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Many tasks require “reasoning” — i.e., deriving conclusions from a corpus of explicitly stored
information — to solve their range of problems. An ideal reasoning system would produce all-
and-only the correct answers to every possible query, produce answers that are as specific as
possible, be ezpressive enough to permit any possible fact to be stored and any possible query to
be asked, and be (time) efficient. Unfortunately, this is provably impossible: as correct and precise
systems become more expressive, they can become increasingly inefficient, or even undecidable.
This survey first formalizes these hardness results, in the context of both logic- and probability-
based reasoning, then overviews the techniques now used to address, or at least side-step, this
dilemma.

Categories and Subject Descriptors: 1.2.3 [Computing Methodologies]|: Artificial Intelligence—
Deduction and Theorem Proving — Answer/reason extraction, Inference Engines, Probabilistic
Reasoning; 1.2.4 [Computing Methodologies]: Artificial Intelligence— Knowledge Represen-
tation Formalisms and Methods — Bayesian Belief Nets, Rule-based Systems

General Terms: Performance, Algorithms

Additional Key Words and Phrases: Efficiency Tradeoffs, Soundness/Completeness/Expressibility

1. INTRODUCTION

Many information systems use a corpus of explicitly stored information (a.k.a. a
“knowledge base”, K B) to solve their range of problems. For example, medical
diagnostic systems use general facts about diseases, as well as the specific details
of a particular patient, to determine which diseases the patient might have, and
which treatment is appropriate. Similarly, configuration and synthesis systems use
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their stored descriptions of various components, along with the specifications for a
proposed device (VLSI chip, software program, factory, or whatever), to design a
device that satisfies those requirements. Scheduling and planning systems likewise
synthesize schedules sufficient to achieve some specified objective.

In each case, the underlying system must reason — that is, derive conclusions
(e.g., diagnoses, designs, schedules) that are sanctioned by its knowledge. Typically,
an expert first, at “compile time”, provides a corpus of general background facts —
about medicine, or types of components, etc. At “run time”, a user then specifies
the details of a specific situation (e.g., the symptoms of a specific patient, or the
specifications of a particular desired artifact), and then poses some specific questions
(Which disease? What should be connected to what? ...); the reasoning system
then produces appropriate answers, based on its current K B which includes both
the specifics of this problem and the general background knowledge. As there is
a potentially infinite set of possible situations, these conclusions are typically not
explicitly stored in the KB, but instead are computed as needed. This computation
is called “reasoning” (aka “derivation”, “deduction”, “inference”).

In general, we will identify a reasoner with its symbolic knowledge base K B;
the user can pose queries x to that reasoner and receive answers — e.g., that
X is true or not. Section 2 motivates the use of such symbolic knowledge-based
reasoners, and presents broad categories of such systems: logic-based (typically
using Horn clauses) and probabilitic (using Bayesian belief nets). It also argues
that we should evaluate a reasoner based on its facility in answering queries, using
as quality measures: correctness, precision, expressiveness and efficiency.

We clearly prefer a reasoner that always returns all-and-only the correct and
precise answers, immediately, to arbitrary queries. Unfortunately, we will see that
this is not always possible (Section 2.4). Many implemented reasoning systems,
therefore, sacrifice something — correctness, precision or expressiveness — to gain
efficiency. The remainder of this paper presents various approaches: Section 3
(resp., Section 4, Section 5) overviews ways of improving worst-case efficiency by
reducing expressiveness (resp., by allowing imprecise answers, by allowing occasion-
al incorrect responses). Section 6 considers ways of producing (expressive, precise
and correct) systems whose “average-case” efficiency is as high as possible. It also
discusses ways to produce a system with high average performance, where the “per-
formance” measure is a combination of these various criteria. Appendix A provides
additional relevant details about belief nets.

2. SYMBOLIC REASONERS
2.1 Why Symbolic Reasoners?

In general, the user will interact with a knowledge-based symbolic reasoner via two
subroutines: Tell(K B, x) which tells the reasoner to extend its knowledge base
K B to include the new information y; and Ask (K B, x) which asks the reasoner
whether y is true — here the reasoner’s answer will often convey other information
(such as a binding, or a probability value) to the user [Levesque 1984].1

ITo be completely general, we may also have to include routines that retract some assertions, or
in general revise our beliefs [Alchourrén et al. 1985]; we will not consider this issue here.
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The underlying knowledge base is “symbolic”, in that each of its individual com-
ponents, in isolation, has “semantic content” — e.g., the KB may contain state-
ments about the world, perhaps in propositional logic, predicate calculus, or some
probabilistic structure (details below). (This is in contrast to, for example, knowl-
edge encoded as a numeric function, perhaps embodied in a neural net.?)

There are many reasons why such a symbolic encoding is useful:

Explanation: Many systems have to interact with people. It is often crucial that
these systems be able to justify why they produced their answers (in addition, of
course, to supplying the correct answer). Many symbolic reasoners can convey
their decisions, and justifications, to a person using the terms they used for their
computations; as these terms have semantics, they are typically meaningful to
that user.

Construction (as well as debugging and maintaining): As the individual com-
ponents of the system (e.g., rules, random variables, conditional probabilities,

.) are meaningful to people in isolation, it is relatively easy for an expert to
encode the relevant features. This semantics also helps an expert to “debug”,
or update, a problematic knowledge base — here again a domain expert can
examine a single specific component, in isolation, to determine whether it is
appropriate.

Handling partial information — or, not, exists, as well as distributions:
Many formalisms, including both ones that admit explicit reasoning and others,
are capable of dealing with complete knowledge, corresponding to conjuctions
and universally quantified statements — e.g., “gender = female and disease
= meningitis”; or “everyone with meningitis is jaundiced”. In many
situations, however, we may only have partial knowledge: “disease is either
meningitis or hepatitis”;or “some people with meningitis arenot jaundiced”.
Most logics, including any containing propositional logic, can readily express
this information, using disjunction and negation (“or”s and “not”s). Yet more
expressive systems, such as predicate calculus, can also deal with existential-

s. We may also want to explicitly state how confident we are of some claim,
perhaps using probabilities.

2.2 Broad Categories of Reasoning Systems

There are many standard formalisms for encoding semantic information, each with
its associated type of reasoning. This report will consider the following two major
categories.?

1. (Sound and Monotonic) Logical Reasoning: This formalism assumes we
have precise discrete descriptions of objects, and that we expect to obtain precise
categorical answers to the questions posed. In particular, these systems can provide

2Tn some neural net systems, like KBANN [Towell and Shavlik 1993], the nodes do have semantic
content, in that they refer to some event in the real world. The link-weights, however, are not
semantic — their values are set only to provide accurate predictions. In general, there is no way
to determine whether the weight on the A — B link should be 0.7 vs 0.8 vs 0.0001, except in
reference to the other weights, and with respect to some set of specific queries.

3As many readers may not be familiar with the second category. this report will provide more
details here; see also Appendix A.
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assurances that its answers will be “correct” — that is, if you believe the input facts,
then you have to believe the conclusions.

In more detail: This category includes propositional logic and first order logic
(predicate calculus), as well as higher order logics [Genesereth and Nilsson 1987;
Enderton 1972; Chang and Lee 1973]. As an example, a logical system may include
facts like “Any woman of child-bearing age, with a distended abdomen, is
pregnant.”. If we then assert that a particular patient is female, is of the correct
age, and has a distended abdomen, the reasoner can then conclude that she is
pregnant.

This is because the known facts

Vz Woman(z) A CBA(z) A Dis_Abd(z) = Pregnant(z)
Woman (Wilma)

CBA (Wilma)

Dis_Abd (Wilma)

logically entails Pregnant (Wilma), written F |= Pregnant(Wilma). A reasoning
process b, is “correct” (here, aka “sound”) if, for any sets of propositions ® and
b

P, Y = dET

that is, k4 only allows a reasoner to conclude “true” facts.

Typical logic-based systems use a collection of “inference rules” (possibly aug-
mented with rewrite rules) to infer new statements from an existing K B. If each
of these rules is sound (read “truth preserving”), then the resulting extended K B’
will be as correct as the initial K B. In 1965, Robinson [Robinson 1965] proved that
one can word any logical (first order) inference in terms of resolution. The ongoing
challenge has been to find this proof as efficiently as possible — see Section 2.3.4

There are also many systems that use other sound deductive techniques, such
as natural deduction (THINKER [Pelletier 1986], M1ZAR [Rudnicki 1992] and ON-
TIC [McAllester 1989]) and/or equational logic (OTTER [McCune and Wos 1997]).
Note that most of these systems also use resolution, in addition to their more spe-
cialized inference rules. Also, many of these systems are better viewed as “proof-
checkers” rather than “theorem provers”, as their main function is to verify that
a proposed proof is legitimate. Hence, they hope to gain efficiency by sharing the
burden with a (hopefully insightful) person. For brevity, this report will not further
discuss such approaches.

Non-monotonic Logical Reasoning: Standard logical inference is monotonic, in that
new information will never cause the reasoner to retract any conclusion. For exam-
ple, after deriving that “Wilman is pregnant” from our general medical informa-
tion together with information specific to Wilman, finding new information will not
change this conclusion. This is not always appropriate, as subsequent information
can compromise prior conclusions. (Imagine, for example, finding that Wilma had
a hysterectomy.)

