
 Copyright © 1998-2001 by Eskicioglu & Marsland IPCJa
n’

0
1

Interprocess communication

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1Ja
n’

0
1

Introduction

Cooperating processes need to exchange information,
as well as synchronize with each other, to perform
their collective task(s). The primitives discussed
earlier can be used to synchronize the operation of
cooperating processes, but they do not convey
information between processes.

Methods for effective sharing of information among
cooperating processes are collectively known as inter-
process communication (IPC). Two basic models are
used:

– shared memory—“shared data” are directly available to
each process in their address spaces.

– message passing—“shared data” are explicitly exchanged.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 2Ja
n’

0
1

Shared Memory versus Message Passing

write A

read A

A
process A

process B

shared
memory

send A

A

receive A

process A

process B

message
passing

(e.g., UNIX pipes)

(e.g., UNIX sockets)

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 3Ja
n’

0
1

Terminology

A common approach in communication is where one
process sends some information to another. The
information exchanged among processes in this way
is called a message. A message can be a structured
(language) object, specified by its type, or it is
specified by its size: fixed length or variable length.

There are two basic operations on messages:
– send()—transmission of a message.
– receive()—receipt of a message.

The OS component which implements these
operations (and more!) is called a ‘‘message passing’ ’
system.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 4Ja
n’

0
1

Fundamental questions

A message passing system should answer such
questions as:

• When a message is sent, does the sender wait until the
message is received or can it continue executing?

• What happens if a process executes a receive(), but no
message has been sent?

• Can a message be sent to one or to many processes?

• Does a receiver identify the sender of the message or
can it accept messages from any sender?

• Where are messages kept while in transit? Capacity?

• ...

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 5Ja
n’

0
1

Design Issues

Implementation of message passing systems may
differ in a number of details that affect the
functioning of the send and receive operations and
their parameters. The following are the most
important issues in the design and implementation of
a message passing system:

• Form of communication—messages can be send directly
to its recipient or indirectly through an intermediate
named object.

• Buffering—how and where the messages are stored.

• Error handling—how to deal with exception conditions.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 6Ja
n’

0
1

Direct communication

The sender and receiver can communicate in either of
the following forms:

• synchronous—involved processes synchronize at every
message. Both send and receive are blocking
operations. This form is also known as a rendezvous.

• asynchronous—the send operation is almost always
non-blocking. The receive operation, however, can have
blocking (waiting) or non-blocking (polling) variants.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 7Ja
n’

0
1

Direct communication continued

Processes must explicitly name the receiver or sender
of a message (symmetric addressing).

– send (P, message). Send message to process P.
– receive (Q, message). Receive message from Q.

In a client-server system, the server does not have to
know the name of a specific client in order to receive
a message. In this case, a variant of the receive
operation can be used (asymmetric addressing).

– listen (ID, message). Receive a pending (posted)
message from any process; when a message arrives,
ID is set to the name of the sender.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 8Ja
n’

0
1

Direct communication continued

In this form of communication the interconnection
between the sender and receiver has the following
characteristics:

• A link is established automatically, but the processes
need to know each other’s identity.

• A unique link is associated with the two processes.

• Each pair of processes has only one link between them.

• The link is usually bi-directional, but it can be uni-
directional.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 9Ja
n’

0
1

Indirect communication

In case of indirect communication, messages are sent
to mailboxes, which are special repositories. A
message can then be retrieved from this repository.

– send (A, message). Send a message to mailbox A.
– receive (A, message). Receive a message from

mailbox A.

This form of communication decouples the sender
and receiver, thus allowing greater flexibility.

Generally, a mailbox is associated with many senders
and receivers. In some systems, only one receiver is
(statically) associated with a particular mailbox; such
a mailbox is often called a port.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 0Ja
n’

0
1

Indirect communication continued

A process that creates a mailbox is the owner
(sender). Mailboxes are usually managed by the
system.

The interconnection between the sender and receiver
has the following characteristics:
• A link is established between two processes only if they

“ share” a mailbox.
• A link may be associated with more than two processes.
• Communicating processes may have different links

between them, each corresponding to one mailbox.
• The link is usually bi-directional, but it can be uni-

directional.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 1Ja
n’

0
1

Message passing by ‘ ‘picture’’

Indirect communication

Direct communication

A
‘‘to B’’

B
‘‘from A’’

C

A B

‘‘from P’’

‘‘to P’ ’

Pport

‘‘to M’ ’

‘‘from M’’

C

A B

M mailbox

D

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 2Ja
n’

0
1

Buffering

Depending on the capacity of the link between the
communicating processes, three types of messaging
can be implemented:
• Zero capacity—used by synchronous communication.

• Bounded capacity—when the buffer is full, the sender
must wait.

