
Improving the Performance-Compatibility Tradeoff
with Personalized Objective Functions

Jonathan Martinez,1 Kobi Gal,1,2 Ece Kamar,3 Levi H. S. Lelis4,5

1Ben-Gurion University,
2University of Edinburgh,

3Microsoft Research,
4University of Alberta

5Alberta Machine Intelligence Institute (Amii),
martijon@post.bgu.ac.il, kobig@bgu.ac.il, eckamar@microsoft.com, levi.lelis@ualberta.ca

Abstract

AI-systems that model and interact with their users can up-
date their models over time to reflect new information and
changes in the environment. Although these updates may im-
prove the overall performance of the AI-system, they may ac-
tually hurt the performance with respect to individual users.
Prior work has studied the tradeoff between improving the
system’s performance following an update and the compati-
bility of the updated system with prior user experience. The
more the model is forced to be compatible with a prior ver-
sion, the higher loss in performance it will incur. This paper
challenges this assumption by showing that by personalizing
the loss function to specific users, it is possible to increase
the prediction performance of the AI-system while sacrific-
ing less compatibility for these users. Our approach updates
the sample weights to reflect their contribution to the com-
patibility of the model for a particular user following the up-
date. We construct a portfolio of different models that vary in
how they personalize the loss function for a user. We select
the best model to use for a target user based on a validation
set. We apply this approach to three supervised learning tasks
commonly used in the human-computer decision-making lit-
erature. We show that using our approach leads to significant
improvements in the performance-compatibility tradeoff over
the non-personalized approach of Bansal et al., achieving up
to 300% improvement for certain users. We present several
use cases that illustrate the difference between the personal-
ized and non-personalized approach for two of our domains.

Introduction
Advancements in AI and ML have led to advice provision-
ing systems that derive insights and make predictions from
large amounts of data. For example, expert diagnostic sys-
tems in healthcare predict patients’ health condition by an-
alyzing lifestyle, physical health records and social activi-
ties, and make suggestions to doctors about possible treat-
ments (Sahoo et al. 2019). As the user interacts with the sys-
tem, two processes occur. First, the user develops a mental
model of the system’s capabilities based on the quality of
the recommendations. Second, the system collects more data
and is able to update its prediction models. While updating
the system’s model can improve its performance, it can also

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

change the way the system makes predictions in a way that
does not agree with the user’s expectations, based on past in-
teractions with the system. Thus while the update improves
the overall system performance, it may exhibit a poor com-
patibility with the user’s expectations (Bansal et al. 2019b),
possibly causing the user to lose trust in the system and ig-
nore its recommendations. Or worse still, to follow wrong
recommendations that the model prior to the update used to
get right.

As an example, imagine a doctor that is being assisted by
an AI-system that predicts whether skin moles are cancer-
ous or not. Suppose that the system’s average accuracy is
currently 70% overall, and that the doctor’s specialty is face
skin moles. Next, the system receives an update which in-
creases its average accuracy to 90% overall but decreases it
to 60% for face skin moles. As a consequence of this poorly
compatible update, the doctor may notice the drop in accu-
racy regarding this specific region of data and start mistrust-
ing the predictions of the system, therefore missing out on
the benefits of being assisted by the AI-system. Or worse
still, the doctor may not notice this drop and therefore con-
tinue trusting the system’s predictions that happen to be less
accurate in this section of the data after the update.

Another example is an Intelligent Tutoring System that is
sequencing math problems to students. The system predicts
the student’s performance on math problems with high ac-
curacy. After an incompatible update, the system accuracy
may increase overall but decrease when predicting student
performance on Geometry questions, and as a result the sys-
tem may ask the student redundant Geometry questions.

Bansal et al. (2019b) suggested a method for adjusting
the compatibility of the model following an update to an AI-
system where the loss function is modified to incur an addi-
tional penalty for newly introduced mistakes, i.e., mistakes
that the system’s updated version makes that the pre-update
version didn’t make. They show that a tradeoff exists be-
tween the compatibility and the performance of the updated
model: The more it is forced to be compatible, the less ac-
curate it will be.

