
 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 0Ja
n’

0
1

Processes

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1Ja
n’

0
1

What is a process?

A process is a program in execution. The components
of a process are: the program to be executed, the
data on which the program will execute, the
resources required by the program—such as memory
and file(s)—and the status of the execution.

Is a process the same as a program? No!, it is both
more and less.

• more—a program is just part of a process context.
 tar can be executed by two different people—same program (shared

code) as part of different processes.

• less—a program may invoke several processes.
 cc invokes cpp, cc1, cc2, as, and ld.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2Ja
n’

0
1

Programming: uni- versus multi-

Some systems allow execution of only one process at
a time (e.g., early personal computers).

They are called uniprogramming systems.

Others allow more than one process, i.e., concurrent
execution of many processes. They are called multi-
programming (NOT multiprocessing!) systems.

In a multiprogramming system, the CPU switches
automatically from process to process running each
for tens or hundreds of milliseconds. In reality, the
CPU is actually running one and only one process at a
time.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 3Ja
n’

0
1

Execution model
Over years, operating system designers evolved a model that
makes concurrency easier to deal with. In this model, each
runnable software on the computer—often components of the
operating system itself—is organized into a number of
(sequential) processes, each viewed as a block of code with a
pointer showing the next instruction to be executed.

How can several processes share one CPU? Operating system
takes care of this by making sure:

– each process gets a chance to run—fair scheduling.
– they do not modify each other’s state—protection.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 4Ja
n’

0
1

Process states
There are a number of states that can be attributed to a process:
indeed, the operation of a multiprogramming system can be described
by a state transition diagram on the process states. The states of a
process include:

• New—a process being created but not yet included in the pool of
executable processes (resource acquisition) .

• Ready—processes that are prepared to execute when given the
opportunity.

• Active—the process that is currently being executed by the CPU.

• Blocked—a process that cannot execute until some event occurs.
• Stopped—a special case of blocked where the process is suspended

by the operator or the user.
• Exiting—a process that is about to be removed from the pool of

executable processes (resource release) .

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 5Ja
n’

0
1

Process state diagram

new

ready active exiting

stopped

blocked

create
time-out

dispatch

event or
resource

wait

suspendresume

event
occurs or
resource
available

kill

exit

kill

error

external
internal

state transition

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 6Ja
n’

0
1

Process description
The operating system must know specific information about
processes in order to manage and control them. Such
information is usually grouped into two categories:

• process state information
– E.g., CPU registers (general purpose and special purpose),

program counter.

• process control information

– E.g., scheduling priority, resources held, access privileges,
memory allocated, accounting.

This collection of process information is kept in and access
through a process control block (PCB).

Information in both groups are OS dependent.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 7Ja
n’

0
1

Process scheduling
The objective of multiprogramming is to have some user process
running at all times. The OS keeps the CPU busy with productive
work by dynamically selecting (scheduling) the next user
process to become active.

The (re-)scheduling is performed by a module, called the
dispatcher. A dispatcher usually only executes the following
primitive pseudo-code:

loop forever {
 run the process for a while.
 stop process and save its state.
 load state of another process.
 }

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 8Ja
n’

0
1

Dispatcher at work

process
1

process
2

process
n

CPU

Ready Queue

Operating
System

dispatcher

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 9Ja
n’

0
1

Control of the CPU

The CPU can only do one thing at a time. While a user
process is running, dispatcher cannot run, thus the
operating system may lose control.

How does the dispatcher regain control (of the CPU)?

• Trust the process to wake up the dispatcher when done
(sleeping beauty approach) .

• Provide a mechanism to wake up the dispatcher (alarm
clock).

The problem with the first approach is that
sometimes processes loop indefinitely. Therefore, the
alarm clock interrupt approach is better.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 0Ja
n’

0
1

Context switch

When an event occurs, the operating system saves
the state of the active process and restores the
state of the interrupt service routine (ISR). This
mechanism is called a Context Switch.
What must get saved? Everything that the next
process could or will damage. For example:

– Program counter (PC)
– Program status word (PSW)
– CPU registers (general purpose, floating-point)
– File access pointer(s)
– Memory (perhaps?)

While saving the state, the operating system should
mask (disable) all interrupts. Why?

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 1Ja
n’

0
1

Memory: to save or NOT to save

Here are the possibilities:

● Save all memory onto disk.
● Could be very time-consuming. E.g., assume data
transfers to disk at 1MB/sec. How long does saving
a 4MB process take?

● Don't save memory; trust next process.
● This is the approach taken by PCs and MACs.

● Isolate (protect) memory from next process.
● This is memory management, to be covered later.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 2Ja
n’

0
1

Context switch implementation

The mechanism of context switching is the most
important part of an operating system, and needs
special care during the implementation, because:

• It is tricky.
Saving the state of a user process is problematic
because the operating system must execute code to
save the state without changing the process’ current
state!

