
 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 0Ja
n’

0
1

Overview

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1Ja
n’

0
1

Introduction

Computer systems have two major components:

• hardware—electronic, mechanical, optical devices.

• software—programs.

Without support software, a computer is of little use.
With its software, however, a computer can store,
manipulate, and retrieve information, and can engage
in many other activities.

Software can be grouped into the following categories:

• systems software (operating system & utilities)

• applications software (user programs)

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2Ja
n’

0
1

Contemporary Hardware/Software Structure

. . .
CPU

memory

device device device

operating
system

utilities applications
software

systems
software

hardware
components

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3Ja
n’

0
1

What is an operating system?

An operating system (OS) is a resource manager.

It manages the resources of a computer, including
processor(s), main memory, and I/O devices.

An operating system provides orderly and controlled
allocation and use (i.e., sharing) of the resources by
the users (jobs) that compete for them.

One major function of an operating system is to
‘‘hide’ ’ the complexity of the underlying hardware and
give the user a better view (an abstraction) of the
computer.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 4Ja
n’

0
1

Why study operating systems?

Likely will NOT actually write an OS, but…

• one of the largest and most complicated software system

• draws on lots of areas:
– software engineering, computer architecture, data structures,

networks, algorithms.

• if certain things (in an OS) need to be changed, better
understand them first!

• can apply techniques used in an OS to other areas:
– interesting, complex data structures
– conflict resolution
– concurrency
– resource management

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 5Ja
n’

0
1

In the beginning...

The earliest computers, developed in the 1940s,
were programmed in machine language and they used
front panel switches for input. In fact, the
programmer was also the operator interacting with
the computer directly from the system console
(control panel).

Problems:

• programmers needed to sign-up in advance to use the
computer one at a time.

• executing a single program (often called a job) required
substantial time to setup the computer.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 6Ja
n’

0
1

Brief historical review

Batch processing
– Pre-OS: the monitor

On-line versus off-line processing
– Input, processing, output

Spooling
– Simultaneous Peripheral Operations On-line

Time-sharing
– Share the computer simultaneously
– Time-quantum

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 7Ja
n’

0
1

Job interleaving

CPU

I/O

Job A Job B

time

uniprogramming

CPU is idle 47%
I/O is idle 53%

Jobs A and B end at time 36.

Jobs A and B end at time 25.

“pure’’
multiprogramming

CPU is idle 20%
I/O is idle 36%

A B

Job A

Job A

Job B

Job B

CPU

I/O

time0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

CPU Idle

I/O Idle

Job A
waits

Job B
waits

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 8Ja
n’

0
1

Other systems

Personal computing
– single-user, dedicated.

Parallel processing
– multiprocessors (share a common bus, clock, and

memory).
– tightly-coupled; multiprocessing.

Distributed processing
– multicomputers (do not share memory and clock);

loosely-coupled.

Real-time
– deadline (time critical) requirements.
– soft real-time; hard real-time.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 9Ja
n’

0
1

A vicious cycle

multi-user
interactive

batch
single-user

With respect to hardware:

interactive—front panel switches

batch—multiprogramming

interactive—keyboard/mouse

With respect to users of a single
computer:

single-user—operator console

multi-user—timesharing

single-user—personal computers

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 0Ja
n’

0
1

OS generations—a summary

• simple monitors
– no job-to-job linkage.

• single-stream batch monitors
– one job, several (sequential) steps.

• single-mode operation
– several jobs in machine at a time; elementary

multiprogramming.

• integrated multiprogramming
– complex memory and user/kernel mode operations.

• modular, layered
– high level of flexibility—networking.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 1Ja
n’

0
1

Bootstrapping
• The process of initializing the computer and loading

the operating system is known as bootstrapping.
 This usually occurs when the computer is powered-

up or reset.

• The initial loading is done by a small program that
usually resides in non-volatile memory (e.g., EPROM).
 This in turn loads the OS from an external device.

• Once loaded, how does the operating system know
what to do next?
 It waits for some event to occur: e.g., the user

typing a command on the keyboard.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 2Ja
n’

0
1

Interrupts and ...
The operating system gets the control of the CPU (which may
be busy waiting for an event or be in a busy loop) when either
an external or an internal event (or an exception) occurs.

• external events:
– Character typed at console.
– Completion of an I/O operation (controller is ready to do more

work).
– Timer: to make sure operating system eventually gets control.

An interrupt is the notification of an (external) event that
occurs in a way that is asynchronous with the current activity of
the processor. Exact occurrence time of an interrupt is not
known and it is not predictable.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 3Ja
n’

0
1

… Traps
• internal events:

– System call.
– Error item (e.g., illegal instruction, addressing

violation).
– Page fault.