4See [Genesereth and Nilsson 1987] for a general discussion of these ideas — inference rules,
soundness, resolution.
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J B H| P(J, B, H)
00 0 | 0.03395

0 0 1 | 0.0095

0 1 0 | 0.0003
01 1 |0.1805
10 0 | 001455
10 1 |0038

11 0 | 0.00045
1110722

Table 1. Joint Probability Distribution

Note that this does not mean the earlier conclusion was inappropriate; given that
earlier store of knowledge, it was probably the correct interpretation. It is useful,
however, to allow the reasoner to change its mind, given new data.

This intuitive concept of “nonmonotonicity” is well-motivated, and seems essen-
tial to common-sense reasoning. Where there is now a vast literature on this topic,
including work on default reasoning [Reiter 1987], circumscription [McCarthy 1980],
autoepistemic logics [Marek and Truszczyriski 1989], as well as many variants (see
also [Bobrow 1980] and [Ginsberg 1987]), it has proven very difficult to provide an
effective implementation.> The major problem is understanding how to represent
and use defeasible statments. That is, while we know how to deal with statement
of the form “All birds fly”, it is not so clear how to deal with the claim that “A
bird, by default, flies”: here, we do want to conclude initially that the bird Tweety
will fly, but then reverse this conclusion later, on finding that Tweety is a penguin,
or has a broken wing, or ...

Fortunately, there are alternative approaches, which have precise definitions as
well as implementations; see the decision-theoretic system mentioned below. This
survey will therefore not further discuss “non-monotonic reasoning” formalisms.

2. Probabilistic Reasoning: Many forms of information are inherently proba-
bilistic — eg, given certain symptoms, we may be 80% confident the patient has
hepatitis, or given some evidence, we may be 10% sure a specific stock will go up
in price.

One possible downside of dealing with probabilities is the amount of information
that has to be encoded: in general one may have to express the entire joint dis-
tribution, which is exponential in the number of features; see Table 1. For many
years, this observation motivated researchers to seek ways to avoid dealing with
probabilities.

In many situations, however, there can be more laconic ways to express such
information, by “factoring” the joint distribution. This has led to “Belief Nets”
(aka “causal nets”, “probability networks”, “Bayesian nets”), which over the last
decade have become the representation of choice for dealing with uncertainty [Pearl
1988; Shafer and Pearl 1990; Charniak 1991].

5The most visible implementation is “Theorist” [Poole et al. 1987], which handles a (useful and
intuitive) subset of default reasoning.
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P(H=1) P(H=0)
@ 0.05 0.95

H P(B=1|H) P(B=0|H) /
1 0.95 0.05
0 0.03 0.97
H B P(J=t|H, B) P(J=0|H, B)
\ 1 1 0.8 0.2
1 0 0.8 0.2
@ 0 1 0.3 0.7
0o 0 0.3 0.7

Fig. 1. Simple (but not minimal) Belief Network

To make this concrete, consider the claims that Hepatitis “causes” Jaundice and
also “causes” a Bloodtest to be positive, in that the chance of these symptoms will
increase if the patient has hepatitis. We can represent this information using the
full joint over these three binary variables (see Table 1 for realistic, if fabricated,
numbers), then use this information to compute, for example, P(h|—b) — the
posterior probability that a patient has hepatitis, given that he has a negative
blood test.® The associated computation,

P(h,2b) (ng{H,B} > wex P(h, b, X:x))
e (ZXE{B} Ywex P(7b, X = x))

involves the standard steps of marginaelization (the summations shown above) to
deal with unspecified values of various symptoms, and conditionalization (the divi-
sion) to compute the conditional probability; see [Feller 1966]. In general, we will
ask for the distribution of the “query variable” (here H) give the evidence specified
by the “evidence variables” (here B = —b).

A Belief Network would represent this as a graphical structure, whose nodes
represent probabilistic variables (such as “Hepatitis”), and whose directed links,
roughly speaking, represent “causal dependencies”, with the understanding that
there should be a directed path from A to B, possibly a direct connection, if knowing
the value of A can help specify the value for B. In particular, each node B has
an associated “Conditional Probability Table” (aka “CPTable”) that specifies the
conditional distribution for B, given every assignment to B’s parents; see Figure 1.

(For general binary-valued variables, the CPtable for a node X with k parents
{¥;}*_, will include 2¥ rows — one for each of the 2¥ possible assignments to ¥ =

P(h|-b) =

(Y1,...,Yr ) — and 2 columns, one for each possible value for X. Here, the (4,5 ) en-
try in this table will specify the conditional probability P(X =i |Y = J') where J'rep-
resents the j** assignment to Y (herej € {(0,...,0,0), (0,...,0,1), ---, (1,...,1)}).

Note the final column of the table is superfluous as each row must add up to 1. Of

SNote we are identifying a node with the associated variable. We will also use lower-case letters
for values of the (upper case) variables; hence H = h means the variable H has the value h. We
will sometimes abbreviate P(H = h) as P(h). Finally, “-h” corresponds to h = 0, and “h” to
h=1.
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course, these ideas generalize to general /-ary variables. There is a similar approach
when dealing with continuous variables [Pearl 1988].)

Notice, however, there is some “redundancy” in the network shown in Figure 1:
given that the patient a has hepatitis, the probability that « has jaundice does
not depend on whether a had a positive blood test — i.e., P(J=1|H=1, B=1) =
0.8 = P(J=1|H=1, B=0) and P(J=1|H=0, B=1) = 0.3 = P(J=1|H=0, B=0). This
means that jaundice is independent of blood test, given hepatitis.

This reduction — called “factoring” — allows us to use a simpler network, shown
in Figure 2.7 These factored representations include only the “relevant” connec-
tions: only include A — B if A can directly influence B. This means the resulting
network typically requires the user to specify fewer links, and fewer parameters
(CPtable entries), and means the inference process (discussed in Appendix A.2)
can generally be performed more efficiently. While the saving here is relatively s-
mall (2 links rather than 3, and a total of 5 parameters, rather than 7), the savings
can be very significant for larger networks. As a real-world example, the com-
plete joint distribution for the Alarm belief net [Beinlich et al. 1989], which has
37 nodes and 47 arcs, would require approximately 107 parameters in the naive
tabular representation — d la Table 1. The actual belief net, however, only in-
cludes 752 parameters.® Essentially all of the ideas expressed in this paper apply
also to related techniques for factoring a distribution; see especially the work on
HMMs [Rabiner and Juang 1986] and Factorial HMMs [Ghahramani and Jordan
1997], and a description of how HMMs are related to belief nets [Smyth et al. 1997].

Of course, not every distribution can be factored. We can still represent a non-
factored distribution using a belief net, albeit one that uses the comprehensive set
of parameters; e.g., 28 — 1 parameters if all k variables are binary. That is, while
a belief net can exploit a factorable distribution, this formalism does not force a
representation to be factored if that is inappropriate.

When we can combine this notion of probability with utility functions (which
specify the “goodness” of the various possible outcomes), the resulting decision-
theoretic system can often address the issues of nonmonontic inference discussed
above. In particular, there is nothing problematic about deciding that actionA is
the “optimal decision, given data 7”, but that actionB (which may “contradict”
actionA) is appropriate given data n+ A. Also, while there are many ways to deal
with uncertainty, etc. — including fuzzy logic, Dempster-Shafer theory of evidence,
and even some forms of Neural Nets — we will focus on systems based on (standard)
notions of probability [Feller 1966].

There are many obvious connections between the logic-based and probability-
based formalisms. For example, an “extension” to a knowledge base KB is a
complete assignment of truth or falsity to each variable, such that the conjunction of

"This figure includes only the P(x = 1| ...) entries; it omits the superfluous P(x = 0] ...)
columns of the CPtables, as these values are always just 1 — P(x = 1] ...).

8There are other tricks, such as “NoisyOr” representation, that can further reduce the number
of parameters required [Pearl 1988]. For example, the well-known CPCS belief net would require
133,931,430 parameters if dealing with explicit CPtables. (Note this is still a huge savings over
its unfactored table-form.) By using NoisyOr and NoisyMax’s, however, this network can be
represented using only 8,254 parameters [Pradhan et al. 1994].
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P(H=1)
0.05
H P(B=1|H) /
1 0.95
0 0.03

H P(J=1|H)
1 0.8
@ 0 0.3
Fig. 2. Corresponding, but minimal, Belief Network

these literals entails K B. (Hence, the assignment {—A, B, C, =D} is an extension
of the theory KBy = {4 = B, CV D}, as A ABANCA-D [ KBy.) We
can in general view the possible extensions of a knowledge base as a “qualitative”
version of the atomic events (see Table 1), with the understanding that each of
these “possible words” has a non-0 probability, while each of the remaining possible
“complete assignments” (e.g., {A, =B, —=C, —D}) has probability 0 of occurring.
Many, including Nilsson [Nilsson 1986], have provided formalisms that attempt to
link these areas.

Note that the standard models of probability — and hence, Belief Nets — can be
viewed as a natural extension of propositional logic, as the fundamental unit being
considered is a proposition (e.g., the particular subject is female, or is pregnant).
Predicate calculus is more general than propositional logic, as its basic unit is an
individual, which may have certain properties (e.g., perhaps the individual Mary
has the property female, but not the property pregnant). There are several groups
actively trying to extend probabilities to be more expressive; see [Halpern 1990],
[Ngo and Haddawy 1995], [Bacchus et al. 1996], [Koller et al. 1997; Koller and
Pfeffer 1997], [Poole 1993b]. That fascinating work is beyond the scope of this
survey.

For more information about belief nets, see [Pearl 1988], or
http://www.cs.ualberta.ca/~greiner/bn.html.

