Appears in the

Proceedings of the Fourteenth International Conference on Machine Learning (IMLC-97),

Nashville, July 1997.

Why Experimentation can be better than “Perfect Guidance’

?

Tobias Scheffer
Technische Universitat Berlin
Artificial Intelligence Group, FR 5-8
Franklinstr. 28/29
10587 Berlin, Germany
scheffer@cs.tu-berlin.de

Abstract

Many problems correspond to the classical
control task of determining the appropriate
control action to take, given some (sequence
of) observations. One standard approach to
learning these control rules, called behavior
cloning, involves watching a perfect opera-
tor operate a plant, and then trying to emu-
late 1ts behavior. In the experimental learn-
ing approach, by contrast, the learner first
guesses an initial operation-to-action policy
and tries it out. If this policy performs sub-
optimally, the learner can modify it to pro-
duce a new policy, and recur. This paper dis-
cusses the relative effectiveness of these two
approaches, especially in the presence of per-
ceptual aliasing, showing in particular that
the experimental learner can often learn more
effectively than the cloning one.

1 INTRODUCTION

Many real-world tasks require controlling some type
of “plant” (e.g., factory [DB95], grinding tool [Bro93],
robot [Kae93]); in each case, using information re-
ceived from the sensors to decide on a control action
— e.g., using temperature and pressure readings to de-
cide whether to open some valve. In general a control
policy specifies the action to take given any current
(history of) sensor readings; and a controller is opti-
mal if it minimizes some user-specified cost function.
This task is complicated by several factors [WB91], in-
cluding perceptual aliasing (i.e., several different states
may produce the same observations, which means the

Russell Greiner and Christian Darken
Siemens Corporate Research
Adaptive Signal and Information Processing
755 College Road East
Princeton, NJ 08540, USA

{greiner, darken}@scr.siemens.com

action appropriate for an observation one time may be
problematic another time); and stochasticity in both
observations (i.e., a given state may produce differ-
ent observations in different times) and action (i.e.,
an action may not deterministically map one state to
another).

Our task is to learn an optimal controller, based on
information available about the plant. In the “behav-
ioral cloning” approach [SHKM92, SMB95, Kha96], a
learner Lp watches an “optimal” operator (i.e., an op-
erator that always performs the best possible action)
operate a plant, and then tries to emulate this op-
erator. Obvious examples include learning to fly an
airplane [SHKM92], to control a satellite [MW95], to
operate a grinding machine [Bro93] or to play WuMm-
PUs effectively [RN95]; related techniques are often
used to acquire expert-level knowledge [SCGI1]. Of
course, this “to-be-mimicked” operator can be a prob-
lem solver that generates optimal actions for a set of

sample states [MW95, BSW96].

Alternatively, an “experimental learner” Lg would ini-
tially guess a control policy and test it out. This
learner may then tweak the control policy, producing
a new one that is (it hopes) superior, and so forth.
This is the underlying principle of many reimnforcement

learning schemes [MC68, BSA83].

This paper compares these two classes of learners. Sec-
tion 2 first provides the necessary definitions, defining
in particular the “control” performance task, the ba-
sic learning task, and the two learning paradigms. Sec-
tion 3 then describes when each paradigm should work
most effectively. Section 4 provides a set of empirical
results that support our claims.

2 DEFINITIONS: PLANT,
STRATEGY, LEARNING

Following standard control theory terminology, we
view a “plant” as a deterministic finite automaton
(DFA) E = (X, E,Y,U,¢xy,LE, bc, Tinit) Whose nodes
r € X are each labeled with both (1) an observable
y = Lxy (z) € Y using the £xy : X — Y mapping; and
(2) a non-negative cost using the £c : X + R2° map-
ping. Each directed edge e € E C X? is labeled with
an action u = £g(e) € U.

In general, if the plant is in state z, it will “emit”
an observation y = £xy (z), and impose a cost ¢ =
Lo(z). If the operator then “steers” the plant with
the action u € U, the plant will proceed along the edge
e = (z,2') € E whose label is £g(e) = u, to the new
state x’. Here, we will write z —* z’. The plant starts
in state z;,;; € X; in a slight abuse of terminology, we
can view this z;,;+ as a distribution over states in X.