• Indefinite capacity—the sender never waits.

Note that, however, in the non-zero capacity cases
(asynchronous), the sender is unaware of the status
of the message it sends. Hence, additional
mechanisms are needed to guarantee the delivery
and receipt of a message.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 3Ja
n’

0
1

Error handling

In distributed systems, message passing mechanisms
extend inter-process communication beyond the
machine boundaries. Consequently, messages are
occasionally lost, duplicated, delayed, or delivered out
of order. The following are the most common ‘ ‘error’ ’
conditions which requires proper handling:

• Process terminates—either a sender or a receiver may
terminate before a message is processed.

• Lost or delayed messages—a message may be lost (or
delayed) in the communications network.

• Scrambled messages—a message arrives in an
unprocessible state.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 4Ja
n’

0
1

Synchronization with messages

The primitives discussed earlier are not suitable for
synchronization in distributed systems. For example,
semaphores require global memory, whereas monitors
require centralized control. Application of such
centralized mechanisms to distributed environments
is not usually practical.

However, message passing is a mechanism suitable
not only for inter-process communication, but also for
synchronization, in both centralized and distributed
environments.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 5Ja
n’

0
1

consumer()
{
 message cmsg;

 while (true) {
 receive(mayconsume, cmsg);

 < consume >

 send(mayproduce, cmsg);
 }
}

An example
typedef message {
 ...
}
const capacity = ... ;
message dummy = {};

int main()
{
 int i;

 create_mailbox(mayconsume);
 create_mailbox(mayproduce);
 for (i = 0; i < capacity; i++)
 send(mayproduce, dummy);
 producer();
 consumer();
}

Note: In this example, both send() and receive()
 are blocking operations.

producer()
{
 message pmsg;

 while (true) {
 receive(mayproduce, pmsg);

 < produce >

 send(mayconsume, pmsg);
 }
}

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 6Ja
n’

0
1

Other IPC mechanisms

The following are IPC mechanisms found in various
flavors of UNIX:
• Pipes

• FIFOs (named pipes)

• Streams and Messages

• System V IPC
– Message Queues
– Semaphores
– Shared Memory

• Sockets (BSD)

• Transport Level Interface (System V)

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 7Ja
n’

0
1

A case study—UNIX signals

A UNIX signal, a rudimentary form of IPC, is used to
notify a process of an event. A signal is generated
when the event first occurs and delivered when the
process takes an action on that signal. A signal is
pending when generated but not yet delivered.
Signals, also called software interrupts, generally
occur asynchronously.

A signal can be sent:

• by one process to another, including itself (in the latter
case it is synchronous)

• by the kernel to a process

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 8Ja
n’

0
1

Sending a signal
kill(int pid, int sig);

sends a signal sig to the process pid. A process
sends a signal to itself with

raise(int sig);

There is no operation to receive a signal. However, a
process may declare a function to service a particular
signal as:

signal(int sig, SIGARG func);

Whenever the specified signal sig is received, the
process is interrupted and func is called immediately.
In other words, the process catches the signal when
it is delivered. On return from func, the process
resumes its execution from where it was interrupted.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 9Ja
n’

0
1

What to do with a signal?

Using the signal() system call, a process can:
• Ignore the signal—only two signals, SIGKILL (kill -9 PID)

and SIGSTOP (Ctrl-Z) cannot be ignored.

• Catch the signal—tell the kernel to call a function
whenever the signal occurs.

• Let the default action apply—depending on the signal,
the default action can be:

· exit—perform all activities as if the exit system call is
requested.

· core—first produce a core image on disk and then
perform the exit activities.

· stop—suspend the process.
· ignore—disregard the signal.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 2 0Ja
n’

0
1

UNIX signals—an example
#include < stdio.h >
#include < signal.h >
#include < unistd.h >
#include < stdlib.h >

int main (void)
{
 int i ;
 void catch_signal(int) ;

 if (signal(SIGINT, catch_signal) == SIG_ERR) {
 perror(“SIGINT failed”) ;
 exit (1);
 }
 if (signal(SIGQUIT, catch_signal) == SIG_ERR) {
 perror(“SIGQUIT failed”) ;
 exit(1) ;
 }
 for (i = 0; ; i++) { /* loop forever */
 printf(“%d\n”, i) ;
 sleep(1) ;
 }
}

void catch_signal(int the_signal) {
 signal(the_signal, catch_signal) ; /* catch again */
 printf(“\nSignal %d received.\n”, the_signal) ;
 if (the_signal == SIGQUIT) {
 printf(“Exiting...\n”) ;
 exit(3);
 }
}

% a.out
0
1
2
^C
Signal 2 received.
3
^C
Signal 2 received.
4
5
6
^\
Signal 3 received.
Exiting...
%

output