• Machine dependent.
Thanks to technology; each CPU provides some
special support to ease the implementation.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 3Ja
n’

0
1

Creating a new process
There are two practical ways of creating a new process:

• Build one from scratch:

– Load code and data into memory.

– Create (empty) a dynamic memory workspace (heap).

– Create and initialize the process control block.

– Make process known to dispatcher.

• Clone an existing one:

– Stop current process and save its state.

– Make a copy of code, data, dynamic memory workspace
and process control block.

– Make process known to dispatcher.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 4Ja
n’

0
1

Process creation mechanisms

Who creates the processes and how are they supported?
Every operating system has a mechanism to create
processes.

For example, in UNIX the fork() system call is used to
create processes. fork() creates an identical copy of the
calling process. After the fork(), the parent continues
running concurrently with its child competing equally for
the CPU.

On the other hand, in MS-DOS, the LOAD_AND_EXEC
system call creates a child process. This call suspends the
parent until the child has finished execution, so the parent
and child do not run concurrently.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 5Ja
n’

0
1

Process creation: UNIX example

before fork()

after fork()

child
resumes

here

parent
resumes

here

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

if (fork())
{

}
else
{

}

/* parent */
/* code */

/* child */
/* code */

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 6Ja
n’

0
1

if (fork())
{

}
else
{
 exec(…)
}

A typical use of fork()

if (fork())
{

}
else
{
 exec(…)
}

before fork()

after fork() after exec()

if (fork())
{

}
else
{
 exec(…)
}

parent
resumes

here

child
resumes

here

child
resumes

here

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 7Ja
n’

0
1

UNIX system initialization

bootstrap
swapper

init

process 0

process 1

getty login SHELL

fork

fork
exec exec

.

.

.

wait until all
children exit

as many as
available
terminals

wait until
init exits system shutdown

user
commands

fork

exit

user
environment

exit

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 8Ja
n’

0
1

A UNIX process context

STACK

HEAP

DATA

TEXT

process
control

block

process
context

context
switchable

in kernel

stack: local variables

data: constants and static
 variables

heap: dynamic variables

text : executable code

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 1 9Ja
n’

0
1

Process termination

A process enters the exiting state for one of the
following reasons:

• normal completion: A process executes a system call
for termination (e.g., in UNIX exit() is called).

• abnormal termination:
– programming errors

· run time

· I/O

– user intervention

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 0Ja
n’

0
1

Threads

Unit of execution (unit of dispatching) and a
collection of resources, with which the unit of
execution is associated, characterize the notion of a
process.

A thread is the abstraction of a unit of execution. It is
also referred to as a light-weight process (LWP) .

As a basic unit of CPU utilization, a thread consists of
an instruction pointer (also referred to as the PC or
instruction counter), a CPU register set and a stack.
A thread shares its code and data, as well as system
resources and other OS related information, with its
peer group (other threads of the same process).

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 1Ja
n’

0
1

Threads: an example
A good example of an application that could make use of
threads is a file server on a local area network (LAN).

A ‘‘controller’ ’ thread accepts file service requests and spawns a
‘ ‘worker’ ’ thread for each request, therefore may handle many
requests concurrently. When a worker thread finishes servicing a
request, it is destroyed.

process
A

process
B

file servercontroller
thread

worker
threads

clients

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 2Ja
n’

0
1

Threads versus processes
• A thread operates in much the same way as a process:

– can be one of the several states;
– executes sequentially (within a process and shares the CPU);
– can issue system calls.

• Creating a thread is less expensive.

• Switching to a thread within a process is cheaper than
switching between threads of different processes.

• Threads within a process share resources (including the
same memory address space) conveniently and
efficiently, unlike separate independent processes.

• Threads within a process are NOT independent and are
NOT protected against each other.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 3Ja
n’

0
1

Threads versus processes continued

STACK

DATA

a traditional process a multi-threaded process (task)

STACK STACK STACK

TEXT
a thread

DATA

TEXT

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 4Ja
n’

0
1

Thread implementations
• User level:

 implemented as a set of library functions; cannot be
scheduled independently; each thread gets partial time
quantum of a process; a system call by a thread blocks the
entire set of threads of a process; less costly (thread)
operations

• Kernel level:

 implemented as system calls; can be scheduled directly by
the OS; independent operation of threads in a single
process; more expensive (thread) operations.

• Hybrid approach:
 combines the advantages of the above two; e.g., Solaris

threads.

 Copyright © 1998-2001 by Eskicioglu & Marsland Processes 2 5Ja
n’

0
1

Fly in a bottle

A traditional
UNIX process

A modern
UNIX process

