A Statistical Approach to Solving the EBL Utility Problem

Russell Greiner*
Siemens Corporate Research
Princeton, NJ 08540

greiner@learning.siemens.com

Abstract

Many “learning from experience” systems use
information extracted from problem solving ex-
periences to modify a performance element PE,
forming a new element PE’ that can solve these
and similar problems more efficiently. How-
ever, as transformations that improve perfor-
mance on one set of problems can degrade per-
formance on other sets, the new PE’ is not al-
ways better than the original PE; this depends
on the distribution of problems. We therefore
seek the performance element whose ezpected
performance, over this distribution, is optimal.
Unfortunately, the actual distribution, which
is needed to determine which element is opti-
mal, is usually not known. Moreover, the task
of finding the optimal element, even knowing
the distribution, is intractable for most inter-
esting spaces of elements. This paper presents
a method, PALO, that side-steps these prob-
lems by using a set of samples to estimate the
unknown distribution, and by using a set of
transformations to hill-climb to a local opti-
mum. This process is based on a mathemat-
ically rigorous form of utility analysis: in par-
ticular, it uses statistical techniques to deter-
mine whether the result of a proposed transfor-
mation will be better than the original system.
We also present an efficient way of implement-
ing this learning system in the context of a gen-
eral class of performance elements, and include
empirical evidence that this approach can work
effectively.

*Much of this work was performed at the University of
Toronto, where it was supported by the Institute for Robotics
and Intelligent Systems and by an operating grant from
the National Science and Engineering Research Council of
Canada. We also gratefully acknowledge receiving many
helpful comments from William Cohen, Dave Mitchell, Dale
Schuurmans and the anonymous referees.

'Supported by a University of Toronto Open Fellowship
and a Research Assistantship from the Department of Com-
puter Science.

Igor Jurisical
Department of Computer Science
University of Toronto

Toronto, Ontario M5S 1A4, Canada

juris@cs.toronto.edu

1 Introduction

Problem solving is inherently combinatorially expensive
[Nil80]. There are, of course, many methods designed
to side-step this problem. One collection of techniques
is based on the observation that many problems oc-
cur repeatedly; this has led to a number of “learning
from experience” (or “LFE”) systems [DeJ88, MCK ™89,
LNRA7] that each use information gleaned from one set
of problem solving experiences to modify the underly-
ing problem solver, forming a new one capable of solving
similar problems more efficiently.

Unfortunately, a modification that improves the prob-
lem solver’s performance for one set of problems can
degrade its performance for other problems [Min88b,
Gre91]; hence, many of these modifications will in fact
lower the system’s overall performance. This paper
addresses this problem (often called the “EBL! utility
problem” [Min88b, SER91]) by using a statistical tech-
nique to determine whether the result of a proposed
modification will, with provably high confidence, be bet-
ter than the original system. We extend this technique
to develop a LFE algorithm, PALO, that produces a sys-
tem whose performance is, with arbitrarily high prob-
ability, arbitrarily close to a local optimum. We then
focus on an instantiation of this general PALO algorithm
that can solve a learning problem that provably cannot
be algorithmically solved in a stronger sense, as well as
empirical data that demonstrates PALO’s effectiveness.

In more detail [BMSJ78]: A performance element PE
is a program that attempts to solve the given problems.
A learning element LFE uses information gleaned from
these problem solving experience(s) to transform PE
into a new performance element, PE’.2 Just as con-
cept learning can be characterized as a search through
a space of possible concept descriptions [Mit82], so the
LFE system can be viewed as searching through a space
of possible PEs, seeking a new performance element PE’
whose performance is superior to that of the original
PE. Typical LrEs traverse the space of possible PEs
using transformations that modify a given PE by adding

!“EBL” abbreviates “Explanation-Based Learning”.

2These two components, PE and LFE, may correspond
the same bundle of code; cf., SOAR [LNR87]. We often view
this PE’ as a modified version of PE.

macro-rules, re-ordering the rules, adding censors to ex-
isting rules, and so on.

Our previous papers have presented algorithms that
find the PE’ whose performance is optimal [GL89,
Gre91] or nearly-optimal [0G90, GO91], where perfor-
mance is measured as the expected cost of a PE over
some fixed distribution of problems. Unfortunately, the
task of finding the globally optimal PE is intractable for
most interesting cases [Gre91].

In contrast, most other previous LFE research
[DeJ88, MCK*89, LNR&7] has focused on experimen-
tal techniques for incrementally modifying a problem
solver, producing a series of performance elements
PEy, ..., PE,, where each PE;;; is a modification of
PE; (e.g., PE;+1 might contain one new macro-rule not
in PE;). Unfortunately, existing methods do not always
guarantee that each PE; 1 is an improvement over PE;;
a fortiori, the overall m-step process may produce a final
PE,, that is not even superior to the initial PEg, much
less one that is optimum in the space of PEs.3