A limitation in this approach is that all instances in the
dataset are given the same importance regardless of their
relevance to a particular user that interacts with the system.
In this paper we show that significant improvements in the

performance-compatibility tradeoff can be achieved by per-
sonalizing the objective function for target users that inter-
act with an AI-system. Our approach weighs each training
sample with respect to its effect on the compatibility of the
AI-system following the update. We train different models
that vary in the extent to which they personalize the objec-
tive function for target users, including an extreme approach
to personalization where the model relies exclusively on the
personal history of the target user.

We apply this methodology towards computing the
performance-compatibility tradeoff in three domains from
the human-computer decision making literature. In each do-
main, we measure the performance of different personaliza-
tion models for solving a classification task according to the
area under the performance-compatibility tradeoff curves
(AUTC) that they produce. Our approach significantly out-
performed the baseline approach (Bansal et al. 2019b) in
all domains in terms of the AUTC metric, achieving re-
sults that are as much as 90% better on average and up to
300% for certain users. We present several use cases that
illustrate the difference between the personalized and non-
personalized approach for two of our domains.

These results carry important insights for the designers
of AI-systems that interact with users over time. They show
that by utilizing personalized objective functions to update
the system, it is possible to improve the system’s perfor-
mance while minimizing the degradation of its compatibility
with the model prior to the update.

Preliminaries
Let h1 be the model prior to the update and h2 the model fol-
lowing the update, such that h1 is trained on a small subset
of the data used for training h2. A newly introduced error
is an error that h2 makes that h1 doesn’t make. The com-
patibility of an update to a classifier measures the amount
of new errors that are introduced by the updated model h2.
Bansal et al. (2019b) propose the following definition for the
compatibility score of an update:

Definition 1. The compatibility score of a model h2 relative
to a pre-updated model h1 on some dataset D:

C(h1, h2, D) =

∑|D|
i=1 1[h1(xi) = h2(xi) = yi]∑|D|

i=1 1[h1(xi) = yi]
(1)

Where 1 is the indicator function. The compatibility score is
the ratio of samples in D that h2 predicts correctly among
all the samples that h1 predicts correctly. As the number of
newly introduced errors decreases the compatibility score
approaches 1 and as this number increases it approaches 0.

Bansal et al. (2019b) propose a way of modifying a loss
function L (e.g., Cross-Entropy Loss) such that the amount
of penalty given for the predicted label of an instance de-
pends on whether it corresponds to a newly introduced error:

Lc(x) = (1− λ) · L(x) + λ · L(x) · 1[h1(x) = y] (2)

Where L(x) is the penalty (loss) given to an updated model
for the label it predicts for an instance x and λ ∈ [0, 1] is
the importance given to compatibility. We added the (1−λ)

Figure 1: A synthetic example of performance-compatibility
tradeoff curves. The x-axis represents the model’s compati-
bility score (Equation 1) and the y-axis its performance (e.g.,
accuracy). The dashed horizontal line corresponds to the
performance of the pre-updated model h1 while the curves
correspond to two updated models fitted using Equation 6
with different vectors W . Each point corresponds to a par-
ticular value of λ (the compatibility importance parameter).

term so that the whole spectrum of loss functions Lc could
be achieved by values of λ that are between 0 and 1. We
assume that the performance of model h2 on a held out test-
set is at least as good as the performance of model h1, which
is a reasonable assumption since h2 is trained on a superset
of the data used to train h1.

As the value of the parameter λ increases, so does the
penalty for newly introduced errors. This simultaneously in-
creases the compatibility score of the updated model and
tends to decrease its performance as the updated model h2
is forced to make predictions similar to those made by the
pre-update model h1. Varying the value of λ generates a
performance-compatibility tradeoff curve, as depicted by the
synthetic example shown in Figure 1. The goal of the per-
sonalization approach we propose is to maximize the area
under this curve, which is proportional to the quality of the
tradeoff described by the curve.

In our medical example, once the modified loss function
Lc from Equation 2 is used instead of the regular loss L to
update the system, there will be fewer newly introduced mis-
takes. This will improve the compatibility of the update at a
certain expense of the system’s overall accuracy, increasing
the likelihood that the doctor will continue trusting the sys-
tem’s predictions.