2.3 Challenges of Reasoning

A reasoning system must address (at least) the following two challenges: First,
the system must somehow contain the relevant knowledge. There are two standard
approaches to acquiring the information:

knowledge acquisition: acquire the relevant information by interviewing one or
more human domain experts; see [Scott et al. 1991] for standard protocols and
interviewing techniques.

learning: gather the required information from “training data” — information
that typically specifies a set of situations, each coupled with the correct re-
sponse [Mitchell 1997].

or, quite often, a combination of both [Webb et al. 1999].
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In any case, the system builder must ensure that the language used to encode the
information is sufficient; e.g., if the color of an object is important (e.g., to making
some decision), then the language must include something like a “color0f (-, -)”
predicate. Even after deciding what to represent (i.e., the relevant ontology), the
designer must also decide how to represent this information — e.g., “color0f (-,
red)” vs “red(-)”. There have been some efforts to streamline this process, and to
standardize the relevant components; see the KIF project, with its advocates [Neches
et al. 1991; Genesereth and Fikes 1992] and opponents [Ginsberg 1991]. There
are also more fundamental encoding issues, such as the decision to represent the
world using a conjunction of propositions (i.e., a knowledge base), as opposed to an
equivalent set (disjunction) of characteristic models; see [Kautz et al. 1993; Khardon
and Roth 1994]. (This is related to the dual representations of a waveform: “time
domain” vs “frequency domain” [Bracewell 1978].)

The first issue (“what to represent”) is clearly crucial: if the designer produces a
representation that cannot express some critical aspect of the domain, the reasoner
will be unable to provide effective answers to some questions. The reprocussions
of not adequately dealing with the other issue (e.g., using the time domain, rather
than frequency; or vice versa) are not as severe, as everything that can be expressed
one way can be expressed in the other. However, the different representations may
differ in terms of their “naturalness” (i.e., people may find one more natural than
another), and “efficiency”.

In this report, however, we assume that the available information (both general
and situation specific knowledge) is sufficient to reach the appropriate conclusion
— although it may not be obvious how to reach (or even approximate) that conclu-
sion; see below. As such, we will not directly consider the issues of learning domain
knowledge,® nor will we explicitly consider the related challenges of maintaining
and updating this knowledge. This survey, instead, focuses on the second ma-
jor challenge: efficiently producing all-and-only the correct answers to all relevant
queries.

2.4 Quality Measures

We would like a reasoning system that is

correct: always returns the correct answer

precise: always returns the most specific answer

expressive: allows us to express any possible piece of information, and
ask any possible question

efficient: returns those answers quickly.

see [Greiner and Elkan 1991; Doyle and Patil 1991].

Unfortunately, this is impossible: first order logic is not decidable. In particular,
no “sound” and “complete” (read “correct and precise”) reasoning system can be
decidable for a representation as expressive as arithmetic [Nagel and Newman 1958;
Turing 1936]!

There are also hardness results for less expressive systems: e.g., general proposi-

9 Although we will later briefly consider learning control knowledge; see Section 6.1.
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tional reasoning is N P-complete [Garey and Johnson 1979] (in fact, # P-hard [Valiant
1979]), as is probabilistic reasoning in the context of Belief Nets [Cooper 1990].
Moreover, even getting approximate answers from a belief net, within an additive
factor of 1/2, is NP-hard [Dagum and Luby 1993], as is getting answers that are
within a multiplicative factor of 2*'* for any € > 0 [Roth 1996].

We can view this as general property of reasoning;:

Fundamental Tradeoff: The worst-case run-time efficiency of any
correct-and-precise reasoning process increases monotonically with the ex-
pressiveness of the reasoner’s language.

Any system that wants to guarantee efficient reasoning must therefore sacri-
fice something — expressiveness, precision or correctness. The next three sections
consider the possibility of improving the worst-case efficiency by (resp.) reduc-
ing expressiveness, allowing imprecise answers, and allowing occasional incorrect
responses; Section 6 then considers producing (expressive, precise and correct) sys-
tems whose “average-case” efficiency is as high as possible. Of course, complete
precision may be overkill for some tasks; e.g., to decide on our next action, we may
just need to know whether or not P(cancer) > 0.5; here additional precision will
not be additionally useful. In general, we can identify each task with a perfor-
mance criteria, then evaluate a reasoning system based on this criteria. Section 6.3
addresses this range of issues.

3. IMPROVING WORST-CASE EFFICIENCY BY REDUCING EXPRESSIVENESS

This section discusses reasoning systems that reduce expressiveness to obtain guar-
antees of efficient performance.

Less Expressive Logic-Based Reasoners: Standard “database management
sytems” (DBMS) are very inexpressive, as they allow only conjunctions of pos-
itive ground atomic literals [van der Lans 1989]. These systems do allow user-
s to state “McD makes FrenchFries” and “Army makes Tanks”, and to answer
questions that correspond to existentially quantified boolean combinations of such
atomic literals. However, they do not allow the user to explicitly state claims of the
form “McD makes either FrenchFries or Tanks”, “McD makes something” nor
“McD does not make Tanks” — that is, typical DBMS do not allow disjunctions,
negations, or existentials [Reiter 1978a]. The upside is that database “reasoning”
(i.e., answering standard SQL queries) is efficient — at worse linear (in the size of
the database).

Two comments are relevant here: First, linear efficiency may seem optimal, as it
takes this much time simply to input the information. However, a clever reasoning
system may be able to do better at query (run) time (i.e., in the Ask routine), if
it has first done some appropriate work when the information was asserted (i.e., at
“compile time”), via Tell. As an extreme, imagine a DBMS that explicitly stores
the answers to all allowed queries, after all assertions have been entered; given a
sufficiently narrow space of possible queries and a sufficiently good indexing scheme,
a reasoner could answer queries in time considerably less than O(n) — this can be
extremely important in practice, as linear complexity might still be too expensive
for large databases. We will later return to the general issue of when to perform
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Fig. 3. Complexity Cliff (taken from Figure 5.3 of [Poole et al. 1998])

inference (Section 6.1).

Second, many database systems embody implicit assumptions that extend the
set, of queries that can be answered categorically. In particular, the “Closed World
Assumption” allows a DBMS to conclude that “McD does not make Tanks” from
a database that does not explicitly include the assertion “McD makes Tanks” [Re-
iter 1978b]; this is a special case of the “Negation As Failure” policy of many logic
programs [Clark 1978]. The “Unique Names Assumption” allows a DBMS to con-
clude that “McD makes (at least) two products” from a database that includes
“McD makes Hamburgers” and “McD makes FrenchFries” [Reiter 1980] as this as-
sumption allows us to conclude that Hamburgers#FrenchFries from the fact that
their names are distinct; !0 see also [Reiter 1987]. Note that these assumptions
extend the set of queries that can be answered; they do not extend the information
that the user can express, as (generally) the user does not have the option of not
expressing these assertions.

“Semantic Nets” and “Frame-based Systems” are alternative artificial intelligence
representation formalisms. In hindsight, we can view much of the research in these
areas as guided by the objective of producing an efficient, if inexpressive, reasoning
system [Findler 1979]. These systems in general allows only conjunctions of atom-

10Note that this claim is not always true: E.g., “2+2” and “4” are the same, even though they
have different names; similarly both “Professor Greiner” and “Russ” refer to the same thing;
as do “MorningStar” and “EveningStar” [McCarthy 1977]. Hence, if there are k entries of the
form McD makes z;, the Closed World Assumption allows a reasoner to conclude that McDonalds
makes at most k items, and the Unique Names Assumption, that McDonalds makes at least k
items.
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A |[<— Green

C |<— Red

Fig. 4. Reasoning by Cases

ic unary- or binary- literals, as well as certain subclasses of simple 1-antecedent
rules using such literals. The more recent work on “Terminological Logics” (aka
“Description Logics”) is explicitly trying to formalize, and extend, such system-
s, towards producing a system whose language is as expressive as possible, with
the constraint that its worst time capacity must remain polynomial [Donini et al.
1997]. This relates to the notion of “complexity cliffs” [Levesque and Brachman
1985; Levesque 1984]: one can keep increasing the expressiveness of a language (by
adding new “logical connectives”, or increasing the number of disjuncts allowed per
clause, etc.) and retain worst-case polynomial complexity, until reaching a cliff —
one more extension produces a system in which inference is N P-hard. Then one
can add a set of additional connectives, etc., until reaching the next cliff, where the
complete system goes from decidable (if NP-hard) to undecidable. See Figure 3

As mentioned above, resolution is sufficient to answer any logic-based query.
PROLOG is a specific embodiment of the “resolution” derivation process, which is
honed to deal with a certain class of knowledge bases and queries. In particular
ProLOG deals only with “Horn clauses” — i.e., knowledge bases that can be ex-
pressed as conjunctions of disjunctions, where each disjunction includes at most
one positive literal [Clocksin and Mellish 1981]. To motivate this restrictions, note
that, while propositional reasoning is N P-hard, there is a linear time algorithm for
answering queries from a Horn database [Dowling and Gallier 1984].'! In exchange
for this potentially exponential speed-up, however, there are statements that can-
not be expressed in PROLOG — in particular, one cannot state arbitrary disjuncts,
e.g., that “Patient7 has either Hepatitis or Meningitis”. Moreover, PRO-
LOG cannot prove that a (existentially quantified) query is entailed unless there is
a specific instantiation of the variables that is entailed. Note this is not always the
case: consider a tower of 3 blocks, with the green-colored block A immediately above
B, and B immediately above the red-colored block C; see Figure 4. Now observe that
the answer to the question: “Is there a green block immediately above a non-green
block?” is yes, as this holds whether B is green (and hence the green B is above
the non-green C) or B is not green (and hence the green A is above the non-green
B) [Moore 1982]. Fortunately, in practice, these limitations are not that severe —
very few standard tasks require such “reasoning by cases” and implicitly-specificed
answers.!2

1 Moreover, PROLOG uses a type of “ordered resolution”; ordered resolution is refutation com-
plete for Horn clauses [Genesereth and Nilsson 1987]. Also, [Boros et al. 1990] and [Dalal and
Etherington 1992b] provide yet other syntactic situations for which reasoning is guaranteed to be
efficient.

