Learning to Select Usetul Landmarks

Russell Greiner and Ramana Isukapalli

Abstract

To navigate effectively, an autonomous agent must be able to quickly and accurately determine its current
location. Given an initial estimate of its position (perhaps based on dead-reckoning) and an image taken of a
known environment, our agent first attempts to locate a set of landmarks (real-world objects at known loca-
tions), then uses their angular separation to obtain an improved estimate of its current position. Unfortunately,
some landmarks may not be visible, or worse, may be confused with other landmarks, resulting in both time
wasted in searching for undetected landmarks, and in further errors in the agent’s estimate of its position. To
address these problems, we propose a method that uses previous experiences to learn a selection function that,
given the set of landmarks that might be visible, returns the subset that can be used to reliably provide an
accurate registration of the agent’s position. We use statistical techniques to prove that the learned selection
function is, with high probability, effectively at a local optimum in the space of such functions. This report
also presents empirical evidence, using real-world data, that demonstrate the effectiveness of our approach.

Keywords

autonomous navigation, probably-approximately-correct learning, position estimation, landmark selection

I. INTRODUCTION

To navigate effectively, an autonomous agent R must be able to quickly and accurately determine its
current location. R can usually obtain fairly accurate estimates of its position using dead-reckoning;
unfortunately, the errors in these estimates accumulate over long distances, which can lead to unac-
ceptable performance (read “bumping into walls” or “locating the wrong office”). An obvious way
to reduce this problem is to observe the environment, and use the information in these observations
to improve our estimate of R’s position; ¢f., the works using Kalman filters [18], [6] and other tech-
niques [29], [20], [10], [9]. Our agent models the environment using only a set of “landmarks”, each a
(potentially visible) real-world object at a known location; these objects could be doors, corners and
pictures when specifying the hallways within building, or major buildings, junctions and prominent
signs when specifying the streets within a city. Then, given an initial estimate of its position (perhaps
based on dead-reckoning) and an image taken of a known environment, R first attempts to locate a
set of possibly visible landmarks, then uses their angular separation to obtain an improved estimate
of its current position.

Landmark-based position estimation is a popular technique in robot navigation; ¢f., [5], [32], [31],
[22] and many others. Many of these landmark-based methods assume that all landmarks can be
found reliably. Unfortunately, some landmarks may not be visible; for example, certain corners may
always be in shadow and so be difficult to see, or some hanging pictures may have been removed
after the floor-plan was given to the agent. These can force R to waste time, searching in vain for
invisible landmarks. Worse, some landmarks may be easily confused with others; e.g., door A may
be mistaken for door B, or some landmark A (say the convex corner of a wall) may be occluded by
another object B (say the convex corner of filing cabinet) that looks sufficiently similar that R might
think that B is A; see Figure 1. As this can cause R to believe that A is located at B’s position,
these mis-identified objects can produce further errors in R’s estimate of its position. Finally, R will
use a set of identified landmarks to locate its position; depending on the geometric positions of these
landmarks, small errors in landmark location may lead to very large errors in R’s positional estimate.
We of course prefer landmark sets that provide position estimates that are relatively insensitive to
such errors in landmark location.

This is an extended version of a paper that appeared in the Proceedings of the Twelfth Annual National Conference on Artificial
Intelligence (AAAI94), Seattle, August 1994.

B [convex corner of filing cabinet]
7 to A?
@/ A [convex corner of two walls]

—
to A

Fig. 1. Problem with Occluding Objects: The reported angle from agent R to landmark A (upper vector from R) is
incorrect.

It therefore makes sense to search for only the subset of the potentially visible landmarks that can be
found reliably, cannot be confused with others, etc. Unfortunately, it can be very difficult to determine
this good subset a priori, as (1) the landmarks that are good for one set of R-positions can be bad
for another; (2) the decision to seek a landmark can depend on many difficult-to-incorporate factors,
such as lighting conditions and building shape; and (3) the reliability of a landmark can also depend
on unpredictable events; e.g., exactly where R happens to be when it observes its environment, how
the building has changed after the floor-plan was finalized (e.g., whether new cubicles were installed,
or new pictures hung), and whether objects (perhaps people) are moving around the area where R is
looking [33]. These factors make it difficult, if not impossible, to designate the set of good landmarks
ahead of time — i.e., to “engineer” the solution.

This report provides a way around this problem. Section II describes a method that learns a good
“selection function” that, given the set of landmarks that may be visible, returns the subset that can
usually be found correctly. It also uses statistical techniques to prove that this learned selection function
is, with high probability, effectively at a local optimum in the space of such functions. Section III
presents a corpus of empirical results which demonstrate that the associated LEARNSF algorithm
works effectively, and discusses its (in)sensitivities to various parameters. Section IV concludes by
discussing other applications, within the scope of robot navigation, that can use a similar learning
algorithm. We first close this section by presenting a survey of some of the relevant literature.

A. Literature Survey

We noted above how our research relates to some other ways of using observations to estimate an
agent’s location, including works using Kalman filters and/or landmarks. This subsection compares
our approach with yet other research topics: First, we use the term “landmark” to refer to a real-world
object at a known location; this usage contrasts with others, that view a landmark as a location of the
sensing agent [7], or as a “sensory state” [23]. We also assume that the set of possible landmarks is
provided initially; this is reasonable for our navigation task, as these landmarks are often required to
describe the navigation task itself, e.g., to specify the destination or some required intermediate points.
By contrast, some other systems also attempt to learn from observations the significant features of
various locations, which may correspond to the set of landmarks; cf., [19], [23]' and others. Notice
that our landmark-selection approach (embodied in LEARNSF') is complementary to those landmark-
acquiring systems: while those other systems acquire a set of landmarks that seem useful in some
situations and so may be useful in general, our LEARNSF algorithm can then identify which of these
landmarks are truly useful, over the agent’s overall distribution of situations. Hence, there are obvious
reasons to consider combining both algorithms.

Yamauchi and Beer [33] designed a system that can cope with an environment that can change in
various ways, including topological changes (e.g., rearranged furniture and doors that open and close),
and transient changes (e.g., people moving). That work, in essence, learns how to deal with each

! As one example, Mataric [23] presents a model, motivated by the organization and function of the rat hippocampus, that allows
a robot, equipped with sonar sensors and a compass, to learn a map by boundary tracing and “landmark” detection. Its focus is
primarily comparative: it presents biological, psychological and neurobiological data and compares the physical rat hippocampus
with the synthetic rat implementation, drawing analogies between the two in terms of both “what” information is encoded in map
learning and “how” it is encoded.

individual landmark. We could modify our LEARNSF system to similarly deal with each individual
landmark — i.e., learn to ignore a particular landmark ¢; if it cannot be found reliably, perhaps
because the object has moved from its initial map position (topological changes), or because people
are often blocking the agent’s view of ¢; (transient changes), etc. Our LEARNSF system, however,
deals with general categories of landmarks (e.g., all corners, or all landmarks of a certain size and at a
certain distance), as this means fewer sample images are required to produce statistically appropriate
decisions.

Notice also that our task, of identifying a good subset of landmarks, has some similarities to the
techniques of robust analysis and outlier removal [16]. Such techniques, however, first accumulate
all of the possible information, and then remove or de-emphasize certain individual components. By
contrast, as our performance system (which is providing navigational information to the agent) is also
concerned with efficiency, it will simply not collect the problematic information; that is, LEARNSF will
produce a selection function which tells the performance system to not even seek certain landmarks.

