples (Z1,¢1), (T2,¢2), .y (T, Cm),
consisting of (possibly incomplete) object descriptions and their correct class labels, the
learner L must produce a MDC d : X — {0, 1}. Ignoring computational details, a learner L
is just a mapping from labeled training sequences to MDCs.

Training examples: Unlike standard ¢DC learning, however, it is natural to consider
two different types of training examples in this setting: incomplete training examples (x1),
where the teacher provides the correct class labels, but otherwise leaves the descriptions
incomplete; and complete training examples (x¢), where in addition to providing the correct
class labels, the teacher also “fills in” the missing attribute values for each training object.
Even though our goal is to learn MDCs that classify incomplete examples, it may make sense
to consider learning from complete examples in many real-world domains. For example,
a medical student may be trained to diagnose the presence of a particular disease given
fairly complete descriptions of all relevant patient data, and yet as a doctor, be expected to
produce diagnoses without the benefit (and cost) of performing every available diagnostic
test. Intuitively we expect an advantage in training on complete examples as they appear
to provide more information than incomplete examples, however this intuition turns out to
be only sometimes correct. Alternatively, in many practical settings it may be impossible to
obtain complete training examples, meaning the learner will have to learn from incomplete
examples. One benefit of training on such partial examples is that the learner is exposed to
the natural blocking process operating in the domain.

Biases and learning strategies: To achieve reasonable learning performance using only
feasible amounts of training data, we eventually have to introduce some form of prior knowl-
edge to constrain our learning systems. This points to the necessity of bias: in any successful
application, the learning system must be constrained to search a restricted class of appro-

priate classifiers (Mitchell, 1980).

Domain distribution |Pxc| over domain objects

Observation process loses information

Y
Observed distribution over object descriptions

Figure 4: Observation Process

Most empirical learning techniques for MDCs include two components: a technique for
representing a bias (here a class of MDCs D = {d}), and a learning rule for choosing some

d € D given the training examples. In fact, learning systems have been developed that adopt
each of the MDC representation techniques discussed in the previous section.

M

JT

DR

CL

(Imputation) Bias: A class of ¢DCs C and the set of possible default-value vectors V
(which implicitly defines a class of MDCs D).

Learning rule: Use the training set to estimate the most likely default value for each
individual attribute, fill in the missing attribute values for each instance in the training
set, and then choose a minimum error ¢ € C (Quinlan, 1989; Little and Rubin, 1987;
Breiman et al., 1984).

(Joint distribution) Bias: A class of domain distributions {Pxc¢}, usually defined by
some Bayes/Markov net architecture, or mixture model (which implicitly defines a
class of MDCs D).

Learning rule: Choose the maximum likelihood domain distribution that accounts for
the training examples. In practice this optimization problem can be quite difficult
and most researchers resort to heuristic optimization techniques such as simulated
annealing, the EM algorithm, or gradient descent procedures (Ghahramani and Jordan,

1994; Neal, 1992; Pearl, 1988; Little and Rubin, 1987).

(Default rules) Bias: A class of MDCs D.
Learning rule: Choose a minimum error d € D (Quinlan, 1989; Breiman et al., 1984).

(Classifier lattice) Bias: A class of ¢DCs C, for each subset s of observed attributes
(which implicitly defines a class of MDCs D).
Learning rule: For each subset s of visible attributes, choose a minimum error ¢, € Cs.

In order to analyze the efficacy of these learning strategies, and assess the difficulty of
various learning problems, we need a mathematical model of the learning situation.

3.1

Formal model

Following Valiant, we assume there is a “natural” source of random test examples against
which we can evaluate the accuracy of any MDC. In particular, we assume there is a distribu-
tion P x¢ over the space of domain objects and concept labels X,, x {0, 1}, called the domain
distribution, from which random labeled objects are drawn independently. Before presenta-
tion to the MDC these labeled objects (z,c) are first passed through the blocking process 3

7

to yield test examples (z*,¢). This induces a natural distribution Px«c over the space of
possible examples, called the example distribution; see Figure 4. The accuracy of a MDC d,
written P y«c(d), is just the probability that this d correctly classifies a random test example.
Note that in general a classifier’s accuracy depends both on the domain distribution and the
blocking process.

To formalize the task of learning an accurate MDC from random training examples, as
in (Valiant, 1984), we assume training examples are randomly drawn from the example
distribution Px«¢ along with their correct classifications, from which the learner L must
produce a MDC that will be tested on examples drawn from the same example distribution.
The learner’s goal is then to produce an MDC with maximal accuracy. It turns out that the
robustness of the various learning strategies, and the difficulty of specific learning problems,
depend not only on the form of available training examples (), but also on our assumptions
about the type of blocking process (/) operating on the domain.