We will also consider probabilistic finite automata,
PFAs, which also require a probability mapping over
edges {p: E — [0, 1], with the understanding that the
action u maps z to 2’ with probability p = £p((z, 2")),
where £p((z,2")) = u. Here, we will write z =P 2’
Similarly £xy need not be a function in a PFA, but can
instead stochastically present some y € Y observable
when the automaton is in state X.

Strategy: A “strategy” is a (possibly stochastic)
function op: Y +— U that maps each observation into
an action, in an attempt to “steer” the plant through
a trajectory ¥ = (x1,%2,...,&m) where z; is drawn
from z;ni: and each z; =¥ 2,41 where u; = op(y;) is
the action prescribed by the strategy after it observes
the output y; = £xy (2;). The cost of a trajectory
e(¥) = % > Le(2;) is the average cost of the states en-
countered; and we say the expected cost of a strategy
c(op) is the expected cost of the trajectory produced,
over all encountered starting states (and if considering
PFAs, all random observations emitted and all ran-
dom transitions that occur). An ideal strategy op* is
a strategy with minimum expected cost.’

Learning: The classic control problem involves learn-
ing an optimal strategy, given some training informa-
tion. The “behavioral cloning” [SHKM92, SMB95] ap-

"We also consider strategies that take as input a short
history of observations; here op: Y s U for some integer
K. Other related models consider infinite trajectories, and
define the cost as the limit ¢(Z) = limmco #Zilc(mi).
All of the results in this paper hold if we use a “discount-

ing” term in the sum; # Ez 'yifc(mi) for some 0 < v < 1.

observable
parameters y;

control
actions y ==

plant | non-observable
parameters X

‘ omniscient controller ‘

control rules

{y, >yl

‘ —=

learning algorithm Lg

Figure 1: Behavioral Cloning, with Omniscient Con-
troller

proach requires the use of an omniscient controller,
which is a (possibly stochastic) function s* : X —
U that maps states into actions; this controller fol-
lows the optimal action for each state.? By analogy
to an ideal strategy, an omniscient controller, start-
ing from any starting state x1, produces a trajectory
(z1,...,2m) where each z; =% ;41; here, however,
this u; = ic(x;) depends on the state z;, rather than
on the observation of that state y; = {xv ().

The “behavioral cloning” learner Lp watches this
omniscient controller as it steers the plant on an
ideal trajectory, and so sees information of the
form ((y1,u1), (Y2, u2), - .., (Ym, Um)), where each y; =
Lxy (z;) is the observation emitted at state z;, and
u; = ic(z;) is the appropriate action to take; see Fig-
ure 1. The Lpg learner’s task is to use this information
to learn a strategy — i.e., a mapping from observations
Y to actions U. N.b., while the omniscient controller
knows the actual states encountered, the learner will
not. Restricting the learner to see only the observables
is often reasonable, as the learner’s task 1s to produce a
strategy that must decide on appropriate actions based
only on such observables. Note also that Lp may see
several runs.

By contrast, an “experimental learner” Lg (see Fig-
ure 2) does not have access to an omniscient controller.

Instead, it will guess some strategy s; : Y — U, and
test it out, by using it to control the plant. After

each run r\¥) = ((ygj),ugj)% (ygj), ugj)% ..., Lg is told
the cost of this trajectory ¢(rl#)).? Tt may then revise

2While most work on behavioral cloning assumes a hu-
man operator is operating the plant optimally, we (along
with [MW95, BSW96]) model this ideal operator as a prob-
lem solver that determines optimal actions by search; see
Section 4.

®Note that Lz is not told the cost of each state en-
countered. Hence, this resembles the related model where
actions, rather than states, have costs.

control rules

{yi=>y}
.] control observable
learning algorithm Lg actions parameters
Y Y,
performance
feedback c plant

Figure 2: Learning by experimentation

its strategy, to produce a new sy : Y +— U strategy,
which it can then test out, and further revise if nec-
essary. Note that we allow these strategy modifica-
tions to be based on the performance of all previously
tested strategies — which is very generous, given that
typical reinforcement learning algorithms have only an
estimate of this performance quality, based on that dis-
counted performance feedback that they receive while
the hypothesis 1s modified “on the fly”.