Personalizing Objective Functions
Our hypothesis is that personalizing the objective function
for a particular user is likely to improve the performance-
compatibility tradeoff provided to that user following the
update to the system.

Definition 2. Hypothesis h is correct for dataset D if ∀xi ∈
D we have that h(xi) = yi

Let D be a dataset and Dc ⊆ D be the subset of samples
for which h1 is correct. Errors that h2 makes on samples in
Dc decrease its compatibility score, hence the superscript c
that stands for “compatibility”. Given a dataset D and a pre-
update model h1 used to determine Dc, the weight of each
sample x ∈ D can be assigned by the following function:

wc(x,D, λ) = (1− λ) · 1[x ∈ D] + λ · 1[x ∈ Dc] (3)
= (1− λ) + λ · 1[x ∈ Dc]

Note that 1[x ∈ D] is always equal to 1, therefore we can
simplify Equation 3 like shown above. LetLs be the summa-
tion of the penalties given by a loss functionL to the samples
x ∈ D weighted by some arbitrary weighting function w:

Ls(D,w) =
∑
x∈D

w · L(x) (4)

The objective function that results from summing the penal-
ties given by Lc (Equation 2) is equivalent to the one that
results from using wc (Equation 3) on Ls:

Ls(D,wc) =
∑
x∈D

Lc(x) (5)

This means that utilizing Lc is equivalent to assigning sam-
ple weights according to wc and utilizing the regular loss
function L. Next, we extend Equation 3 to personalize the
objective function for particular users. Let Di ⊆ D be the
set of samples corresponding to the history of interaction be-
tween user i and the AI-system, and Dc

i ⊆ Di be the subset
of those samples such that the pre-update hypothesis h1 is
correct (Definition 2). As with Dc, errors that the updated
model h2 makes on Dc

i are newly introduced errors that re-
duce its compatibility score (Equation 1).

We personalize the objective function to a target user by
assigning a weight to each sample in the dataset according
to the following. Let W = (w0, w1, w2, w3) be a set of four
weights such that each weight captures the impact that each
set of samplesD,Di,Dc andDc

i (respectively) will have on
the updated model’s compatibility in respect to a target user
i. Each combination of weights W represents a different
approach or degree of personalization. Given a dataset D, a
target user i, a vector W and a pre-update model h1 used
to determine both Dc and Dc

i , we assign the weight to each
sample x ∈ D by the following function:

w(x, i,D,W, λ) =

(1− λ) · (w0 · 1[x ∈ D] + w1 · 1[x ∈ Di])

+ λ · (w2 · 1[x ∈ Dc] + w3 · 1[x ∈ Dc
i])

(6)

By assigning the sample weights in this manner, we person-
alize the objective function with respect to the target user i
according to the personalization approach indicated by W .
As in Equation 3, the parameter λ determines the importance
the model gives to achieving a good compatibility score,
therefore influencing the tradeoff between compatibility and
performance.

Importantly, the personalized approach learns from the
entire data set. But in contrast to the baseline approach, it
distinguishes between the samples that belong to the target

model Wk

w0 w1 w2 w3

m0 1 0 1 0
m1 0 1 0 1
m2 0 1 1 0
m3 0 1 1 1
m4 1 0 0 1
m5 1 1 0 1
m6 1 0 1 1
m7 1 1 1 0
m8 1 1 1 1

Table 1: The portfolio of models M .

user’s history and the ones that don’t. For instance, if a sam-
ple x belongs to the target user i, then x ∈ D and x ∈ Di,
but x ∈ Dc and x ∈ Dc

i only if the pre-update model h1
predicts the correct label for x.

As previously mentioned, by varying the weight parame-
ters in W we can generate models that differ in the extent
to which the objective function is personalized to a target
user. Let a model mk be a model fitted using the objective
function that results from a given set of weights Wk. In this
work we consider only binary weights (0 or 1), resulting in
the family of models shown in Table 1.

