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Synchronization
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Concurrency

Motivation: overlap computation with I/O; simplify
programming.

• hardware parallelism: CPU computing, one or more I/O
devices are running at the same time.

• pseudo parallelism: rapid switching back and forth of
the CPU among processes, pretending that those
processes run concurrently.

• real parallelism: can only be achieved by multiple CPUs.

Single CPU systems cannot achieve real parallelism,
but...

Keeping track of multiple activities is difficult.
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Concurrent processes

In a multiprogramming environment, processes
executing concurrently are either competing for the
CPU and other global resources, or cooperating with
each other for sharing some resources.

An OS deals with competing processes by carefully
allocating resources and properly isolating processes
from each other. For cooperating processes, on the
other hand, the OS provides mechanisms to share
some resources in certain ways as well as allowing
processes  to properly interact with each other.

Cooperation is either by sharing or by communication.
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Processes: competing

Processes that do not exchange information cannot
affect the execution of each other, but they can
compete for devices and other resources. Such
processes do not intend to work together, and so are
unaware of one another.

Example: Independent processes running on a computer.

Properties:
• Deterministic.

• Reproducible.

• Can stop and restart without ‘ ‘side’ ’ effects.

• Can proceed at arbitrary rate.
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Processes: cooperating

Processes that are aware of each other, and directly
(by exchanging messages) or indirectly (by sharing a
common object) work together, may affect the
execution of each other.

Example: Transaction processes in airline reservations.

Properties:

• Share (or exchange) something: a common object (or a
message).

• Non-deterministic.

• May be irreproducible.

• Subject to race conditions.

 Copyright © 1998-2001  by Eskicioglu & Marsland Synchronization 5Ja
n’

0
1

Why cooperation?

We allow processes to cooperate with each other,
because we want to:

• share some resources.
– One checking account file, many tellers.

• do things faster.
– Read next block while processing current one.
– Divide jobs into smaller pieces and execute them

concurrently.

• construct systems in modular fashion.
UNIX example:

cat infile | tr ‘ ‘ ‘\012’ |  \

                     tr ‘[A-Z]’ ‘[a-z]’ | sort | uniq -c
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A potential problem

Instructions of cooperating processes can be
interleaved arbitrarily. Hence, the order of (some)
instructions are irrelevant. However, certain
instruction combinations must be eliminated. For
example:

Process A Process B concurrent access

A = 1; B = 2;     does not matter

A = B + 1; B = B * 2;     important!

A race condition is a situation where two or more
processes access shared data concurrently.
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An example

    time        Person A     Person B
      3:00     Look in fridge. Out of milk.
       3:05        Leave for store.
       3:10        Arrive at store. Look in fridge. Out of milk.
       3:15            Buy milk.      Leave for store.
      3:20         Leave the store.      Arrive at store.
       3:25     Arrive home, put milk away. Buy milk.
      3:30      Leave the store.

      3:35 Arrive home. OH! OH!

What does correct mean?

Someone gets milk, but NOT  everyone (too much
milk!)
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Mutual exclusion

The ‘‘too-much-milk’ ’ example shows that when
cooperating processes are not synchronized, they
may face unexpected ‘‘timing’ ’ errors.

Mutual exclusion is a mechanism to ensure that only
one process (or person) is doing certain things at one
time, thus avoid data inconsistency. All others should
be prevented from modifying shared data until the
current process finishes.

E.g., only one person buys milk at a time.
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Critical section

A section of code, or a collection of operations, in
which  only one process may be executing at a given
time and  which we want to make ‘ ‘sort of’’ atomic.
Atomic means either an operation happens in its
entirety or NOT at  all; i.e., it cannot be interrupted in
the middle.

E.g., buying milk or shopping.

Atomic operations are used to ensure that
cooperating processes execute correctly.

Mutual exclusion mechanisms are used to solve the
critical section problem.
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Solution 1

First attempt at computerized milk buying:

     Processes A & B

              if ( NoMilk ) {
                 if ( NoNote ) {
                    Leave Note;
                    Buy Milk;
                    Remove Note;
                 }
              }

This solution works for people because the first three lines
are performed atomically; but does not work otherwise.