Finally, our overall LEARNSF system is an instance of the very general “probabilistic hill-climbing”
learning algorithm [11], as it uses a set of “experiences” (each an image labeled with actual agent
position, etc.) to climb in a discrete space of “performance elements” (here, the space of individual
selection functions) seeking one whose expected “utility” is optimal (here, whose expected error is
minimal). (This learning/performance dichotomy appears in [30], and the view that learning corre-
sponds to improving the performance of a performance system on its performance task, discussed in
[28] and elsewhere, is the basis for learning systems that range from standard decision tree learners
like €4.5 [26] and CART [3] that seek the decision tree whose expected accuracy is maximal, through
speed-up learning systems [25], [21] that seek a set of macros that yield an optimally efficient pro-
gram, to neural net learners [27], [24], [14] that seek a setting of the weights that produces an optimal
classifier, etc.) Moreover, LEARNSF qualifies as a “wrapper learning system” [17], [4], as it views its
“performance elements” (the individual selection functions) as black boxes, whose behavior can be
sampled, but whose internals are unavailable. Notice this makes it fairly easy to adapt the LEARNSF
system to work with other types of performance elements, in other contexts; see Section IV-A.

II. FUNCTION FOR SELECTING GOOD LANDMARKS
A. Performance Task: Position Estimation

The current RATBOT system [13] maintains estimates x (&) of its current position x (uncertainty,
o). It uses two algorithms when computing these values:

o LMs(x), which specifies the subset of the landmarks that may be visible from each position x.

As we are assuming that RATBOT s estimate of its position is relatively close to its true position,
RATBOT will actually use LMs(%) (which it can compute as it knows x) for LMs(x) (which
it cannot compute, as it does not know x).
This algorithm uses a comprehensive “landmark-description” of the environment, which is a com-
plete list of all of the relevant objects in that environment that could be visible, together with
their respective positions. This could be based on the floor-plan of a building, which specifies the
positions of the building’s doors, walls, wall-hangings, etc.; or in the city-navigation context, it
could be a map of the roads of a city, which specifies the locations of the significant buildings,
signs, and so forth. Figure 2 shows a subset of the landmarks we used, from part of one of the
hall-ways.

o Locate(x, 6, img, lms) which, given RATBOT s estimate of its position x and uncertainty &,
an image img taken at RATBOT s current position and a set of pertinent landmarks 1ms, returns
a new estimated position x and uncertainty ¢ for RATBOT.

This algorithm first attempts to find each landmark /; € 1ms within the image img; here it uses x
and & to specify where in the image to look for this ;. It will find a subset of these landmarks, each
at some angle (relative to a reference landmark). Locate then uses geometric reasoning to obtain

Hallway-A
AC-5
AD-5 Landmarks of Hallway-A
AC-x = Corner-x
AP-x = Picture-x
Ac-6 AFE-x = Fire Extinghisher-x
AD-4 AD-x = Door-x
AP-1
AFE-1 AD-3
AD-2
AD-1
AC-7 AC-8 AC-13 AC-14
AC-9 AC-12
AC-10 AC-11

Fig. 2. Representation of Landmarks (viewing part of Hallway-A, from above)

a new estimate of RATBOT’s position and uncertainty, which are then returned. (Section I1I-A
provides more details about the low-level vision parts of this algorithm; and [13] describes the
overall RATBOT system.)

As our goal is an efficient way of locating the agent’s position, our implementation uses an inexpen-
sive way of finding the set of landmarks based on simple tests on the visual image. N.b., we are not
using a general vision system — e.g., we are not attempting to identify specific objects, nor specify
particular qualities, from the visual information.

B. Seek only a Subset of the Landmarks

The LMs(x) function returns the set of all landmarks that might be visible in an image. Many
navigation systems would then attempt to find all of these landmarks, and use the obtained information
to estimate the agent’s position; i.e., would compute and use Locate(x, &, img, LMs(x)). As
argued above, however, it may be better to seek only a subset of these landmarks: By avoiding
“problematic” landmarks (e.g., ones that tend to be not visible, or confusable), R may be able to
obtain a more accurate estimate of its location, and moreover, obtain that estimate more efficiently.

We therefore want to identify and ignore these bad landmarks. To motivate the approach we decided
to use, we first present two false leads. First, one immediate suggestion is simply to exclude the
bad landmarks from the catalogue of all landmarks that LMs uses, which insures that LMs(.) will
never return those landmarks. One obvious complication is the complexity of determining which
landmarks are bad, as this can depend on many factors, including the color of the landmark, the overall
arrangement of the entire environment (which would specify which landmarks could be occluded),
sensor noise, the lighting conditions, etc. A more serious limitation is due to the fact that a landmark
that is hard to see from one R position may be easy to see, and perhaps crucial, from another. This
means that R should be able to use a landmark when registering its location from some positions, but
not from others.

We therefore decided to use a selection function SEL that filters out the bad landmarks from the
set of possibly visible landmarks, lms = LMs(x): That is, SEL(1lms, x, ¢) returns a subset
SEL(1ms, %, 6) = 1lms’ C 1ms, which R then uses to compute its location, returning Locate(x, &,
img, 1lms’). We therefore want a selection function SEL such that Locate(%, &, img, 1ms’) is reliably

Algorithm SEL(i)(lms: landmark._set, X: position, 0 variance): landmark_set
0KLMs « {}
ForEach ¢ € 1ms
KeepLM « True
ForEach f, € Filters(Ser(®)
If [fx({, %, 6) = Ignore | Then KeepLM « False; break;
End (inner) ForEach
If [KeepLM = True | Then 0K LMs « OKLMs + ¢
End (outer) ForEach
Return(OK_LMs)
End SeL®

Fig. 3. PseudoCode for SEL®) Selection Function

close to R’s true position, x. To make this more precise, let

A

Err(SEL, (x,%,6,img)) = | x — Locate(x, ¢, img, SEL(LMs(x), %,5)) || (1)
be the error? obtained when using the selection function SEL for the “situation” (x,%,&, img), and let
AveErr(SEL) = FEixxs,img| Err(SEL, (x,%,6,img))]

be the expected error, over the distribution of situations (x,x,&, img), where F.[] is the expectation
operator. We want a selection function SEL that minimizes this expected value.

The second false lead is to “engineer” this optimal selection function. One problem, as observed
above, is the difficulty of determining “analytically” which landmarks are going to be problematic for
any single situation. Worse, our goal is really to find the selection function that works best over the
distribution of situations, which depends on the distribution, when the Locate function is called, of
R’s actual positions, the intensity of light sources, what other objects have been moved where, etc.
Unfortunately, this distribution is not known a priori.

We are therefore following a third (successful) approach: of learning a good selection function. Here,
we first specify a large (and we hope, comprehensive) class of possible selection functions § = {SEL(i)}.
Then, given “labeled samples” — each including R’s estimates of its position and uncertainty, the
relevant landmark-set and actual image, and as the label, R’s actual position — we hope to identify
the selection function SEL”) which minimizes AveErr(SEL()).

To specify the space of selection functions, we define each selection function SELY) € § as a conjunc-
tion of its particular set of “filters”, Filters(SEL(i)) = {f1,..., fm}, where each filter f; is a predicate
that accepts some landmarks and rejects others. Hence, the SEL®)(1ms, %, &) procedure will
examine each ¢ € 1ms individually, and reject it if any f; filter rejects it; see Figure 3.

While we can define a large set of such filters (see Section IV-A), this report focuses on only two
parameterized filters:

TooSmallg, ,(¢,%,6) : Reject £ if ||Posn(¢) — x| > ky
and AngleWidth(¢, %) < ky
BadTypey, ({,%,5) : Reject ¢ if Type() & ks

2As we are also considering the efficiency of the overall process, we actually used the slightly more complicated error function
presented in Equation 4 below.

