Finding Optimal Derivation Strategies in
Redundant Knowledge Bases

Russell Greiner

Department of Computer Science
University of Toronto

Toronto, Ontario M5S 1A4
August 14, 1990

Abstract

A backward chaining process uses a collection of rules to reduce a given goal to a sequence of
data-base retrievals. A “derivation strategy” is an ordering on these steps, specifying when to use
each rule and when to perform each retrieval. Given the costs of reductions and retrievals, and
the a priori likelihood that each particular retrieval will succeed, one can compute the ezpected
cost of any strategy, for answering a specific query from a given knowledge base. [Smi89] presents
an algorithm that finds the minimal cost strategy in time (essentially) linear in the number of
rules, for any disjunctive, irredundant knowledge base. This paper proves that the addition of
redundancies renders this task NP-hard. Many Explanation-Based Learning systems work by
adding in redundancies; this shows the complexities inherent in their task.

1 Introduction

Problem solving is combinatorially expensive. There can be a combinatorial number of potential
“solution paths” for a given query — as there can be many rules (a.k.a. operators) that each
reduce the goal to a new set of subgoals, and each of these subgoals can, itself, have many possible
reductions, etc.; ultimately “bottoming out” with a sequence of data base retrievals. (See [GN8T7].)

There are several ways of addressing this combinatorial complexity. One involves ordering the
set of rules, so the first rule selected for a given (sub)goal is the one viewed as most cost effective.
For example, given the K7 knowledge base, whose rules appear in Figure 1, we may specify that the
rule R,,, should be used before the rule R,; when determining Abe’s parent — i.e., when seeking
an z such that Parent(Abe z) holds. There can, of course, be many comprehensive “derivation
strategies” — i.e., many ways of searching this knowledge base, each guaranteed to find a solution,
if one exists. Our objective is to find the one that requires the least expected time.

Ryp: Parent(p q) = Guardian(p q)
Rpp: Father(p q) = Parent(p q)
Rpm : Mother(p q) = Parent(p q)

Figure 1: Rules associated with K4

Another approach involves adding redundant information to the knowledge base, in the form
of a new rule. Using K, again, we observe that the solution to the Guardian(Abe Bob) query
involved the fact Father(Abe Bob) and the rules R,, and R,;. This suggests modifying our
derivation system for subsequent queries: When asked to prove Guardian(x y) (for any s and 7),
this “smarter” system will immediately perform the data base retrieval of Father(x), and only
if this fails, consider the other possible retrievals and rule-based reductions (e.g., using R,,, Rpm,
etc.). This corresponds to combining the rules R, and R,s to produce the new redundant rule

Ry¢: Father(p q) = Guardian(p q)

that is then incorporated into Ki’s set of rules, forming Ky «— K; U {R,s}. Furthermore, this
rule is placed first: the “improved” system will try this new rule first in subsequent queries, before
the other rules are attempted. This is the basis for the recent Explanation-Based Learning (EBL)
systems [MKKC86, DM86], as well as Chunking [Ros83, RN82, LNR86] and MacroOps [FHN72].

A major objective of these learning systems is efficiency: to improve the overall future per-
formance of the system. Of course, this requires some information about these anticipated future
events — especially about which questions will be posed and with what distributions, and about
the probability that certain assertions will be in the knowledge base when those queries occur.

Many systems implicitly employ the “obvious” assumption that “the future will mirror the
past” — that the future questions will correspond to the questions asked until now. This suggests
preserving every observed rule-sequence as a new redundant rule. Recent empirical evidence [Min85,
Min88], however, has confirmed some of the obvious problems inherent in this “save all redundant
rules” approach: these new rules can slow down the overall performance of the complete system.
That is, it is not always advantageous to incorporate a proposed redundant rule into an existing
knowledge base.

This report addresses the issue of deciding whether to add in a new redundant rule. It assumes,
as given, the a priori likelihood that any given database retrieval will succeed. (We may know, for
example, that there is a 10% chance that the database retrieval “Father(x v)” will succeed, for
any pair of constants, (kv).) It shows how to use this likelihood information to determine both
whether a new rule should be added; and if so, where in the derivation strategy that rule should
appear.

Section 2 provides a formal definition of “derivation strategies”, shows there can be an expo-
nential number of them, and provides a framework for comparing different ones. It also discusses
Smith’s result [Smi89], which states that this task is (essentially) linear in the number of rules for
a certain class of irredundant knowledge bases. Section 3 then addresses the complexities inherent
in producing the optimal such strategy when the knowledge base is redundant: It proves first that
this task can be achieved efficiently for a certain classes of redundant knowledge bases (viz., knowl-
edge bases produced by some EBL systems) and then that this task is, in general, NP-complete.
Section 4 ties this work back into the growing field of EBL systems, and discusses some extensions
to this work.

2 Framework

Definition of “Derivation Strategy”: Given a specific query, o (a positive first-order literal),
and knowledge base (a collection of first-order definite clauses, containing both rules and ground

atomic facts), we define a (derivational) strategy as an ordering that specifies when to follow which
rules (to reduce the subgoal) and when to perform database lookups. For example, one strategy
for answering the query “Guardian(Abe Bob)” from K; would be

e Lookup Guardian(Abe Bob) from (the set of facts in) K;. If that succeeds, the derivation
process returns “Yes” and is done. Otherwise:

e Use R,y to reduce this goal to Parent(Abe Bob).

e Lookup Parent(Abe Bob) from K. If that succeeds, it returns “Yes” and is done. Otherwise:
e Use R,y to reduce this subgoal to Father(Abe Bob).

e Lookup Father(Abe Bob) from K. If that succeeds, it returns “Yes” and is done. Otherwise:
e Use R, to reduce the Parent (Abe Bob) subgoal to Mother(Abe Bob).

e Lookup Mother(Abe Bob) from K.
If that succeeds, it returns “Yes”; otherwise, it returns “No”. (Either way, it is now done.)