Note that for some combinations of W varying the value
of λ will not change the weights of the samples relative to
one another. Such models cannot generate a performance-
compatibility tradeoff curve by varying the parameter λ
since varying it won’t change their predictions in any way.
Therefore, they are not included in the set of models M
we tested throughout the experiments. For example, W =
(1, 1, 0, 0) collapses the weight function from Equation 6
into (1−λ)·(w0 ·1[x ∈ D]+w1 ·1[x ∈ Di]) that completely
disregards compatibility as it ignores whether the pre-update
model h1 predicts the correct label.

Each model represents a different approach to person-
alization. In particular, the model m0 does not differenti-
ate between users since its weight function is equivalent to
Equation 3. This is the model of Bansal et al. (2019a), that
we consider as our baseline. In contrast, the objective func-
tion of m1 represents an extreme approach to personaliza-
tion where only the samples that belong to the user’s history
(x ∈ Di) are considered.

Methodology
In this section we present our methodology for selecting
a personalized model for a target user and for measur-
ing the quality of a performance-compatibility tradeoff.1 To
this end we interleave training the models M for a given
domain using a general purpose machine learning algo-
rithm and choosing the best model for each user through a
nested cross-validation process (Tashman 2000). This cross-
validation process, described in Figure 2, preserves the tem-
poral consistency of the user’s interactions with the system

1Code and data is publicly available at https://github.com/
jonmartz/CompatibilityPersonalization

Figure 2: Visualization of the nested cross-validation em-
ployed in the experiments, with k outer-folds, m inner-folds
and n users.Di is the data of user i. In each outer-foldp a test
set Y p

i is selected, while in each inner-foldp,q the remaining
dataDp

i is split into a train set T p,q
i and a validation set V p,q

i .
The models are fitted on T p,q (the union of all the user train
sets). The crossed boxes indicate the data dropped as part of
the cross-validation process.

and consists of two levels: An outer cross-validation loop
for improving the statistical significance of the results and
an inner cross-validation loop for selecting the best model
for each user.

Let Di be the time-series data available for user i in
dataset D. In each outer-foldp a time-contiguous test set
Y p
i ∈ Di (10% in our experiments) is chosen for each user
i. Let Dp

i be the set of data points representing user i’s in-
teractions that happened before all interactions in Y p

i . We
use Dp

i for the inner cross-validation loop. In each inner-
foldp,q a timestamp is randomly selected for every user i
and used to split Dp

i into disjoint and time-contiguous train-
ing set T p,q

i and validation set V p,q
i . We choose the times-

tamp defining the split randomly to vary the amount of train-
ing data for each user. Every model mk ∈ M is trained
on T p,q =

⋃
j T

p,q
j and validated on V p,q

i . Each sample
x ∈ T p,q is assigned the weight w(x, i, T p,q,Wk, λ) (Equa-
tion 6 with the respective weight vector Wk from Table 1).

The model with the best average performance on the sets
V p,q
i , where we vary q and fix both i and p, is chosen for

the target user i. Finally, we fit the chosen model on Dp
i , for

maximizing the amount of training data, and evaluate it on
the test set Y p

i . Each iteration of the outer loop provides a
prediction and thus a quality metric of our system for user
i. We report the average results produced by the outer itera-
tions of our cross-validation scheme.

To evaluate a model we need to measure the quality of the
performance-compatibility tradeoff it provides. The ROC
curve (receiver operating characteristic curve) is a graph that
shows the tradeoff between true positive and false positive

ratios of a classification model’s predictions, and the area
under this curve – commonly referred to as AUC – provides
a measure of the model’s performance. Similarly, to mea-
sure the quality of a performance-compatibility tradeoff we
compute the area under its curve (Figure 1), and call this
metric AUTC (Area Under the Tradeoff Curve). The mea-
sure of model performance (y-axis in Figure 1) we report in
our results is the aforementioned AUC.

An issue when comparing tradeoff curves by the AUTC
metric is that one curve may start at a higher compatibility
score than the other. For example, in Figure 1, the starting
points of the curves differ significantly in terms of compati-
bility, while the maximum compatibility scores they achieve
are very similar. This causes the area under the personalized
model to be smaller than the area for the baseline, while
clearly the tradeoff provided by the personalized model is
better. To correct this issue, we artificially extend the curves
to the minimal compatibility score achieved by either one of
the curves being compared.