6

where Type({) refers to the type of the landmark ¢, which can be “Door”, “BlackStrip”, etc.® The k3
parameter specifies the subset of landmark-types that should be used (i.e., these are the “good types”).
“Posn(f)” refers to {’s real-world coordinates and “AngleWidth(¢, x)” refers to the angle subtended
by the landmark ¢, when viewed from x. Hence, TooSmally, x,(¢, %,) rejects the landmark ¢ if £ is
both too far away (greater than k; meters) and also too small (subtends an angle less than k; degrees),
from R’s estimated position x.

Using these filters, S = {SEL, k, k, } is the set of all selection functions, over a combinatorial class of
settings of these three parameters. As stated above, we want to find the best settings of these variables
— i.e., the values of (ki, kg, ks) such that the expected error AveErr(SELg, k, k,) is minimal.

C. Hil-Climbing in an Uncertain Space

There are two obvious challenges to the task of computing the best SELy, &, ,. First, as noted above,
the error function depends on the distribution of situations, which is not known initially. Secondly,
even if we knew that information, it is still difficult to compute the optimal parameter setting, as the
space of options is large and ill-structured (e.g., ks is discrete, and there are subtle non-linear effects
as we alter k; and ky). Below we address these challenges, in reverse order.

We use a standard hill-climbing approach to address the second challenge; here seeking a local op-
timum, to avoid the complications inherent in finding the global optimum. This requires a set of
operators 7 = {r;} for mapping one selection function to another; i.e., for each SEL € S, 7;(SEL) € S
is another selection function. The set 7(SEL) = {7;(SEL)|7; € 7 } forms the “neighborhood” around
the SEL selection function, which will be examined. Here, we use the obvious set of operators: 7;” mul-
tiplies the value of k; by 2 and 7; divides k;’s value by 2; hence ;" (SEL4, 5, {11,43,47)) = SELs, 5, {11,437}
and 77 (SELy, 5, {s14347}) = SELg, 5, {#1,;3,7}. Similarly, 75 and 75 respectively increment and decre-
ment the k; value (by increments of 2°). There are 9 different 7 operators, each of which “flips” the '
bit of ks; hence 7'(SELy, 8, {11,637}) = SELy, s, {137y and 33(SELy, 8, {11,137}) = SELy, 3, {t1,¢3,47 8}

We are still left with the first challenge: dealing with the unknown distribution. Here, we employ the
standard statistical technique of using a set of observed examples to estimate the relevant information:

Let
1

EY = E@[Em(SeL?)] = Ul

> Err(SEL®), u;)

uj €U

be the empirical average error of the selection function SEL®) over the set of samples U = {u;} =
{ (x),%;,0;,img;) }, which we assume to be independent and identically distributed.® We can use

some statistical measure to quantify our confidence that EZ-(M) will be close to the real mean u; =
B, [Erx(SeL®), uj)] = AveErr(SeL®)), as a function of the number of sample images seen. In
particular, we need a function m(---) such that, after m(a,3) samples, we can be at least 1 — 8

()

confident that the empirical average EZ will be within « of the population mean pu;; i.e.,

U| > m(a,B) = Pr{|[EY -yl > a] < B

We also need an “inverse function” a(m,), which bounds the one-sided error, with 1 — 3 confidence,
after m samples,

Ul > m = PrlEY—p>a(m 8)] < B

®The current system deals with nine different types: Miscellaneous, BlackStrip, ConcaveCorner, ConvexCorner, DarkColored-
Door, LightColoredDoor, Picture, FireExtinguisher and SupportBetweenWindows.

*That is, we assume there is no explicit correlation between the errors encountered from one instance to the next, which is a
very reasonable, and standard, assumption.

For general distributions, we can use Hoeffding’s inequality [15] to obtain

mui(a,) = %(%)21H%

2

i,) = A/ (3) ?

where here A = maxge,{ Err(SEL, u) } is the largest value of Err(SEL, v) for any selection function

SEL and for any sample u. These bounds require only that the situations u; = (%;,6;,1ing;, z;)

correspond to independent, identically-distributed bounded random variables. Note that there are no

further constraints; in particular, their common distribution does not have to correspond to a normal
distribution.

However, if we can assume that the underlying distribution of error values is effectively a normal

distribution (i.e., Err(SEL, -) ~ N (u, o) for some mean p and standard deviation o) then we can use

myom(e,) = (22711 2))

aNorm(m7 ﬁ) = #(m) t'r_nl—l(l - /3)

m

(3)

where z(p) = \/LQ—W I o e_r2_2dx computes the p* quantile of the standard normal distribution A(0,1)
[2];
1 m
s’(m) = —— > Err(SEL, u,)?

m_l /=1

! (g; Err(SEL, u,)) 2]

m

is an unbiased estimator of the variance of the Err(SEL, u,) variables after m samples; and ¢,,(p) is
the p'* quantile of the Student’s T distribution with m degrees of freedom.

The LEARNSF algorithm, sketched in Figure 4 and summarized below, combines the ideas of hill-
climbing with statistical sampling:> Given an initial selection function SEL(®) = SEL, ko ks € S, and
two parameters ¢ and 6, LEARNSF will use a sequence of example situations {w;} to climb from
the initial SEL(®) through successive neighboring selection functions (SEL(I), SEL®, SEL®), . .) until
reaching, and returning, a final SEL'™. With high probability, this SELU™ is essentially a local
optimum. Moreover, LEARNSF requires relatively few samples for each climb. To state this more
precisely:

Theorem 1: © The LEARNSF(SELO) ¢, 6) process incrementally produces a series of selection func-
tions SELM, SEL® ... SEL™), such that each SELU¥Y = Tj(SEL(j)) for some 7; € 7 and, with
probability at least 1 — ¢, both

1. the expected error of each selection function is strictly better than its predecessors i.e.,

Vi<ji<m: AveErr(SEL(j)) < AveErr(SEL(j_l)); and
2. the selection function returned by LEARNSF, SEL(™, is an “e-local optimum” — i.e.,
~37 € T: AveErr(7(SEL™)) < AveErr(SEL™) — €.
given the appropriate statistical assumptions (viz., LEARNSF nyp requires that the underlying dis-
tribution is normal; LEARNSF; does not require any such assumption). Moreover, LEARNSF will
terminate with probability 1, and will stay at any SEL() (before either terminating or climbing to a
new SEL(j+1)) for a number of samples that is polynomial in %, %, |7] and A. a

®Notice LEARNSF is actually estimating the value of E()[SEL()] — E(O[SEL'], rather simply E)[SEL(Y]. As the range of
such values is actually 2A (from [—A, +A]), both the my(«, 3) and the ay(n, #) functions will use “2A” rather than “A”. Also,
following standard practice, the “Norm” system will skip the early climb and early termination tests (which use anorm(1, +))
until 2 = 4. Otherwise, the implicit assumption that the sum of the random variables is normal, is likely to be violated, which
could cause the system to take an inappropriate action.

5The proof of this theorem is isomorphic to the proof that appears in [12].