Blocking processes: There are a number of reasonable assumptions one could make about
the blocking process 3, but we restrict our attention to just two: independent blocking (5r),
where each object attribute z; is hidden with some fixed probability p;, independently of
x;’s value and the values of other attributes x;, j # ¢; and arbitrary blocking (B4), where
object attributes x; are hidden according to an arbitrary probability distribution that can
condition on the complete object description = and its classification ¢. Independent blocking
is a simple and convenient model that captures the intuitive notion that a missing value
provides no information about an attribute’s true value, nor any other attribute’s value, nor
the object’s class. However, this is not an adequate model of every real world situation; for
example, it cannot deal with circumstances where our knowledge of an attribute is correlated
with its value. For example ex-inmates are less likely to answer questions of the form “have
you ever been in prison?”. Also, in medical databases missing values may actually provide
clues about the subsequent classification (Porter, Bareiss and Holte, 1990; Rao, Greiner and
Hancock, 1994). Here, this arbitrary blocking model is able to capture correlations between
hidden attributes and their values, other attributes, or even concept membership.

We define a learning context (3, x) by the type of blocking process 3, and type of training
examples y, and consider various contexts below.

4 Robust learning

We first investigate the robustness of the various learning techniques introduced in Section 3
under the various learning contexts.

Definition 1 (Consistency) A learning technique is consistent if, for any allowable bias
D, its learning rule is guaranteed to converge to the optimal d € D for large training samples
(a.s. in the limit).

In particular, we consider the robustness of the previous learning strategies with respect to
the following rather strong form of failure.

Definition 2 (Failure) We say that a learning technique fails in context (8, x) if there is
an allowable bias D and example distribution Px«c for which the technique converges (a.s.)

to a d € D with error rate arbitrarily close to 1/2, when there exists a dop € D with error
rate 0.

Notice that for learning CDCs, consistency can be verified for any learning technique that
chooses minimum error hypotheses, provided the bias C is not too expressive.® However,
the situation is not so straightforward for learning MDCs; here, consistency of the various
learning strategies is highly dependent upon the specific learning context (3, x).

If we assume independent blocking (87) and train on the natural source of incomplete
examples (x7), then all four techniques are guaranteed to converge to the optimal classifier
(with caveats for IM and JT).

Proposition 2 In context (51, x1): CL and DR are consistent; IM and JT are consistent if
the domain distribution Pxc satisfies their implicit assumptions, but fail otherwise.*

Of course, we might wish to learn from complete training examples in hopes of improving
our overall learning efficiency. It turns out that in the case of independent blocking this
intuition proves true for all but the DR learning strategy.

Proposition 3 In context (51, xc): CL is consistent; (deterministic) DR fails; M and JT
are consistent if the domain distribution Pxc satisfies their implicit assumptions, but fail
otherwise.

However, even though complete training examples make learning easier under independent
blocking for most strategies, they make consistent learning impossible under arbitrary block-
ing for any learning strategy.

Proposition 4 In context (B4, xc): all learning rules fail for any non-trivial bias D.?

This result makes intuitive sense, since complete examples supply no information about the
blocking process that will be applied to future test examples. While this is not a problem
under 3; where the optimal classifications are determined strictly by the instance distribution
Px¢, this issue is fatal under 34. Finally, however, if we consider training on the natural
source of incomplete examples it is possible to obtain consistent learning once again, but
now only via the DR strategy.

Proposition 5 In context (34, x1): DR is consistent; CL, IM, and JT fail.

Figure 5 summarizes the results.

31t is sufficient that C have finite Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis, 1971) (and
satisfy certain (benign) measure theoretic properties that we will not concern ourselves with here); see the
next section. We place the same restriction on allowable MDC biases D.

“That is, the 1M and JT learning strategies each incorporate assumptions about the underlying domain
distribution Px¢, and so each strategy may fail under (8r, x7) if the domain distribution does not belong
to the presumed class.

5A bias D is non-trivial iff it contains at least 2 distinct elements that are not complements.

XC X1

Br | IM*,JT*,CL | IM*,JT*,CL,DR

Ba) DR

Figure 5: Guaranteed convergence to optimal MDC

5 Efficient learning

We now consider the efficiency of learning MDCs. Following the methodology pioneered by
Valiant, we consider how achievable learning performance is determined by the prior bias D.
Here we quantify the strength of bias by its measurable effects on the quality of learning that
can be guaranteed: the difficulty of learning a set of MDCs D is measured by the number of
training examples needed to reliably guarantee a near optimal hypothesis, in the worst case
over all allowable example distributions permitted in the learning context.

