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Memory Management
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Introduction
The CPU fetches instructions and data of a program from
memory; therefore, both the program and its data must reside in
the main (RAM and ROM) memory.

Modern multiprogramming systems are capable of storing more
than one program, together with the data they access, in the
main memory.

A fundamental task of the memory management component of
an operating system is to ensure safe execution of programs by
providing:

– Sharing of memory
– Memory protection
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Issues in sharing memory

• Transparency
 Several processes may co-exist, unaware of each

other, in the main memory and run regardless of the
number and location of processes.

• Safety (or protection)
 Processes must not corrupt each other (nor the OS!)

• Efficiency
 CPU utilization must be preserved and memory must

be fairly allocated.

• Relocation
 Ability of a program to run in different memory

locations.
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Storage allocation

Information stored in main memory can be classified
in a variety of  ways:

• Program (code) and data (variables, constants)

• Read-only (code, constants) and read-write (variables)

• Address (e.g., pointers) or data (other variables) ;
binding (when memory is allocated for the object):
static or dynamic

The compiler, linker, loader and run-time libraries all
cooperate to manage this information.
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Creating an executable code

Before a program can be executed by the CPU, it
must go through several steps:

– Compiling (translating)—generates the object code.
– Linking—combines the object code into a single self-

sufficient executable code.
– Loading—copies the executable code into memory.
– Execution—dynamic memory allocation.

 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 5Ja
n’

0
1

From source to executable code
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Address binding (relocation)

The process of associating program instructions and
data (addresses) to physical memory addresses is
called address binding, or relocation.
• Static—new locations are determined before execution.

– Compile time: The compiler or assembler translates
symbolic addresses (e.g., variables) to absolute
addresses.

– Load time: The compiler translates symbolic
addresses to relative (relocatable) addresses. The
loader translates these to absolute addresses.

• Dynamic—new locations are determined during
execution.
– Run time: The program retains its relative addresses.

The absolute addresses are generated by hardware.
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Functions of a linker

A linker collects (if
possible) and puts
together all the required
pieces to form the
executable code.

Issues:
• Relocation

 where to put pieces.

• Cross-reference
 where to find pieces.

• Re-organization
 new memory layout.
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Functions of a loader
A loader places the executable
code in main memory starting at a
pre-determined location (base or
start address). This can be done in
several ways, depending on
hardware architecture:

• Absolute loading: always loads
programs into a designated
memory location.

• Relocatable loading: allows
loading programs in different
memory locations.

• Dynamic (run-time) loading:
loads functions when first
called (if ever).
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Absolute and relocatable modules
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{
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Simple management schemes
An important task of a memory management system is to bring
(load) programs into main memory for execution. The following
contiguous memory allocation techniques were commonly
employed by earlier operating systems*:

• Direct placement
• Overlays
• Partitioning

*Note: Techniques similar to those listed above are still used by some modern, dedicated special-
purpose operating systems and real-time systems.
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Direct placement

Memory allocation is trivial. No
special relocation is needed,
because the user programs are
always loaded (one at a time)
into the same memory location
(absolute loading). The linker
produces the same loading
address for every user program.

Examples:

• Early batch monitors

• MS-DOS
Operating System

OS (drivers, buffers)

User
Program

0

max

user

unused
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Overlays
Historically, before the sharing of
main memory among several
programs was automated, users
developed techniques to allow large
programs to execute (fit) in smaller
memory.

A program was organized (by the
user) into a tree-like structure of
object modules, called overlays.

The root overlay was always loaded
into the memory, whereas the sub-
trees were (re-)loaded as needed
by simply overlaying existing code.
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Partitioning

A simple method to accommodate several programs
in memory at the same time (to support
multiprogramming) is partitioning. In this scheme, the
memory is divided into a number of contiguous
regions, called partitions. Two forms of memory
partitioning, depending on when and how partitions
are created (and modified), are possible:
• Static partitioning
• Dynamic partitioning

These techniques were used by the IBM OS/360
operating system—MFT (Multiprogramming with Fixed
Number of Tasks) and MVT (Multiprogramming with
Variable Number of Tasks.)
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Static partitioning
Main memory is divided into
fixed number of (fixed size)
partitions during system
generation or startup.