12 Also, as PROLOG does not perform an “occurscheck”, it is not sound — i.e., it can return
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Fig. 5. Example of “Naive Bayes” Structure

There are also constaint programming systems [Freuder 1996] that attempt to
accomodate a larger subset of clauses — of course, such systems cannot provide the
efficiency guarantees that a Horn-clause system can.

Less Expressive Belief Nets, Probabilistic Queries: We now consider the
work on probabilities and belief nets, focusing on the “belief updating” task: i.e.,
computing P(H = h|E; = ey, ..., B = en ), the posterior probability that the
hypothesis variable H has value h, conditioned on some concrete evidence, of the
form Cough = true, Temp = 1007, ....13

We note first that there are efficient inference processes associated with certain
types of structures, and for certain types of queries. Inference is trivial for “naive-
bayes” classifiers, of the form shown in Figure 5. These n + 1-node belief nets were
motivated by the task of classification: i.e., assigning a “classification label” to an
instance, specified by a set of (up to n) attribute values. Each such net includes
one node to represent the “classification”, which is the (only) parent of all of the
other nodes (the “attributes”). While inference is guaranteed to be fast O(r) (where
r < n is the number of specified attributes; e.g., P(H = 1|01 = 01,..., O, = 0,)),
these systems cannot express any general dependencies between the attributes, as
its structure forces P(O =14|0;,H) = P(O =i |H) for all i # j.

There are also efficient algorithms for inference in the more general class of “poly
trees” — i.e., belief nets that include at most a single (undirected) path connect-
ing any pair of nodes [Pearl 1988]; see Appendix A.1. Notice this class strictly
generalizes tree structures (and a fortiori, naive-bayes structures) by ignoring the
directions of the arrows, and by allowing more complex structures (e.g., allowing
multiple root nodes, longer paths, etc.). However, these are still many dependencies
that cannot be expressed.

Friedman, Geiger and Goldschmidt [Friedman et al. 1997] combine the ideas of
naive-bayes and poly-tree structures, to produce “Tree Augmented Bayesian net”
or TAN, structures, that are typically used to classify unlabled instances. These
structures resemble naive-bayes trees, but allow certain dependencies between the
children (read “attributes”). To define these TAN structures: (1) There is a link
from the single classification node down to every other “attribute” node. (2) Let

an answer that is not correct. This too is for efficiency, as it means the unification procedure,
running in the innermost loop, is O(k), rather than O(k?), where k is the size of the largest
literal [Genesereth and Nilsson 1987]. PROLOG also includes some “impurities”, such as negation-
as-failure “not(-)” and cut “!”.

13Many other standard tasks — such as computing the mazimum a posteriori assignment to the
variables given some concrete evidence — require similar algorithms, and have similar computa-
tional complexity [Dechter 1998; Abdelbar and Hedetniemi 1998].
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Age .
Insulin

Fig. 6. A TAN model: dashed lines are from naive bayes; solid lines express correlation between
attributes (taken from Figure 3 of [Friedman et al. 1997])

BN' be the structure obtained by removing these classification-to-attribute links
from the initial TANetwork. This BN’ then is a poly-tree. See Figure 6.14

We close our comments about efficient structures with a few quick comments:
(1) All three of these classes (naive bayes, poly-tree, and TANetworks) can be
learned efficiently [Chow and Lui 1968], as well as admiting efficient reasoning.
(This is a coincidence, as there are classes of networks that admit efficient inference
but are hard to learn, and vice versa.) (2) Many system designers, as well as learning
algorithms [Singh 1998; Sarkar and Murthy 1996] use the heuristic that “networks
with fewer arcs tend to be more efficient”, as an argument for seeking networks
with fewer connections.!® Of course, belief net inference can be NP-complete even
if no node in the network has more than 3 parents [Cooper 1990]. (3) There are
also efficient algorithms for reasoning from some other simple structures, such as
“similarity networks” [Heckerman 1991].

These positive results deal with general queries, where only a subset of the pos-
sible conditioning variables have been set. There are also efficient ways to compute
P(H|E; =e1,...,En = ey) from any belief net, provided the evidence set {E;}
is comprehensive — i.e., includes all variables, or all variables other than H. Ac-
tually, it is easy to compute P(H |Ey = e1,...,Epn = ep, ), from a general belief
net, if the evidence {E;} includes of H’s parents and none of H’s descendents; or
if {E;} includes H’s “Markov blanket”: that is, all of H’s parents, H’s children
and H’s “co-parents” (all of the non-H immediate parents of all of H’s immediate
children — e.g., refering to Figure 6, C and Pregnant are co-parents of Age; and C
and Age are co-parents of Insulin).

By contrast, the most efficient known algorithms for answering general queries
from general belief nets are exponential. The algorithms based on “junction tree”

14Ty see why there is an efficient inference algorithm, just observe that a TAN structure has a
single node cut-set; see Appendix A.2.2.

15Note this point is orthogonal to the goal of learning more accurate networks by using a regu-
larizing term to avoid overfitting [Heckerman 1995].
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(aka clique-tree — cf., bucket elimination [Dechter 1998]) are exponential in the
network’s “induced tree width” — a measure of the topology of the network [Arn-
borg 1985]. Another class of algorithms is based on “cut set elimination”. Here,
the complexity is exponential in the “min cut” (for d-separation) of the network.
Appendix A.2 provides a quick summary of the major algorithms for computing
posterior probabilities using a belief net.

Summary: This section has considered several types of reasoners; each always
produces correct and precise answers, over the situations it can accomodate: that
is, if you can state the appropriate facts, and pose the appropriate question, then
the system will produce all-and-only the correct answers, efficiently. There are,
however, limitations on what can be stated and/or asked.

The next sections present other reasoners that attempt to remain as expressive
as possible, but hope to gain efficiency by being imprecise or occasionally incorrect,
etc.

4. IMPROVING WORST-CASE EFFICIENCY BY ALLOWING VAGUE ANSWERS

In general, a reasoning algorithm produces an answer to each given query. This
answer is correct if it follows from the given knowledge base. Note that a correct
answer can still be vague or imprecise. For example, given P(Hep | Jaundice) =
0.032, the answer “P(Hep|Jaundice) € [0, 0.1]” is correct, but less precise. At
the extreme, the answer “P(Hep|Jaundice) € [0, 1]”, while so vague as to be
useless, is not wrong. Similarly, answering a propositional query with “IDK” (for
“I don’t know”) is not incorrect; this vague answer is, in many situations, better
than arbitrarily guessing (say) “No”. As a less extreme situation, a system may
that answers the question “What is the disease?” with “a bacteria” is correct,
but less precise than stating “enterobactericaiea”; similarly a correct (if vague)
answer to “Who are the Stan’s uncles?” could be “7 adult men, all living
in Kansas”;or perhaps “at least 2 adult men, and at least one livingoutside
California”; etc.

Precision, like correctness, is relative to a given knowledge base. For exam-
ple, stating that “Fido IsA Dog” is precise if that is all that the K B sanctions.
However, this answer is imprecise with respect to a more specific KB that en-
tails “Fido IsA Chihuahua”. This is especially true for systems that deal with
“qualitative reasoning” [Weld and de Kleer 1990] or “qualitative belief nets” [Well-
man 1990]. In general, we say an answer is precise (with respect to a knowledge
base KB and query) if it is as specific as possible; and otherwise is considered
imprecise (or vague, approximate). Note that this issue of precision is orthogo-
nal to correctness — an answer can be precise, but wrong; e.g., imagine stating
P(Hep|Jaundice) = 0.8 when it is actually 0.7. Of course, in some situations
(correct but) vague answers may be sufficient — e.g., you may only need to know
whether P(StockX goes up|---) > 0.5 to decide on your next action; Section 6.3
explores this topic. In this section, we will consider reasoners that always return
correct, but perhaps vague, answers.

To state this more precisely: In general, let a be an answer to the query ¢; in
the predicate calculus situation, this may correspond to ¢[g] for some binding 3, or
perhaps ¢[B1]& - - - &¢[By] if the user was seeking all answers. In the probabilistic
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Fig. 7. Flow Diagram of PS(S, W) addressing & |=° 7

case, where ¢ is P(A| B), a could be the “P(A|B) =0.4" or “P(A|B) € [0,0.5]”.
Assume the correct, precise answer for the query ¢ is ¢*; this means know that
KB |= ¢*. The answer « is correct, but not necessarily precise, if = ¢* = «
(where a must also satisfy some syntactic requirements, to insure that it relates
to the ¢ query).' We view IDK as the tautology “true or false”; notice this
answer is always correct. We can also consider a relative measure of precision,
saying that a; is more precise than as if | a2 = ai; in fact, this induces a
partial ordering. Note finally that a correct answer « is considered precise if also
= o= p*.