We write this strategy as ©1 = (L, Ryp L, Ry5 Ly Rpp, Ly,), where Ry, represents the reduction
using the R, rule’, and the L, steps refer to lookups of the y-related propositions. We refer to
R, steps as “reductions”, and to L, steps as “lookups”; collectively, these are called “steps”.

We can use this same strategy, mutalis mutandis, to address any query of the form “Guardian(x v)”.
While this approach holds for any arbitrary s and 7, we will focus on the situation where each is
some (unspecified) constant, as opposed to an existentially quantified variable. In all cases, we are
seeking one answer to the query, rather than all solutions. (Hence, the question “Parent(Abe z)”
would seek one parent of Abe, rather than all of his parents.) This is, therefore, a satisficing search,
using [SK75]’s notation.

Expected Cost of Derivation Strategy: The expected cost of a strategy is the weighted sum
of the expected number of lookups plus the expected number of reductions. We assume that each
lookup costs £ cost-units, and each reduction step, r cost-units. Of course, the expected cost of
following a strategy depends critically on the anticipated successes of the lookups, which in turn
depend on which facts appear in the knowledge base. If all of ©@1’s lookups fail, this overall strategy
will require 37 4+ 4£ steps. The expected cost of a strategy depends on the expected probability of
success of each lookup step.? Assume, for example, that there is a 0% chance that L, will succeed
(i.e., there are no facts of the form “Parent(x 7)” in Ky; written “Pr(L,) = 07), and a 1%, 10%
and 25% chance that L,, Ly and L,,, respectively, will succeed, and that these probabilities are
independent. Then the expected cost for this strategy is

El01] = 4 (1=Pr(Ly))lr+ {+ (1=Pr(Lp))[r + £+ (1=Pr(Ly))[r + £+ (1=Pr(Ly))0]]]

{4+ (1- 0.01)r+€+(1— 0)Hr+L+(1— 010)r+¢+(1— 0.25)0]]
2.871r + 3.871¢

'In general, a rule may appear many times in a given derivation tree. We would then need to distinguish the
different appearances of each rule.

2(1) The expected cost can depend on other factors as well, including the probability that a rule may fail to reduce
a goal to a subgoal, due to constants appearing in the rules; see [Lik88] and [Smi89]. (2) This note assumes that we
know, a priori, the probability that each retrieval will succeed, and is not concerned with how they were obtained.
[Smi89, Lik88, Cho90] present one way of estimating these values, based on the distribution of assertions present in
the knowledge base; [GO90] presents a different model.

Rgy = reduction step -
Ly = lookup step Guardian(x 7y)

O = database access

Py = probability that x-lookup will succeed ’N L
g
Parent(x 7y) D
Pg = 0.01
Rpf Lyp Rpm

Father(x v) Pp
Ly

[p; = o010 Py o= 025 []

0 Mother(x)

Lm

Figure 2: Inference Graph of K7’s Rules

There can, of course, be many strategies for a given goal within a given knowledge base. One
could, for example, not bother trying to retrieve Parent(---) from K, and also follow the R,
rule and its associated Mother(---) lookup before R,; and Father(.--). The expected cost of this
alternative strategy, @y = (L, Ryp Rpm Ly Rpp Ly), is E[Og) = £+ (1 = 0.01)[r + 7+ £+ (1 —
0.25)[r 4+ £+ (1 — 0.10)0]] = 2.7225r 4+ 2.7325(, which is strictly less than E[04] for any values of r
and £.

Nothing forces us to consider lookups before reductions. The O3 = (Ry, Rpm Ly Rps Ly Ly)
strategy, for example, does not bother to perform the (low probability) Guardian(---) lookup until
the end. Its cost E[O3] = 2.75r 4+ 2.425(can be yet less expensive — e.g., if r = 1 and £ = 2, then
this @3 is the least expensive strategy yet, as E[O3] = 7.6 < 8.1685 = E[0,].

This paper deals only with complete and minimal derivation strategies, where

Definition 2.1 A strategy is complete if it is guaranteed to find an answer, if there is one.
A strategy is minimal if no proper initial subsequence has the same cost.

All three strategies shown above (0, O3 and O3) are complete. Notice that a strategy can ignore
the L, lookup step and still be complete, as Pr(L,) = 0.

Every strategy is minimal unless it includes a retrieval step that has a 100% chance of succeeding.
For example, observe that the expected cost of (L, ---) is 7 if Pr(L,) = 1, independent of what
steps follow L,. Hence, Og1 = (L4, Rp=q, L) is not minimal, as its cost, E[@qq], is 7, as is a
proper subsequence, gy = (L,); this Og, sequence, however, is minimal.

Definition 2.2 An optimal derivation strategy, for a given query from a given knowledge base, is
a complete minimal strateqy with the least expected cost.

Notice there can be more than one such optimal strategy.
We can now state our objective: to describe the complexities inherent in computing these
optimal derivation strategies, given various different classes of knowledge bases.