This paper integrates ideas from both lines of research,
by describing a tractable incremental algorithm that is
(probabilistically) guaranteed to find a locally optimal
performance element. In particular, Section 2 motivates
the use of “expected cost” as a quality metric for per-
formance elements. Section 3 then describes a statisti-
cal tool for evaluating whether the result of a proposed
modification is better (with respect to this metric) than
the original PE; this tool can be viewed as mathemat-
ically rigorous version of [Min88a]’s “utility analysis”.
It uses this tool to define the general pALO algorithm,
that incrementally produces a series of performance ele-
ments PEg, ..., PE,, such that each PE;4; is statisti-
cally likely to be an incremental improvement over PE;
and, with high confidence, the performance of the final
element PE,, is essentially a local optimal. Finally, Sec-
tion 4 presents an instantiation of this program that uses
a specific set of transformations to “hill-climb” in a par-
ticular, very general, space of performance elements. It
also presents an efficient way of obtaining approxima-
tions to the information PALO needs, and provides em-
pirical evidence that this program does work effectively.
Here, pALO is efficiently finding a locally optimal PE;,
in a space of PEs for which the globally optimal PE,,
cannot be tractably found. The conclusion discusses how
this work extends related research.

2 Framework

We view each performance element PE as a function that
takes as input a problem (or query or goal, etc.) to solve,
q, and returns an answer. In general, we can consider
a large set of (implicitly defined) possible performance
elements, {PE;}; Section 4 considers the naturally oc-
curring set of problem solvers that use different control
strategies.

Which of these elements should we use; i.e., which is
“best”? The answer is obvious: The best PE is the one
that performs best in practice. To quantify this, we need

3Section 5 provides a more comprehensive literature
search, and includes a few exceptions to the above claims.

to define some measure on these elements: We start by
defining ¢(PE;j, ¢;) to be the “cost” required for PE;
to solve the problem ¢;. (The ¢(-, -) function defined in
Section 4 measures the time required to find a solution.)

This cost function specifies which PE; is best for a sin-
gle problem. Our PE;s, however, will have to solve an
entire ensemble of problems Q@ = { ¢; }; we clearly prefer
the element that is best overall. We therefore consider
the distribution of queries that our performance element
will encounter, which is modelled by a probability func-
tion, Pr: @ + [0, 1], where Pr[¢;] denotes the proba-
bility that the problem g; is selected. This Pr[-] reflects
the distribution of problems our PE is actually address-
ing; n.b., it is not likely to be a uniform distribution
over all possible problems [Gol79], nor will it necessarily
correspond to any particular collection of “benchmark
challenge problems” [Kel87].

We can then define the ezpected cost of a performance
element:

def

C[PE] = E[¢(PE,q)] = > Prlq] x ¢(PE, q)

geQ

Our underlying challenge is to find the performance
element whose expected cost is minimal. There are,
however, two problems with this approach: First, we
know to know the distribution of queries to determine
the expected cost of any element and hence which ele-
ment is optimal; unfortunately the distribution is usually
not known. Second, even if we knew that distribution
information, the task of identifying the optimal element
is often intractable.

3 The PALO Algorithm

This section presents a learning system, PALO, that
side-steps the above problems by using a set of sample
queries to estimate the distribution, and by efficiently
hill-climbing from a given initial PEg to one that is, with
high probability, close to a local optimum. This section
first states the theorem that specifies PALO’s functional-
ity, then summarizes PALO’s code and sketches a proof
of the theorem.

PALO takes as arguments an initial PEy and param-
eters €,6 > 0. It uses a set of sample queries drawn
at random from the Pr[-] distribution* to climb from
the initial PEg to a final PE,,, using a particular set of
possible transformations 7 = {r;}, where each 7; maps
one given performance element into another; see Subsec-
tion 4.2. PALO then returns this final PE,,. Theorem 1
states our main theoretical results.’

Theorem 1 The pAaLO(PEqg, €, §) process incremen-
tally produces a series of performance elements
PEg, PE4, ..., PE,, staying at a particular PE; for
only a polynomial number of samples before either climb-
ing to PE; 41 or terminating. With probability at least
1 — 6, paLO will terminate. It then returns an element

*These samples may be produced by the user, who is sim-
ply asking questions relevant to one of his tasks.

5This proof, and others, appear in the expanded version
of this paper [GJ92].

Algorithm PALO(PEqy, ¢, 6)
e 1 —0 70
L1: Let S — {} Neigh — {7(PE;) }»
Amaz = max{ A[PE’, PE;] | PE’ € Neigh }
L2: Get query ¢ (from the user).
Let S « Su{q} i — 1+ |Neigh|
o If there is some PE’ € Neigh such that
A[PE', PE;,S] >
A[PE', PE;]{/ 5l (522) (1)

36
then let PE;41 «— PE’,
Return to L1.

o If |S] > 2Az’3” In (izﬂz) and

J—=J+1L

346

VPE' € Neigh. A[PE/, PE;, 5] < <&

then halt and return as output PE;.

e Otherwise, return to L2.

Figure 1: Code for PALO

PE,, whose expected utility C[PE,, | is, with probability
at least 1 — 6, both

1. at least as good as the original PEg; 1e.,
CIPE,] < C[PEy]; and

2. an e-local optimum® — i.e.,
Vr; € 7. C[PE,] < (0 7(PEy)] + ¢ .