 Copyright © 1998-2001  by Eskicioglu & Marsland Synchronization 1 1Ja
n’

0
1

Solution 2

Second attempt: use 2 notes.

     Process A                      Process B

      Leave NoteA;           Leave NoteB;
      if ( NoNoteB ) {       if ( NoNoteA ) {
         if ( NoMilk ) {        if ( NoMilk ) {
            Buy Milk;              Buy Milk;
         }                      }
      }                      }
      Remove NoteA;          Remove NoteB;

 What can you say about this solution?
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Solution 3

Third attempt: in case of tie, B will buy milk.

    Process A                         Process B

     Leave NoteA              Leave NoteB;
     if ( NoNoteB ) {         while ( NoteA )
        if ( NoMilk ) {          ; // do nothing
           Buy Milk;          if ( NoMilk ) {
        }                        Buy Milk;
     }                        }
     Remove NoteA;            Remove NoteB;

 This ‘‘asymmetric’ ’ solution works. But...
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Critique for solution 3

The previous solution to the too-much-milk problem
is too complicated. The problem is that the mutual
exclusion idea is simple-minded. Moreover, the code
is asymmetric (and complex) and process B is
consuming CPU cycles while waiting.

In any case, the solution would be even more
complicated if extended to many processes (try to
modify the code for 4 processes).
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Fundamental requirements
Concurrent processes should meet the following requirements in
order to cooperate correctly and efficiently using shared data:

1 Mutual exclusion—no two processes will simultaneously be
inside the same critical section (CS).

2 Progress—a process wishing to enter its CS will eventually do
so in finite time.

3 Fault tolerance—processes failing outside their CS should not
interfere with others accessing the CS.

4 No assumptions—should be made about relative speeds or
the number of processors.

5 Efficiency—a process will remain inside its CS for a short time
only, without blocking.

Also, a process in one CS should not block others entering a
different CS.
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Mutual exclusion—attempt 1

    Process A                           Process B
  ...                       ...
  while( TRUE ) {           while( TRUE ) {
    ...                       ...
    while( proc == B ) ;      while( proc == A ) ;

     < criticalA >              < criticalB >

    proc = B;                 proc = A;
    ...                       ...
  }                         }
  ...                       ...

proc is a global variable and initialized to A (or B).  Both
processes start execution concurrently.

Problem: violates rule 2 (strict alteration). What if B does not want access?
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Mutual exclusion—attempt 2

    Process A                        Process B
    ...                     ...
    while( TRUE ) {         while( TRUE ) {
      ...                     ...
      while( pBinside ) ;     while( pAinside ) ;
      pAinside = TRUE;        pBinside = TRUE;

       < criticalA >            < criticalB >

      pAinside = FALSE;       pBinside = FALSE;
      ...                     ...
    }                       }
    ...                     ...

The global variables pAinside and pBinside are initialized to
FALSE.

Problem: violates rule 1 (interleaved instructions).
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Mutual exclusion—attempt 3

    Process A                         Process B
   ...                      ...
   while( TRUE ) {          while( TRUE ) {
     ...                      ...
     pAtrying = TRUE;         pBtrying = TRUE;
     while( pBtrying ) ;      while( pAtrying ) ;

      < criticalA >             < criticalB >

     pAtrying = FALSE;        pBtrying = FALSE;
     ...                      ...
   }                        }
   ...                      ...

The global variables pAinside and pBinside are renamed as
pAtrying and pBtrying, respectively.

Problem: violates rule 2 (interleaved instructions).
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Dekker’s algorithm

            Process A                             Process B
...                        ...
while( TRUE ) {            while ( TRUE ) {
  ...                        ...
  pAtrying = TRUE;           pBtrying = TRUE;
  while( pBtrying )          while( pAtrying )
    if( turn == B ) {          if( turn == A ) {
      pAtrying = FALSE;          pBtrying = FALSE;
      while( turn == B ) ;       while( turn == A ) ;
      pAtrying = TRUE;           pBtrying = TRUE;
    }                          }
   < criticalA >              < criticalB >
  turn = B;                  turn = A;
  pAtrying = FALSE;          pBtrying = FALSE;
  ...                        ...
}                          }
...                        ...