Imprecise Logical Reasoners: Many imprecise reasoners work by removing some
(hopefully inconsequential) distinction from the knowledge base and the query, in
order to simplify the reasoning process. This has lead to the large body of work on
approzimation, often coupled with the related notion of abstraction [AAAI 1992;
Ellman 1993; Sacerdoti 1973].

One specific example is a “Horn Approximation” reasoner [Selman and Kautz
1996]. These systems are motivated by the observation that, while inference from a
general propositional theory is NV P-hard, there are efficient algorithms for reasoning
from a Horn theory. Now note that we can always bound a non-Horn theory X by
a pair of Horn theories (S, W). (E.g., given ¥ = {aV b, bV}, S ={a,-bVc}
is a “stronger (Horn) theory” while W = {=bV ¢} is a “weaker (Horn) theory”.)
The reasoner, called PS(S,W) in Figure 7, can use this pair (S,W) — called a
“Horn approximation to ¥£” — to answer ¥ =7 7: It first asks whether W |7 7,
and returns “Yes” if that query succeeds. Otherwise, it asks whether S 7 T,
and returns “No” if that query fails. If neither test produces the definitive answer
(i.e., if W £ 7 and S |= 7), the reasoner simply returns the imprecise “IDK”;
see Figure 7.17 Note that the answers are always correct (e.g., W | 7 implies
Y | 7 and S £ 7 implies ¥ [~ 7); but they are not always as precise as the
answers that would arise from the original ¥. (That is, if W £ 7 and S | 7,

16Technically, we should write KB~ |= ¢* = a where KB~ contains the information required
to connect the notation in ¢* to a; e.g., to prove that A = 0.3 implies A € [0, 0.4].

17Dalal and Etherington [Dalal and Etherington 1992a] discuss various extensions to this frame-
work.



Efficient Reasoning . 17

then ¥ = 7 would return a categorical answer, but PS(S, W) does not.) There are
many challenges here — e.g., there are many “maximal” strengthenings (which are
N P-hard to find), and the optimal weakening can be exponentially larger than the
initial theory. Section 6 below discusses an approach to address these issues.

We can also consider stochastic algorithms here. One recent, prominent example
is the GSAT algorithm [Selman et al. 1992], which attempts to solve satisfiability
problems by hill-climbing and plateau-walking in the space of assignments, starting
from a random initial assignment. That is, the score of an assignment, for a fixed
SAT formula with m clauses'®, is the number of clauses that are satisfied; note
this score ranges from 0 to m. At each stage, given a current assignment, GSAT
sequentially considers changing each individual variable of that assignment. It then
“climbs” to the new assignment with the highest score, and recurs. Here, if GSAT
finds an satisfying assignment (i.e., an assignment with the score of m), it correctly
reports that the problem has a solution. As GSAT is unable to determine if the
SAT instance has no solution, it will terminate after some number of iterations
and random walks and return the inconclusive “I don’t know”. As such, GSAT is
a “LasVegas algorithm” [Hoos and Stutzle 1998], which knows when it knows the
answer, and so only returns the correct answer, or is silent.

It is worth commenting that, despite its inherent incompleteness, GSAT has
proven extremely useful — being able to solve problems that no other current
algorithm can solve. It, and related ideas, have since been used, very successfully,
in planning research [Kautz and Selman 1996].

Imprecise Probabilistic Reasoners: As mentioned above, a probabilistic rea-
soner that returns only P(Hep| Jaundice) € [0, 0.10], when the correct answer is
P(Hep|Jaundice) = 0.032, is correct, but imprecise. Unfortunately, for a given
belief net, even finding approximately correct answer is hard; e.g., as noted above,
getting an answer within an additive factor of 1/2, is NP-hard [Dagum and Luby
1993], as is getting answers that are within a multiplicative factor of 27" ™" for any
€ > 0 [Roth 1996].

There are, however, many systems that address this approximation task. Here
we include algorithms that return answers that are guaranteed to be under-bounds,
or over-bounds, of the correct value, as we view an underbound of p as meaning
the answer is guanteed to be in the interval [p, 1]; and an overbound of ¢ means it
isin [0, q].

Many approximation techniques are best described relative to the algorithm used
to perform exact probabilistic inference, in general. (1) In [Dechter and Rish 1997],
Dechter and Rish modify their Bucket Elimination algorithm (see Appendix A.2.1)
to provide an approximate answer; they replace each bucket’s function with a set
of “smaller” functions that each include only a subset of the functions associated
with each variable. Those results hold for discrete variables. Jaakkola and Jor-
dan [Jaakkola and Jordan 1996a; Jaakkola and Jordan 1996b] use a similar idea
for continuous (Gaussian) variables: their algorithm sequentially removes each u-
nassigned variable, replacing it with an approximation function that computes an

18Fach such formula is a specific conjunction of m clauses, where each clause is a disjunction of
literals, where each literal is either a boolean variable or its negation [Garey and Johnson 1979].
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under-bound (resp., over-bound) to the correct function.

(2) Horvitz and others have similarly “tweaked” the idea of context of cut-set
conditioning (see Appendix A.2.2): Rather than consider all values of the cut-set
variables, they get an approximation that is guaranteed to be within an additive
factor of € away from the correct value by summing over only those values whose
probability mass collectively exceeds 1 — ¢; see [Horvitz et al. 1989)].

Other approaches work by removing some aspect of the belief net — either node,
or arc, or values of a variable. The LPE (Localized Partial Evaluation) algorithm
[Draper and Hanks 1994] maintains and propagates intervals during the inference
process, and so can compute a range for the posterior probability of interest. LPE
can disregard a variable (perhaps because it appears distant from the query nodes,
or seems relatively irrelevant) by setting its value to [0,1]. (In practice, this means
the inference algorithm has fewer nodes to consider, and so typically is faster.) See
also the work by Srinivas [Srinivas 1994] and Mengshoel and Wilkins [Mengshoel
and Wilkins 1997], who also consider removing some nodes from networks, to reduce
the complexity of the computation.

Others attempt to reduce complexity by removing some arcs from a network.
In particular, Kjaerulff [Kjeerulff 1994] proposes some heuristics that suggest which
arcs should be removed, with respect to the clique-tree algorithm; see Appendix A.2.1.
Van Engelen [van Engelen 1997] extends this idea by providing an algorithm that
applies to arbitrary inference algorithms (not just the clique-tree approach) and
also allows, in some cases, many arcs to be removed at once. He also bounds the
error |Pn, sn,(H|E) — P(H|E)| obtained by using By, 4w, rather than (the
correct) B to compute this conditional proability. (Here, Bn, s, is the network
obtained by removing the N, — N, arc from the network B, Pn, sn,( H | E) is the
probability value returned by this network, and P( H | E) is the result obtained by
the original network.)

The Wellman and Liu approximation algorithm [Liu and Wellman 1997; Wellman
1994] leaves the structure of the belief net unaffected; it reduces the complexity
of inference by instead abstracting the state of some individual variables — e.g.,
changing a variable that ranges over 10 states to one that only ranges over (say) 4
values, by partitioning the set of values of the original variable into a smaller set of
subsets.

A related approach reduces the complexity of inference by disregarding values of
variables which are relatively unlikely [Poole 1993a]. This reduction is especially
large when the relevant variable(s) occur early in a topological ordering used by
the reasoner; e.g., when each variable occurs before all of its children.

Recently, Dagum and Luby [Dagum and Luby 1997] proved that networks with-
out extreme values can be approximated efficiently. They begin with the obser-
vation that the hardness proofs for approximation tasks all involve CPtables that
include Os and 1s — which, in essence, means the network is being used to do
something like logical inference. In general, if all of the values of the CPtables are
bounded away from 0 (i.e., if all entries are greater than some A > 0), then there
is a sub-exponential time algorithm for computing a value that is guaranteed to
be within a (bounded) multiplicative factor of optimal — i.e., an algorithm that
returns an answer 9 such that (1 —€)v < 9 < (1 + €)v where v is the correct
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answer and € is a parameter supplied by the user, in time O(poly(1/¢) 20" ”)O(d))
where d is the “depth” of belief net and n is number of nodes.

Comments: There are two obvious ways an approximate reasoner can interact
with the user: First, the user can set some precision bounds, and expect the reasoner
to return an answer that satisfies this requirement — although perhaps the reasoner
will “charge” the user for this, by requiring more time to return an answer that is
more precise. Of the results shown above, only Dagum /Luby has this property. The
others, instead, all return both an answer and the bounds, where the bounds specify
how precise that answer is. If the resulting answer/bounds are not sufficient, the
user can often adjust some parameters, to get another answer/bound pair, where
the precision (read “bound”) is presumably better.

Note that all of these systems improve the efficiency of the underlying computa-
tion, but produce an answer that is an only an approximation to the correct value.
There are also a body of tricks that can sometimes reduce the average complexity
of answering a query, but at no degradation of precision; we mention some such
tricks in Section 6.

5. IMPROVING WORST-CASE EFFICIENCY BY ALLOWING INCORRECT RESPONSES

Of course, not all reasoners provide answers that are always correct; some may oc-
casionally return erroneous answers. We can evaluate such not-always-correct rea-
soners R using a distance measure d(a,, R(q)) € R2° that computes the distance
between the correct answer a, to the query ¢ and the response that R returned R(q).
(Note this d(a, b) function could be 1 iff a # b, or 0 otherwise; such a function just
determines whether R returned the correct answer or not.) R’s “worst-case” score
will be largest such value over all queries ¢, max,{d(aq, R(¢g))}; and its “average
score” is the expected value, Ey[d(aq, R(q))] = >_, P(“q” asked) x d(aq, R(q) ),
over the queries encountered. To evaluate a stochastic reasoner, we also average
over the answers returned for any setting of the random bits.

