
 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 0Ja
n’

0
1

Deadlocks

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1Ja
n’

0
1

What is a deadlock?

Deadlock is defined as the permanent blocking of a
set of processes that compete for system resources,
including database records and communication lines.

Unlike some other problems in multiprogramming
systems, there is no efficient solution to the
deadlock problem in the general case.

Deadlock occurs when a set of processes are in a
wait state, because each process is waiting for a
resource that is held by some other waiting process.
Therefore, all deadlocks involve conflicting resource
needs by two or more processes.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2Ja
n’

0
1

Classification of resources—I

Two general categories of resources can be
distinguished:

• Reusable: something that can be safely used by one
process at a time and is not depleted by that use.
Processes obtain resources that they later release for
reuse by others.
E.g., CPU, memory, specific I/O devices, or files.

• Consumable: these can be created and destroyed.
When a resource is acquired by a process, the resource
ceases to exist.
E.g., interrupts, signals, or messages.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 3Ja
n’

0
1

Classification of resources—II

One other taxonomy again identifies two types of
resources:

• Preemptable: these can be taken away from the process
owning it without ill effect (needs save/restore).
E.g., memory or CPU.

• Non-preemptable: cannot be taken away from its
current owner without causing the computation to
fail.
E.g., printer or floppy disk.

Deadlocks occur when sharing reusable and
non-preemptable resources.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 4Ja
n’

0
1

Conditions for deadlock

Four conditions that must hold for a deadlock to be
possible:

• Mutual exclusion: processes require exclusive control of
its resources (not sharing).

• Hold and wait: process may wait for a resource while
holding others.

• No preemption: process will not give up a resource until
it is finished with it.

• Processes irreversible: unable to reset to an earlier
state where resources not held.

These can lead to Circular wait. Each process in the
chain holds a resource requested by another.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 5Ja
n’

0
1

An example

back-up not possible
no rollback

refuses to share intersection
mutual exclusion

will not give-up intersection
no preemption

holds the intersection
hold and wait

Circular
wait

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 6Ja
n’

0
1

Discussion
If anyone of the necessary conditions is prevented a deadlock
need not occur. For example:
• Systems with only shared resources cannot deadlock.

· Negates mutual exclusion.
• Systems that abort processes which request a resource

that is in use.
· Negates hold and wait.

• Pre-emption may be possible if a process does not use its
resources until it has acquired all it needs.

· Negates no preemption.

• Transaction processing systems provide checkpoints so
that processes may back out of a transaction.

· Negates irreversible process.
• Systems that detect or avoid deadlocks.

· Prevents cycle.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 7Ja
n’

0
1

Resource allocation graphs

Set of Processes P = {P1, P2, …, Pn}

Set of Resources R = {R1, R2, …, Rm}
 Some resources come in multiple units.

Rj
has 2 units

Pi Rj Resource Rj has been allocated to Pi

Process Pi waits for (has requested) Rj Pi Rj

P1 R2 P2 R4 P3 R3

P1 P2 P3

R3

Blocked

Blocked
Active
Blocked
Deadlock

R1

R5Deadlock

R2

R4

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 8Ja
n’

0
1

Cycle is necessary, but ...

P1

P4

P3

P2
R1

R2

Blocked

Active

Blocked

Active

cycle

Multiple resource unit case:
No Deadlock—yet!

Because, either P2 or P4 could relinquish a resource
allowing P1 or P3 (which are currently blocked) to
continue. P2 is still executing, even if P4 requests R1.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 9Ja
n’

0
1

… a knot is required

Cycle is a necessary condition for a deadlock. But
when dealing with multiple unit resources—not
sufficient.

A knot must exist—a cycle with no non-cycle outgoing
path from any involved node.

At the moment assume that:

• a process halts as soon as it waits for one resource,
and

• processes can wait for only one resource at a time.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 0Ja
n’

0
1

Further requests

P1

P4

P3

P2
R1

R2

(b) If P2 requests R2: Deadlock—Cycle—Knot.
 No active processes to release resources.

(a)

(b)

P1 R2 P3 R2 P4 R1 P2 R2

(a) If P4 requests R1 no deadlock since P2 may
 release R1, allowing P4 to complete.

P1 R2 P3 R2 P4 R1 P2

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 1Ja
n’

0
1

Strategies for deadlocks

In general, four strategies are used for dealing with
deadlocks:

• Ignore: stick your head in the sand and pretend there
is no problem at all.

• Prevent: design a system in such a way that the
possibility of deadlock is excluded a priori.

• Avoid: make a decision dynamically checking whether
the request will, if granted, potentially lead to a
deadlock or not.

• Detect: let the deadlock occur and detect when it
happens, and take some action to recover after the
fact.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 2Ja
n’

0
1

Ostrich algorithm!

Different people react to this strategy in different ways:
• Mathematicians: find deadlock totally unacceptable, and

say that it must be prevented at all costs.
• Engineers: ask how serious it is, and do not want to pay a

penalty in performance and convenience.