Definition 3 (PAcO-learning) (Probably Approzimately Class Optimal) For €,6 > 0, a
learner L PACO-learns a class of MDCs D given my/(e, 6, D) training examples, if, for all
example distributions Px«c L outputs a MDC d € D whose accuracy is within € of the best
dopt € D, with probability at least 1 — 0.

Notice our goal differs slightly from standard PAC-learning, in that we are forced to seek
near-optimal rather than near-perfect classifiers, since with blocking no classifier can attain
perfect accuracy in general. Notice also that we are only addressing the sample complexity
of learning here, not computational complexity.

Definition 4 (Sample complexity) For fized € and 6, let m(D) denote the minimum sam-
ple size needed by any learner to PACO-learn D; referred to as the sample complexity of
learning D.

Intuitively, we expect the difficulty of learning a set of MDCs D to depend on the “complexity”
of D, i.e., the more complex D is, the harder it is to learn. But what precise complexity
measure actually determines the sample complexity of learning a class of MDCs D7 In the
standard PAC-learning model, for fixed € and 6 the sample complexity of of learning a class
of ¢DCs C is a linear function of VCdim(C); i.e., m(C) = O(VCdim(C)) (Blumer et al.,
1989; Ehrenfeucht et al., 1988). For learning MDCs however, we find that the appropriate
complexity measure actually depends on the specific learning conteat (3;, x;). Here we let
m; ;(D) denote the sample complexity of learning D in context (f;, x;)-

First consider learning a class D under the arbitrary blocking model. Proposition 6 states
that it is possible to consistently learn from incomplete training examples using the DR
learning technique. Moreover, no strategy can do significantly better:

Proposition 6 Under (84, x1): mar(D) = O(VCdim(D)). Furthermore, DR learning achieves
this upper bound.

10

XC X1

B1 | mic(D) = O(maxs VCdim(D;)) m(D) = 0(7)

Ba (impossible) mar(D) = O(VCdim(D))

Figure 6: Sample complexities of PACO-learning D

Proposition 7 shows that consistent learning is impossible under 34 if we train on artificially
completed examples; this is sufficient to prevent PACO-learning in general.

Proposition 7 Under (84, xc): no non-trivial class D of MDCs is PACO-learnable.

Learning under the independent blocking model (f;) is more interesting. First, if we
consider learning from complete training examples we immediately run into the problem
that the classification accuracy of any MDC d cannot be estimated directly. This would be
possible if we happened to know the attribute blocking rates a priori, but it is impossible to
estimate these quantities from complete training examples. So at first blush, the prospect of
learning a near-(class)optimal MDC under these circumstances appears quite bleak. However,
the CL learning strategy is effective in this case.

Proposition 8 Under (81, xc): mic(D) = O(max, VCdim(D;)) where Dy is the set of CDCs
induced by D on attribute subset s. Furthermore, CL learning achieves this upper bound.

Note CL does not estimate the accuracy of any candidate MDC, but instead builds a MDC
by combining empirically optimal ¢DCs on each attribute subset. Surprisingly, the measure
of class complexity is different in this case; so the inherent complexity of a given class of
MDCs D depends on the learning context! In fact, there are parameterized class of MDCs D,
for which mc(D,,) = poly(n) and yet m4;(D,,) = exp(n). This means that learning under
(Br,x1) is in some sense fundamentally easier than learning under (84,x71), as it can require
exponentially fewer training examples in some cases.

Considering the problem of learning from incomplete training examples under indepen-
dent blocking, we find that it is actually quite difficult to determine the precise measure of
class complexity that determines the sample complexity of learning a class D. First, compar-
ing the relative difficulty of learning under the various conditions shows myc < mjpr < myy,
giving the intuitive result that learning from complete training examples is easier than learn-
ing from incomplete examples under [; blocking. However, it is an open question as to
whether complete training examples can ever provide an exponential advantage over incom-
plete examples in learning efficiency under ;.

Open Question 1 Under (81, x1): m = O(7).

Figure 6 summarizes the results.

11

6 Conclusion

Research directions: Of course, much work remains to be done. Aside from pursuing
open technical questions, we are beginning to examine many extensions to better cope with
real-world learning problems. For example, missing attribute values in medical databases
typically provide useful information — namely that the missing attributes are irrelevant
to the classification given the known attributes (Porter, Bareiss and Holte, 1990) — which
could be exploited by a learning system (Rao, Greiner and Hancock, 1994). Notice that 3; is
overly restrictive and 34 is too underconstrained to adequately model this situation. We are
currently investigating alternative blocking models that (we hope) lead to better empirical
learning performance in such domains.