We will sub-divide these not-correct (aka “unsound”) systems into two groups:
those which are deterministic (each time a query is posed, it returns the same
possibly-incorrect answer) versus those which are stochastic — and may return
different answers to same query, on different calls.

As one example of a well-motivated deterministic unsound algorithms, consider
anytime algorithms [Zilberstein 1993; Zilberstein 1996]: While addressing a specific
problem, these systems are required to produce an answer whenever requested, even
before the system has run to completion. (Note this is appropriate if the reasoner
really has to return an answer, to decide on some action before a hard deadline. Of
course, “no action” is also a decision.) Here, these systems may have to guess, if
they have not yet computed the appropriate answer. As another example, consider
the variant of Horn approximation (see Figure 7) that returns Yes, rather than
IDK, if the definitive tests both fail.

We will, however, focus on stochastic algorithms, where the reasoner uses some
source of random bits during its computation.

Stochastic Logical-Reasoning Algorithms: As one obvious example, we can
motify GSAT to return “NOT-satisfiable” (rather than “IDK”) if no satisfying
assignment is found. Once again, this is not necessarily correct. If this algorithm
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LOGICSAMPLE(BN, X, E = &)
% Returns estimate P(X = z; | E = &) of P(X | E = &), from belief net BN

LetM := 0
For all z; in Dom(X) Letm; := 0
Do until done: % based on # of samples, or some threshold, or ...

r = GETRANDOM(BN)
Ifr[E] =& thenM += 1
If r[X] = 2; and r[E] = &, thenm; += 1
Return (m;/M); % as estimates of P(X = z; | E = &) for each z; € Dom(X)

GETRANDOM(BN)
% Returns random instance ¥ from BN, which maps each node in N to
% a value in its domain
For each root node T € N/
Draw t from Dom(T) with prob Pen (T =t;)
Set T-"[T] = ti
For each remaining node W (in order satisfying DAG-structure)
After finding values for all W’s parents U; = wu1,...,Ur = ug,
Draw w; from Dom(W) with prob Pex (W = w; |U = @)
Set W] := w;
Return 7

Fig. 8. Logical Sampling

has performed a sufficient number of restarts, however, we can still be confident
that “NOT-satisfiable” is correct.

Stochastic Probabilistic-Reasoning Algorithms: There is a huge inventory of
algorithms that stochastically evaluate a belief net. The simplest such algorithm,
“Logic Sampling”, appears in Figure 8. This algorithm simply draws a number of
samples (from the distribution associated with the belief net), and computes the
empirical estimate of the query variable: of the times that the conditioning event
E = & occured (over the instances generated), how often was X equal to z;, for
each z; is X’s domain.

This algorithm uses GETRANDOM(BN). To explain how this subroutine works,
consider the BNw g network shown in Figure 9. Here, GETRANDOM(BNwyg)
would ...

[43 2 . . :
’ -
(1) Get a value for “Cloudy”, by  Flipping 0.5-coin
Assume flip returns “Cloudy = True”
(2) Get a value for “Sprinkler”, by  Flipping 0.1-coin
(as Cloudy = True, P(S|C=T) =0.1)
Assume flip returns “Sprinker = False”
(3) Get a value for “Rain”, by  Flipping 0.8-coin
(as Cloudy = True, P(R|C=T) = 0.8)
Assume flip returns “Rain = True”
(4) Get a value for “WetGrass”, by  Flipping 0.9-coin
(as Sprinkler = F, Rain = T, P(W|—S, R) =0.9)
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Fig. 9. Simple Belief Net BNy ¢ (taken from Figure 15.9 of [Russell and Norvig, 1995])

Assume flip returns “WetGrass = True”

Here, GETRANDOM(BNw ) would return the instance
(Cloudy = True, Sprinker = False, Rain = True, WetGrass = True).

On other calls, GETRANDOM(BNyy ) would see different results of the coin-flips,
and so return other instances.

Note that the LOGICSAMPLE algorithm will, in essense, ignore an instance 7 if
7[E] # €. (Here 7[E] corresponds to the tuple of the values of the variables in E).
This is clearly inefficient, especially if E = ¢is a rare event.

The LWSAMPLE algorithm (for Likelihood Weighted Sampling), shown in Fig-
ure 10, avoids this problem: The routine it uses to generate samples GETLWRANDOM(-)
is similar to GETRANDOM(-), except that it insists that each generated instance 7
has 7[F;] = e; for each evidence variable F;. However, while GETRANDOM(BNw¢g)
gave each instance a score of 1 (i.e., observe the M += 1 and m; += 1 in Figure 8),
the new GETLWRANDOM(BN, E = &) routine will instead use a “weight” of
p= P E =e¢ | U, = ), where U, are E;'s parents, and 4; is the current assig-
ment to U'z

For example, to estimate P(WetGrass|Rain), from BNy (Figure 9), the asso-
ciated GETLWSAMPLE would. ..

(1) Get a value for “Cloudy”, by  Flipping 0.5-coin

Assume flip returned “Cloudy = False”
(2) Get a value for “Sprinkler”, by  Flipping 0.5-coin

(as Cloudy = False, P(S|C=T) = 0.5)

Assume flip returned “Sprinker = True”
(3) Now for “Rain”

Note that this is an evidence variable; so set it to the required value, True.
As Cloudy = False, P(R|C=F) =10.2

So this “run” counts as p = 0.2
(4) Get a value for “WetGrass”, by  Flipping 0.99-coin

(as Sprinkler = T, Rain = T, P(W|S, R) = 0.99)
Assume flip returned “WetGrass = True”
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LWSAMPLE(BN, X, E =¢&)

LetM := 0
For all z; in Dom(X) Letm;:= 0
Do until done: % based on # of samples, or some threshold, or ...

(7, p) := GETLWSAMPLE(BN, E = &)
% 7 is a “random” instance from BN s.t. FlE] = &
% p is [1 , P(Bi = e |U = lil])
% where U; are E;’s parents, and 73] is 7’s assignment to U;.
M+=1p
If X=ux; thenm; +=p
Return (m;/M ); % as estimates of P(X = z; | E = &) for each z; € Dom(X)

Fig. 10. Likelihood Weighted Sampling

Here, the associated tuple is
(Cloudy = False, Sprinker = True, Rain = True, WetGrass = True)

and the probability is p = 0.2; LWSAMPLE would therefore increment both M and
mwag=T by 0.2.

There are many other stochastic algorithms that have been used for belief net
inference — e.g., based on Importance Sampling, Monte Carlo sampling [Pradhan
and Dagum 1996], etc. — as well as algorithms that combine stochastic algorithms
for some parts, with exact reasoning for other nodes. Many of these are described
in [Cousins et al. 1993].

Note, however, that adding “randomness” does not seem to help, in the worst-
case, as it is probably hard to find answers that are, with high probability, approx-
imate correct: no polynomial-time algorithm can generate randomized approxima-
tions of the probability P(X = z | E = e) with absolute error € < 1/2 and failure
probability 6 < 1/2, unless NP C RP [Dagum and Luby 1993].

6. IMPROVING AVERAGE EFFICIENCY

Note that the specific hardness results mentioned above are “worst case” — i.e.,
there is a parameterized class of decision problems that exhibits this exponential
scaling [Garey and Johnson 1979]. What if these particular problematic problems
are not actually encountered in practice? In general, we would like to implement
a system whose average efficiency is as high as possible, where “average” is with
respect to the distribution of tasks actually encountered. The first two subsections
therefore consider ways to improve a (logic-based, probabilistic) reasoner’s average
efficiency. Section 6.3 extends these ideas to consider ways to improve the average
performance, where “performance” is a user-defined function that can inter-relate
correctness, precision and efficiency, each weighted as appropriate to the task.
The approaches described below relate to the ideas discussed in Section 3, of
simply defining away such problematic tasks — i4.e., using reasoners that can only
handle a subclass of tasks that excludes these expensive situations. The difference
is in how the decision (of which reasoner to use) was reached. There, the decision
was based (implicitly) on the hope that the problematic situations will not occur;
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here instead the system knows something about which situations will occur, and so
employs algorithms designed to do well for these situations.

If the system designer knows a lot about the way the eventual reasoner will be
used, that designer could engineer in the specific algorithm that works best for this
subspace of tasks. For example, if the designer knows that the attribute values
are conditionally independent (given the classification), it makes sense to build a
naive-bayes classifier; similarly, if the system never needs to reason by cases, the
PROLOG inference process is quite appropriate. Alternatively, the reasoner could
“learn” information about this distribution of tasks, enough to identify a reasoner
(perhaps from a set of parameterized reasoning algorithms) that performs best; see
[Greiner 1996]. Below we will consider both situations — where the designer does,
versus does not, know the performance task.