Number of Derivation Strategies: As shown above, a derivation strategy, for a given query
from a knowledge base K, is an ordered sequence of a subset of K’s reduction and retrieval steps.

If there are n such steps, the number of possible (not necessarily minimal nor complete) strategies
is Y7o (7) x ! (as there are (7) x ! different strategies of length exactly i), which is exponential in
n. Even for the tiny Ky knowledge base, with n = 7, there are 13,700 different strategies, of which
6! = 720 are complete and minimal, and of these, 36 respect the “subgoal precedence order” (e.g.,
only perform the Ly step after R,¢, etc.).

Smith [Smi89], however, shows how to compute the optimal derivation strategy in a time (essen-
tially) proportional to the number of rules, for any disjunctive, function-free, fact-irredundant, rule-
irredundant knowledge base.® Disjunctive means that all of the rules are of the form A(-) = C(-);
hence, it excludes rules of the form A(-)&B(-) = C(-). (Stated formally, it includes only definite
clauses with exactly one positive literal, and either zero or one negative literals.) Function-free
means it does not allow embedded function symbols. Fact-irredundant means that no existing
database ground unit clause can be derived from the knowledge base of rules and the other data.
(Hence, if the knowledge base includes the R, rule, it may not contain both Father(A B) and
Parent (A B).) Rule-irredundant means that there is at most one derivation path that connects any
goal with any of its subgoals; see Definition 3.2. This means that the inference graph — the graph
whose nodes are (sub)goals and whose arcs represent the rules that link a goal to its children; see
Figure 2 — is a tree, rather than a more general directed acyclic graph (“dag”).

N.b., this note deals only disjunctive, function-free, fact-irredundant knowledge bases; and
contrasts rule-irredundant and rule-redundant variants. To simplify notation, we will use the term
“redundant” to mean “rule-redundant”.

3 Dealing with Redundant Knowledge Bases

Many knowledge bases, however, are redundant — that is, include two paths joining a pair of nodes
(see Definition 3.2). One reason is that few (if any) real systems prevent the user from entering
redundancies. (In general, the test to determine whether a set of first-order statements is redundant
is undecidable, as it involves determining whether K — R = R, for each member R € K.) Another
reason was mentioned above: many “explanation-based learning” systems automatically add in
redundant rules.

The rest of this note focuses on such knowledge bases. The K5 knowledge base is an example.
It is redundant because its inference graph (shown in Figure 3) includes two paths that join the
query Guardian(x) to the Father(x) subgoal — one using (R, R,f), and the other, (R,y).

This section addresses the complexities inherent in finding optimal derivation strategies for
redundant knowledge bases. Subsection 3.1 first presents an important reduction. Subsection 3.2
uses it to characterize a class of redundant knowledge bases for which this task is polynomial in
the size of the inference graph. Section 3.3 proves, however, that the task is NP-complete in its full
generality (even for disjunctive, function-free, data-irredundant knowledge bases).

We first provide some essential definitions and simplifications:

Definition 3.1 A path from the goal G to one of its subgoals S is a sequence of rules (ry, ..., i)
such that the conclusion of r1 matches G, the antecedent of each r; matches the conclusion of r;y1

3(1) Actually, Smith’s approach extends beyond these knowledge bases. (2) That algorithm involves sorting the
set of m steps that can apply at each subgoal — hence requiring an additional factor of O(mlog(m)). In general,
though, m < the number of steps.

Guardian(x «y)

Father(x) Pp = 0 Mother(x «y)
Lf Lm
[rf = o010 Pm = 025 []

Figure 3: Inference Graph of K3’s Rules

(for t = 1.k — 1), and the antecedent of ri matches S.
We say this path “leads from S up to G”.

Definition 3.2 A knowledge base is redundant iff it includes any pair of (sub)goals, (G, S), such
that there is more than one path leading from S up to G.

To simplify our analysis, we will assume that rules include no object constants — that is,
all arguments of all relations that appears in all rules are variables. Hence, we allow all of the
rules shown above — R,,, Ry, Rpr, Rgy — but exclude rules like Ry,q: Father(x Mark) =
Guardian(x Mark). This allows us to deal exclusively with the rule’s relations, as we know that
S1(-++) = S2(---) can be used to reduce any goal of the form Sy(---). It is easy to extend this
analysis to cover this more general case in which rules may include constants; see [Smi89] and

[Lik88].

3.1 Irredundant Derivation Subspaces

A derivation strategy is redundants iff it includes the same step more than once; e.g., Q4 =
(Rgf Ly Ryp Ry Ly Rps Ly L) is redundantg as it includes Ly (i.e., asks for a Father(-, -) propo-
sition) twice. It obviously never makes sense to use a redundants derivation strategy to solve a
specific query, as there is always an irredundantg strategy that is functionally equivalent (i.e., will
find an answer whenever the redundants strategy does) and that takes strictly less time. (See
[Gre89, Lemma 3.1].) Here, @5 = (R, Ly Ry, Ry, Ly, L) is such a reduced, irredundantg strat-
egy for ©4. (Notice Oj is the subsequence of ©4 that omits both the second Ly lookup and the
now no-longer-useful R, reduction step.)