The basic code for PALO appears in Figure 1. In
essence, PALO will climb from PE; to a new PE;4, if
PE; 41 is likely to be strictly better than PE;; ie., if
we are highly confident that C[PE;;,] < C[PE;]. To
determine this, define

di = A[PEOM PEﬁaql] déf C(PEOM qz) - C(PEﬁa qz)
to be the difference in cost between using PE, to deal
with the problem ¢;, and using PEg. As each query g¢; is
selected randomly according to a fixed distribution, these
d;s are independent, identically distributed random vari-
ables whose common mean is 4 = C[PE,] — C[PEg].
(Notice PEg is better than PE, if g > 0.)

Let v, & LA[PE,, PEg, {gi}’=,] be the sam-
def

ple mean over n samples, where A[PE,, PEg, S] =
qus ¢(PE,, q) — ¢(PEg, ¢q) for any set of queries S.
This average tends to the population mean, p as n — oo;
ie, p = limy. ¥, Chernoff bounds [Cheb2] describe
the probable rate of convergence: the probability that
“Yy 1s more than g+ ~” goes to 0 exponentially fast as n
increases; and, for a fixed n, exponentially as 7 increases.
Formally,
)2

)2

—2n(

Pr(Y,>p+7] e

PrlY, <u—7]

>R =R

<
S 6—2n(

SNotice a “0-local optimal” corresponds to the standard
notion of “local optimal”; hence “e-local optimal” generalizes
local optimality.

where A is the range of possible values of ¢(PE,, ¢;) —
¢(PEg, ¢;).” This A = A[PE,, PEg] is also used in both
the specification of Ay, 4, and in Equation 1. Section 4.2
below discusses how to compute this value for relevant
PE;/7;(PE;) pairs.

The PALO algorithm uses these equations and the val-
ues of A[PE', PE;, S] to determine both how confident
we should be that C[PE'] > C[PE;] (Equation 1) and
whether any “7-neighbor” of PE; (1.e., any 7:(PE;)) is
more than € better than PE; (Equation 2).

4 Instantiation: Learning Good
Strategies

The algorithm shown above can deal with essentially ar-
bitrary sets of performance elements, cost functions and
sets of transformations. This section presents a par-
ticular instantiation of this framework: Subsection 4.1
presents a model for a general class of “graph-based per-
formance elements” P and the obvious cost function.
Subsection 4.2 then describes the set of “re-ordering”
transformations 79 each of which re-arranges the or-
der in which PE traverses the arcs of the graph. It also
describes an efficient way of approximating the values
of Alr;(PE), PE, S]. Subsection 4.3 presents some em-
pirical results that demonstrate that a system that uses
these approximations can be effective.

We choose the P& class of performance elements as it
corresponds to many standard problem solvers (includ-
ing ProLoG [CM81]; see also [GN87]); and the 7 ¢
class of transformations on strategies, as it corresponds
to many EBL systems and moreover, the task of finding
the global optimality strategy is NP-hard [Gre91].

4.1 Graph Based PEs

This subsection uses a particularly simple performance
element PEg to illustrate the class P€ g, whose elements
each correspond to a finite graph whose arcs have fixed
costs. After describing a relatively simple model, it
presents several extensions, leading to a more realistic,
comprehensive model.

The PEg element is based on the rules shown in the
upper left corner of Figure 2 (producing the correspond-
ing “reduction graph” shown in that figure), operating
with respect to the facts shown in the lower left corner.
We focus on how this system deals with queries of the
form GoodCar(x), for some ground k — e.g., returning
Yes to the queries GoodCar(D1) and GoodCar(D2), and
No to the queries GoodCar(D4) and GoodCar(Fido).

In general, we can identify each performance element
PE = (G, ©) € P& with a reduction graph G and a
strategy O, where a reduction graph G = (N, A, S, f) is
a structure formed by a set of rules: N is a set of nodes
(each corresponding to a proposition; e.g., the node Ny
corresponds to “GoodCar(x)” and N, corresponds to the
empty disjunction), and A C N x N is a set of arcs, each
corresponding either to the use of a rule (e.g., the a; arc

"See [Bol85, p. 12]. N.b., these inequalities holds for essen-
tially arbetrary distributions, not just normal distributions,
subject only to the minor constraint that the sequence {A;}
has a finite second moment.

Rule Set
R,: Cheap(z) = GoodCar(z)
R;: Pretty(z) = GoodCar(z)
Rs: Red(z) = Pretty(z)

Fact Set
Cheap(D2), Cheap(D3), Cheap(D5),
Red(D1), Red(D3), Red(D5),
Gold(D6),

aq: (rule M\ (rule Rgy)

R4 Gold(z) = Pretty(z)
ag: (Attempt: Cheap(x))
ap: (Attempt: Red(x))

N3: Pretty(x

aq: (rule R/\ (rule Ry)

‘ Ny Red(k) ‘N6. Gold(k) ‘

ag: (Attempt: Gold(x))

Figure 2: “Reduction Graph” G4 (used by PEg and PE;)

from Ny to N is based on the rule R;) or a database
retrieval (e.g., the ay arc from N; to Nj corresponds
to the attempted database retrieval Cheap(x)). The set
S C N is the subset of N’s “success nodes” (here, each is
an empty disjunction such as Ny or N5, shown in doubled
boxes); reaching any of these nodes means the proof is
successful. The cost function f: A — Rg maps each
arc to a non-negative value that is the cost required to
perform this reduction. We will let f; refer to the value
of f(a;).