Algorithm LearnSF,(SeL("): selection function, e: R, §: Rt): selection function
For j=0.00 do

5 6
Letéj — W,

T(SeLY)) — {r(SELY)) e S|re T & 7(Sert)) # Serl)},
% T(SELY)) are SELY) s neighbors

5 %) % Lj; is maz # of samples, SeLY) iteration

L = my(
ForEach Sk’ € T(SerLU)) do Let A(SELU) SEL0) — 0 .
For :=1.L; do % Get and process i image
Get sample ¢; (from oracle)

ForEach SeL' € 7(SEL(j)) do
Let A(SerY) Ser' i) — A(SeLY) SEl/,i—1) + |Err(SEL’, ¢;)—Err(SELY), ¢;)

I i<lLj
CIf 3Sen € 7(SeLY)) s.v. LA(SELY) SEL, i) > ay (i, m)
Then Let SeLU*Y) — S/
Then Exit For (inner loop)
Else If VSer' € T(SEL')): LIA(SELY), SEL', i) < e—ay(4, m)
Then Return[SELV)] (Exiting both inner & outer For Loops)

[1f 3Ser’ € 7(SELY)) s.t. LLjA(SEL(j), SEL', Lj) > %
Else Then Let SerU+!) — Spr’
Exit For (inner loop)

| Else Return[SeLl) 1. (Exiting both inner & outer For loops)
End For (inner loop)

End For (outer loop)
End LEARNSF

Fig. 4. PseudoCode for LEARNSF Algorithm

To summarize the code: LEARNSF examines a sequence of images, one by one. On seeing each
image, LEARNSF computes the error of the given SEL(® selection function, summed over all of the
images seen so far, and compares that value with comparable values for each of SEL)s neighbors.
If any neighbor appears to be significantly better, it becomes the new performance element SEL®.
LEARNSF then compares SEL()’s performance with that of SEL(!)’s neighbors over the next set of
images; and once again, if any of SEL®M)s neighbors appears much better, LEARNSF will climb to this
apparently-superior element SEL®), and so forth. On the other hand, if no neighbor looks significantly
better, LEARNSF will exercise other portions of its code: If all of SEL()’s neighbors appear comparable
to or worse than the current SELV), LEARNSF will terminate, returning SELY). If neither of these
conditions holds, LEARNSF will, in general, simply process the next image, then use this image,
in addition to the previous ones, when comparing the current SELY) to its neighbors. However, if
LEARNSF has stayed on the current SELY) for a sufficiently large number of queries (L;), LEARNSF
J+1)

will use easier-to-satisfy thresholds to decide whether to climb to some SEL or terminate, and will

necessarily perform one of those actions.

Two final observations: First, notice that LEARNSF will (probably) process more images using later
selection function than using the earlier ones, as its tests are increasingly more difficult to pass. This
behavior is desirable, as it means that the overall system is dealing with larger numbers of images
using later, and therefore probably better, selection functions.

Second, observe that our empirical approach handles sensor noise appropriately: If the effects of
sensor noise is especially problematic with respect to certain landmarks, we expect that the empir-
ical scores obtained using these landmarks to be inferior to those based on other sets, which means

Fig. 5. The RATBOT Platform; RATBOT’s view (looking up at christmas tree ornament); and a “Strip”, corresponding
to an annulus in the view

LEARNSF will learn to ignore such landmarks, as desired. Alternatively, if these errors are completely
uncorrelated with the landmarks, the best strategy is simply to ignore this factor and select the land-
mark set leading to the best empirical score [8]; notice again that this is precisely what LEARNSF will
do.

III. EMPIRICAL RESULTS

The arguments above suggest that a good selection function should help an autonomous agent to
register its position efficiently and accurately, and also that LEARNSF should help find such a good
selection function. To test these theoretical claims, we implemented various selection functions and
the LEARNSF learning algorithm, and incorporated them within an implemented autonomous agent,
the RATBOT system described in [13]. This section describes our empirical results.

A. Performance System

The physical apparatus consists of a CCD camera attached to the top of a “NomMaD 200" robot,
pointing up at a spherical mirror (which is actually a christmas tree ornament); see left image of
Figure 5. This produces images containing a 360° panoramic view of the environment, such as the one
shown in the middle of Figure 5. The performance system then extracts a 1-pixel annulus from each
of these images; these values (computed by averaging the intensity values of the appropriate regions
of the image) correspond to the light intensity at each of 360 1-degree positions around RATBOT, at
the real-world height of the center of its circular mirror. This is represented as an array of 360 8-bit
intensity values, such as the one shown on the right of Figure 5.7

This 1-D strip is passed as the third argument to the Locate algorithm (i.e., it is the “img” in
Locate(%, &, img, 1lms)), which uses this information to produce estimates of RATBOT’s po-
sition and uncertainty. Locate first extracts the “edges” in this 1-D image (read “zero-crossings of
second derivative”), and uses the obvious algorithm to match the angles (corresponding to these edge
positions) to the candidate landmarks: matching each landmark to the edge closest to its anticipated
position, subject to the constraint that the edges associated with the landmarks appear in the “proper

"There are several obvious reasons for considering such 1-D panoramic views, e.g., they require relatively little effort to produce

and little space to store, and they render the vision system relatively insensitive to the camera’s orientation. Our project committed
to using them when we found that they worked effectively for our navigation task.

10

TABLE 1
INITIAL, AND FINAL, SELECTION FUNCTIONS

SEL®) ki ky ks AveErr(SEL™)) || AveErr(Sgr(x«)) ki ky ks

SEL™ | 10 0 111111111 0.885 0.186 1.25 4 111011111
SerP) 5 10 000000000 1.723 0.276 10 10 001000000
SEL®) 5 2 111010111 0.367 0.173 1.25 4 111010111
SeL®P) 5 2 101111010 0.381 0.247 25 4 101111110

order”: i.e., if landmark ¢; should be “clockwise” from /;, relative to RATBOT’s estimated position,
then the matching algorithm will not match ¢; to an edge that is counter-clockwise from an edge it
matched to ¢;. (Notice that some of the landmarks sought may not be found, and that some of the
edges may be unmatched.) Given this edge-to-landmark mapping, Locate uses the Betke/Gurvits al-
gorithm [1] to efficiently produce an estimate of the agent’s position and uncertainty.®

We gathered 270 such “pictures” at known locations within three halls of our building. We also
identified 157 different landmarks in these regions, each represented as an object of a specified type
(one of the nine categories), located between a pair of real-world coordinates (z1,y1) and (x2,ya2);
where, once again, the (z,y) plane is parallel to the floor and goes through the center of the spherical
mirror; see Figure 2.

Each experiment used a particular initial selection function, values for ¢ and ¢, error function,
uncertainty, and statistical assumption. We will first describe one experiment in some detail, then
present a battery of other experiments that systematically vary the experimental parameters.

B. Ezperiment#1 Specification

The first experiment used the selection function SEL™, € = 0.1 m, 6§ = 0.05, “ratio” = 0.01,

uncertainty value ¢ = 0.3 m, and the “normality” assumption. Now to explain these terms:
LEARNSF began with the obvious degenerate SEL() selection function that uses all landmarks;

see columns one through four of the top row of Table I. (As nothing can subtend an angle less than
0 degrees, TooSmally, —10,x,=0 Will not reject any landmark, and as all of k3’s bits are “1”7, BadType,,
will also accept every landmark.)

The 6 = 0.05 setting means that we are willing to accept roughly 1 mistake in 20 runs. Setting
e = 0.1 means that we do not care if the average error of two selection functions differs by less than
0.1 m; as the error can be as large as 4 m,” this corresponds to an allowable tolerance of only 2.5%.
The “normality” assumption means we are assuming that the error values are normally distributed,
which sanctions the use of the LEARNSF n,,,, algorithm, which uses my -, and anyrn functions from
Equation 3.