Programs are queued to run
in the smallest available
partition. An executable
prepared to run in one
partition may not be able to
run in another, without being
re-linked. This technique
uses absolute loading.

Operating System

large jobs

average jobs

small jobs 10 K

100 K

500 K
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Dynamic partitioning

Any number of programs can be loaded to memory as long as
there is room for each. When a program is loaded (relocatable
loading),  it is allocated memory in exact amount as it needs.
Also, the addresses in the program are fixed after loaded,  so
it cannot move. The operating system keeps track of each
partition (their size and locations in the memory.)
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Address translation

In order to provide basic protection among programs
sharing the memory, both of the above partitioning
techniques use a hardware capability known as
memory address mapping, or address translation. In
its simplest form, this mapping works as follows:
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Fragmentation

Fragmentation refers to the unused memory that the
management system cannot allocate.

• Internal fragmentation
 Waste of memory within a partition, caused by the

difference between the size of a partition and the
process loaded.
Severe in static (fixed) partitioning schemes.

• External fragmentation
 Waste of memory between partitions, caused by

scattered noncontiguous free space. Severe in
dynamic (variable size) partitioning schemes.

Compaction is a technique that is used to overcome
external fragmentation.
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Swapping

The basic idea of swapping is to treat main memory
as a ‘ ‘pre-emptable’’ resource. A high-speed swapping
device is used as the backing storage of the
preempted processes.

SWAP-IN

SWAP-OUT

Memory

Swapping device
Operating
 System
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Swapping continued

Swapping is a medium-term scheduling method.

Swapping brings flexibility even to systems with fixed
partitions, because:

“ if needed, the operating system can always make
room for high-priority jobs, no matter what!’ ’

Note that, although the mechanics of swapping are fairly
simple in principle, its implementation requires specific
support (e.g., special file system and dynamic relocation)
from the OS that uses it.

processes
on

disk

processes
in

memory
process
running

SWAPPER DISPATCHER

swap-in

swap-out

dispatch

suspend
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More on swapping

The responsibilities of a swapper include:

• Selection of processes to swap out
 criteria: suspended/blocked state, low priority, time

spent in memory

• Selection of processes to swap in
 criteria: time spent on swapping device, priority

• Allocation and management of swap space on a
swapping device. Swap space can be:

· system wide
· dedicated
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Memory protection

The second fundamental task of a memory
management system is to protect programs sharing
the memory from each other. This protection also
covers the operating system itself. Memory
protection can be provided at either of the two
levels:

• Hardware:
– address translation

• Software:
– language dependent: strong typing
– language independent: software fault isolation
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Dynamic relocation

With dynamic relocation, each program-generated
address (logical address) is translated to hardware
address (physical address) at runtime for every
reference, by a hardware device known as the
memory management unit (MMU).

CPU

address translation

MMU Memory
program

(logical or
virtual)
address

hardware
(physical
or real)
address
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Two views of memory

Dynamic relocation leads to two different views of
main memory, called address spaces.

physical view
(physical address space)

logical view
(logical address space)

SC
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SB

0

SA

A

B

C

PA-start

PB-start

PC-start

PC-end

PB-end

PA-end0
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Base and bounds relocation

In principle, this is the same
technique used earlier by IBM
360 mainframes. Each program
is loaded into a contiguous
region of memory. This region
appears to be ‘ ‘private’ ’ and the
bounds register limits the range
of the logical address of each
program.

Hardware implementation is
cheap and efficient: 2 registers
plus an adder and a comparator.

+

fault!

Logical Address

Physical Address

base

bounds >

registers
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Segmentation

The most important problem with base-and-bounds
relocation is that there is only one segment for each
process. A segment is a region of contiguous memory.

Segmentation generalizes the base-and-bounds technique
by allowing each process to be split over several
segments. A segment table holds the base and bounds of
each segment. Although the segments may   be scattered
in memory, each segment is mapped to a contiguous
region.

Additional fields (Read/Write and Shared) in the segment
table adds protection and sharing capabilities to segments.
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Relocation with segmentation

Segment # Offset

Seg # Base Bounds
0
1
2
3
4

0X1000
0X3000
0X0000
0X2000
0X4000

0X0120
0X0340
0X0FFF
0X0F00
0X0520

+

Physical Address

Logical Address

fault!