The strategy © specifies how the PE will traverses its
graph (G. Here, it corresponds to a simple sequence of
arcs, e.g.,

O(erg) = (a1, az, as, aa, as, as, az) (3)

is the obvious left-to-right depth-first strategy, with the
understanding that PE = (G4, 0/.,)) stops whenever
it reaches a success node (e.g., if as succeeds, then PEg
reaches N and so stops with success), or has exhausted
all of its reductions.® There are other possible strategies,
including other non-left-to-right depth-first strategies,
e.g.,
®<7‘gc) == <Clg, a4, A5, g, A7, A1, Clz) (4)
as well as non—depth-first strategies, etc.
We focus on two members of PE&g:

(Ga, Oergy) and PE; = (G4, Ofrge))-

Cost of Solving Problems: We can compute the cost
for PE; to solve ¢;, ¢(PEj, ¢;), from the above specifi-
cation. For example, ¢(PEg, GoodCar(D2)) = fi + fa,
and ¢(PEp, GoodCar(D1)) = fi+ fo+ fa+ fa+ f5, as
the (a1, az) path failed as Cheap(D1) is not in the fact
set. As each strategy stops as soon as it finds an answer,
different strategies can different costs for a given query;
e.g., ¢(PEq, GoodCar(D1)) = fs+ f4 + f5 differs from
¢(PEg, GoodCar(D1)), etc.

We can view each strategy as a sequence of paths,
where each path is a sequence of arcs that descend

PE, =

8Notice that strategies, including PEo, accept the first
solution found, meaning they are performing “satisficing
searches” [SK75].Hence, we are only considering the cost re-
quired to produce an answer, and not the quality of the an-
swer itself. There are obvious extensions to this cost model
that can incorporate different utility values for answers of
different “qualities”; see [GE91].

from some already-visited node down to a retrieval; e.g.,
01 = ((a1 az), (azaqas), (asar)). We define the ez-
pected cost of a strategy as the weighted sum of the costs
of its paths, each weighted by the probability that we
will need to pursue this path, i.e., that none of the prior
paths succeeded [Smi89, GO91]. (Of course, the cost of

a path is the sum of the cost of its arcs.)

While the models of performance elements and cost
presented above are sufficient for the rest of this article,
they appear quite limited. We close this subsection by
presenting some of the extensions that lead to a more
comprehensive framework. N.b., the model presented in
[GJ92] incorporates all of these extensions.

Extendl. (General Graph) The above definitions are
sufficient for the class of simple “disjunctive reduction
graphs” | which consist only of rules whose antecedents
each include a single literal. To deal with more gen-
eral rules, whose antecedents are conjunctions of more
than one literal (e.g., “B(z)&C(z) = A(x)”), we must
use directed hyper-graphs, where each “hyper-arc” de-
scends from one node to a set of children nodes, where
the conjunction of these nodes logically imply their
common parent. We would also define S to be a set of
subsets of N, where the query processor would have
to reach each member of some s € S for the deriva-
tion to succeed. This extension leads to additional
complications in specifying strategies; see also [GO91,

Appendix A].

Extend2. (Probabilistic Experiments) We say that “the
arc a; is blocked in the context of the query ¢” if no
strategy can traverse a; when answering the query g¢;
e.g., the retrieval arc ay is blocked in the context of
GoodCar(D1) as the associated literal Cheap(D1) is
not in the fact set. So far, we have implicitly as-
sumed that retrieval arcs can be blocked, but rule-
based arcs cannot. If we permit the literals in the rules
to include constants, however, rule-based arcs can also
be blockable. Consider, for example, adding the rule
“Ya Owner(Fcar,) = GoodCar(Fcar)”, which states
that the particular car Fcar is good if it is owned by
anybody. Notice a performance element will be able to
traverse the rule-based reduction arc from GoodCar(z)
to Owner(Fcar, z) only if the query is GoodCar(Fcar);
notice this arc is blocked for every other query. Our

model can handle these situations by allowing any arc
(not just retrieval arcs) to be blockable.

Extend3. (General Cost Function) The algorithms pre-
sented in this paper can accommodate more compli-
cated f(-) cost functions, which can allow the cost of
traversing an arc to depend on other factors — e.g.,
the success or failure of that traversal, which other
arcs have already been traversed, etc.

Extend4. (Infinite Set of Queries) Our analysis can ac-
commodate even an infinite number of queries, as we
can partition them into a finite set of equivalence
classes, where all members of an equivalence classes
have the same cost for each strategy. This follows
from the observation that the cost of using a strat-
egy to solve a query depends only on which arcs are
blocked, meaning we can identify each query with the
subset of arcs that can are blocked for that query. For
example, we can identify the query GoodCar(B1) with
the arc-set {as, a7} and GoodCar(B2) with {as, a7},
ete.