One more global variable, turn, initialized to A or B.
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Peterson’s algorithm

             Process A                             Process B
  ...                        ...
 while( TRUE ) {            while( TRUE ) {
   ...                        ...
   pAtrying = TRUE;           pBtrying = TRUE;
   turn = B;                  turn = A;
   while( pBtrying &&         while( pAtrying &&
          turn == B ) ;              turn == A ) ;

    < criticalA >              < criticalB >

   pAtrying = FALSE;          pBtrying = FALSE;
   ...                        ...
 }                          }
 ...                        ...

Same global variables, but turn need not be initialized (Note: the
above relies on a race condition to resolve access rights, but it is not harmful).
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Yes, correct; but...

Both Dekker’s and Peterson’s algorithms are correct.
However, they only work for 2 processes. Similar to
the last solution of the ‘‘too-much-milk’ ’ problem,
these algorithms can be generalized for N processes,
but:

– N must be fixed (known a priori) .
– Again, the algorithms become much too complicated

and expensive.

Implementing a mutual exclusion mechanism is
difficult!
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               Processi

    boolean choosing[n];
    int number[n];
    ...
    while( TRUE ) {
      choosing[i] = TRUE;
      number[i] = max(number[0],..., number[n-1])+1;
      choosing[i] = FALSE;
      for( j=0; j<n; j++ ) {
        while( choosing[j] ) ;
        while( number[j] != 0 &&
          ( number[j],j) < (number[i],i) ) ;
      }
       < criticali >
      number[i] = 0;
      ...
    }

    Where:
· max(a0, ..., an-1) is a number, k, such that k>=ai for i=0, ..., n-1, and
· (a,b) < (c,d)  means if a < c or if a==c and b < d.

Bakery algorithm
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What is missing?

‘‘Real’’ solutions are based on stronger prerequisites
than just variable sharing. Besides, we don’t want to
guess what is ‘‘atomic’’ when programming. So, we
want:

• Hardware support—special instructions.

• OS kernel provided synchronization primitives.

At the lowest level (hardware), there are two
elementary mechanisms:

– interrupt masking
– atomic read-modify-write
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A simple minded alternative
Let’s start by using hardware instructions to mask
interrupts. If we don’t let the CPU interrupt (i.e., take
away the control from) the current process, the solution
for N processes would be as simple as below:

                              Processi
              ...
              while( TRUE ) {
                disableInterrupts();

                 < criticali >

                enableInterrupts();
                ...
              }

Unfortunately, there is only one system-wide critical
section active at a time. Besides, no OS allows user
access to privileged instructions!
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Hardware support

Many CPUs today provide hardware instructions to read,
modify, and store a word atomically. Most common
instructions with this capability are:

– TAS—test-and-set (Motorola 68K)
– CAS—compare-and-swap (IBM 370 and Motorola 68K)
– XCHG—exchange (x86)

The basic idea is to be able to read out the contents
of a variable (memory location), and set it to something
else all in one execution cycle. Hence not interruptible.
The use of these special instructions makes life easier!
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Yet another alternative!

Processi
      ...
      while( TRUE ) {
        while( TAS(&guard) )
           ; // busy wait

         < criticali >

        guard = FALSE;
        ...
      }

+ Only one global guard variable is associated with each critical
section (i.e., there can be many critical sections).

+ N processes; processes are unaware of N.

– Busy waiting!