For instance, in Figure 1 the personalized model provides
a performance of 0.9 for its minimal compatibility score of
0.8, so we extend its curve with a straight line from compati-
bility score 0.8 to 0.6 in order to match the minimal compat-
ibility score of the baseline (as indicated by the dashed line
at the top of the plot). We report the area under the extended
curve for the evaluated models, after removing the area be-
low the line that corresponds to the performance of h1 (the
dashed line at the bottom of Figure 1) as we are interested
only in improvements relative to the pre-update model’s per-
formance.

Empirical Results
We applied our approach to three domains commonly used
in Human-Computer Decision Making.

1. ASSISTments (available from PSLC Datashop https://
pslcdatashop.web.cmu.edu/). This domain includes inter-
actions of students solving online math problems in class-
rooms. The classification task is to predict if a student
will answer a question correctly on the first attempt given
the history of the student’s interactions with the sys-
tem (Feng, Heffernan, and Koedinger 2006). The experi-
ment included ∼50,000 instances from 100 students with
histories ranging from 50 to 1000 instances with a mean
of 525.

2. Galaxy Zoo (GZ) (available from https://data.galaxyzoo.
org/). This domain includes interactions from a crowd-
sourced astronomy project which invites people to assist
in the morphological classification of large numbers of
galaxies from digital images. The classification task is to
predict if a user will dropout from the GZ site within a
designated time window. We included ∼50,000 instances
from 100 students with histories ranging from 50 to 1000
instances with a mean of 525.

3. The Stanford MOOCPosts (MOOC) dataset (available
from https://datastage.stanford.edu/StanfordMoocPosts/).
This domain includes instances of online forum posts of
students from eleven Stanford University courses. The

Figure 3: Normalized AUTC measure for the baseline, per-
sonalized and oracle models on the different datasets. In
all the paired t-tests between the personalized and baseline
models the p-value was smaller than 0.05.

Dataset % times better than baseline

Personalized Oracle

ASSISTments 26.4% 62.8%

GZ 16.2% 30.4%

MOOC 15.9% 40.4%

Table 2: Percentage of times that our approach and an Oracle
with hindsight selected a model that performed better (not
equal) than the baseline in a test set.

classification task is to predict if a forum post by a stu-
dent reflects a high level of confusion about course mate-
rial. The experiment included ∼5000 instances from 100
students with histories ranging from 20 to 500 instances
with a mean of 260 (the longest histories found).

Our criteria for selecting domains was that they 1) include
multiple interactions between users and systems (e.g., clas-
sifying galaxies); 2) require the system to make decisions in
real time (e.g., determine whether a post is expressing con-
fusion); 3) AI-systems can be potentially used to support
the decision making of users (e.g., generating feedback to
students).

We trained the models inM (Table 1) using the version of
decision tree classifiers (CART) implemented in the scikit-
learn Python package (Pedregosa et al. 2011). Each model
is trained multiple times with various values of λ to produce
the tradeoff curves. We used the “sample weights” param-
eter to personalize the sample weights according to Equa-
tion 6.2

Figure 3 shows results averaged over all the users and all
the cross-validation folds in each dataset. The height of each

2Neural Networks provided a better performance than the De-
cision Trees, but we decided to report results for the latter because
it is more explainable to people.

Figure 4: Histogram of the amount of times each modelm ∈
M was the best performing one in a user’s validation set.

bar indicates the model’s AUTC divided by the AUTC of
an Oracle model that has hindsight of which model is best
for each user’s set (has full information). The difference be-
tween the personalized model and the baseline is statistically
significant (obtained a p-value below 0.05 on a paired t-test
between the two models, on all three datasets).

Table 2 shows the percentage of times that the personal-
ization approach and the Oracle outperformed the baseline.
These results indicate that there’s still room for improving
the personalization approach and achieving a performance
closer to that of the Oracle. For instance, in the ASSIST-
ments dataset the personalized approach selected a model
that is better than the baseline 26.4% of the time while the
Oracle did so 62.8% of the time.