6.1 Efficient (on Average) Logical Reasoners

In general, a logic-reasoning system must decide, at each step, which inference or
rewrite rule to use, and on which set of statements. Even resolution-based systems,
which consider only a single inference rule (and so have no choice in that respect),
must still decide which clauses to select. While general resolution schemes (such as
“set of support” or “lock” [Genesereth and Nilsson 1987]) may constrain this se-
lection, there can still be many possible options. The logical-reasoning community
has therefore investigated a variety of techniques for improving the performance of
logic-reasoning systems, often by providing some explicit meta-level control infor-
mation for controlling the inference process; cf., [Smith and Genesereth 1985; Smith
et al. 1986]. This is clearly related to the work by the database community on join-
ordering, magic sets, and the like [Swami and Gupta 1988; Azevedo 1997], and the
large body of heuristics used to solve “Constraint Satisfaction Problems” [Kondrak
and van Beek 1997].

Each of these optimizations is specific to a single problem instance, and many
can be viewed as a preprocessing step, called before beginning to solve the problem.
Note, however, that these modifications do not affect the underlying reasoning
system; and in particular, if that reasoner encountered the exact same problem a
second time, it would presumably follow the same (preprocess and) process steps.

As this pre-processing step is typically very expensive, another body of work
performs only a single “pre-processing” step prior to solving a set of queries (rather
than one such step before each query). These systems can be viewed as modifying
the underlying reasoner, to produce a new reasoner that does well (on average)
over the distribution of queries it will encounter. Note this resulting reasoner will
then solve each single query directly, without first performing any additional query-
specific pre-processing step.

To make this more concrete, consider a resolution system that uses a clause
ordering © to specify when to use which clause during the proof process: here,
it attempts to resolve the current subgoal (determined by the depth-first order)
with the (untried) clause at the highest position in ©. (This can correspond to
PROLOG’s control strategy, when the ordering is determined by the chronological
order of assertion.) Of course, the time required to find a solution to a specific query
depends critically on the clause-ordering © used. A useful modification, therefore,
would therefore change the clause ordering to one whose average time, over the



24 . R. Greiner, C. Darken and N.l. Santoso

distribution of queries, is minimum. The resulting reasoner would then use this
(new) fixed order in answering any query.

In general, the system designer may not know, at “compile time”, what queries
will be posed. However, given that the reasoner will be used many times, a learner*®
may be able to estimate this distribution of tasks by watching the (initial) reasoner
as it is solving these tasks. The learner can then use this distributional information
to identify the algorithm that will work best. Here, the overall system (including
both reasoner and learner) would have to pay the expense of solving problems using
standard general methods for the first few tasks, before obtaining the information
required to identify (and then use) the best special purpose algorithm.

This has lead to the body of work on “explanation-based learning” (EBL): after
solving a set of queries, an EBL system will analyse these results, seeking ways to
solve these same queries (and related ones) more efficiently when they are next en-
countered; see [Mitchell et al. 1986; Greiner 1999]. As the underlying optimization
task is N P-hard [Greiner 1991], most of these systems hill-climb, from an initial
strategy to a better one [Greiner 1996; Gratch and Dejong 1996].

There are other tricks for improving a reasoner’s average efficiency. Recall that
our interface to the reasoner is via the Tell and Ask subroutines. In PROLOG,
the Tell routine is trivial; the Ask routine must do essentially all of the reasoning,
to answer the query. Other systems (including those built on OPS [Brownston
et al. 1986], including XCON [Barker et al. 1989]) do the bulk of the inference in a
“forward chaining” manner — here, the Tell will forward-chain to assert various
newly-entailed propositions. Answering certain questions is trivial in this situation,
especially if we know that the answer to the query will be explicitly present iff it
is entailed. Treitel and Genesereth [Treitel and Genesereth 1987] consider “mixed”
systems, where both Ask and Tell share the load: When their system is Telled a
new fact, it will forward-chain, but only using certain rules and to a certain depth,
to establish a “boundary” in the associated “inference graph”.2? Afterwards, when
the Ask process is answering some query, it will backward chain, but only following
certain rules, and only until just reaching the “boundary” set by the earlier forward-
chaining steps. In general, a “scheme” specifies which rules are used in a forward-
chaining, vs backward-chaining, fashion, etc. Finding the optimal scheme, which
minimizes the total computational time (of both forward-chaining and asserting,
and backward chaining and subgoaling), is challenging — as it requires knowing
(or at least estimating) the distribution of what queries will be asked, as well as
the distribution of the new information that will be asserted; and then (typically)
solving an N P-hard problem.

This is similar to the work on caching solutions found during a derivation, to
improve the performance on later queries. Chaudri and Greiner [Chaudhri and
Greiner 1992] present an efficient algorithm, for a certain class of rule-sets, that
specifies which results should be stored, as a function of the frequency of queries
and updates, the costs of storage, etc.

19Note this learner is learning about the usage patterns of the reasoner, to help in providing
control information, and not about the domain per se.

20This hyper-graph has a node for each proposition, connected by hyperlinks, each of which
connects the conclusion of a rule to the rule’s set of antecedents.
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6.2 Efficient (on Average) Belief Net Inference

Most BN inference algorithms perform their inference based only on the specific
belief net involved. Some systems will also examine the specific query in a “prepro-
cessing step”, and modify their algorithms and datastructure accordingly — e.g.,
remove nodes “d-separated” from the query and evidence nodes [Pearl 1988] (in-
cluding “barren nodes” [Zhang and Poole 1994]), find an ordering for the process
that is appropriate given the nodes that will be instantiated [Dechter 1998] and so
forth

As mentioned in the earlier logic-based situation, such preprocessing can be ex-
pensive — indeed, it could involve solving the underlying inference process, or some
other N P-hard problem. An effective inference process may therefore, instead, try
to find an inference procedure that is optimal for the distribution of queries it will
encounter. Here, it will do some modification once, rather than once per query.

Herskovits and Cooper [Herskovits and Cooper 1991] consider caching the an-
swers to the most common queries; here, the reasoner can simply return these
explicitly-stored answers when those particular queries are posed; otherwise, the
reasoner will do a standard belief net computation. (Those researchers used an
analytic model, obtained from the belief net itself, to induce a distribution over
queries, and used this to determine which queries will be most common.)

The QUERYDAG work [Darwiche and Provan 1996; Darwiche and Provan 1997]
takes a different cut: after the designer has specified the belief net queries that the
performance system will have to handle, the QUERYDAG system “compiles” the
appropriate inference system, to produce an efficient, well-honed system, that is
efficient for these queries. (Even if this compiled version performed the same basic
computations that the basic inference algorithm would perform, it still avoids the
run-time look-ups to find the particular nodes, etc. In addition, other optimizations
are possible.)

The approach presented in Delcher et al. [Delcher et al. 1996], like the Treit-
el/Genesereth [Treitel and Genesereth 1987] idea, does some work at data-input
time (here “absorbing evidence”) as a way to reduce the time required to answer
the query (i.e., compute the posterior probability), in the context of polytrees:
rather than spending O(1) time to absorb evidence then O(N) time to compute
the answer to a query (from an N-node polytree), their algorithm takes O(ln N)
time to absorb each bit of evidence, then O(In N) time to compute the probabilities.

As another tact: Appendix A.2 shows there are several known algorithms {QA4;}
for answering queries from a BN. While one such algorithm QA4 may be slow for
a particular query, it is possible that another algorithm QQ Ap may be quite efficient
for the same query. Moreover, different BN's can express the same distribution, and
hence provide the same answers to all queries. Even if a specific QA; algorithm
is slow for a given query when using one net BN,, that same algorithm may be
efficient for this query, if it uses a different, but equivalent net BNg.

We might therefore seek the “most efficient” (B, @A) combination — i.e., de-

termine
e which algorithm (with which parameters) we should run,

e on which belief net (from the set of equivalent BNs)
to minimize the expected time to answer queries, where this “expected time” is
averaged over the distribution of queries that will be encountered. (Hence, this
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task corresponds to the query-based model presented in [Greiner et al. 1997], but
deals with efficiency, rather than acuracy.)

The search for the best algorithm/encoding does not need to be “blind”, but
can incorporate known results — e.g., we could avoid “CutSet conditioning” if we
show that it will always require more computations than any of the junction tree
algorithms [Dechter 1996]; we can also use the empirical evaluations by Lepar and
Shenoy [Lepar and Shenoy 1998], which suggests that the Shafer-Shenoy algorithm
is more efficient than the Hugin algorithm, and that both improve on the original
Lauritzen-Speigelhalter.

6.3 Improving Average Performance

The bulk of this paper has implicitly assumed we want our (expressive) reasoner to
be as precise and correct as possible, while minimizing computational time. As not-
ed above, an agent may need far less than this: e.g., it may be able to act effectively
given only a correct but vague answer (e.g., whether some probability is > 1/2 or
not), and it may survive if the answers it receives are correct at least (say) 90%
of the time. Similarly, it may only need answers within 1 minute; getting answers
ealier may not be advantageous, but getting then any, later, may be disasterous.

This motivates us to seek a reasoner whose “performance” is optimal, where
“performance” is perhaps some combination of these { correctness, precision, ex-
pressiveness, efficiency } criteria. There are two obvious challenges here: The first
is determining this appropriate performance measure — i.e., defining a function
that assigns a score to each reasoner, which can be used to compare a set of dif-
ferent reasoners (to decide which is best), and also to evaluate a single reasoner
(to determine whether it is acceptable — i.e., above a threshold). Of course, this
criteria is extremely task-dependent.