TAS implementationTAS implementation

boolean TAS (int *flag)
{ boolean result;

  result = *flag;
  *flag = TRUE;
  return result;
}

boolean TAS (int *flag)
{ boolean result;

  result = *flag;
  *flag = TRUE;
  return result;
}
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PROBEREN
probe/test

“wait”

VERHOGEN
release

“make higher”

Semaphores

A semaphore is a synchronization variable (guard)
that takes on non-negative integer values with only
two atomic operations:

 P(semaphore): { while ( semaphore == 0 ) ;
 Wait(semaphore)   semaphore-- }

 V(semaphore): { semaphore++ }
 Free(semaphore)

Semaphores are simple, yet elegant, and allow the
solution of many interesting problems. They are
useful for more than just mutual exclusion.
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Semaphore solution

Here is a solution of ‘ ‘too-much-milk’’ problem with
semaphores:

Processes A & B

        1    Wait(OKToBuyMilk);
        2    if ( NoMilk ) {  //
        3       Buy Milk;     // critical section
        4    }                //
        5    Free(OKToBuyMilk);

Note: Semaphore OKToBuyMilk must initially be set to 1.
Why?
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Properties of semaphores

Semaphores are not provided by hardware, but they
have several attractive properties:
• Simple.
• Work with many processes—single resource

serialization.
• Can have many different critical sections with different

semaphores.
• Each critical section has unique access semaphore.
• Can permit multiple processes into the critical section

at once, if desirable—multiple (identical) resources.

However, they are unstructured and do not support
data abstraction (see monitors).

 Copyright © 1998-2001  by Eskicioglu & Marsland Synchronization 2 9Ja
n’

0
1

Possible uses of semaphores

• Mutual exclusion.
– initialize the semaphore to one.

• Synchronization of cooperating processes (signaling).
– initialize the semaphore to zero.

• Managing multiple instances of a resource.
– initialize the semaphore to the number of instances.
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Type of semaphores

Semaphores are usually available in two flavors:

• binary—is a semaphore with an integer value of 0 and 1.

• counting—is a semaphore with an integer value    ranging
between 0 and an arbitrarily large number. Its initial value
might represent the number of units of the critical
resources that are available. This form is also known as a
general semaphore.
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Implementation of semaphores

No existing hardware implements Wait and Free
operations directly. So, semaphores must be built up
in software using some other elementary
synchronization primitive(s) provided by hardware.

Uniprocessor solution: usually disable interrupts.

Multiprocessor solution: harder! Possibilities:

–Turn off all other processors (not practical!)

–Use hardware support for atomic operations.
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Binary semaphores—busy wait

   WaitB(int* s)                  FreeB(int* s)
   {                              {
     while ( TAS(s) ) ;            *s = FALSE;
     return;                        return;
   }                              }

Spinlock—the process ‘ ‘spins’ ’ while waiting for the ‘ ‘lock’ ’.
– potential indefinite postponement
– low efficiency (busy waiting)
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Binary semaphores—NON-busy wait

                typedef struct {
       boolean guard = FALSE;

      boolean flag = TRUE;
      Queue waitQ;

                } SemaphoreB;

WaitB(SemaphoreB* s)           FreeB(SemaphoreB* s)
{                              {
  while( TAS(s->guard) ) ;       while( TAS(s->guard) ) ;
  if( s->flag == TRUE ) {        if( waiting(waitQ) ) {
     s->flag = FALSE;               moveToReady(waitQ);
     s->guard = FALSE;           } else {
  } else {                          s->flag = TRUE;
     waitOn(waitQ);              }
     reset guard; //tricky!      s->guard = FALSE;
  }                              return;
  return;                      }
}
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Counting semaphores

                typedef struct {
      int count;

     SemaphoreB lock, delay;
                } SEMAPHORE;

    Wait(SEMAPHORE* s)           Free(SEMAPHORE* s)
    {                            {
      WaitB(s->lock);              WaitB(s->lock);
      s->count--;                  s->count++ ;
      if ( s->count < 0 ) {        if ( s->count <= 0 )
         FreeB(s->lock);              FreeB(s->delay);
         WaitB(s->delay);          FreeB(s->lock);
      } else                     }
         FreeB(s->lock);
    }
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Limitations of semaphores

Typical problems with the use of semaphores:

• Their use is NOT enforced, but is by convention only.

• The operations do not allow a test for busy without a
commitment to blocking.

• There are no additional arguments for Wait and Free
operations.

• With improper use, a process may block indefinitely.