This means we need only consider irredundant derivation subspaces. That is, let RS(©) map
the strategy © into the set of rules it uses — e.g., RS(03) = { Ryp, Rypm, Rps}. Notice the rule
set of an irredundantg strategy corresponds to an irredundant knowledge base, which means we
can use [Smi89]’s algorithm to find the optimal strategy in linear time.* Hence, we can reduce
the problem of finding the “optimal derivation strategy” to the problem of finding the “optimal
derivation space”, where each “derivation space” is the rule set plus the needed lookup steps.

Unfortunately, there can be an exponential number of derivation spaces. Consider, for example,
the “trellis” inference graph, formed from the rules

Ks = {a(2)=an(2)} U {&(2) = Aiga(2) Yo,

*Recall we are assuming that the knowledge base is disjunctive, function-free and data-irredundant.

Rpto.nt1

Figure 4: “Trellis Inference Graph”, for K3

shown in Figure 4. It has Fib(n) irredundant derivation spaces, each connecting the goal 4, 42(k)
to the L4y lookup. (“Fib(m)” is m** Fibonacci number.)

3.2 Simple Redundant Knowledge Bases

Fortunately, there are efficient ways of selecting the optimal space, for certain classes of knowledge
bases. All that is required is a polynomial time algorithm that can select, for each subgoal 5, which
step to follow “up” — that is, which selects one step from the set of all steps beginning paths that
lead from S up to the top level goal G. (E.g., given the K inference graph of rules, this algorithm
would have to specify whether to take the R, or R,y reduction from the Father(x 7) subgoal,
to lead up to Guardian(x v).) In fact, this condition is both necessary and sufficient to guarantee
that an efficient “find optimal derivation strategy” process will exist for a knowledge base. Hence,
we can reduce this task to one of finding the optimal “upward” step at each node.

This subsection proves that this “which step to follow” decision is trivial for the class of redun-
dant knowledge bases produced by some EBL systems, meaning that the “find optimal derivation
strategy” task is polynomial in the size of their inference graphs.® Subsection 4.1 discusses some
limitations of this result.

We begin with some definitions:

Definition 3.3 A o-direct rule is a rule whose conclusion matches o.
E.g., Ry; and R,y are each “Father(-)-direct rules” in K.
Definition 3.4 The path py = (r1 -+~ 1) is ‘redundantp” with the path p; = (s1 --- s;) iff the

conclusion of r1 matches the conclusion of s1 and the antecedent of v matches the antecedent of
s1 (i.e., both paths lead from the same subgoal, and arrive at the same subgoal), and they share no

®The extended paper, [Gre89], presents yet other classes of knowledge bases in which we can efficiently find optimal
derivation strategies.

steps in common (i.e., {r;}; N {s;}; =1{}).

Here, we say that the final steps, ry and s;, are ‘redundantr (wrt the r1’s conclusion)” as their
antecedents match and they each begin paths leading to the same conclusion.

The set of paths {p;};_; is a ‘redundantp path set” iff r > 1 and for each pu, pn € {pi}ti, Pm
is redundantp with p, whenever p,, # p,; and this set is ¢ “maximal redundantp path set” if it
includes every path redundanlp with p;.

We can say that a (mazimal) redundantp path set “leads from v to o” iff each member path leads
from v to o.

E.g., for the K, inference graph: the paths (R,, R,s) and (R,¢) are redundantp as each leads from
Father(x 7) to Guardian(k v); and the set {(R,, R,s), (Ryf)} is a maximal redundantp path
set. Finally, R, and R,s are redundantp (with respect to Guardian).

Definition 3.5 The knowledge base K is a “o-direct-K B” if every redundant path set leads (from
some goal) to the goal o, and each mazimal redundant path set includes a o-direct rule (i.e., a single
rule whose antecedent is the antecedent of the rule set, and whose conclusion is the goal o).

As examples: K1 is a “Guardian-direct- K B” vacuously, as it includes no redundantp path sets; K5
qualifies, as its only redundant p path set includes the R, s rule which leads directly to Guardian(x 7);
but K3 (Figure 4) is not a “A,4o-direct- K B” (for n > 1) as it includes the { (Rs2, R21), (R31) }
maximally redundantp path set that does not include a 4,,42-direct-rule.

Let © be the optimal derivation strategy associated with the top-level goal, o, within the
irredundant disjunctive knowledge base, K. Assume K includes a path from o to a subordinate
subgoal, A, of the form (R,2 Ras -+ R,)), whose final step, R,), represents the rule “\ = §,,7.
Now let R, be an additional o-direct rule (not in the initial K') that immediately connects o
with A — i.e., of the form “A = ¢”. (This is the type of rule that most EBL processes would
generate, after solving 0. The R,s rule is an example, as it directly connects the Guardian(---)
query with the Father(.--) subgoal.) Now form a new knowledge base by replacing the final rule
used in the original o to A path (here, R,)), by the o-direct rule (here, R,)). The resulting set,
RS(©) — {R.r}+ { Rosr} is an irredundant derivation space; let @' be the optimal strategy for
this space. Lemma 3.1, below, proves that F[@'] < F[0], which means that an optimal derivation
strategy (and therefore, the optimal derivation space) will include the direct rule. (This is good
news for EBL fans, as these direct rules are exactly what EBL systems generate! ...but see the
comments in Subsection 4.1.)

Hence, there is an obvious linear time algorithm for finding an optimal derivation strategy for o,
for the simple case of adding a new o-direct redundant rule to a previously irredundant (disjunctive,
function-free, data-irredundant) knowledge base: Add the new direct rule, and remove the rule with
which it was redundandg.® Then use [Smi89]’s algorithm to produce the optimal strategy for this
new knowledge base.