Other interesting research directions involve alternative generalizations of standard clas-
sification learning: This work considers MDCs that classify every description, no matter how
incomplete. Alternatively, we could consider partial classifiers that sometimes return “I
don’t know” (Rivest and Sloan, 1988). This would prove useful in domains where the conse-
quences of an incorrect classification sometimes outweigh those of remaining silent. Another
interesting generalization is to consider active classifiers which selectively observe only a few
attributes before producing classifications — here, we would need to learn active diagnosis
strategies. This raises the issue of how best to trade off the number of tests required against
the accuracy of the classifier.

Contributions: This work constitutes a start on the general task of acquiring default knowl-
edge from empirical observations. We specified the task of classifying incomplete examples,
and noted that missing-data classifiers are more complex than complete data classifiers. We
next formally defined the task of learning accurate missing-data classifiers from random ex-
amples and explicated the various assumptions making up a learning context in this case.
Finally, we investigated the robustness of existing learning procedures, and studied the sam-
ple complexity of learning classes of missing-data classifiers; observing in each case that the
results depend strongly on the specific context of learning.

This work provides a simple, unifying framework in which to study the problem of learn-
ing missing-data classifiers. By making various modeling assumptions explicit, we provide
theoretical insights that can help explain empirical learning phenomena and provide guid-
ance for applying learning techniques. For example, the preceding theoretical results clearly
demonstrate that the relative effectiveness of particular learning strategies strongly depends
on the nature of the blocking process involved. This observation has practical import: If
blocking is known to be independent, then complete training examples will provide an ad-
vantage over incomplete examples, and the CL and JT learning strategies should be favored
over DR. On the other hand, if blocking independence cannot be assumed, then it is ex-
tremely dangerous to use complete training examples and the DR learning strategy should
be favored over CL and JT.

References

Angluin, D. and Laird, P. (1988). Learning from noisy examples. Machine Learning,
2(4):343-370.

12

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability and
the Vapnik-Chervonenkis dimension. JACM, 36(4):929-965.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth, Belmont, CA.

Clancey, W. (1985). Heuristic classification. Artificial Intelligence, 27:289-350.

Ehrenfeucht, A., Haussler, D., Kearns, M., and Valiant, L. (1988). A general lower bound
on the number of examples needed for learning. In Proceedings COLT-8S.

Ghahramani, Z. and Jordan, M. I. (1994). Supervised learning from real and discrete in-

complete data. In Proceedings CLNL-93. (This volume).

Ginsberg, M., editor (1987). Readings in Nonmonotonic Reasoning. Morgan Kaufmann, Los
Altos, CA.

Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100:78-150.

Kearns, M. J. and Li, M. (1988). Learning in the presence of malicious errors. In Proceedings

STOC-88.

Kearns, M. J. and Schapire, R. E. (1990). Efficient distribution-free learning of probabilistic
concepts. In Proceedings FOCS-90.

Kyburg, H. (1991). Evidential probability. In Proceedings IJCAI-91.

Little, J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New
York.

Mitchell, T. M. (1980). The need for biases in learning generalizations. Technical Report
CBM-TR-117, Rutgers University.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56:71—
113.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo, CA.

Porter, B. W., Bareiss, R., and Holte, R. C. (1990). Concept learning and heuristic classifi-
cation in weak-theory domains. Artificial Intelligence, 45(1-2):229-263.

Quinlan, J. R. (1989). Unknown attribute values in induction. In Proceedings ML-89.

Rao, R. B., Greiner, R., and Hancock, T. (1994). Exploiting the absence of irrelevant
information. In AAAI Fall Symposium on ‘Relevance’, New Orleans.

Reiter, R. (1987). Nonmonotonic reasoning. Annual Review of Computer Science, 2:147-186.

13

Rivest, R. and Sloan, R. (1988). Learning complicated concepts reliably and usefully. In
Proceedings AAAI-SS.

Roth, D. (1993). On the hardness of approximate reasoning. In Proceedings [JCAI-93.

Schuurmans, D. and Greiner, R. (1994). Learning default concepts. In Proceedings CSCSI-
94.

Shackelford, G. and Volper, D. (1988). Learning k-DNF with noise in the attributes. In
Proceedings COLT-88.

Valiant, L. G. (1984). A theory of the learnable. CACM, 27(11):1134-1142.

Vapnik, V. N. and Chervonenkis, A. (1971). On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264-280.

14