• There is no means by which one process can control
another by using semaphores, without the cooperation
of the controlled process.

So, people continued looking for alternatives...
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Primitives revisited!

The synchronization primitives discussed so far allow
us to access shared data as follows:

entry protocol

  < access data >

exit protocol

Semaphores give us some abstraction: the protocol
access to shared data is transparent to the user
(hidden in the implementation).

Now we are ready for even more abstraction...

 Copyright © 1998-2001  by Eskicioglu & Marsland Synchronization 3 7Ja
n’

0
1

Monitors

A monitor is a high-level (programming language)
abstraction that combines (and hides) the following:

· shared data
· operations on the data
· synchronization with condition variables

Mutual exclusion is not sufficient for concurrent
programming. An additional way to block processes
(e.g., when resource busy or buffer full) is also
needed. Monitors use condition variables to provide
user-tailored synchronization and manage each with a
separate condition queue. The only operations
available on these variables are WAIT and SIGNAL.
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Monitor abstraction

operation1

operation2

operationn

DATA

Monitor

condition queues

entry queue

...
condition variables
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Equivalence of primitives

Wait

Free

Busy

notBusy

Sema

type Sema = monitor
  Busy: boolean;
  notBusy: condition;

procedure Wait()
{
  if ( Busy )
    WAIT.NotBusy;
  Busy = TRUE;
}

procedure Free()
{
  Busy = FALSE;
  FREE.NotBusy;
}

begin
  Busy = FALSE;
end.

example:
  
  Sema A;

    A.Wait();
    ...
    ...
    A.Free();    

Semaphore implementation with monitors
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Equivalence of primitives
cont.

 semaphore
  lock      : serialize access to operations in monitor ( = 1).
  signal    : suspend processes executing SIGNAL ( = 0).
  conditioni: suspend a process executing WAIT ( = 0).
 int
  next      : number of processes waiting due to SIGNALs ( = 0).
  cond-cntri: number of processes waiting due to waiting on conditioni.

Monitor implementation with semaphores

conditioni.WAIT
{
  cond-cntri++;
  if ( next > 0 )
    Free(signal);
  else
    Free(lock);
  Wait(conditioni);
  cond-cntri--;
}

Operationi()
{
  Wait(lock);
  
   < operation body >
  
  if ( next > 0 )
    Free(signal);
  else
    Free(lock);

conditioni.SIGNAL
{
  next++; 
  if ( cond-cntri > 0 ) 
    Free(conditioni);
  else
    Wait(signal);
  next--;
}

Process waits here.
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Other high-level primitives

There are several other proposed primitives for
synchronization. The following are the most common
mechanisms:

· Critical regions
· Conditional critical regions
· Eventcounts
· Sequencers
· Path expressions
· Serializers

These primitives are semantically equivalent.
Moreover, any one can be built using the others. They
are essentially provided by the systems software (OS
kernel or language compilers) as programming tools.
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Problems with synch primitives

Livelock, or starvation: the situation in which some
processes are making progress toward completion
but  some others are locked out of the resource(s).

Deadlock: the situation in which two or more
processes are locked out of the resource(s) that are
held by each other.

The most important deficiency of the synchronization
primitives discussed so far is that they were all
designed on one or more CPUs accessing a
‘‘common’’ memory. Hence, these primitives are not
applicable to distributed systems. Solution? Message
passing...
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Synch primitives—summary

monitors
critical regions

path expressions

message passing
remote procedure calls

pipes, sockets

semaphores

load/store
interrupt disable/enable

test-and-set

hardware

low level

high level

SHARED MEMORY NO SHARED MEMORY
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Transactions

A transaction is a ‘‘large’’ atomic operation,
terminated by either a commit (successful
termination) or an abort (unsuccessful termination)
operation.

Since an aborted transaction may already have
modified the various data it has accessed, the state
of the data may not be the same as it would be after
a successful (committed) transaction.

In this case, a transaction has to be ‘‘rolled back’’
(i.e., restored the modified data back to its state
before the transaction started).

This topic is covered in database courses.