4.2 Re-Ordering Transformations

This subsection considers a way of modifying a perfor-
mance element PE = (G, ©) by reordering the strat-
egy (i.e., changing from © to ©') while preserving the
underlying reduction graph G. For example, after find-
ing that (ai, az) failed but the (as, a4, as) path suc-
ceeded, one might transform PEy = (G4, ©.,,)) into
PE; = (Ga,04.)), by moving a3 (and its children) be-
fore a; (and its children). In general, given any reduction
graph G = (N, A, S, f), define 7T#° = {Tr1,r2}r1 02 to be
the set of all possible “simple strategy transformations”,
as follows: Let r1,72 € A be two arcs that each descend
from a single node (e.g., a; and as each descend from
the node Ng); and consider any strategy

Oy =7 0 Wy 0 W3 O Wy, (5)

where the o operator is concatenation and each w; is
a (possibly empty) sequence of arcs, and in particu-
lar, w3 = (rl,...) corresponds to rl and its children,
and w3 = (r2,..), to r2 and its children.® Then
Op = Tr1,2(04) will be a strategy that differs from
Op only in that r1 and all of its descendents are moved
earlier in the strategy, to before r2; i.e.,

Op =Tr1,72(04) =71 0 T3 0 Ty 0 Wy . (6)
(To understand the transformation from 0,4 = O(crg) to
OB = Tasa:1(Oerg)) = Orgey: let m = (a1, a2), 73 =
(as,a4,as,a6,a7) and w1 = w4 = ().) Notice that the
7r1,r2 transformation will map a strategy © to itself if r1
already comes before 72 in ©. 79 is the set of all such
Tr1,r28.
Approximating A[PE;, PE’ S]: The paLo algorithm
requires values of A[PE;, 7;(PE;),S] for each 7; €
7. One obvious (though expensive) way of obtain-

ing these values is to construct each 7;(PE;) perfor-
mance element, and run this element on each ¢ €

°To simplify the presentation, this article will only con-
sider depth-first strategies; [GJ92] extends this to deal with
arbitrary strategies.

S, recording the total cost each requires. This can
be expensive, especially when there are many differ-
ent 7;(PE;)s. Fortunately, there is an alternative
that involves running only the PE; element and us-
ing the statistics obtained to find both under-estimates
L(PE;, 7;(PE;),S) < A[PE;, 1;(PE;),S] and over-
estimates U(PE;, 7;(PE;),S) > A[PE;, 7;(PE;), 5],
that can be used in Equations 1 and 2, respectively.

In general, the PE4 = (G, 04) element terminates as
soon as it finds an answer; based on the decomposition
shown in Equation 5, there are four cases to consider, de-
pending on the path (one of {wy, 72, 73, 74 }) in which this
first answer appears. (For our purposes here, we view
“finding no answer at all” as “finding the first answer in
the final m4”.) If this first answer appears in either or m;
or my, then A[PE4, PEg, ¢] = 0, where PEg = (G, ©p)
from Equation 6. If the first answer appears in 73, then
we know that A[PE4, PEg, q] = f(72), where f(m;) in
general is the sum of the costs of the arcs in ;. For ex-
ample, consider using PEg to deal with the Goodcar(D1)
query: As the ay arc fails and as succeeds, the first an-
swer appears within w3 = (as, a4, as, as,a7). PEg will
find that answer, after it has first examined the path
ma = (a1,as) at a cost of f(wa) = f({a1,a2)) = f1 + fa.
Notice PE; would also find this same solution in 7s.
However, PE; would not have first examined 75, mean-
ing its cost is f(m2) less than the cost of PEy. Hence,
A(PEg, PE;, GoodCar(D1)) = f(m2).

The situation is more complicated if the first an-
swer appears in 7, as the value of A[PE4, PEg, q] de-
pends on information that we cannot observe by watch-
ing PE4 alone. (E.g., consider using PEy to deal
with Goodcar(D2). As ay succeeds, PEg’s first answer
appears in m3. As PEg then terminates, we do not
know whether an answer would have appeared within
w3.) While we cannot determine the exact value of
A[PE4,PEg, q] in these situations, we can obtain up-
per and lower bounds, based on whether a solution would
have appeared in those unexplored paths: here — f(73) <
A[PE4, PEg,q] < f(m) — ft(73), where ft(m3) is de-
fined to be the cost of finding the first possible solution in
the path 5. (E.g., f*({as, a4, as, as, a7)) = fs+ fa+ fs,
as this is the first solution that could be found. Notice
this under-estimates the cost of this path in every sit-
uation, and is the actual cost if the retrieval associated
with a5 succeeds.)

The table below gives the lower and upper bounds
L(q) < A[PE4,PEg,q] < U(g), for all four cases (one
for each m;):

if first answerisin | L(q) U(q)
1 0 0
2 frs) f(m) — £ ()
s fm) f(r2)
T4 0 0

This table only bounds the value of A[PE4, PEg, ¢]
for a single sample. The value of A[PE4, PEg, S]

will be between L(PE4,PEg,S) = qus L(g) and

191G J92] shows how to obtain slightly tighter bounds,
based on information that is available from PEu4’s
computation.