In either case, the learner has access to a set of tra-
jectories — Lp has trajectories produced by an om-
niscient controller (and known to have the optimal
score), and L has trajectory/score pairs, where Lg
produces the trajectories and the “environment” pro-
vides the associated score. Our task is to identify when
each learner works more effectively; i.e., produces the
best controller, using the least input data.

3 COMPARISON

Why Lp May be Better: At first blush, the behav-
ioral cloning learner Lp seems to have the advantage,
as it sees precisely the optimal action to take, in an
apparently wide variety of situations. By contrast, as
the experimental learner has to determine which ac-
tion 1s best in a given state, it may have to follow each
possible trajectory from a given state to determine the
quality of all possible successor states.

To make this point more concrete, imagine a sim-
ple “layered” DFA, where one of the k actions
{uy,...,ur}, call it «(!), maps the unique starting
state #1 = 2t to a useful successor, x5, while the
other k£ — 1 actions each map z; to the absorbing state
ZTpad — 1.e., all k actions map xpaq to itself. Exactly
one of k actions, call it u(?), maps this z4 to z3, while
the other k£ — 1 actions map s to zpgq; and so forth:
For each z; reached, exactly one ul®) maps z; to ziy1,

Figure 3: Problem for L Learner

while the other k¥ — 1 map it to zpeq4; see Figure 3.
Now assume that all n + 1 states, {21, ..., Zn, Tpad }
“look the same”; i.e., £xy (z) = y, but the costs are
very different: c¢(z1) = e(z2) = ... = e(z,) = 0,
but e(zpeq) = 10000. Clearly the optimal strategy
here is to control this DFA by issuing the commands
v ... w(™) in this order.

The omniscient controller will show the Lp learner ex-
actly this path, which means Lp’s induced sp con-
troller can operate optimally after seeing this single
example. By contrast, the Lg learner will have to find
this optimal strategy by random chance, which will
in general require trying out O(k") trajectories, over
these O(n) states. Hence,

Observation 1 There are situations where Lp can
produce an optimal controller using exponentially
fewer samples that Lg.

Why Lrp May be Better: While the Lp learner is
given the ideal trajectories, note that this is all 1t is
given. This is wonderful if the resulting strategy sp
can always reach, and stay on, such perfect trajecto-
ries. Note, however, that sg is in trouble if it ever
departs from this trajectory, as it will then have to
deal with a region of the state-space in which it has no
experience. Unfortunately, there are several reasons
why the sp strategy will be unable to remain on these
perfect paths. First, sg may not be able to return to
an ideal trajectory if an action is stochastic and leads
to indistinguishable states; i.e., if z¢ —*P* z; and
1 =%P2 gy where y = €xy (1) = €xy (z2). Here, s*
will know which action to take (as it sees z; or z2), but
our sp cannot, as it only sees y. Similar problems can
happen if the observation function is stochastic. Sec-
ond, even a deterministic automaton may start from

different starting states l‘gj); if they all look the same

to sp (i.e., if KXy(m(lA)) —y = ZXy(;L‘(lB))), then sp
will not know which initial action (u4 = ic(:v(lA)) or

(B

up = ic(x]))) to take. In general, we say

Definition 1 An (deterministic) automaton is not effec-

tively identifiable if, for some integer m € N and possible
(4) (B)

initial states #;"’ and x; ', the ideal trajectories start-
ing with ng) and ng) — e, 1 = (ng),ng),..)
and r(®) = (ng),ng),..) — are indistinguishable for

the first m steps but require different actions on this m‘"

step — le., ny(g:EA)) = ny(xEB)) for 1 = 1..m, but
s (@) # s* (@) 1

and note that sp will have problems if the plant is not
effectively identifiable.*

As an illustration, consider the DFA shown in Figure 4.
Here, the controller can see only the first coordinate
of each (z,y) state, which means 51, 22 and 223
are indistinguishable. However, the ideal trajectory
from z21, (b,a,a,b,a,a,...), is significantly different
from x5 »’s ideal trajectory (a,a,b,a,a,b,a,...), etc. If
Zinst could be any of x5 1, 22 or 23, the Lp learner
would only see that the ideal strategy would map the
observed “2” to action “a” two times in three, and “b”
the rest of the time. The best it could do, here, is map
2 to a (either all of the time, or 2/3 of the time). This,
however, 1s disastrous, as it will lead to the extremely
expensive x; ; state.