Figure 4 shows the percentage of times each model from
M was the best model in a user’s validation set. This distri-
bution indicates that no model is always better than all the
others, and that even the baseline (m0) is sometimes the best
model. The modelm7 performed best most of the time in the
ASSISTments and MOOC datasets, while the model m1 did
so in the GZ dataset. This indicates that in the two former
datasets it was preferable to consider all the users (as m7

assigns a non-zero weight to all the samples) while in the
GZ dataset it was better to consider only the target user (as
m1 assigns zero weight to all the samples that come from
non-target users).

Selecting the best model for each user using the inner
cross-validation depicted in Figure 2 proved to be a signifi-
cantly better strategy than naively selecting one of the mod-
els in M to be used uniformly on all the users in a dataset.
Doing so without the cross-validation didn’t yield statisti-
cally significant improvements relative to the baseline due
to high variance in the results.

Use Cases
In this section we present two use cases in which the person-
alized model differed from the baseline model of Bansal et
al. (2019a) and provided a better performance-compatibility
tradeoff. In each case, we describe the difference between

(a) Baseline (compatibility = 88%, AUC = 54%) (b) Personalized (compatibility = 94%, AUC = 62%)

Figure 5: Baseline and personalized decision trees (up to a depth of 3) for a target user in the ASSISTments dataset, produced
by the CART algorithm. Each node includes the percentage of training samples at the respective node and the distribution
over the target class weighted according to the sample weights (the shade indicates the majority class). The performance and
compatibility measures in the user’s test set are indicated.

a decision tree produced by the baseline model (m0) and
one produced by the personalized model (selected using the
user’s validation sets) such that both its compatibility and
performance are significantly better than the baseline model.
We focus on describing the differences between the models.

We begin with the ASSISTments dataset, where the clas-
sification task is to predict whether a student will solve a
math problem correctly or not. The baseline model and the
personalized model for the target user are shown in Fig-
ure 5. The model that provided the best tradeoffs in average
on this user’s validation sets was m5, which also happened
to achieve a significantly better performance-compatibility
tradeoff than m0 (the baseline model) on the user’s test set.

A significant difference is that the personalized model
uses the fact that the student lacks knowledge regarding
some skills (“divisibility rules” and “least common multi-
ple”) as the student tends to choose the wrong answer in
questions involving these skills, while the baseline model
does not consider any particular skill.

An important trend that is exhibited in the dataset is that
if a student’s response time is less than ∼3000 milliseconds
the answer is very likely to be incorrect. According to an AS-
SISTments domain expert, a possible reason for this is that
a short response time indicates that the student has guessed
the answer. The baseline model capitalizes on this trend, sig-
nificantly basing its decisions on this threshold. On the other
hand, the personalized model did not split on this variable,
possibly reflecting the fact that it’s less common for the tar-
get user to guess an answer.

The “opportunity” variable indicates how many questions
involving the same skill the student has answered in the past.
According to domain experts, high opportunity values along
with incorrect answers reflect students who are “gaming” the
system and answering arbitrarily, since the number of oppor-
tunities stacks up with each answer given to questions in-
volving the same skill regardless of its correctness. The per-

sonalized model predicts the answer will be incorrect given
an opportunity count greater than 14 on questions where the
skill involved is not defined, hinting that this student may be
a “gamer” when it comes to this kind of questions. The base-
line model does not check for this trend, possibly indicating
that most students are not “gamers”.

Next we analyze a use case for the MOOC dataset, where
the classification task is to predict whether a forum post by
a student reflects a high level of confusion or not. Please re-
fer to the supplementary material to see the corresponding
decision trees. The personalized model significantly outper-
formed the baseline model in terms of AUC (97% vs 68%)
when being 100% compatible with the pre-update model. In
this case the best performing model in the user’s validation
sets was m3, a model that gives a relatively low importance
to non-target users.