A trap is the notification of an (internal) event that
occurs while a program is executing, therefore is
synchronous with the current activity of the
processor.

Traps are immediate and are usually predictable since
they occur while executing (or as a result of) a
machine instruction.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 4Ja
n’

0
1

More on interrupts

•Systems that generate interrupts have different
priorities for various interrupts; i.e., when two
interrupts occur simultaneously, one is serviced
‘‘before’’ the other.

•When a new ‘‘higher priority’ ’ interrupt occurs while
lesser interrupt is being serviced, the current handler
is ‘‘suspended’’ until the new interrupt is processed.
This is called the ‘ ‘nesting of interrupts.’ ’

•When interruption of an interrupt handler is
undesirable, other interrupts can be ‘‘masked’ ’
(inhibited) temporarily.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 5Ja
n’

0
1

Interrupt handling by ‘‘words’ ’

When the CPU receives an interrupt, it is forced to a
different context (kernel’s) and the following occur:

– the current state of the CPU (PSW) is saved in some specific
location.

– the interrupt information is stored in another specified
location.

– the CPU resumes execution at some other specific
location—the interrupt service routine.

– after servicing the interrupt, the execution resumes at the
saved point of the interrupted program.

Although the details of the above differ from one
machine to another, the basic idea remains the same:
the CPU suspends its (current) execution and
services the interrupt.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 6Ja
n’

0
1

Interrupt handling by ‘‘picture’ ’

Any program

21

3

4

interrupt vector

interrupt
service
routineinterrupt

1. An interrupt occurs, branch to OS.

2. Locate the interrupt service routine (ISR).

3. Execute the ISR

4. Return to interrupted program

Operating
System

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 7Ja
n’

0
1

I/O techniques

Programmed I/O
 The CPU transfers the data from (or to) the device buffers.

After issuing an I/O operation the CPU continuously checks
(polls) for its completion.

I/O in progress

CPU periodically checks
for the completion of I/O

 operation

I/O device

CPU

I/O is
completed

time

CPU resumes
execution

CPU issues an
I/O operation

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 8Ja
n’

0
1

I/O techniques continued

Interrupt-driven I/O (slow speed, character device)

 The CPU issues an I/O operation and goes on to some other
work. The device notifies (interrupts) the CPU as each byte or
word arrives. Again, the CPU handles the data transfer.

I/O in progress*

CPU does
other work

CPU issues an
I/O operation

CPU resumes
execution

I/O device

CPU

* One unit of data (a byte or a word) is transferred.

I/O is
completed

interrupt

time

interrupt interrupt

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 1 9Ja
n’

0
1

I/O techniques continued

Direct Memory Access (DMA) (high speed, block device)

 CPU issues an I/O operation specifying the device, the
memory location of the data, and the block size. The CPU is
now free to do work for others. The DMA device interrupts
the CPU upon the completion of the requested operation.

I/O in progress*

CPU does other work

I/O device

CPU

* A block of data is transferred.

time

I/O is
completed

CPU issues an
I/O operation

CPU resumes
execution

interrupt

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 0Ja
n’

0
1

Storage structure and hierarchy

speed

registers

cache

main memory

magnetic disk

optical disk

magnetic tape

cost/bit

This hierarchy also measures relative capacity of the devices. However, the capacity difference
at the lower levels (e.g., between a magnetic disk and a magnetic tape) is narrowing rapidly.
* These values are for current single processor systems or single disk and tape drives.

on
-li

ne
o

ff
-l

in
e600 MB - 4 GB/platter

size*

8 - 64

64 KB - 2 MB

4 MB - 3 GB

1 GB - 23 GB

100 MB - 35 GB/tape

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 1Ja
n’

0
1

Architectural support

Modes of operation
– supervisor (protected, kernel) mode: all (basic and

privileged) instructions available.
– user mode: a subset (basic only) of instructions.

I/O protection
– all I/O operations are privileged.

Memory protection
– base/limit registers (in early systems).
– memory management unit, MMU (in modern systems).

CPU control
– timer (alarm clock); time-quantum.
– context switch.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 2Ja
n’

0
1

Operating system components

An operating system generally consists of the
following components:

• Process management

• (Disk) storage management

• Memory management

• I/O (device) management

• File systems

• Networking

• Protection

• User Interface

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 3Ja
n’

0
1

OS architecture

user interface

memory
mgmtprocess

mgmt
storage
mgmt

file systems

device
mgmt

networking

Hardware

protection mechanisms

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 4Ja
n’

0
1

Accessing OS services

The mechanism used to provide access to OS
services (i.e., enter the operating system and
perform a ‘‘privileged operation’ ’) is commonly
known as a system call.