A straightforward extension allows us to find, in linear time, the optimal strategy for the o query
from any “o-direct- K B”, defined in Definition 3.5. An optimal strategy for ¢ from a o-direct-K B
can be found in the derivation space that includes only the o-direct rule in each redundantp path

5We assume that our strategy-finding system knows which arcs are redundant. This is quite reasonable within
the EBL context.

set, and excludes all of the rules in the other members of each redundantp path set; see Lemma 3.2.
This means we can immediately determine which rule to follow up from each subgoal, leading to
an efficient algorithm for this class of knowledge bases.

Lemma 3.1 (from [Lik88, Lemma 3.2]) Let K be an irredundant knowledge base that includes
a path of rules from some query, o, to the subgoal, A, whose final step involves the rule R,y: A = 5,.
Let ©1 be the optimal strategy for o from K. Let K' be identical to K EXCEPT it replaces R,
with a new o-direct rule, R,y — that is “A = o7; and let Oy be the oplimal strategy for o from
K'. Then E[@Q] < E[@l]

Proof: It suffices to show that there is some complete strategy for deriving o from K’ whose cost
is no greater than E[0;]. (This K’ strategy need not be the optimal one.) There are two cases,
depending on whether R,) appears in 0.

(1) If R, is not in ©q, then ©; also qualifies as a K’ strategy. It is clearly still complete; and its
cost, obviously, is < F[04].

(2) If R, is in ©q, define O3 as the strategy that is identical to Oy, except it replaces the single
occurrence of R,y with R,\. It is trivial to show that @3 is a complete strategy for deriving ¢ from
K' as ©q is; and that E[O3] = F[0Q4]. O

Lemma 3.2 (from [Lik88, Theorem 5.1]) Let K be a o-direct-K B, whose mazimal redundantp
path sets are {T'}5_ where each T = {7}, contains vi which is a o-direct rule (i.e., v leads
directly to o). Then there is an optimal strategy for o from K thal does not involve any of the

{’y;: }iLy for any i.

Proof: Consider first the case where k = 1 — i.e., where there is but a single redundantp path
set, 71 = {7} ?;1 Lemma 3.1 handles the case where this path set includes only two paths (ie
ny = |71 = 2); trivial induction on this size of this |7!| deals with other redundantp paths (i.e.,
allows the lemma to hold for arbitrarily sized 71). Using this & = 1 as the base case, we can
inductively show that this property holds for any number of redundantp path sets (i.e., for any k).

a

3.3 Finding the Optimal Strategy is NP-Complete

This subsection proves that the task of finding the optimal derivation strategy for a given query
from an arbitrary redundant knowledge base is NP-complete. The basic problem, as suggested in
Subsection 3.1, is that the optimal strategy can involve the steps from any of an exponential number
of possible irredundant subspaces; and there appears to be no simple way of determining which
space it is. In particular, there is no efficient (i.e., polynomial time) process that can determine
which “upward” path to follow from any given subgoal for arbitrary inference graphs (assuming
P # NP).

To state this formally, first observe that if we can find the optimal derivation strategy in
polynomial time, then we can solve (in polynomial time) the related decision problem, OptDS:

Definition 3.6 (OptDS Decision Problem)
INSTANCE: A knowledge base K, a query o, a probability function Pr(-) that maps each retrieval
L; to its probability of success Pr(L;), values for the cost of each reduction step r and data-base

retrieval £, and a constant k.
QUESTION: Does there exist a complete, minimal, irredundant derivation strategy for answering
o from K whose expected cost is less than or equal to k — i.e., is there a © such that E[Q] < k?

Now for the main theorem:
Theorem 3.1 The OptDS task is NP-complele.

Proof: To show that OptDS is in NP: Given a redundant knowledge base with a total of n steps
(including both rules and retrievals), we need only guess an appropriate sequence of a subset of
these steps from the set of 3.7 o (%) x @' < exn! = O(n") such ordered subsequences, and
confirm (in polynomial time) that it is a complete, minimal, irredundant strategy whose expected
cost is < k.

To show that OptDS is NP-hard, we reduce the NP-complete “Exact Covering” task [GJ79] to
it.”

Definition 3.7 (EC Decision Problem)

INSTANCE: A collection of sets, C = {¢; };. LetS be the union of its members — S = |, ec Ci-
QUESTION: Does there exist a subset C' C C such thal the members of C' are pairwise disjoint
and exhaust § — ie., Ve, c; €C it cj =N ={} and U,ecrci = S7

Given any such collection C, we can form a knowledge base as follows: Associate each ¢; € C
with a proposition (a.k.a. “derivation space node”) Ci(x); likewise identify each s; € S with the
proposition Sk(x). The only retrievals with non-zero probabilities of success are for these Sk(x)

. d . . .
nodes. Now for the rules: For each ¢; € C, of size n; 2) |ei|, add in the n; rules: Ci(z) = Ciz(x),
Cig(z) = Ciz(z), ..., Cip,—1(z) = Ciy(2) and Ciy,(2) = G(z). (These n; — 1 Ci; goals are all new,
as is the common root, G(x).) Notice there are exactly n; reduction steps from G(x) down to Ci(x).