To explain “ratio= 0.01”, recall that our goal is to minimize both positional error and computational
time. We therefore use an error function that is the weighted sum of the positional error (which is the
difference between the obtained position estimate and the real position) and the number of landmarks

8This description is intentionally brief, as the Locate algorithm is not the focus of our research. As noted above, LEARNSF
views this algorithm as a black box, whose performance it can sample, but whose internals are unavailable. This means we
expect LEARNSF to have similar learning behavior if it used another more elaborate landmark-to-location algorithm. It is worth
noting only that the Betke/Gurvits algorithm requires that at least 3 landmarks be identified for its triangulation routine to
be meaningful, and so if Locate receives under 3 landmarks, Locate will simply return its first argument % as the current new
positional estimate.

*We “topped” off the value of Err(SEL, u) at 4.0, meaning its range is Err(SEL, u) € (0, 4].

11

1.8
)
1.6
Sel-A —*—
1.4
Sel-B -o-
1.2 Sel-C ———
S
w Sel-D _._
2 1
2
o B
E 0.8 2
2
<C
0.6
B
0.4 O—————% _ y
S U
0.2 o %
0
0 500 1000 1500 2000 2500

Image Number

Fig. 6. LEARNSF’s Hill-Climbs: ¢ = 0.3 m

that were selected, with weights of 1 and “ratio”, respectively; hence, the error function used here is

A

Err(SEL, (x,%,6,img)) = | x — Locate(x, 7, img, SEL(LMs(x), %x,5)) || (4)
+ ratio x #Landmarks_sought

Setting the ratio to 0.01 means, in effect, that each additional landmark “costs” 0.01 m. That is,
suppose selection function SEL(® has an average accuracy of L, and seeks on average M, landmarks,
while selection function SEL” has an accuracy Lj and seeks Mg landmarks. If both Lg < L, and
Mg < M,, then clearly SEL® is better than SEL); and similarly SEL(® is better if both L, < Lg
and M, < Mgz. The hard cases are if Lg < L, but Mg > M, or vice versa. Setting “ratio= 0.01"
means that, for SEL) to be preferred, Lz must be 0.01 m better that L, to justify each additional
landmark in Mz — M,.

Finally, to explain the uncertainty value ¢ = 0.3 m: While we know that image img; is taken
at location x;, it is unrealistic to assume that RATBOT will know that information; in general, we
assume that RATBOT will instead have computed an approximation, %;. We model this by setting
X =+ 1/2-(0), where each 1/2-(0) is a normally-distributed random value with mean zero and variance
o. Here, we used 0 = 0.3 m. Recall also that the Locate function needs a value for & to constrain its
landmark-location process; we also set & to be o.

(There is no need to include other parameters within our model. In particular, as we are using real
data from a real camera, there is no reason to include an explicit model of sensor noise, etc.)

C. FEzperiment#1 Results

Given these settings, LEARNSF observed 48 samples before climbing to the new selection function®
SELUY) = ((10, 0); [111011111]), which differs from SEL™ only by rejecting all Concave Corners.
It continued using this selection function for 13 additional samples, before climbing to the SEL(?) =

0

1%1n general, SEL(X) refers to the selection function reached after j climbs, when starting from SEL(). Hence, SEL(X¥?) = SEL(),

12

TABLE 11
DaTa FOR LEARNSF’s CLIMBS; FOR SEL(A), e=0.1M,6=0.05,0=03M

Sample # Selection Function E[TestErr] E[Pos’n Err] FE[# of LMs]
0 Ser™® — ((10. ,0); [111111111]) 0.885 0.327 55.77

48 Ser™ = ((10. ,0); [111011111]) 0.778 0.335 44.36

61 SeLA? = <<10 ,2); [111011111]) 0.542 0.329 21.36

143 Ser™® = ((5. ,2); [L11011111]) 0.405 0.281 12.38
581 SELU = ((2,50, 2); [111011111]) 0.360 0.265 8.43
1543 SELM® = ((2.50, 4); [111011111]) 0.290 0.220 6.96
1784 SEL™® = ((1.25,4); [111011111]) 0.186 0.141 4.52

((10, 2); [111011111]) which also rejects any landmark that is more than 10 meters from R’s estimated
position and also subtends an angle less than 2°. It continued using this SEL**? function for another
82 samples, before climbing to SEL(*) = ((h, 2); [111011111]), which rejects any landmarks that is
more than 5 m from R, and less than 2°. The next three climbs respectively cut the distance required
to reject a landmark to 2.5 m (SEL(AA) = ((2.5,2); [111011111]) on image 581''), set the angular
threshold to 4° (SEL*®) = ((2.5, 4); [111011111]) on image 1543) and set the distance threshold to
1.25 m (SEL™®) = ((1.25, 4); [111011111]) on image 1784). LEARNSF then examined another 223
images before terminating, and declaring this selection function to be a “0.1-local optimum” — i.e.,
none of SEL)’s neighbors has a score that is more than e = 0.1 m better than SEL(®). (In fact,
SEL™) is actually a bona fide local optimum, as all of SEL(#)’s neighbors are strictly worse.)

The “-*-” line in Figure 6 (associated with “Sel-A”) shows LEARNSF’s performance here. Each
horizontal line-segment corresponds to a particular selection function, where the line’s y-value indicates
the “average test error” of its selection function, which was computed by running this selection function
through all 270 images. (To avoid testing on the training data we computed this value using a new

(o)

is a new random
variable, drawn from a 0-mean o-variance distribution, whose value is probably different from the 1/2-(0)
variable used to specify %;.'?) These horizontal lines are connected by vertical lines whose z-value
specifies the sample number when LEARNSF climbed. The first horizontal line shows that RATBOT
used SEL™ for 48 samples before “climbing” — indicated by the vertical line at + = 48. The y-value
of this first horizontal line, 0.885, is the “average test error” of this selection function. The second
horizontal line corresponds to the SEL4%) selection function, whose average test error is 0.778; etc.
The final line ends at z = 2007, meaning that LEARNSF terminated after seeing the 2007 sample.
Table II presents a more detailed break-down, showing the average accuracy and average number of
landmarks sought, for these seven different selection functions (given the other parameters specified
above). Several comments are in order: First, observe the “E[TestErr] = AveErr(SEL)” values are

set of randomly-generated positional estimates, {x; = z; + 1/ ’} where each v;

strictly decreasing, as desired. However, the positional error E|[Pos'n Err] went up between SeL(AY)

" This required cycling through the collection of 270 images two full times, then reaching image number 581 as the 41°¢ image
in the third epoch.

12We actually produced 10 such {k}} variable-sets, and computed an estimate of AveErr(SEL) from each set. The y-values
plotted are the average of these values. The variances of these values were quite small — with empirical standard deviations
well under 1% of the empirical mean. For example, the empirical standard deviation for AveErr(SEL(A)) was 0.000091 over
these ten estimates, which is about 0.01% of the mean. Also, to account for the fact that positional errors can accumulate
if there is no feedback, we also imposed an additional penalty on the SEL selection function’s score if SEL was unable to find
at least three landmarks on the previous image(s). In particular, if SEL was unable to find three landmarks for the previous
k consecutive images, img; ,, img; ,.,, ... img,_,, then the value we used for SEL’s positional error (within Equation 4) was
|| x; — Locate(%:, &:, img,, SEL(LMs(%:), %:i,6:)) || ¥ 1.1%. Notice this reduces to the actual positional error in the standard
case, when SEL found at least three landmarks on img,_,, and so k = 0.