The Lg learner, on the other hand, would see that
performing the b action on seeing “2” is much safer, as
it only incurs a loss of ¢ after ¢ time steps, rather than

0(100t).

As the inferred sp controller tries to emulate the om-
niscient controller, it may enter states (like z51 or
3 3 in Figure 4) with identical observables (here “27).
While the omniscient controller can use its extended
perception to always choose a proper action, the cloned
controller cannot; this means sp is likely to enter a
disastrous state, which may produce arbitrary worse
(Note that Lp was able to avoid this prob-
lem by not entering such “risky” states, but instead
accepting lower-risk (if lower highest-payoff) trajecto-
ries.)

SCOres.

A third problem occurs if sg has some memory con-
straints, which prevent it from simply memorizing the
ideal sequence of actions. Here, it may have to store
instead simple associations, of the form “if see y;, per-
form action u;”, perhaps based on frequencies — e.g.,
if s* took action u; from a state that emitted y 2 times,
and action us 1 time, than map y to u;. Unfortunately,
this can be catastrophic — e.g., if action u; was very
bad for this 37? situation. Notice this is exactly what
would happen with the DFA shown in Figure 4, even

“Notice a DFA can still be effectively identifiable if there
are two or more ideal trajectories that are never distin-
guished, but always involve the same actions.

=
RN

23]
Q

cost=1
5 cost=0
B 2
IS < E 3
o a, b b
<
o
ﬁ cost =100 cost =
Q2 1 E)SiL
>
£

a, b
—
1 2

visible parameter V

Figure 4: Plant that Lp has difficulty learning

if the x1 ; is the only starting state, assuming the con-
troller can only store 2 bits — 1 bit (either a or b) for
the “1” state and 1 bit for the “2” state.

In more graphic terms, an omniscient robot could rou-
tinely and safely stroll through mine-fields to save
time, or run red lights at top speed. The danger to
a robot with limited sensors that tried to imitate its
omniscient counterpart is obvious.

We can, however, prove that these are all of the
caveats:

Theorem 1 If
(1) the plant is a deterministic finite automaton,
(2) this DFA is effectively identifiable, and
(3) Lp is able to see, and sp to record, each
complete possible optimal trajectory (i.e., Lp
sees the complete trajectory starting from
each starting state, and sp has no memory
constraints),
then the strateqy returned by Lp, sp, will perform op-
timally (i.e., it will perform as well as s*). Hence, Lp
must be at least as good as L in these situations.

Otherwise, if any of the three conditions s violated,
there are situations where sg can perform arbitrarily
poorly.

Proof (sketch): (=) Here, Lp can trivially give
the <(y£]),u§])>>i sequences it sees to sg, which sim-
ply “plays back” the u; sequence that matches the y;s
that it observes. Conditions (1) and (2) above guaran-
tee that sp will eventually be able to identify an ap-
propriate ideal trajectory, and conditions (1) and (3)

guarantee that sp will be able to follow this trajectory.

(<) The comments above sketch the proof of this di-
rection; the extended technical report [SGD97] pro-
vides more details. I

As an immediate corollary, note that Lp is a good
learner if (it has arbitrary memory and) there is no
perceptual aliasing; i.e., if £xy (z) = €xy(2') © ==
z’. Note, however, that sg may be sub-optimal even

if there 1s no perceptual aliasing.

Given conditions (1)—(3), we can use the above proof
to bound on the number of trajectories that Lp needs
to observe: Since s*: X — U is a well-defined func-
tion, there is only one trajectory starting from each
initial state. Lp will therefore gather all of informa-
tion it needs after seeing one trajectory associated with
each of the |zinit] < |X| possible starting states. (Of
course, |Zinit| is the number of states that have non-
zero probability of being the starting state.) With
high probability, Lp will see at least one instance of
each of the “not-unlikely” runs if it randomly observes
O(nlnn) trajectories, where n = | X| is the total num-
ber of states.> By contrast, we saw above that Lg can
require O(k") trajectories to learn a O(n)-state DFA.

Of course, issues like perceptual aliasing are also prob-
lematic for the L experimental learner. That learner,
however, will have some experience with other parts of
the search space, besides the straight-and-narrow line
provided by s*. In fact,

Theorem 2 Given arbitrarily large number of sam-
ples (covering all possible runs), Ly will, with prob-
ability 1, obtain the information required to perform
optimally on a DFA.