U(PE4,PEg, S) def qus U(g). To compute these
bounds, we need only maintain a small number of coun-
ters, to record the number of times a solution is found
within each subpath: let k2 (resp., k3) be the number
of times the first solution appears within 3 (resp., 73);
then

L(PE4,PEp,S) =
U(PE4,PEg, S)

ks -[f(m2)] — ko [—f(73)]

PALO’ Process: Now define PALO’ to be the variant of
PALO that differs only by using these L(PE’, PE;, S)
values (resp., U(PE', PE;, S) values) in place of
A[PE’, PE;, S] in Equation 1 (resp., Equation 2).
PALO’ can compute upper and lower bounds of
A[PE, 7;(PE), 5] for each 71,2 € TH? using only the
values of a small number of counters: in general, it needs
to maintain only one counter per retrieval.

To complete our description: PALO’ also needs one
more counter to record the total number of sample
queries seen, corresponding to |S|. Equation 1 needs
the (static) values of A[71 ,2(PE4), PE4)] for each 7 €
TEO Each Tr1,r2 induces a particular segmentation of
each strategy into the subsequences ©4 = 7 o 7 o
73 o m4. Here, A[7r1,2(PE4), PE4] = f(m2) + f(73),
as each value of A[7,1 ,2(PE4), PEy4, ¢] is in the range

[=f(7s), f(m2)].
4.3 Empirical Results

The pALO algorithm only works “statistically”, in that
its results are guaranteed only if the samples it sees are
truly representative of the distribution, and moreover, if
the distribution from which these samplesis drawn is sta-
tionary. The PALO’ algorithm is even more problematic,
as it only uses approximations of the needed statistics.

Given these hedges, it is not obvious that the PALO’
algorithm should really work in a real domain. We are
beginning to experiment with it in various real domains,
including expert systems and natural language proces-
SOTS.

Here, we report on its performance in various artificial
settings, where we can insure that the distribution is
stationary.!! Consider again the reduction graph shown
in Figure 2, and assume unit cost for each arc, whether it
represents a rule-based reduction or a database retrieval.
We will define the distribution of queries in terms of
the (independent) probabilities of the various database
retrievals; here,

P(Cheap(x) in Fact Set | GoodCar(x) query asked) = 0.01
P(Red(k) in Fact Set | GoodCar(x) query asked) = 0.2
P(Gold(x) in Fact Set | GoodCar(x) query asked) = 0.8

Given these values, it is easy to compute the expected
costs of the various strategies [Smi89]: C[©O(.)
3.772, C[Oyry] = 3.178, C[O(y] = 2.96 and
ClOrey] = 2.36; hence, the optimal strategy is

[—

"'We decided against using a blocks-world example as it
would be more complicated to describe, but would be no more
meaningful as we would still have to make up a distribution
of problems, specifying how often a problem involves stacking
blocks, versus forming arches, versus ...

ks - [f(m2)] + ko [f(72) — f(m3)]

Ogre) 12 Of course, we do not initially know these prob-
ability values, and so do not know which strategy is op-
timal.

We ran a set of experiments to determine whether
PALO', starting with ©,,,), would be able to find a good
strategy. We set 6 = 0.05 (i.e., a 95% confidence bound),
and considered ¢ € {1.0, 0.5,0.2,0.1, 0.05 }, trying 10
trials for each value.

Using € = 1.0, PALO’ quickly found the strategy O,),
which is a 1.0-local optimum (even though it is not the
global optimum). As O, is “TRO_adjacent” to the
initial ©.,,), this meant PALO" performed only one hill-
climbing step. PALO’ used an average of |S| & 5.3 sam-
ple queries to justify climbing to ©(,.), and another on
average & 44 queries to realize this strategy was good
enough; hence, this total learning process required on
average & 49 total queries. For the smaller values of
€, PALO’ always went from O(crg) 10 Ofrye) as before,
but then used a second hill-climbing step, to reach the
globally-optimal ©,,.). As would be expected, the num-
ber of steps required for each transition were about the
same for all values of ¢ (notice that Equation 1 does
not involve ¢€): for ¢ = 0.5, 0.2, 0.1, 0.05, PALO’ re-
quired about 6.3, 6.6, 5.0, 5.4 samples to reach O,
and then an additional 31.5, 36.6, 39.0, 29.8 samples to
reach ©).

The major expense was in deciding that this ©,.)
was in fact an e-local optimum; here, this required
an additional 204, 1275, 5101, 20427 samples, re-
spectively. Notice this is not time wasted: the
overall “@(WC)—performance—elementf&fPALO’—learning—
element” system is still solving relevant, user-supplied,
problems, and doing so at a cost that is only
slightly more expensive than simply running the ©,,.)-
performance-element alone, which we now know is an
optimal element. In fact, if we ignore the Equation 2
part of PALO’s code, we have, in effect, an anytime al-
gorithm [BD88, DB88], that simply returns better and
better elements over time.

Of course, there are advantages to knowing when we
have reached a local optimum: First, we can then switch
off the learning part and thereafter simply run this (prob-
ably locally) optimal performance element. Second, if
we are not happy with the performance of that element,
a PALO-variant can then jump to different performance
element in another part of the space, and begin hill-
climbing from there, possibly using a form of simulated
annealing approach [RMt86].