. e . d
Now, for each s; € ¢;, add in the additional rule Sk(z) = Ci(z). Define R) >_; ni; observe there
are exactly 2 X R rules in this knowledge base — R rules connecting G(x) to the set of all {Ci(x)};

nodes, and another R connecting these nodes with the set of all {Sk(x)}; nodes. Furthermore,

define I, %/ |S|; this is the number of lookups. Then A =l 2R + L is the total number of steps

in the entire search space, including both reductions and lookups; it corresponds to the number of
arcs in the inference graph, as shown in Figure 5.

Now for the constants: Set r = £ = 1, and set the probability of success of each lookup to
Pr(L;) = 1-[1- 55]'/E. Finally, let k = 3L.

We need only show that there is a derivation strategy for G(x) from this knowledge base with
cost < 3L iff there is an exact covering of the sets in C.

We can simplify this equivalence by considering “tree costs”: For any possible strategy, ©, define
T[0O] to be ©’s “tree cost”; that is, the number of steps (read “arcs”)included in ©. (Notice this sum
is not weighted with the probability values.) Lemma 3.3 below shows that T[0] — < E[0] < T[0)]
for any strategy, given the above specifications.

This means that a strategy’s expected cost is < 3L iff its tree cost is < 3L. (To see this, observe
that Lemma 3.3 means that E[0] < 3L implies T[0] < E[O]+ 1 < 3L + 1, meaning T[0] < 3L as

"This proof is an extension of Karp’s proof that the “Steiner Tree decision problem” is NP-hard [Kar72].

10

G(k)

] T

Cip, (k) s Cip, (k) R CI,, (k)
|
Clnl—l(/‘f) |
| Cii(x)
‘ Ci(k)
e CI(k)
Ci(x)
S1(k) S2(k) s Sk(k) s SL(x)
R RS T
Pr(Ly) = P Pr(Ly) = P Pr(Ly) = P PrHLp) = P

Figure 5: General Inference Graph used in Proof of Theorem 3.1

both 3L and 7[0] are integers. The other direction is immediate.) Hence, we need only show that
there is a strategy whose tree cost is < 3L iff there is an exact covering of the sets in C. (That is,
we need not consider the order of the strategy’s steps.)

<—: Assume there is an exact cover of the C set; w.l.o.g., write this C’ set as {¢1,---¢;,}. Let Cy
represent the nodes in the corresponding inference tree — ie., Cy = {Ci(x)}",. Now consider
the tree in the derivation space that includes exactly the rules from G(x) down to each Ci¢(x) in
(%, the rules from each of these Ci(x)s to each of its Sk(x)s, and the lookups under each Sk(x).
Call this subgraph ©. It suffices to show that © is a complete, minimal, irredundant derivation
strategy whose tree cost is exactly 3L. (Technically, we should define © to be any legal strategy
that involves exactly these steps — that is, any ordering on these steps. However, we saw above
that this ordering is factored out.)

©’s minimality follows from the observation that none of the probabilities are 1. @’s complete-
ness follows immediately from the claim that the elements of C’' exhaust all of S; its irredundancy
follows from the claim that these elements are pairwise disjoint. @’s tree cost is the sum of (7) the
cost of rules from the G(x) down to each Ci(x) in Cy, plus (7¢) the cost of the rules from each of
these Ci(x)s down to their respective Sk(x)s, plus (7i7) the cost of the retrieval step under each
Sk(x). Each portion costs exactly L:
(i) The cost from G(x) to Ci(x) is n;, hence (¢) costs Y./~ n;. As {¢;}/™, is an exact cover, we
know that 3" n;, = > el = |UZ, ¢ = |S| = L.
(i7) There are exactly n; rules under each Ci(x); once again, this means this part costs 3/~ n; = L.
(#77) As there are |S| = L Sk(x) nodes, each appearing in this tree, the cost of the final portion is
again L.
Hence, T[0] = 3L, meaning E[0] < 3L.

11

—>: Assume O is a minimal complete irredundant strategy whose tree cost is < 3L; w.l.o.g.,
assume it uses the nodes Cy = {Ci(x)}/2,. It suffices to show that the corresponding set, {¢;}7,,
is an exact cover of C. This translates into the requirement that, for each Sk(x) node, there is
exactly one “Sk(z) = Ci(z)” rule leading up to a unique Ci(x) in C4.

As 0O is complete, we know there is at least one such rule for each Sk(x) node; assume this rule
leads to the node Ci;(x). (Notice Cix(x) is in Cy, by construction.) As O is irredundant, we know
that © can include (no more than) one such Ci(x) node. We need to show, however, that there are
no other arcs leading from this Sk(x) up to any other node in Cf.

Consider the number of arcs connecting G(x) down to each Ci(x) node; by construction, this
involves n; reduction steps. Hence, the total number of reduction steps from G(x) to the full set of
Cy¢ nodes is Y i, n;. This sum will be greater than L iff there is any pair, (Ci(x), Cj(x)), whose
corresponding (¢;, ¢;) contain a common element. Hence, to show that no such pair exists, we need
only show that the total cost of the tree from G(x) to the Cy nodes is < L.

As O is irredundant, it includes exactly one “Sk(x) = Ci(x)” rule for each of the L Sk(x)’s
nodes, and exactly one retrieval under each of these I nodes. These parts of the tree account for
acost of L+ L. As ©’s total tree cost is < 3L, the total cost associated with reducing G(x) down
to these Ci(x)s must be < 3L — 2L = L, as desired. a

Lemma 3.3 Given the conditions shown above, the expecled cost of any strategy O for G(x) from
this knowledge base is between T[O] — 1/2 and T[0], where T[0] is ©’s “lree cost”.