Proof (sketch): Eventually Lg is (wpl) guaranteed
to see every trajectory that can be encountered, from
every possible initial state, enough times to obtain the
statistics required to determine the appropriate action
to take from each situation. I

Two comments: First, even given arbitrarily many
samples, Lp may not converge to an optimal learner,
if either condition (1) or condition (2) of Theorem 1

fail to hold. Second, even given this information, Lp is

5Technically, after observing @ In lZinitl trajectories
whose starting states are drawn at random from the “z;n::
distribution”, Lp will, with probability at least 1 —§, have
seen at least one run of every optimal trajectories that
occurs with probability at least €/|zini¢|. This means (with
high probability) the induced sp will be perform optimally
at least 1 — € of the time.

still left with the challenge of computing which action
is appropriate in each situation (i.e., given a history of
observable/action pairs). If sp has any memory lim-
itation, it will eventually (for large enough P/DFA)
have to find a non-trivial representation, shorter than
simply listing the set of complete trajectories. This
challenge — of producing a small DFA consistent with
a set of observations — 1s intractable, and in fact, is
not even approximatable [PW93].

3.1 DISCUSSION AND RELATED WORK

Note that the different learners — Lp and Lp — are
receiving very different information: Lp does get per-
fect information (i.e., the optimal action to take) but
only about a very narrow of situations; by contrast,
Lg can obtain information about wide range of situ-
ations, but each sample is only a “noisy” estimate of
the desired observation-to-action mapping.

Behavior cloning has an obvious connection to the
standard machine learning work on classification
[BMSJ78]: In each case, the learner explicitly sees
the optimal answer for each given situation. Here,
however, both the training and the test samples are
missing some information — i.e., the state. Moreover,
these samples are not iid (independent and identically
distributed), as the optimal u action depends not just
on the observed y, but also on the unobserved state x
information, which can depend on earlier states in the
trajectory.

Here, this is further confounded by the problem that
the learned controller sp performance system may
later be tested on states that the learner Lp never
encountered, as sp cannot, in general, be expected to
stay on the ideal trajectory.

This argues that a good learning environment should
give the learner access to a wide range of situations,
to allow (force?) the Lp-ish learner to explore other
regions of the space. Several researchers have pro-
vided such environments: For example, Pomerleau’s
NAVLAB system [Pom93] learned to drive by watch-
ing a human driver’s steer, in response to the visual
observations of the current road. Unfortunately for
NavLAB (but fortunately for these drivers), people
tended to drive effectively — which meant NAvLAB
had little experience not being in the appropriate lane
position. Pomerleau therefore presented NAvLAB with
a variety of artificially produced scenes (formed by
distorted some real scenes), each coupled with the
proper steering-action. Similar techniques have been
used to produce effective Face Recognition systems,

that can work robustly over a wide range of condi-
tions [SP93]. As a third example of this phenomenon,
Epstein also realized that her game-playing program
would not work robustly against a range of opponents
unless it was trained against a similarly large range of
challengers [Eps94].

Finally, our model has several significant differences
from the standard (adaptive) linear control frame-
work [NA89], which usually assumes the learner knows
a lot about the plant’s basic model in advance (e.g.,
that the plant is linear, and perhaps order bounds on
the numerator and denominator of the transfer func-
tion that represents the system), and tends to eval-
uate learners on-line, in terms of a loss function. In
our framework, by contrast, our learners do not have
a model of the plant in advance, and they are evalu-
ated based on the quality of induced controller, after
the completion of the learning phase. While there are
mappings that connect these models, such analyses are
beyond the scope of this paper.

4 EMPIRICAL RESULTS

Here, we consider the task of controlling an aeration
tank used in a wastewater plant. With more oxygen,
the ammonium contained in the water is converted to
nitrate. Moreover, any oxygen remaining in the tank
will reduce the efficiency of the anaerobic bacteria,
which are intended, in a second step, to convert the
nitrate to free nitrogen, which then leaves the system.
Our task is to keep the emission of ammonium on a
steady low level, while minimizing both the consump-
tion of oxygen and emission of nitrate. The aeration
rate may be set to any of six possible values. For our
experiments, we used a simulator that provides a very
precise model of the process by numerically integrat-
ing the underlying differential equations. The state
of the process i1s determined by 104 parameters repre-
senting concentrations of various chemical and biolog-
ical substances in the reaction tanks; however, we only
measured two of them, forcing us to deal with strong
perceptual aliasing. Since the amount and pollution of
water flowing into the plant is not predictable based
on our measurements, state transitions are also non-
deterministic. The quality criterion we are optimizing
is the sum of two components: a very strong punish-
ment for exceeding a tolerable ammonium concentra-
tion at any time (which may damage the eco-system),
and a punishment proportional to the consumption of
oxygen.