The UNIX approach is just to ignore the problem on the
assumption that most users would prefer an occasional
deadlock, to a rule restricting user access to only one
resource at a time.

The problem is that the prevention price is high, mostly
in terms of putting inconvenient restrictions on
processes.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 3Ja
n’

0
1

Deadlock prevention

The strategy of deadlock prevention is to design a
system in such a way that the possibility of deadlock
is excluded a priori. Methods for preventing deadlock
are of two classes:

• indirect methods prevent the occurrence of one of the
necessary conditions listed earlier.

• direct methods prevent the occurrence of a circular
wait condition.

Deadlock prevention strategies are very conservative;
they solve the problem of deadlock by limiting access
to resources and by imposing restrictions on
processes.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 4Ja
n’

0
1

More on deadlock prevention
• Mutual exclusion

– In general, this condition cannot be disallowed.

• Hold-and-wait
– The hold-and-wait condition can be prevented by requiring that a

process request all its required resources at one time. A process
is blocked until all requests can be granted simultaneously.

• No pre-emption
– If a process holding some resources is denied a further request,

then that process must release its unused resources and request
them again, together with the additional resource.

• Circular Wait
– The circular wait condition can be prevented by defining a linear

ordering of resource types. If a process has been allocated
resources of type R, then it may subsequently request only
those resources of types following R in the ordering.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 5Ja
n’

0
1

Deadlock avoidance

Deadlock avoidance, allows the necessary conditions but
makes judicious choices to ensure that a deadlock-free
system remains free from deadlock. With deadlock
avoidance, a decision is made dynamically whether the
current resource allocation request will, if granted,
potentially lead to a deadlock. Deadlock avoidance thus
requires knowledge of future requests for process
resources.

Ways to avoid deadlock by careful resource allocation:

• Resource trajectories.

• Safe/unsafe states.

• Dijkstra’s Banker's algorithm.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 6Ja
n’

0
1

Banker’s algorithm—definitions

Assume N Processes {Pi}
 M Resources {Rj}

 Availability vector Availj, units of each resource
(initialized to maximum, changes dynamically).

Let [Maxij] be an N x M matrix.
Maxij= L means Process Pi will request at most
L units of Rj.

 [Holdij] Units of Rj currently held by Pi

 [Needij] Remaining need by Pi for units of Rj

Needij = Maxij - Holdij, for all i & j

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 7Ja
n’

0
1

At any instance, Pi posts its requests for resources in vector
REQj.

Step 1: verify that a process matches its needs.
if REQj > Needij abort—error, impossible

Step 2: check if the requested amount is available.
if REQj > Availj

goto Step 1—Pi must wait for release of Ri

Step 3: provisional allocation.
Availj = Availj - REQj
Holdij = Holdij + REQj
Needij = Needij - REQj
if isSafe() then grant resources—system is safe
 else cancel allocation;

 goto Step 1—Pi must wait for some Ri

Banker’s Algorithm—resource request

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 8Ja
n’

0
1

Banker’s Algorithm—isSafe

Find out whether the system is in a safe state.
Work and Finish are two temporary vectors.

Step 1: initialize.
Workj = Availj for all j; Finishi = false for all i.

Step 2: find a process Pi such that
Finishi = false and Needij £ Workj
if no such process, goto Step 4.

Step 3: Workj = Workj + Holdij
Finishi = true
goto Step 2.

Step 4: if Finishi = true for all i
 then return true—yes, the system is safe
 else return false—no, the system is NOT safe

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 1 9Ja
n’

0
1

Banker’s algorithm—what is safe?

Safe with respect to some resource allocation.

• very safe Note hereon we drop the subscript j
 NEEDi £ AVAIL for all Processes Pi

 Processes can run to completion in any order.

• safe (but take care)
 NEEDi > AVAIL for some Pi
 NEEDi £ AVAIL for at least one Pi such that

 There is at least one correct order in which the processes may
complete their use of resources.

• unsafe (deadlock inevitable)
 NEEDi > AVAIL for some Pi
 NEEDi £ AVAIL for at least one Pi

 But some processes cannot complete successfully.

• deadlock
 NEEDi > AVAIL for all Pi

 Processes are already blocked or will become so as they request
a resource.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 0Ja
n’

0
1

Example—safe allocation

Assume P1 acquires one unit. Very safe? No! Need2 > 2
Safe? Let us see with the safe/unsafe algorithm...

i = 1; does P1 agree with Step 2? No.
i = 2; does P2 agree with Step 2? No.
i = 3; does P3 agree with Step 2? Yes. Work = Work+Hold3; Finish3 = T
i = 1; does P1 agree with Step 2? Yes. Work = Work+Hold1; Finish1 = T
i = 2; does P2 agree with Step 2? Yes. Work = Work+Hold2; Finish2 = T

For simplicity, assume that all the resources are identical.

No more (unfinished) Pi , therefore safe.

Max Hold Need Finish

P1 5 2 3 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 2 2/
3

/
2

/
1

Assume 6 units supplied

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 1Ja
n’

0
1

Example—safe allocation

Max Hold Need Finish

P1 5 2 3 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 2 2

Assume P1 acquires one unit.