13

and SEL™Y). This rise was compensated by the decrease in the number of landmarks sought; i.e.,
on average, SEL™?) looked for 11.41 more landmarks than SEL“). The second point is that the
average positional error of initial selection function SEL™) 0.327 m, exceeds the 0.3 m expected due
to the variance. This increased error is due partly to errors in our measurements of the landmarks;
such errors were one of the initial motivations for this enterprise. (Of course, this would not be an
issue in the anticipated future contexts, when we might begin with the building’s actual floor-plans.)
Notice, however, that the positional error of the final SEL*®) selection function was only 0.141 m —
significantly below 0.3 m — which illustrates the effectiveness of finding the useful landmarks. Notice,
finally, that this resulting selection function also has better performance than simply “closing our eyes”
and accepting the anticipated error of 0.3 m, formed by adding the positional error of 0.3 m and the
“landmark penalty” of 0 m = 0.01 o x 0 landmark-sought; see also Section I1I-D below.

landmark-sought

Timing Information: The overall LEARNSF system, including both performance and learning com-
ponents, worked fairly efficiently, requiring only 4.32 CPU-seconds on a SUN MP690 to (process 48

images and) climb to SELUD: another 1.58 seconds to (process 13 more images and) reach SELA?)

then respectively 12.48, 41.58, 100.96 and 25.37 seconds to process the 82, 438, 962 and 241 images
required to reach SEL(*:?) through SEL™®); and finally an additional 18.33 more second to process 233
more samples and terminate. Hence, it processed over 2000 images, and performed six climbs as well
as one termination, in under 3.5 minutes. Each of these numbers corresponds to the time required to
compute a position estimate using each of between 11 to 15 selection functions; here, for each such
SEL’, LEARNSF first uses SEL' to select a subset of landmarks, then seeks these landmarks within the
image, and finally uses the obtained edge-to—landmark correspondences to obtain an estimate of the
agent’s position. Hence, the average time to process a single image, using a single selection function,
is approximately 7.8 milliseconds. (As such, the system required around 13 x 0.0078 = 0.10 seconds to
process each image.) This does not include the time required to pre-process the image, which involved
extracting the annulus and computing the set of edges. (This low-level pre-processing step produces
information that was shared by all selection functions.)

These timing numbers are all based on a C-code implementation, which we have not yet attempted
to optimize. In particular, a non-trivial amount of time was spent computing information that was
used to produce the comparison information presented here.

Variability: As mentioned above, the performance system uses its estimate of RATBOT’s position to
(o) (o)

compute a more accurate position; we model this estimate as x;, = z; + v, ’, where vy,
distributed random value with mean 0 and variance 0 =0.3 m. The run above uses only a single set of

is a normally-

270 {1/2-(0)} values, one for each RATBO'T position. To get a sense of the system’s “stability”, we ran
LEARNSF ten more times, all in the same <SEL(A), e=0.1, 6 =0.05, ¢ = 0.3 m, Ratio = 0.01, “Normal”)

context, but differing by using different random seeds, and hence dealing with different sets of {1/2-(0)}
values. We observed that in all 10 cases, LEARNSF climbed first through the same sequence of se-
lection functions (SEL(AZI) to SELA?) to ... SEL(A:G)), and then terminated. The number of images
varied, however: Using the “mean+tstandard-deviation” notation, the number of (additional) images
required for each climb, and to termination was

Climb to. . . | SeL(A1) §p(42) ggr(43) SpL(A) SEL(45) SEL(40) termination
of images | 484+ 0 1340 769439 470.3L£73.7 T767.04+£247.0 29464+ 585 253.2+66.3

That is, LEARNSF required 48 £ 0 images for the first climb, then 13 + 0 additional images for the
second, etc. (LEARNSF exhibited the same variability in several other contexts as well: In each, it
progressed through essentially the same sequence of selection functions, but the actual numbers of
images used on each step often varied considerably.)

14

2
1.8
b—©
1.6
Sel-A —*—
1.4
Sel-B -o-
S
12 Sel-C ———
B
e Sel-D .
%’3 4
g
3 0.8
0.6/ 1f
\
O.4ﬁ¥07 —_ o — — = ZJ'(7 —_ = 7177777:‘(& e — g 777777
0.2
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Image Number

Fig. 7. LEARNSF’s Hill-Climbs: ¢ = 0.5 m

D. Other Fxperiments

Different Selection Functions: While the SEL™ function is an obvious choice, in some situations we
may (think that we) know more about the environment, and so begin LEARNSF using some another ini-
tial selection function. This subsection considers three other such initial functions, including SEL(®) =
((5, 10); [000000000]), which rejects every landmark, as well as SEL(®) = ((5, 2); [111010111]), which
rejects a landmark if either it is more than 5 meters away from the agent’s estimated position and
also subtends an angle less than 2 degrees,) or if the landmark’s type is either of “ConvexCorner”
or “LightColoredDoor” (these are the fourth and sixth types, corresponding to the bits that are 0
in the SEL(®) row, first k3 column, of Table I); and SEL(D) = ({5, 2); [101111010]), which rejects a
landmark for either the size-and-angle reason shown above, or if it is one of “BlackStrip”, “Picture”
or “SupportBetweenWindows”. Figure 6 graphs the results of these functions. Notice that LEARNSF
finds improvements in all four cases, climbing a total of 14 times.

The right-side of Table I presents the final selection functions obtained, for each initial selection
function, along with the average test error for each. We were surprised to see that these average test
values were relatively close to one another, despite the fact that the various final selection functions,
themselves, were very different. We found this happens in other contexts as well (e.g., when using other
values of o, €, etc.; see below), which suggests two things: (1) that these scores perhaps correspond
to the best that is possible, given these sensors and basic algorithms; and (2) that the space being
searched is sufficiently “smooth” that our hill-climbing algorithm can reach such optima.

Different o Values: Figure 7 (resp., Figures 8) presents the results of running LEARNSF on the
same 4 selection functions, but with ¢ = 0.5 m (resp., o = 1.0 m); all of the other conditions are the
same. While there are some minor differences among these four graphs, their overall characteristics
are the same, in that LEARNSF (almost always) climbed to successively better selection functions, and
always terminates at an appropriate e-local optimum.The one exception was when using the SEL(®)

function, when o = 1000. Here, we see that S (C41000) \as actually worse than SEL(C:S(IOOO))7

15

1.8%9
ES
1.6 Sel-A —*—
Sel-B -o-
1.4 Sel-C ——
5 ! ' Sel-D _._
LILJ 1.2 * 7‘ [
3 ‘ | [N
(8 - —— =1
L ¢ by
() i |
{e))
© E— [
o [* X
3: 0.8 L. _ T -~ ———
0.6
0.4
0.2
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Image Number

Fig. 8. LEARNSF’s Hill-Climbs: ¢ = 1.0 m

meaning LEARNSF’s fourth climb was inappropriate. (We will discuss this more, in the summary

below.)

Different ¢ and 6 Values: We also varied the values of € and §. Tables I1I-D and IV presents the data,
using the SEL™) selection function and o = 0.3 m. (We obtained similar results using other settings.)
Notice that LEARNSF climbed to the same selection functions in all cases; the only difference was
the number of samples required for each climb, and when each terminated. In particular, LEARNSF
required slightly fewer images to climb or terminate as we increased the ¢ value; of course, it is also
more likely to make a mistake here (although such mistakes did not happen during these particular
runs).