The extended paper [GJ92] presents other experimen-
tal data, based on other probability distributions, reduc-
tion graphs, parameter values, and so forth. In general,
PALO’’s performance is similar to the above description:
For each setting, PALO’ climbs appropriately, requiring
successively more samples for each step. Our one sur-
prise was in how conservative our approximations were:
using the § = 0.05 setting, we had anticipated that PALO’
would miss (i.e., not reach an e-local optimal) approx-

12We continue to identify each strategy with the sequence
of database retrievals that it will attempt. Hence, Oy =
(a5, ag, az, as, as, a1, az).

imately 1 time in 20. However, after several hundred
runs, with various settings and graphs, we have found
that PALO'’s error rate is considerably under this rate.
We are now experimenting with variants of PALO’ that
are less conservative in their estimates, in the hope that
they will be correspondingly less sample-hungry. (See
also [GD92].)

Finally, while this paper has focused on but a single
set of proposed transformations 779, there are many
other transformation sets 7X that can also be used to
find an efficient satisficing system; e.g., [Gre92a] dis-
cusses a set of transformations that correspond to opera-
tor compositions.'® The “PALO-style” approach is not re-
stricted to speed-up learning; it can also be used to build
learning systems that can find performance elements
that are nearly optimal in terms of other measures, in-
cluding accuracy [Gre92d] or categoricity [Gre92b]; see
also [GE91, Gre92c].

5 Conclusion

Comparison with other relevant research: There
are many other research projects — both theoretical and
empirical — that also address the task of using a set of
examples to produce a more efficient performance ele-
ment. Most of the formal models, however, either deal
with learning problems that are far harder than the prob-
lems actually attempted by real learning systems (e.g.,
[GL89, Gre9l]) or model only relatively narrow classes of
learning algorithms (e.g., [NT88, Coh90]). By contrast,
our model is very general and directly relevant to many
systems.

There are also a great number of existing LFE sys-
tems, and considerable experimental work on the utility
problem. Our research is not simply a retrospective anal-
ysis of these systems; it also augments that experimental
work in the following specific ways. First, we show an-
alytically that one subproblem of the utility problem —
the problem of determining if a proposed modification
is in fact an improvement — can be (probabilistically)
solved a priori (i.e., before building that proposed mod-
ified system), based on only a polynomial number of test
cases. This result analytically confirms previous experi-
mental results. Second, we show that utility analysis can
be used to probabilistically guide an incremental learner
to a performance element that is essentially a locally
optimal PE. (While existing systems have used utility
analysis when climbing to elements with superior perfor-
mance, none have used it to produce elements that are
guaranteed to be optimal, in even our weak sense.) Fi-
nally, we can use our utility analysis to determine when
not to learn — i.e., to determine when none of the pos-
sible transformations is (likely to be) an improvement.
While this aspect of utility analysis has not yet been

13T his requires a slight variant of the basic PALO algorithm
shown in Figure 1: That algorithm assumes that there is a
fixed set of neighbors to a given performance element. By
contrast, the number of possible macros depends on the num-
ber of rules in the system, which grows as more rules are
added. This involves certain changes to the PALO algorithm;
see [CGI1].

investigated empirically, it is likely to be important in
practice, as it can prevent a learning algorithm from
modifying, and therefore possibly degrading, an initial
element that happens to already be optimal. The cor-
rect action for the learner to take for such initial PEs is
simply to leave them unmodified — i.e., not to learn.
The work reported in [GD91, GD92] is perhaps the
most similar to ours, in that their system also uses a
statistical technique to guarantee that the learned con-
trol strategy will be an improvement, based on a utility
analysis. Our work differs, as we formally prove specific
bounds on the sample complexity, and provide a learn-
ing system whose resulting PE’ is (with high probability)
both superior to the initial PE and a local optimal.

Contributions: Learning from experience (LFE) re-
search is motivated by the assumption that problems
are likely to reoccur, meaning it may be worth trans-
forming an initial performance element into a new one
that performs well on these problems. Most existing
LFE systems actually perform a series of such transfor-
mations; in essence searching through a space of possible
PEs, seeking an efficient performance element PE’. This
underlying efficiency measure depends on the overall dis-
tribution, which unfortunately is typically unknown. We
therefore define an algorithm PALO that can use samples
to reliably navigate through this space of possible per-
formance elements, to reach a PE’ that is essentially a
local optimal. These transformations require certain sta-
tistical information; we also describe how to obtain such
information efficiently — at a cost that is only minimally
more expensive than running a single performance ele-
ment. Finally, we present a specific application of this
algorithm for a particular relevant space of PEs, one for
which the task of finding a globally optimal PE is NP-
complete, and include empirical data that confirms that
the PALO system can work effectively.

References

[BD8§] M. Boddy and T. Dean. Solving time depen-
dent planning problems. Technical report,

Brown University, 1988.

B. Buchanan, T. Mitchell, R. Smith, and
C. Johnson, Jr. Models of learning systems.
In Encyclopedia of Computer Science and
Technology, volume 11. Dekker, 1978.