As discussed in [Greiner and Elkan 1991], one approach is to first define a general
“utility function” for a reasoner and query, that may combine the various criteri-
a into a single score. One space of scores correspond to linear combinations of
precision, correctness, expressiveness and time; e.g., for a reasoner R and query q,

U(R, Q) = Vpree X mPT‘GC(R7 Q) + VUTime X mTime(R7 Q) + ...

where each m, (R, ¢) measures the reasoner R’s x feature when dealing with the
query ¢, and each v, € R is a real value. The quality measure for a reasoner would
then be its average utility score, over the distribution D, of queries,

UR) = Esep,[u(R, q)]

We would then prefer the reasoner that has the largest score. (We could, alterna-
tively, let this individual query score be a combination of thresholded values. First
associate with each query a set of “tolerances” required for time, precision, etc. —
e.g., perhaps the “tolerance query” ¢ = ( P(fire|smoke, ~alarm), £0.25, <2,...)
means we need to know the probability of fire, given the evidence specified, to with-
in £0.25, and get the answer within 2 seconds, etc. The utility score a reasoner R
receives for this query ¢ could then be defined as a weighted sum of precision and
time: e.g.,

U(R, Q) = MPrec X 5[mP’rec(R7 Q) < 025] + NTime X 6[mTz'me (R; Q) < 2] + ...
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where §[-- -] is 1 if the condition is met, and 0 otherwise. Or we could use a more
complicated function, that inter-relates these quantities perhaps using a more com-
plicated combination function, etc. We assume the system designer has produced
such a function, probably based on decision-theoretic considerations.

The second challenge is to identify the reasoner that is best, given this quality
measure. As noted above, this will depend on the distribution of queries posed.
While this may be unknown initially, we can use the standard techniques of sam-
pling queries from the underlying distribution of queries to estimate the relevant
information. Unfortunately, even if we knew the distribution precisely, we are left
with the task of finding the reasoner that is optimal, with respect to this scoring
function. In many situations, this is N P-hard or worse; see [Greiner 1991; Greiner
and Schuurmans 1992]. The PALO learning system [Greiner 1996] was designed
for this situation: This algorithm hill-climbs in the space of these reasoners, while
collecting the samples it needs to estimate the quality of these reasoners. [Greiner
1996] proves, both theoretically and empirically, that this algorithm works efficient-
ly, in part because it only seeks a local optimal, exploiting the local structure.

7. CONCLUSION

Many applications require a reasoner, often embedded as a component of some
larger system. To be effective, this reasoner must be both reliable and efficient.
This survey provides a collection of techniques that have been (or at least, should
be) used to produce such a reasoner.

Of course, this survey provides only a sampling of the techniques. To keep the
paper relatively short, we have had to skip many other large bodies of ideas. For
example, we have not considered techniques that radically change the representa-
tion, perhaps by re-expressing the information as a neural net [Towell and Shavlik
1993], or by reasoning using the characteristic models of the theory [Kautz et al.
1993; Khardon and Roth 1994], rather than the theory itself.

We also chose to focus on techniques specific to reasoning, and so by-pass the huge
inventory of techniques associated with improving the efficiency of computations,
in general — including clever compilation techniques, and ways to exploit parallel
algorithms. Needless to say, these ideas are also essential to producing reasoning
algorithms that are as efficient as possible.

To summarize: we have overviewed a large variety of techniques for improving
the effectiveness of a reasoning system, considering both sound logical reasoners (fo-
cussing on Horn clauses), and probabilistic reasoners (focussing on belief nets). In
general, these techniques embody some (perhaps implicit) tradeoff, where the sys-
tem designer is willing to sacrifice some desirable property (such as expressiveness,
precision or correctness) to increase the system’s efficiency.

We also discussed the idea of combining all of these measures into a single quality
measure, and pointed to an algorithm that can “learn” the reasoning system that
is optimal with respect to this measure.
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APPENDIX
A. REASONING USING BELIEF NETS
A.1 Why is BN Inference hard?

In general, probailistic inference involve computing the posterior distribution of
some query variable () conditoned on some evidence E=¢—.i e., computing
P(Q| E=¢ ). Pearl [Pear]l 1988] provided a linear-time algorithm for Belief Net
inference for networks that have a poly-tree structure — where there is at most one
(undirected) path connecting any pair of nodes. This algorithm simply propagates
a few numbers from each node X to its immediate neighbors (children and parents),
and then recurs in the simpler structure obtained by deleting this X.2! Unfortu-
nately, this idea does not work in general networks, which can contain (undirected)
cycles. The basic problem, here, is that these (to be deleted) variables may induce
dependencies among the other variables, which can make a difference in places far
away in the network. To see this, consider asking for the (unconditional) probability
that C is true P(C = t) from the network shown in Figure 11. Here, a naive (but
incorrect) algorithm would first see that Z is true half of the time, which means
that A and B are each true half of the time (as A is the same as Z and B is the
same as —Z), which suggests that C, which is true only if both A and B are true,
is true with probability 1 x 2 = 1.

This is clearly wrong: A is true only when B is false, and vice versa. Hence,
there is 0 chance that both A and B are true, and hence C is never true — i.e.,
P(C =t) =0. Theissue, of course, is that we cannot simply propagate information
from Z, and then forget about this source; there is instead a dependency between A
and B, induced by their common parent Z. A related, but more complex, argument
shows that such reasoning is, in fact N P-hard: here we can encode arbitrary 3SAT
problem by including a node that represents the boolean formula, connected to
nodes that represent the clauses (with a CPtable that insures that the formula is
true iff all of the clauses is true), and the clause-nodes are each connected to nodes
that represent the boolean variables (with CPtable that insure that the clause-
node is true iff the associated boolean variables have the correct setting). Then
the formula has a satisfying assignment iff the associated formula-variable has an
unconditional probability strictly greater than 0; see [Cooper 1990].

A.2 Probabilistic Inference, using Belief Networks

There are two major categories of algorithms for computing posterior probabilities
from general belief nets. Both rely on the observation that there is an efficient
algorithm for computing arbitrary posterior probabilities for a poly-tree structure,
and (perhaps implicitly) use this algorithm as a subroutine.

A.2.1 Clustering. The “clustering” trick involves converting the given belief net-
work into an equivalent network that is a poly-tree, by merging various sets of nodes
into associated “mega-nodes” — e.g., consider transforming the network on the left
side of Figure 12 to the network on the right side. Note that this new structure
may be exponentially bigger than the the original belief net, as the CPtables for the

21The actual algorithm runs in two phases: first going from roots down to the leaves, and then
going from the leaves up to the roots.
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Fig. 12. Poly-Tree BN equivalent Figure 9 (taken from Figure 15.10 of [Russell and Norvig,
1995])

mega-node can be huge: if formed from the nodes N' = {Ny, ... Ny}, it will include
a row for each combination of values from N, and so (if each N; is binary), it will
have 2¥ rows. (So while BN-inference will be linear in the size of the new poly-tree
network, that size will be exponential in the size of the initial belief network.)

There can be many ways to form such clusters; see [Lauritzen and Spiegelhalter
1988] as well as implentation details for the Hugin system [Andersen et al. 1989;
Jensen et al. 1990]. The general algorithm first “moralizes” the network (by con-
necting — aka “marrying” — the co-parents of each node) then triangulates the
resulting graph, to form G'. It then forms a “junction tree” T' = (N7, Ar) —
a tree structure whose nodes each correspond to the maximal cliques in G', and
whose arcs a = (n1,n2) C Ar are each labeled with the nodes in the intersection
between the G'-nodes that label n; and ns. The algorithm then uses, in essense,
the poly-tree algorithm to produce an answer to the original query.

This approach is also called the “junction tree” algorithm, or “clique tree” algo-
rithm. See [Lepar and Shenoy 1998] for a specification of three of these algorithms,
Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer.

Bucket Elimination: There are several simpler ways to understand this basic
computation, including Li/B’Ambrosio’s SPI [Li and D’Ambrosio 1994], Zhang/Poole’s
algorithm [Zhang and Poole 1994] and Dechter’s bucket elimination [Dechter 1998].
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Fig. 13. Example of CutSet Conditioning (taken from Figure 15.11 of [Russell and Norvig,
1995])

We will focus on the third, which performs belief updating by storing the CPtables
in a set of buckets — where the i** bucket contains just those CPtables that in-
volve only variables whose largest index is i. (Note that this algorithm requires an
ordering of the nodes.) It then sequentially eliminates (read “marginalizes away”)
each variable X;, updating the remaining buckets appropriately, by including in the
appropriate (lower) bucket the marginals left after removing the dependencies on
X;.

Dechter shows that this relatively-straightforward algorithm is in fact doing the
same computation as the general clustering algorithm, and has the same worst-case
complexity. She also proves that (a small variant) of this algorithm corresponds to
the poly-tree algorithm.

A.2.2 Cut-set conditioning. A “cut-set conditioning” algorithm also uses the
poly-tree algorithm, but in a different manner. Given a belief net B = (N, A, CP)
with nodes N, and query P( H | E), this algorithm first finds a subset X = {X1,..., X} C
N, of nodes, such that

—By = B-— X, the BN without X, is a poly-tree, and
—P(X | E) is easy to compute

See [Suermondt and Cooper 1991]. It then exploits the equality
P(H|E) = Y P(H|E, X=1%)x P(X =Z|E)
@

to answer the query P(H |E). Note that each summard is each to compute, as
P(X | E) is easy by construction, and P( H | E, X = Z) is a poly-tree computation.
Figure 13 illustrates this construction.

The run-time for this algorithm is exponential in |X| (as it must sum over
[Ixcx [Domain(X)| terms). However, its space requirement is linear in |X|, as
it need only maintain the running tally.
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