Proof: First, express any strategy, O, as a sequence of reduction chains, (r1 72 -+ rg), where each
r; is a sequence of reductions followed by a lookup step. Notice @’s tree-cost is T[0] = Zle C(ri),
where C(r;) is the total number of reduction and lookup steps involved in the reduction chain r;;
and O’s expected cost is

k i—1

Ee] =) (C(m) X H[l—Pj]) (1)
=1 7=1

where P; is the probability of success of r;’s terminal lookup step. Using P;’s specified value,

1-[1- ﬁ]l/L, Equation 1 reduces to

k i—1 1 1/L k 1 (i—l)/L
E = Y75 11— [1-(1-— = i 1—— 2
0 = Y {coax]l1- | -5 ;(cmx[=)()
Given Equation 2, using [1 — ﬁ] <landi—12>0,

EO] < Yi,(Clrgx1) < Y, C(n) < T[0]

For the other inequality: asi < k < L and [1—55] < 1 and [1—%]“‘”” > [1—%]’“/]4 > [1—%]]4/]4,

we can translate Equation 2 into

k
po > Y- (Ca k-) > (Xct) <-4
> T(0]x [1 -) > 1l0) - 1)

12

As O uses only a subset of the total set of steps, A > T[0], so

E©] > TO]-F > T[0]-

1
2 2

as desired. O

4 Conclusions

This concluding section discusses the relevance of this work by tying it into the framework of EBL
systems in general, and then lists some obvious extensions to this work.

4.1 Tie to EBL Systems

Lemma 3.1, which proves that a direct redundant rule (i.e., the result of some EBL systems) can
never slow down a derivation system, should be viewed as only a partial vindication of these EBL
systems and techniques. Below are some comments about this claim:

e This result only holds for disjunctive, function-free, fact-irredundant knowledge bases. In
particular, it does not apply if any rule’s antecedent includes more than one conjunct. (See

[Min88].)

o This result applies only when the initial knowledge base is irredundant. We saw the situation
is much more complicated when we consider arbitrarily redundant knowledge bases. Here,
it is NP-hard even to determine whether to add in a proposed new rule. (This is equivalent
to the task of determining whether an optimal strategy, from a redundant knowledge base,
should include a specific rule. If this had a polynomial time solution, then we could solve the
OptDS task in polynomial time, by first using this test as a filter on the rules, and then using
[Smi89]’s linear-time algorithm on the irredundant set of surviving rules.)

e Most of these EBL systems leave in both the direct rule and the rules from which it was
derived (e.g., both the derived R,s and the pair R;, and R,f), and will use both sets of
rules when solving a single query. We showed above that this is never efficient, even for the
motivating query itself.

(Of course, whenever we want the overall system to be able to solve other queries, which
involve other nodes in the inference graph, we must leave both rules in the overall knowledge
base, even though this renders it redundant. We are arguing for using some control system
that prevents both redundant rules from being used for a single query. The cost of performing
this meta-level computation can be quite small.¥)

e Most of these EBL systems move this new rule to the beginning of the system’s derivation
strategy; this is not always the optimal place. Assume that Oz was the optimal strategy for
K1, and consider adding in the new rule R;;: Father(p q) = Guardian(p q). If we add it
to the front of O3 (and delete R,), we form Og = (Rys L 1gp Ry Ly, Ly), which is a worse
strategy, as E[Og] = 2.87 + 2.575(is always more than F[Q3] = 2.75r + 2.425(.

8This argues for a reasoning system that can guide its derivation process by selecting which rules to fire at each
time — such as MRS [Rus85].

13

(The optimal ordering for this expanded knowledge base, by the way, is O¢, = (Rgp Rpm L Ry Ly Ly),
when r =1 and £ = 2.)

e Section 1 mentioned two ways of improving the expected cost of a derivation: (1) by determin-
ing the best strategy and (2) by adding redundancies. As empirical evidence has shown that
using (2) without (1) can produce arbitrarily inefficient systems, this report has examined
ways of combining both of these.

Notice that one can, in theory, produce efficient systems by using (1) alone. These EBL-
generated redundancies, however, can further improve the expected run-time costs of the
overall system, if they are used properly.

o We have only been considering one type of EBL system, where the objective was finding
the optimal strategy from a redundant knowledge base. An obvious variant of this task
would involve determining whether a new redundant rule R,, added to the front of the prior
strategy, could improve the expected run-time of the overall system. (Of course, the new
strategy would not include the rules with which R, was redundantg.) The obvious algorithm
involves simply computing the expected costs of the two strategies and comparing the values.
As computing costs can be done in linear time for our class of disjunctive knowledge bases,
this overall system is linear.

Another important class of EBL systems add control information rather than redundancies.
These systems start with a given knowledge base Ky and a specific initial strategy ©q; and then
observe that the “derivation path” @ = (Ry --- L,) was successful in producing a solution
to a given query. They form a new strategy @ by rearranging the rules and retrievals in 0,
moving a to front. (Notice no new rules are added to the system; i.e., the knowledge base
after the learning step is still ;. The only change is to the derivation strategy.) Once again,
there are two subcategories to consider: If the system insists that the new strategy, ©2, be
optimal, then the task is obviously NP-hard whenever K; is redundant; see Theorem 3.1.
Other systems may only consider whether E[03] < E[0;]. Once again, one can obtain this
answer in linear time for disjunctive knowledge bases— as it involves two linear-time cost
computations.