B. Bollobas.
Press, 1985.

W. Cohen and R. Greiner. Probabilistic hill
climbing. In Proceedings of CLNL-91, Berke-
ley, September 1991.

H. Chernoff. A measure of asymptotic effi-
ciency for tests of a hypothesis based on the
sums of observations. Annals of Mathemati-

cal Statistics, 23:493-507, 1952.

W. Clocksin and C. Mellish. Programming
in Prolog. Springer-Verlag, New York, 1981.

[BMSJI78]

[Bol85] Random Graphs. Academic

[CGY1]

[Che52]

[CM81]

[Coh90] W. Cohen. Using distribution-free learning
theory to analyze chunking. In Proceeding of

CSCSI-90, 1990.

[DBSS]

[DeJ88]

[GDI1]

[GD92]

[GE91]

[GI92]

[GL8Y]

[GN8T]

[GOY1]

[Gol79]

[Gre9l]

[Gre92a]

[Gre92b]

[Gre92c¢]

[Gre92d]

[Kel87]

[LNRS7]

T. Dean and M. Boddy. An analysis of
time-dependent planning. In Proceedings of

AAAI-88, 1988.

G. DeJong. AAAI workshop on Explanation-
Based Learning. Sponsored by AAAI, 1988.

J. Gratch and G. DeJong. A hybrid approach
to guaranteed effective control strategies. In

Proceedings of IWML-91, 1991.

J. Gratch and G. DeJong. COMPOSER:
A probabilistic solution to the utility prob-
lem in speed-up learning. In Proceedings of
AAAI-92, 1992,

R. Greiner and C. Elkan. Measuring and im-
proving the effectiveness of representations.

In Proceedings of IJCAI-91, 1991.

R. Greiner and I. Jurisica. EBL systems that
(almost) always improve performance. Tech-
nical report, Siemens Corporate Research,

1992.

R. Greiner and J. Likuski. Incorporating re-
dundant learned rules: A preliminary formal
analysis of EBL. In Proceedings of IJCAI-89,
1989.

M. Genesereth and N. Nilsson. Logical Foun-
dations of Artificial Intelligence. Morgan
Kaufmann Publishers; Inc., Los Altos, CA,
1987.

R. Greiner and P. Orponen. Probably ap-
proximately optimal derivation strategies. In

Proceeding of KR-89, 1991.

A. Goldberg. An average case complexity
analysis of the satisfiability problem. In Pro-
ceedings of CADE-79, 1979.

R. Greiner. Finding the optimal derivation
strategy in a redundant knowledge base. Ar-
tificial Intelligence, 50(1):95-116, 1991.

R. Greiner. Effective operator composi-
tion. Technical report, Siemens Corporate

Research, 1992.

R. Greiner. Learning near optimal horn ap-
proximations. In Proceedings of Knowledge
Assimilation Symposium, Stanford, 1992.

R. Greiner. Probabilistic hill-climbing: The-
ory and applications. In Proceedings of

CSCSI-92, 1992.

R. Greiner. Producing more accurate rep-
resentational systems. Technical report,
Siemens Corporate Research, 1992.

Richard M. Keller. Defining operationality
for explanation-based learning. In Proceed-

ings of AAAI-87, 1987.

J. Laird, A. Newell, and P. Rosenbloom.
SOAR: An architecture of general intelli-
gence. Artificial Intelligence, 33(3), 1987.

[MCK*89] S. Minton, J. Carbonell, C. Knoblock,

[Min88a]

[Min88b]

[Mit82]
[Nil80]

[NTS8S]

[0GY0]

[RMt86]

[SER91]

[SK75]

[Smi89)]

D. Kuokka, O. Etzioni, and Y. Gil
Explanation-based learning: A problem
solving perspective. Artificial Intelligence,

40(1-3):63-119, September 1989.

S. Minton. Learning Search Control Knowl-

edge: An FEzxplanation-Based Approach.
Kluwer Academic Publishers, Hingham,
MA, 1988.

S. Minton. Quantitative results concerning
the utility of explanation-based learning. In

Proceedings of AAAI-88, 1988.

T. Mitchell. Generalization as search. Artifi-
cial Intelligence, 18(2):203-26, March 1982.

N. Nilsson. Principles of Artifical Intelli-
gence. Tioga Press, Palo Alto, 1980.

B. Natarajan and P. Tadepalli. Two frame-
works for learning. In Proceedings of IML-88,
1988.

P. Orponen and R. Greiner. On the sample
complexity of finding good search strategies.

In Proceedings of COLT-90, 1990.

D. Rumelhart, J. McClelland, and the PDP
Research Group, editors. Parallel Dis-
tributed Processing: FEzxplorations in the Mi-

crostructure of Cognition, volume 1: Foun-
dations. The MIT Press, Cambridge, 1986.

A. Segre, C. Elkan, and A. Russell. A criti-
cal look at experimental evaluations of EBL.
Machine Learning Journal, 6(2), 1991.

H. Simon and J. Kadane. Optimal problem-
solving search: All-or-none solutions. Artifi-

ctal Intelligence, 6:235-247, 1975.

D .Smith. Controlling backward inference.

Artificial Intelligence, 39(2):145-208, 1989.