“nhdoutpur’ o
ha-deflr

Figure 5: Ammonium (top), oxygen consump-
tion (bottom) of optimal controller (bold), compared
to those of the hand-crafted controller (thin lines)

4.1 OMNISCIENT CONTROLLER

We generated a number of optimal sample trajecto-
ries using the problem solving approach: as the full
effect of a control action can only be measured four
hours after the action was performed, to decide on
an action for a given state we exhaustively search the
tree of possible actions to a depth of four hours, then
choose the best action, and continued this procedure
from the resulting state. This procedure yields the op-
timal trajectory from a given starting point. Note that
this is only possible as this omniscient controller has
complete knowledge of both the non-observable state
parameters and the future input of wastewater to the
plant.

Figure 5 shows the ammonium and oxygen curves of
this controller (bold line) over a 130 hour period, com-
pared to the controller currently installed (thin line).
We can use our knowledge of the optimal control ac-
tions for some states to quantify the perceptual alias-
ing we are facing: we can determine the information
gain, i.e., the amount of information given by the pa-
rameters, on which action to choose in a given state.
The information gain of the two observable parameters
is 0.05 and 0.04 bit per test respectively, while some
of the non-observable parameters would provide up to
0.3 bits per test. In order to tell which of six possible

control actions is optimal, we need Iny(6) = 2.58 bits
of information (all actions are about equally likely).
Given that the observable parameters provide only
0.05 bits each, it 1s very unlikely that any combina-
tion of them will provide enough information to iden-
tify states. Considering the measurements of the past
4 hours, we are able to gain up to 0.055 bits. Knowl-
edge about the past measurements increases the infor-
mation about the optimal action, but the fact that the
maximum does not exceed 0.055 bits provides strong
evidence that the system is not effectively identifiable.

4.2 LEARNING A BEHAVIORAL CLONE

Figure 6 shows the optimal control action (y-axis) over
the value of one of the observable parameters (x-axis).
Clearly, there is no obvious correlation between these
values. We used an Lp-style algorithm for induction
of ripple down rules (i.e., rules with nested exceptions
[Sch96, Sch95]) to describe the relation between this
observable parameter and the optimal action via rules.
We learned rules with an accuracy of up to 25%, but
the rules were completely unable to keep the plant in
a stable state. We then determined a cost matrix for
sub-optimal actions, whose i, j element measures the
long-term cost of choosing operation 7 when opera-
tion j would be optimal. We found that one action
caused extremely high penalties when not performed
in a situation where it would be optimal. The rules
minimizing the expected misclassification costs there-
fore contained the single rule: always predicting that
action. Of course, this rule does not effectively control
the plant!

A controller learned by the DIPOL classification sys-
tem [SW94] — a hybrid statistical/neural algorithm,
that was ranked the best learning algorithm, on av-
erage, on the European StatLog project [MST94] —
kept the system in a stable state, but the controller
consumed an extremely large amount of oxygen. Pro-
viding the second observable parameter and the past
measurements of both observable parameters as input
reduced the oxygen consumption slightly (1-2%) for
both algorithms, but the results were still unaccept-
able. Note, that the hand-crafted controller, which
also sees only one parameter, performs better than the
controllers generated by the learning algorithms. It is,
however, unfair to blame the learning algorithms for
this bad performance; Applied to the sample states,
the hand-crafted controller yields the optimal action
less than 15% of the time, while the rules achieve an
accuracy of between 25% and 30%.