The most important difference between the baseline
model and the personalized model is that the personalized
model considers whether the forum post contains many
words of the type “insight” and “cause”, which are words
like “think”, “know” and “because”. The fact that a post in-
cludes many of these words indicates that the student may be
explaining something rather than posting a question that ex-
presses confusion. The personalized model benefited from
making this distinction, which it found useful apparently
because the target student commonly gives explanations to
other students.

Another difference between the two models is that the the
personalized model’s decision tree branches according to the
amount of words in the category “tentative”, which includes
words like “maybe” and “perhaps”. In the cases where the
student included many of these words, the forum post was
likely to indicate confusion. The baseline tree doesn’t branch
by this variable, possibly indicating that this student hypoth-
esizes answers to his/her own questions more often than the
average user.

Lastly, the personalized model’s tree checks for whether
the post includes many words from the “friend” category,
which are words like “buddy” and “neighbor”. It found that
the post is very likely not showing confusion if it contains
many of these words, which may indicate that this student
often engages in social conversations.

Related Work
This paper builds on the recent work of Bansal et al. (2019b)
that introduces the idea of the compatibility score of an up-
date (Equation 1) and proposes a method for increasing this
score by employing a customized loss function (Equation 2)
where an additional weighted penalty is given for newly in-
troduced errors (mistakes that the model prior to the update
didn’t make). They showed that forcing the update to be
more compatible generally decreases its performance, i.e. a
performance-compatibility tradeoff. We expand this method
by adding the notion of personalization towards target users
with the goal of improving the performance-compatibility
tradeoff provided by the update.

The underlying idea behind the method proposed by
Bansal et al. (2019b) (and therefore behind the method
proposed here as well) is similar to several other works.
One such example are Model Ensemble methods (Opitz
and Maclin 1999), in particular AdaBoost (Freund, Schapire
et al. 1996). In both methods, an additional penalty is given
for different types of errors that depends on a previously
trained model. In AdaBoost this additional penalty is given
for mistakes that the previous model made and in the method
of Bansal et al. (2019b) for mistakes the previous model
didn’t make. It could be interesting to explore the theoretical
similarities between these two methods, since model ensem-
ble enjoys a vast theoretical framework (Freund, Schapire
et al. 1996).

Choosing the best model for each user is related to re-
search on methods for choosing the best expert (Herbster
and Warmuth 1998), but in our work we simply consider the
quality of the performance-compatibility tradeoffs (in terms
of AUTC) provided by the various models on a validation
set to determine this. Further implementation of the ideas
proposed in that research may improve the reliability of this
selection.

Several other works relate to the personalization of AI-
models to users but do not address the personalization of
updates to these systems, let alone the notion of an update’s
compatibility with the prior model. For instance, for the
ASSISTment dataset mentioned in previous sections, work
was performed on individualizing student models (Wang and
Heffernan 2012; Pardos and Heffernan 2010) and on clus-
tering the students (Trivedi, Pardos, and Heffernan 2011;
Trivedi et al. 2010) with the goal of improving the accuracy
of the predictions.

Much work has been done in the field of human-AI in-
teractions. The compatibility of an update to an AI-system
is closely related to the 14th Guideline for Human-AI In-
teractions from Amershi et al.’s work (Amershi et al. 2019)
described as “Update and adapt cautiously: Limit disrup-
tive changes when updating and adapting the AI-system’s

behaviors”. In our case, this means making sure that the pre-
dictions made by the updated model conform to the user’s
expectations that developed prior to the update. It is related
also to the 5th step in an article from Google Design (Love-
joy 2017) that states the importance of making sure that the
AI-system and the user’s model evolve in tandem. For more
references to related work on human-AI interaction and the
field of AI-advised human decision making refer to the re-
lated work section in the paper of Bansal et al. (2019b).

Conclusion
The compatibility of an update to an AI-system with the sys-
tem prior to the update is important for the adequate func-
tioning of human-AI teams (Bansal et al. 2019a,b). Previous
work addressed the problem of increasing compatibility by
developing a loss function that delivers an additional penalty
for newly introduced errors (mistakes that the model prior to
the update didn’t make), and showed that there’s a tradeoff
between the compatibility and performance of the updated
model (Bansal et al. 2019b). We extended this approach by
personalizing the model’s objective function to target users
with the goal of producing improving this tradeoff. We also
proposed a framework for selecting the best way of perform-
ing this personalization.