The (only) difference between a ‘ ‘procedure call’’
and a ‘‘system call’ ’ is that a system call changes
the execution mode of the CPU (to supervisor
mode) whereas a procedure call does not.

System call interface: A set of functions that are
called by (user) programs to perform specific
tasks.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 5Ja
n’

0
1

System call mechanism

read()

Operating
System

system
call

table

read()

system
call

entry

system
call
exit

4

3

21

5

1. system service is requested (system call)

2. switch mode; verify arguments and service

3. branch to the service function

4. return from service function; switch mode

5. return from system call

...

...

write()

open()

system
call

routines

User
Program

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 6Ja
n’

0
1

System call groups
• Process control

– fork(), exec(), wait(), abort()

• File manipulation
– chmod(), link(), stat(), creat()

• Device manipulation
– open(), close(), ioctl(), select()

• Information maintenance
– time(), acct(), gettimeofday()

• Communications
– socket(), accept(), send(), recv()

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 7Ja
n’

0
1

Utilities: user commands
• File manipulation

– cp, mv, cat, tar, sort, compress, gzip
• File modification

– vi, emacs, od
• Status information

– date, d f, who, users
• Programming language support

– gcc, tcl, perl, yacc, lex, rcs
• Program loading, execution and debugging

– ld, gdb
• Communications

– telnet, ftp, netscape, mail

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 8Ja
n’

0
1

Applications software
• Typesetting and word processing

– Latex, Troff, FrameMaker, MS Word

• Database management
– Oracle, Sybase

• Spreadsheets
– Lotus 1-2-3, MS Excel

• Graphics
– XV, CorelDraw, MS PowerPoint

• Games
– Tetris, Chess, Xsokoban

• Internetworking
– Netscape, Lynx, Arena, WEB authoring tools

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 2 9Ja
n’

0
1

System structure

An operating system is usually large and complex.
Therefore, it should be engineered carefully.

Possible ways to structure an operating system:
• Simple, single-user

– MSDOS, MacOS, Windows

• Monolithic, multi-user
– UNIX, Multics, OS/360

• Layered
– T.H.E. operating system

• Virtual machine
– IBM VM/370

• Client/Server (microkernel)
– Chorus/MiX

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 0Ja
n’

0
1

OS kernel

During ‘ ‘normal’’ operations of a computer system,
some portions of the operating system remain in
main memory to provide services for critical
operations, such as dispatching, interrupt handling, or
managing (critical) resources.

These portions of the OS are collectively called the
kernel.

Kernel = OS – transient
components

remains comes and goes

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 1Ja
n’

0
1

Structure of MSDOS

DOS I/O

Basic I/O System (BIOS)

Application program

ROM

RAM

Command

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 2Ja
n’

0
1

UNIX system/kernel structure
user program

libraries

system call interface

file system

buffer
cache

char block

device drivers

hardware control

user level

system/kernel
level

process control

inter-process
communication

scheduling

memory
management

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 3Ja
n’

0
1

Structure of T.H.E. system

user programs

I/O management

console management

memory management

hardware managementLevel 0

1

2

3

4
Pros:

Cons:

modularity; each layer provides
an ‘‘abstract’’ interface to the
layer above; helps to isolate errors.

reduced flexibility to achieve strict
layering; high overhead of layering;
difficulty with the ordering of layers.

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 4Ja
n’

0
1

Structure of IBM VM/370

hardware (system 370)

control program (CP)

DOS/VS

virtual 370 virtual 370 virtual 370 virtual 370

OS/MVT

virtual CP
CMS

virtual 370

MVS

} VM

virtual 370

OS/VS1

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 5Ja
n’

0
1

Structure of Chorus/MiX

file
manager

process
manager

process
manager

socket
manager

device
manager

real-time
executive

communications memory
management

device
drivers

supervisor

hardware

Chorus
nucleus

system call

message passing

UNIX system call interface

microkernel interface

 Copyright © 1998-2001 by Eskicioglu & Marsland Overview 3 6Ja
n’

0
1

System generation (installation)

• What CPU type is used? options?

• Number of CPUs?

• How much memory is available?

• What devices are available?

• OS parameters (e.g., buffer size, maximum number
of users, maximum number of devices)

• OS extensions (features)
– networking
– other file systems
– servers