1800

1600

1400

1200

Figure 7: A controller using only the observable pa-
rameters

4.3 EXPERIMENTAL LEARNING

As our hypothesis language, we chose a list of rules
with interval constraints for the present and past
measurements of observable parameters, with exactly
one rule per possible action, where the ordering of
the rules is significant. Our Lg-style learning algo-
rithm proposes a controller, which then controls the
plant for 130 hours of simulated time. The overall
costs are returned to the learning algorithm, which
then performs a gradient descent search for a good
controller. We modified the controllers by adding
normally distributed random numbers to all interval
boundaries, and further used a simple mechanism for
step-size adaptation, as used in evolutionary strate-
gies [Rec94, Rec89], based on comparing two succes-
sors generated with different step sizes. After about 10
minutes of computation time, we found a fairly good
controller, which takes only one observable parame-
ter as input. Figure 7 shows its ammonium (left) and
oxygen (right) curves. Note it is better than the hand-
crafted controller but worse than, and completely dif-
ferent from, the omniscient controller.

4.4 EXPERIMENTAL RESULTS

The dotted line in Figure 6 refers to the control strat-
egy found by the experimental learner; notice this con-
trol action is (roughly) inversely proportional to the

2600 T T T T T T T
"controller-gal.dat* <
Lo0- “optact" +
2400 [0 - 00 - @00 z;} O Ow00 O O ® O”ga-act” B
2200 4
2000 4
4 fedied @«)@e@em O DBOCO OOBOO O A O
1800 | : 4
1600 4
1400 4
o g OV 0O WO *
1200 4
o0 © o ©0
1000 | 4
800 4
600 [@ 00®00 @ 00 0000 @ o@o—m—mwoommoowow —————— a i
WP ®O OO SO @wo O
400 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Figure 6: Observable parameter (x-axis) and optimal action (y-axis) found by problem solver. Dotted line shows

strategy found by experimental learner

value of the observable parameter. Comparing this
strategy to the optimal control actions determined by
the problem solver, we see that the experimental con-
troller performs the optimal action for only 15% of
the sample states, while the extracted rules perform
the optimal action for 25% of the sample states and
yet perform significantly worse! That is, although the
rules approrimate the projection of the optimal strat-
eqy to the space of visual parameters better than the ex-
perimentally obtained controller does, the experimen-
tal controller achieves the better result. This is be-
cause the mimicking controller is unable to simulate
the optimal controller with unlimited perception, but
the experimental learner was able to find a strategy
that yields good results using only one observable pa-
rameter — albeit a strategy that is very different from
the optimal one.

This clearly shows that the effects of Theorem 1 can
be observed in real-world systems, even though our
system 1s continuous while we only proved that Theo-
rem 1 applies to discrete automata.

5 CONCLUSION

This paper presents a variety of results that identify
some of the strengths, and weaknesses, of two meth-
ods for learning control information. We first consider
learning from arbitrarily many samples, and prove that
an experimental learner Lg will receive the informa-

tion required to learn an optimal controller, even if
there is perceptual aliasing. By contrast, we show
that a behavioral cloning learner Lp will only learn
an optimal controller if the underlying system is effec-
tively identifiable, and may perform arbitrarily poorly
if there is perceptual aliasing. We next consider the
“limited sample framework”, and ask how many sam-
ples each of these learners requires to produce its best
controller. Here we prove that Lp requires relatively
few samples (essentially linear in the number of DFA
states) to produce its best controller (bad as that con-
troller may be). However, Lrp may require a number
of “experiments” that grows exponentially with the
number of states on the optimal trajectory.

Our experiments provide strong evidence that these
worst-case results apply to real-world plants. Al-
though the behavioral clone sp did approximate the
omniscient controller better than the experimentally
learned sg, this sg performed reasonably while sg did
not, as sp was unable to keep the plant in a steady
state, or kept it in an unacceptably bad one.

To conclude: Our results show that behavioral cloning
can be more efficient than experimental learning, espe-
cially if we do not have to deal with perceptual aliasing.
However, cloning is potentially less robust. In particu-
lar, it may perform arbitrarily poorly (and hence much
worse than the experimental learner) in the presence
of perceptual aliasing.

Acknowledgment

This work was partially supported by an Ernst-von-
Siemens fellowship held by Tobias Scheffer.

References

[BMSJ78] Bruce G. Buchanan, Thomas M. Mitchell,
Reid G. Smith, and C. R. Johnson, Jr. Models of
learning systems. In Encyclopedia of Computer Sci-
ence and Technology, volume 11. Dekker, 1978.