We also observed that LEARNSF needed more samples for each decision as we decreased the € value.
There was a surprisingly sharp change as we descended from ¢ = 0.075 to € = 0.060: LEARNSF went
from requiring about 2000 total samples for the entire run, to well over 20,000! This is because the
separation between the scores of SEL™*) and its best neighbor was very small; smaller than the user-
specified “don’t care” criterion. That is, by setting € = 0.0060, the user is stating that he does not
want LEARNSF to return a selection function SEL(™ if it has a neighbor whose score is more than
0.060 better; i.e.,if there is a SEL' = T(SEL(m)) such that AveErr(SEL') < AveErr(SEL(™))—0.060. In
practice, of course, if the user observed LEARNSF requiring an unreasonably large number of samples
without climbing or terminating, he could then decide whether he really needs a selection function
that is an e-local optimum, for the current € value. If the answer is “No”, he can then simply terminate
the learning system prematurely.

Two final comments: First, LEARNSF did not require such large numbers of samples for any larger
values of €, in any of the other contexts we considered. Second, notice that the performance system
is actually using a locally-optimal selection function for all of these images, which means these overall
learning+performance system will process these samples relatively efficiently. (This argues that it may
not be that necessary to terminate the system prematurely.)

16

TABLE III
VARYING ¢ (USING SEL), § = 0.05, o = 0.3 M, RATIO = 0.01)

€ to SELAY) to SEL(A?) to SELMP) to SELMAY to SELAP) to SELM®) terminate
1.000 - - - - - - 6
0.500 - - - - - - 9
0.200 46 52 134 - - - 305
0.150 47 59 139 - - - 566
0.125 47 60 140 581 - - 1164
0.100 48 61 143 581 1543 1784 2007
0.075 49 62 147 619 1543 1856 2210
0.060 50 64 151 673 1552 1860 20231
0.050 50 64 153 678 1552 1860 26548
0.025 52 67 159 700 1567 1965 > 54000*

* Here, we terminated LEARNSF after 200 epochs.

TABLE IV
VARYING § (USING SELY) e = 0.1 M, ¢ = 0.3 M, RATIO = 0.01)

0 to SELUAY o SELA?) to SELMP) to SELMY) to SELAP) to SEL(A®) terminate
0.5 44 50 129 468 1280 1507 1756
0.1 47 59 139 574 1541 1781 2003
0.05 48 61 143 581 1543 1784 2007
0.01 53 66 155 687 1557 1862 2065
0.005 52 67 158 696 1567 1969 2116
0.001 59 62 159 814 2002 2311 2597

Different “#Landmarks to Positional Error” Ratios: Table V summarizes the effects of varying
the landmark-to-error ratio. A value of 0 means we are concerned with accuracy alone, independent
of the number of landmarks sought. The actual selection function reached were different for different
error-functions, as were the score produced. Notice, however, that it was uniformly able to climb to
superior function, throughout the range ratio € [0.0, 0.020].

Weaker Statistical Assumption: The my,,,, and ay,,, functions used within LEARNSFy,,,, are
not guaranteed to work effectively unless the error values are normally distributed. While there is no
a priori reason to believe that this claim must be true, the fact that there were so few bad climbs
(where a SELY)_to-SELXY) climb is bad if AveErr(SEL(X:HI)) > AveErr(SEL ())) provides one
empirical datapoint that buttresses the “normality assumption”.

We also experimented with the slightly different LEARNSF 7 algorithm, which uses the stronger my;
and agpr functions (defined in Equation 2) which are (probabilistically) guaranteed to work for any
bounded distribution of error values, not just normal distributions. We found that this LEARNSFy;
system had essentially the same functionality: in almost all cases, it performed the same climbs that
the LEARNSF . system had. The big difference was sample efficiency: LEARNSF g required in
general a factor of 10 more samples than LEARNSF y,,,; e.g., it required hundreds to thousands of
samples to perform a climb that LEARNSF y,,,, would perform after tens to hundreds of samples.

E. Summary of Empirical Results

There are several obvious conclusions. First, we see that selection functions are useful; notice in
particular that the landmarks they returned enabled R to obtain fairly good positional estimates
(within a few tenths of a meter, which was sufficient for our purposes of identifying offices, etc. [13]).

17

TABLE V
VARYING LANDMARK-TO-ERROR RATIO (USING SEL(A), e=0.1m,6=0.0506=0.3m)

Ratio Err SEL™V/Err SEL™?)/Err SELU®)/Err SELY/Err SEL®) /Err SEL(Y) /Err
0 346 2022/ 280
2 438 102/ 383 609 / 301
5 606 64/ 467 149 / 349
10 885 48/ 718 61/ 543 143 / 404 581/ 350 1543/ 290 1784/ 186
20 1443 18/ 1222 28 / 1174 47/ 664 52/ 634 96/ 478 996/ 426

The ratio, and error values, are in millimeters. Most of these SELA™X) gelection function were different from the ones

” values.

«@ N m _ mm
reached for the “ratio= 0'011andmark = 1olandmark

Notice also that the obvious degenerate selection function, SEL™ which accepted all landmarks, was
not optimal; i.e., there were functions that worked more effectively.

We also saw that LEARNSF worked well, as it was able to climb to successively better selection
functions, in a wide variety of situations. The performance of the final system was (surprisingly)
insensitive to the initial selection function used, reaching comparable final selection functions for all 4
initial functions, in each context — i.e., the values of AveErr(LEARNSF(SEL(X), €,0)) seemed almost
independent of SELX. (Of course, both the actual LEARNSF(SEL(X), €, 0) selection function, and the
number of samples required to reach it, did depend on which initial SEL™ function was used.) The
values of € and ¢ had the expected effects: In general, LEARNSF climbed slightly faster as the § value
increased, but was slightly more prone to mistakes; and LEARNSF climbed faster as € increased, but
performed fewer climbs. We also found LEARNSF required many more samples before termination
when using sufficiently small values of e. (Notice this is not particularly problematic, as here LEARNSF
is, in fact, using an optimally effective selection function.) Finally, LEARNSF was also fairly efficient,
requiring on average around 7.8 milliseconds per image—selection-function.

This section has described 25 different runs using the value of 6 = 0.05, during which LEARNSF 1,
climbed a total of 88 times, and terminated 24 times. It made only 1 mistake (one climbing error in
(SELC,e= 0.1, 6 = 0.05, ¢ = 0.1 m, Ratio = 0.01, “Normal”)) in the 112 occasions in which it could
make a mistake (by either climbing or terminating inappropriately), which is within our expectations.
(Using 6 = 0.05 means we would expect around 5 such mistakes.)

Furthermore, the number of samples required to decide to climb depended on the differences of the
error rates of the original and successor selection functions; relatively few samples were required when
that difference was large. We also found that the “normality-based” LEARNSF y,,,, seemed to climb
as effectively as LEARNSF 7, but required many fewer samples. Finally, LEARNSF’s behavior was
also quite insensitive to the accuracy of R’s estimated position, over a wide range of errors.

IV. CONCLUSION
A. Other Applications of this Learning Approach

This paper has described a learning algorithm, LEARNSF, that can identify which landmark-selection
function (from a relatively simple set of such functions, each of the form shown in Figure 3) works
well for the task of estimating an agent’s position within a known environment. It also demonstrated
that this algorithm works effectively, over a wide range of contexts, despite the simplicity of these
functions. There are many other ways of applying this general learning approach, and algorithm,
within the general context of robotic navigation.

One immediate variant is to consider a different space of selection functions, perhaps based on
other types of filters and on other inputs. For example, we observed that selection functions worked
differently for different hallways; i.e., one that worked well for HallwayA may do poorly for HallwayB.

18

This suggests building selection functions out of filters that can use other arguments, such as the
current hallway, the ambient light, etc.