The experimental results showed that our personaliza-
tion approach can yield significantly better performance-
compatibility tradeoffs than the baseline non-personalized
model. We then analyzed two use cases where the personal-
ization exceptionally outperformed the baseline and showed
that the personalized classifier model differed fundamentally
from the baseline model.

Our approach is limited in the sense that it assumes that
the user’s future interactions with the system will resemble
the ones observed so far. In future work we will address
this limitation, and explore ways of modifying the objec-
tive function beyond simply assigning weights to the dataset
samples possibly by employing program synthesis or inverse
reinforcement learning methods. We believe that informing
users about the performance-compatibility tradeoff of the
models that are used to interact with them can contribute
on making AI-systems more transparent.

Acknowledgements
Thanks very much to Avi Segal and Nicholas Hoernle for
helpful comments. This research was partially supported by
Israeli Science Foundation (ISF) Grant No. 773/16 and by
Canada’s CIFAR AI Chairs program.

References
Amershi, S.; Weld, D.; Vorvoreanu, M.; Fourney, A.; Nushi,
B.; Collisson, P.; Suh, J.; Iqbal, S.; Bennett, P. N.; Inkpen,
K.; et al. 2019. Guidelines for human-ai interaction. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, 1–13.

Bansal, G.; Nushi, B.; Kamar, E.; Lasecki, W. S.; Weld,
D. S.; and Horvitz, E. 2019a. Beyond Accuracy: The Role

of Mental Models in Human-AI Team Performance. In Pro-
ceedings of the AAAI Conference on Human Computation
and Crowdsourcing, volume 7, 2–11.
Bansal, G.; Nushi, B.; Kamar, E.; Weld, D. S.; Lasecki,
W. S.; and Horvitz, E. 2019b. Updates in human-
ai teams: Understanding and addressing the perfor-
mance/compatibility tradeoff. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 2429–
2437.
Feng, M.; Heffernan, N. T.; and Koedinger, K. R. 2006.
Addressing the testing challenge with a web-based e-
assessment system that tutors as it assesses. In Proceedings
of the 15th international conference on World Wide Web,
307–316.
Freund, Y.; Schapire, R. E.; et al. 1996. Experiments with
a new boosting algorithm. In icml, volume 96, 148–156.
Citeseer.
Herbster, M.; and Warmuth, M. K. 1998. Tracking the best
expert. Machine learning 32(2): 151–178.
Lovejoy, H. 2017. Human-Centered Machine Learning:
7 steps to stay focused on the user when designing with
ML. https://medium.com/google-design/human-centered-
machine-learning-a770d10562cd. Accessed Feb 2020.
Opitz, D.; and Maclin, R. 1999. Popular ensemble meth-
ods: An empirical study. Journal of artificial intelligence
research 11: 169–198.
Pardos, Z. A.; and Heffernan, N. T. 2010. Modeling individ-
ualization in a bayesian networks implementation of knowl-
edge tracing. In International Conference on User Model-
ing, Adaptation, and Personalization, 255–266. Springer.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.
Sahoo, A. K.; Pradhan, C.; Barik, R. K.; and Dubey, H. 2019.
DeepReco: deep learning based health recommender system
using collaborative filtering. Computation 7(2): 25.
Tashman, L. J. 2000. Out-of-sample tests of forecasting ac-
curacy: an analysis and review. International journal of fore-
casting 16(4): 437–450.
Trivedi, S.; Pardos, Z.; Sárközy, G.; and Heffernan, N. 2010.
Spectral clustering in educational data mining. In Educa-
tional Data Mining 2011.
Trivedi, S.; Pardos, Z. A.; and Heffernan, N. T. 2011. Clus-
tering students to generate an ensemble to improve standard
test score predictions. In International conference on artifi-
cial intelligence in education, 377–384. Springer.
Wang, Y.; and Heffernan, N. T. 2012. The student skill
model. In International Conference on Intelligent Tutoring
Systems, 399–404. Springer.