[Bro93] Martin Brooks. Proposal for a pattern match-
ing task controller for sensor-based coordination of
robot motions. In Robots and Biological Systems.

Springer-Verlag NATO ASI series F, 1993.
[BSA83] A. B. Barto, R. S. Sutton, and C. W. An-

derson. Neuronlike adaptive elements that can solve
difficult learning control problems. In IEEE Trans-
actions on Systems, Man, and Cybernetics, 1983.

[BSWI6] L. Briesemeister, T. Scheffer, and
F. Wysotzki. A concept-formation oriented ap-
proach to skill acquisition. In Proc. European Work-
shop on Cognitive Modelling, 1996.

[DB95] Richard C. Dorf and Robert H. Bishop. Mod-
ern Control Systems. Addison-Wesley, Reading,
Mass., 7th edition, 1995.

[Eps94] Susan L. Epstein. Toward an ideal trainer.
Machine Learning, 15:251-277, 1994.

[Kae93] Leslie Pack Kaelbling. Learning in Embedded
Systems. MIT Press, 1993.

[Kha96] Roni Khardon. Learning to act. In AAAT96,
Portland, August 1996.

[MC68] D. Michie and A. Chambers. Boxes: An ex-
periment in adaptive control. In Machine Intelli-

gence 2, 1968.

[MST94] D. Michie, D. J. Spiegelhalter, and C. C.
Taylor. Machine Learning, Neural and Statistical
Classification. Ellis Horwood, 1994.

[MW95] Wolfgang Miiller and Fritz Wysotzki. Auto-
matic synthesis of control programs by combination
of learning and problem solving methods (extended
abstract). In Machine Learning: ECML-95, pages
323 - 326, 1995.

[NA89] K. Narendra and A. Annaswamy. Stable Adap-
tive Systems. Prentice Hall, 1989.

[Pom93] Dean A. Pomerleau. Neural Network Percep-
tion for Mobile Robot Guidance. Kluwer Academic
Publishers, 1993.

[PW93] L. Pitt and M. Warmuth. The minimum
consistent DFA problem cannot be approximated

within any polynomial. J. ACM, 40(1):95-142, 1993.

[Rec94] 1. Rechenberg.
Frommann-Holzboog, 1994.

[Rec89] I. Rechenberg. Artificial evolution and arti-
ficial intelligence. In R. Forsyth, editor, Machine
Learning, pages 83-103, London, 89. Chapman.

[RN95] Stuart Russell and Peter Norvig. Artificial
Intelligence: A Modern Approach. Prentice Hall,
1995.

[SCGI1] A. Carlisle Scott, Jan E. Clayton, and Eliza-
beth L. Gibson. A Practical guide to knowledge ac-
quisition. Addison-Wesley Pub Co., Reading, MA,
1991.

[Sch95] T. Scheffer. Learning rules with nested excep-
tions. In Proc. International Workshop on Artifi-
ctal Intelligence Techniques, Brno, Czech Republic,
1995.

[Sch96] T. Scheffer. Algebraic foundation and im-
proved methods of induction of ripple down rules.
In Proc. Pacific Knowledge Acquisition Workshop,
1996.

[SGDI7] Tobias Scheffer, Russell Greiner, and Chris-

tian Darken. Why experimentation can be better

FEvolutionsstrategie ’94.

than “perfect guidance”. Technical report, Siemens
Corporate Research, 1997.

[SHKM92] C. Sammut, S. Hurst, D. Kedzier, and
D. Michie. Learning to fly. In ICML92, Aberdeen,
1992.

[SMB95] B. Schulmeister, W. Miiller, and M. Bleich.
Modelling the expert’s control behavior by machine
learning algorithms. In Proc. International Work-
shop on Artificial Intelligence Techniques, 1995.

[SP93] Kah-Kay Sung and Tomaso Poggio. Example-
based learning for view-based human face detection.
Technical report, Massachusetts Institute of Tech-
nology, 1993.

[SW94] B. Schulmeister and F. Wysotzki. The piece-
wise linear classifier DIPOL92. In F. Bergadano and
L. De Raedt, editors, Machine Learning: ECML-9/,
LNAT 784. Springer Verlag, 1994.

[WB91] S. D. Whitehead and D. H. Ballard. Learning
to perceive and act. Machine Learning, 7:45-83,
1991.