P1 P2 P3

R

/
2

/
2

/
1

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 2Ja
n’

0
1

Example—safe allocation continued

P3 can acquire the last unit and finish.

P1 P2 P3

R

Max Hold Need Finish

P1 5 3 2 F
P2 4 1 3 F
P3 2 1 1 F

 Avail Work

 1 1/

/
2

/
0

0

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 3Ja
n’

0
1

Example—safe allocation continued

Then, P1 can acquire two more units and finish.

P1 P2 P3

R

Max Hold Need Finish

P1 5 5 0 F
P2 4 1 3 F
P3 2 0 0 T

 Avail Work

 2 2/
0

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 4Ja
n’

0
1

Example—safe allocation continued

Finally, P2 can acquire three more units and finish.

P1 P2 P3

R

Max Hold Need Finish

P1 5 0 0 T
P2 4 1 3 F
P3 2 0 0 T

 Avail Work

 5 5/
2

/
4

/
0

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 5Ja
n’

0
1

Example—unsafe allocation

Assume P2 acquires one unit.
As before, P3 can finish and release its resources.

BUT...

i = 1; does P1 agree with Step 2? No.
i = 2; does P2 agree with Step 2? No.
i = 3; does P3 agree with Step 2? Yes. Work = Work+Hold2; Finish2 = T

Any more unfinished Pi? Yes.
P1 and P2 cannot finish. Therefore unsafe.

Max Hold Need Finish

P1 5 2 3 F
P2 5 1 4 F
P3 2 1 1 F

 Avail Work

 2 2/
1

/
3

/
2

Assume P2 max. need is 5, not 4

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 6Ja
n’

0
1

Example—unsafe allocation continued

Max Hold Need Finish

P1 5 2 3 F
P2 5 2 3 F
P3 2 0 0 T

Avail Work

 2 2

P1 P2

R

NOW...

P3

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 7Ja
n’

0
1

Deadlock detection

This technique does not attempt to prevent deadlocks;
instead, it lets them occur. The system detects when this
happens, and then takes some action to recover after the
fact. With deadlock detection, requested resources are
granted to processes whenever possible. Periodically, the
operating system performs an algorithm that allows it to
detect the circular wait condition.

A check for deadlock can be made as frequently as resource
request, or less frequently, depending on how likely it is for a
deadlock to occur. Checking at each resource request has
two advantages: It leads to early detection, and the algorithm
is relatively simple because it is based on incremental
changes to the state of the system. On the other hand, such
frequent checks consume considerable processor time.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 8Ja
n’

0
1

Recovering from deadlocks

Once the deadlock algorithm has successfully detected a
deadlock, some strategy is needed for recovery. There are
various ways:

• Recovery through Pre-emption
 In some cases, it may be possible to temporarily take a resource

away from its current owner and give it to another.

• Recovery through Rollback
 If it is known that deadlocks are likely, one can arrange to have

processes checkpointed periodically. For example, can undo
transactions, thus free locks on database records.

• Recovery throughTermination
 The most trivial way to break a deadlock is to kill one or more

processes. One possibility is to kill a process in the cycle.
Warning! Irrecoverable losses may occur, even if this is the least
advanced process.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 2 9Ja
n’

0
1

Summary of strategies
Principle Resource

Allocation Strategy
Different
Schemes

Major
Advantages

Major
 Disadvantages

DETECTION • Very liberal. Grant
resources as
requested.

• Invoke
periodically to
test for deadlock.

• Never delays process
initiation.

• Facilitates on-line handling.

• Inherent preemption losses.

PREVENTION • Conservative;
under-commits
resources.

• Requesting all
resources at
once.

• Preemption

• Resource ordering

• Works well for processes
with single burst of activity.

• No preemption is needed.

• Convenient when applied to
resources whose state can be
saved and restored easily.

• Feasible to enforce via
compile-time checks.

• Needs no run-time
computation.

• Inefficient.
• Delays process initiation.

• Preempts more often then
necessary.

• Subject to cyclic restart.

• Preempts without immediate
use.

• Disallows incremental resource
requests.

AVOIDANCE • Selects midway
between that of
detection and
prevention.

• Manipulate to find
at least one safe
path.

• No preemption necessary. • Future resource requirements
must be known.

• Processes can be blocked for
long periods.

 Copyright © 1998-2001 by Eskicioglu & Marsland Deadlocks 3 0Ja
n’

0
1

Other issues

Two-phase Locking
 Although both avoidance and prevention are not very promising in

general, many excellent special-purpose algorithms are known. The
best data base algorithm is known as two-phase locking (covered in
detail in another course).

Non-resource Deadlocks
 Deadlocks can also occur in other situations, where no single resource

is involved. E.g., two processes exchanging messages, where both are
listening and waiting for the other to send a message.

Starvation
 A problem closely related to deadlock is starvation. In a dynamic

system, requests for resources happen all the time. The key is to make
a decision about who gets which resources when. This decision
sometimes may lead to some processes never receiving service,
though they are not deadlocked!