As a second variant, recall LEARNSF’s evaluation function (Equation 4) is based on inaccuracy,
which cannot be computed unless we know R’s correct position x. Imagine, however, that this learning
algorithm only has access to unlabeled data — just (%;,6;,img;), but not x;. Here, to learn a good
selection function, we would need an evaluation function that does not use the (here unavailable) x;
values. One proposal is to use the “size” of the covariance matrix (i.e., the sum of the values on the
principle diagonal), based on the standard assumption that a small covariance is associated with an
accurate estimate. We could then, of course, learn the best selection function using an obvious variant
of LEARNSF that used this evaluation function.

Third, while our descriptions (of both RATBOT and LEARNSF) deal only with “visual information”,
nothing in our work is specific to this sensing modality. We suspect, for example, that (an analogue
of) LEARNSF could learn to select useful sonar “landmarks”.

Finally, note that our basic “probabilistic hill-climbing” LEARNSF algorithm can be applied, mutatis
mutandis, to any other task that requires searching through a discrete space of “performance elements”
(such as the above space of selection functions) seeking an element whose average performance is
optimal; see [11]. As such, a related learning system can be used to address many other tasks required
by autonomous agents, ranging from setting low-level discrete parameters (e.g., the starting window
size for each image feature) to establishing various high-level “parameters” (e.g., deciding which set of
heuristics to use when planning the next action).

B. Contributions

To work effectively, a navigating agent must be able to determine its current location. While there
are many techniques that use observed landmarks to identify an agent’s position, they all depend on
being able to effectively find an appropriate set of landmarks, and will exhibit degraded or unacceptable
performance if the landmarks are not found, or mis-identified. We can avoid this problem by using
only the subset of “good” landmarks. As it can be very difficult to determine this subset a prior,
we present an algorithm, LEARNSF, that uses a set of training samples to learn a function that
can select the appropriate subset of the landmarks; our agent can then use this learned landmark-
selection to identify which landmarks to use to robustly determine its position. We prove that this
learning algorithm works effectively, both theoretically (Theorem 1) and empirically, based on real
data obtained using an operational robot.

ACKNOWLEDGEMENTS

We gratetully acknowledge the many helpful comments we received from Ramesh Visvanathan and
the members of the RatBOT project, especially Stephen Judd, Thomas Hancock and Long-Ji Lin. We
also thank the anonymous referees, as well as the editor Marco Dorigo, for their useful, and detailed,
comments.

REFERENCES

[1] M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” Proceedings of the IEEE/RSJ/GI International
Conference on Intelligent Robots and Systems, IEEE, Sept. 1994.

[2] P.J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, Inc., Oakland, 1977.

[3] L. Breiman, J. Friedman, J. Olshen, and C. Stone, Classification and Regression Trees. Wadsworth and Brooks, Monterey,
CA, 1984.

[4] R. Caruana and D. Freitag, “Greedy attribute selection,” Proceedings of the Eleventh International Machine Learning Work-
shop, pp. 28-36, N.J., Morgan Kaufmann, 1994.

[5] M. Case, “Single landmark navigation by mobile robots,” Proceedings of the SPIE, Conference on “Mobile Robots”, vol. 727,

pp- 231-238. SPIE — The International Society for Optical Engineering, Oct. 1986.

[6] I. Cox and G. Wilfong, eds., Autonomous Robot Vehicles. Springer-Verlag, 1990.

[7] T. Dean, K. Basye, and L. Kaelbling, “Uncertainty in graph-based map learning,” in Robot Learning (J. Connel and S. Ma-
hadevan, eds.), pp. 171-192, Kluwer Academic Publishers, 1994.

[8] R.O.Duda and P. E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1973.

[9]

28]
[29]
(30]
[31]
(32]

33]

19

S. P. Engelson, “Active place recognition using image signatures,” SPIF Symposium on Intelligent Robotic Systems, Sensor
Fusion V, pp. 393-404. SPIE — The International Society for Optical Engineering, 1992.

C. Fennema, A. Hanson, E. Riseman, J. Beveridge, and R. Kumar, “Model-directed mobile robot navigation,” IEEE Trans-
actions on Systems, Man and Cybernetics, vol. 20, no. 6, pp. 1352-1369, 1990.

R. Greiner, “Probabilistic hill-climbing: Theory and applications,” Proceedings of CSCSI1-92, pp. 60—-67, Vancouver, June
1992, Morgan Kaufmann.

R. Greiner, “PALO: A probabilistic hill-climbing algorithm,” Technical report, Siemens Corporate Research, 1995.

T. Hancock and S. Judd, “Ratbot: Robot navigation using simple visual algorithms,” 1993 IFEFE Regional Conference on
Control Systems (T. Chang, ed.), pp. 181-184, NJIT, Aug. 1993.

G. Hinton, “Connectionist learning procedures,” Artificial Intelligence, vol. 40, no. 1-3, pp. 185-234, 1989.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Associ-
ation, vol. 58, no. 301, pp. 13-30, 1963.

P. Huber, Robust Statistics. Wiley, NY, 1981.

G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection problem,” Proceedings of the Eleventh
International Machine Learning Workshop, pp. 121-129, N.J., 1994, Morgan Kaufmann.

A. Kosaka and A. C. Kak, “Fast vision-guided mobile robot navigation using model-based reasoning and prediction of
uncertainties,” Computer Vision, Graphics, and Image Processing—Image Understanding, vol. 56, no. 3, pp. 271-329, 1992.
B. J. Kuipers and Y.-T. Byun, “A robust, qualitative method for robot spatial learning,” Proceedings of the Seventh National
Conference on Artificial Intelligence, pp. 774-779, Morgan Kaufmann, 1988.

B. J. Kuipers and T. S. Levitt, “Navigation and mapping in large-scale space,” AI Magazine, vol. 9, no. 2, pp. 25-43, 1988.
J. E. Laird, P. S. Rosenbloom, and A. Newell, Universal Subgoaling and Chunking: The Automatic Generation and Learning
of Goal Hierarchies. Kluwer Academic Press, Hingham, MA, 1986.

T. S. Levitt and D. T. Lawton, “Qualitative navigation for mobile robots,” Artificial Intelligence, vol. 44, pp. 305-360, 1990.
M. Mataric, “Navigation with a rat brain: A neurobiologically-inspired model for robot spatial representation,” Proceedings
of the First International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 169-175, MIT
Press, 1991.

J. L. McClelland, D. E. Rumelhart, and the PDP Research Group, eds., Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition, vol. 2: Psychological and Biological Models, MIT Press, Cambridge, 1986.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, “Example-based generalization: A unifying view,” Machine Learning,
vol. 1, no. 1, pp. 47-80, 1986.

J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, 1992.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds., Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1: Foundations, MIT Press, Cambridge, 1986.

H. A. Simon, “Why should machines learn?,” in Machine Learning: An Artificial Intelligence Approach (R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, eds.), Palo Alto, CA, Tioga Publishing Company, 1983.

R. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” International Journal of Robotics
Research, vol. 5, no. 4, pp. 56-68, 1987.

R. G. Smith, T. M. Mitchell, R. Chestek, and B. G. Buchanan, “A model for learning systems,” Proceedings of IJCAI-77,
pp- 338-343, Morgan Kaufmann, 1977.

K. Sugihara, “Location of a robot using sparse visual information,” Robotics Research: The Fourth International Symposium
(R. Bolles and B. Roth, eds.), pp. 319-326, MIT Press, 1987.

K. Sugihara, “Some location problems for robot navigation using a single camera,” Computer Vision, Graphics and Image
Processing, vol. 42, no. 1, pp. 112-129, 19838.

B. Yamauchi and R. Beer, “Spatial learning for navigation in dynamic environment,” this issue.