4.2 Extensions

There are two obvious ways of extending this work. One involves coping with the OptDS task’s in-
herent intractability by seeking efficient algorithms that return “approximately optimal” derivation
strategies. [GO90] begins to address this task; see also [BJY89]. Another direction is to apply this
same form of analysis to more general situations. The first obvious arena is handling conjunctive
and recursive knowledge bases. Another is to combine this approach with other control strategy
mechanisms — including conjunct ordering [SG85] and forward chaining [TG87]. The third is to
obtain more accurate empirical values. For example, we have assumed that the costs of reductions
and lookups (read “r” and “£”) are uniform for any rule or proposition. Preliminary empirical
observations show that these costs depend on the number of variables, etc. A related point is our
reliance on the “probability values” associated with each retrieval. [Smi89] uses the distribution
of propositions in the knowledge base as an estimate for these values; another approach involves

14

extrapolating these values from a set of observations, each of the form “query o involved database
fact 77 for some 7 (see [GO90]).

4.3 Results

This research was motivated by the goal of evaluating the standard Explanation-Based Learning
task, taking seriously the view that EBL is a method for improving the future performance of a
reasoning system. This lead to the formal foundation for analysis presented in Section 2, based
on the expected cost of solving a query from a given knowledge base, which uses the given proba-
bility that each proposition will be in the knowledge base. Section 3 uses this framework first to
describe certain restricted situations where eflicient algorithms are possible; and then to describe
the computational complexities inherent in this undertaking. Section 4 uses this framework in an
attempt to understand why EBL systems do, and do not, succeed in their attempts to improve the
performance of their underlying systems. In particular, it proves the intractability of one type of
EBL system, by observing that the general problem — which can involve conjunctions, recursion,
etc. — must be at least as difficult as this simpler disjunctive case, which is already NP-hard.

Acknowledgements

Joe Likuski suggested many of the ideas presented here. David Smith provided extensive comments
on earlier drafts of this paper, as did Cindy Chow, Hector Levesque, Bart Selman and Dale Schu-
urmans. Steven Rudich suggested the reduction to the Steiner Tree problem. This research was
supported by an Operating Grant from the National Science and Engineering Research Council of
Canada.

References

[BJY89] Danilo Bruschi, Deborah Joseph, and Paul Young. A structural overview of np opti-
mization problems. In Proceedings of the Second International Symposium on Optimal
Algorithms. Springer-Verlag Lecture Notes in Computer Science, 1989.

[Cho90] Cindy Chow. Obtaining an efficient derivational strategies for a conjunctive search
space. Master’s thesis, University of Toronto, 1990.

[DM86] Gerald DeJong and Raymond Mooney. Explanation-based learning: An alternative
view. Machine Learning, 1(2):145-76, 1986.

[FHN72] Richard Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence: An International Journal, 3:251-288, July 1972.

[GJT79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[GN&7] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1987.

15

[GO90]

[Gre89]

[Kar72]

[Lik88]

[LNRS6]

[Min85]

[Min88]

[MKKC86]

[RNS2]

[Ros83]

[Rus85]

[SGS5]

[SK75]

[Smi89]

[TGS87]

Russell Greiner and Pekka Orponen. Probably approximately optimal satisficing strat-
egy. Technical Report KRR-90-1, University of Toronto, 1990.

Russell Greiner. Finding the optimal derivation strategy in a redundant knowledge
base. Technical Report KRR-TR-89-9, University of Toronto, August 1989.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complezity of Computer Computations, pages 85—103.
Plenum Press, New York, 1972.

Joseph Likuski. Integrating redundant learned rules in a knowledge base. Master’s
thesis, University of Toronto, October 1988.

John E. Laird, Allan Newell, and Paul S. Rosenbloom. Chunking in SOAR: The

anatomy of a general learning mechanism. Machine Learning, 1(1):11-46, 1986.

Steven Minton. Selectively generalizing plans for problem solving. In IJCAI-85, pages
596-99, Los Angeles, August 1985.

Steven Minton. Quantitative results concerning the utility of explanation-based learn-
ing. In AAAI-88, pages 564-69, San Mateo, CA, August 1988. Morgan Kaufmann
Publishers, Inc.

Thomas M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli. Example-based
generalization: A unifying view. Machine Learning, 1(1):47-80, 1986.

Paul S. Rosenbloom and Allan Newell. Learning by chunking: Summary of a task and
a model. In AAAI-82, Pittsburgh, August 1982.

Paul S. Rosenbloom. The Chunking of Goal Hierarchies: A Model of Practice and
Stimulus-Response Compatibility. PhD thesis, Carnegie-Mellon University, August
1983.

Stuart Russell. The Compleal Guide to MRS, June 1985. Stanford KSL Report HPP-
85-12.

David E. Smith and Michael R. Genesereth. Ordering conjunctive queries. Arlificial
Intelligence: An International Journal, 26(2):171-215, May 1985.

H. A. Simon and J. B. Kadane. Optimal problem-solving search: All-or-none solutions.
Artificial Intelligence: An International Journal, 6:235-247, 1975.

David E. Smith. Controlling backward inference. Artificial Intelligence: An Interna-
tional Journal, 39(2):145-208, June 1989. (Also Stanford Technical Report LOGIC-86-
68).

Richard J. Treitel and Michael R. Genesereth. Choosing orders for rules. Journal of
Automated Reasoning, 3(4):395-432, December 1987.

16