R/W

0
0
1

1
0

S

1
0
0
1
0

See next slide for memory allocation example.

>
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Segmentation—an example
Logical addresses Physical addresses

0x0000

0x1000
0x1120

0x2000

0x3000

0x4000

0x4520

Seg 2

Seg 0

Seg 5

0x3340

0x2F00

Seg 1

Seg 3

Seg 0

Seg 1

Seg 2

Seg 5

Seg 3

0x0000
0x0120

0x2000

0x3000

0x5000

0x5520

0x3F00

0x1000
0x1340

0x4000

0x6000
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More on segments

When a process is created, a pointer to an empty
segment table is inserted into the process control
block. Table entries are filled as new segments are
allocated for the process.

The segments are returned to the free segment pool
when the process terminates.

Segmentation, as well as the base and bounds
approach, causes external fragmentation and requires
memory compaction.

An advantage of the approach is that only a segment,
instead of a whole process, may be swapped to make
room for the (new) process.
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Paging

Physical memory is divided into a number of fixed size
blocks, called frames. The logical memory is also divided
into chunks of the same size, called pages. The size of
frame/page is determined by the hardware and typically is
some value between 512 bytes (VAX) and 16 megabytes
(MIPS 10000)!

A page table defines (maps) the base address of pages for
each frame in the main memory.

The major goals of paging are to make memory allocation
and swapping easier and to reduce fragmentation. Paging
also allows allocation of non-contiguous memory (i.e.,
pages need not be adjacent.)
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Relocation with paging

Page # Page offset

Page table

Page Table Entry (PTE)

0
1
2
3
4
5
6
7

Logical Address

Frame # Frame offset

Physical Address

 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 3 1Ja
n’

0
1

Paging—an example

Physical Memory

Page table

0
1
2
3
4

0

1

2

3

4

0

1

2

3

4

5

6

7

8

2 300

8
3
1
6
0

1 300

Logical Address
Space

Logical Address

Physical Address
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Hardware support for paging

There are different hardware implementations of page
tables to support paging.

• A set of dedicated registers, holding base addresses of
frames.

• In memory page table with a page table base register
(PTBR).

• Same as above with multi-level page tables.

With the latter two approaches, there is a constant
overhead of accessing a memory location (What?
Why?)
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Multi-level paging—an example

Page 
Number

Page 
Offset

P1 P2

To frames

1
3

5 7

Frame
5 7

Top-level
Page Table

Second-level
Page Tables

840
840

...
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One level paging—the PDP-11

The larger PDP-11 models have 16-bit logical addresses and
up to 4MB of memory with page size of 8KB. There are two
separate logical address spaces; one for instructions and
one for data. The two page tables have eight entries, each
controlling one of the eight frames per process.

0
1
2
3
4
5
6
7

Instructioni

13 bits

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

Virtual
page

number
Offset

0
1
2
3
4
5
6
7Datai

0 1 2 3 4 5 6 7 8 

Logical address

Frame number

Frames

 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 3 5Ja
n’

0
1

Two level paging—the VAX

The VAX is the successor of the PDP-11, with 32-bit
logical addresses. The VAX has 512 byte pages.

2 2 1 9

Virtual page number Offset

Space: 00 — User program and data
01 — User stack
10 — System
11 — Reserved

VAX virtual address

0

1GB

2 GB

...

3 GB

4 GB

Shared
among

processes

User processes

user
program

and
data

user
stack

system

reserved

2 9   = 512
2 1 3  = 8192
2 2 1  = 2097152
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Other MMU architectures

Some SPARC processors used by the Sun workstations
have a paging MMU with three-level page tables and
4KB pages.
Motorola 68030 processor uses on-chip MMU with
programmable multi-level (1 to 5) page tables and
256 byte to 32KB pages.
PowerPC processors support complex address
translation mechanisms and, based on the
implementation, provide 28 0 (64-bit) and 252 (32-bit)
byte long logical address spaces.
Intel Pentium processors support both segmented and
paged memory with 4KB pages.
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Frame # Offset

Inverted page tables
Logical address

Page # Offset

Physical address
Hash Table

Inverted Page Table

(Hash)
Page #   PID Frame # Chain

Simplified  
Inverted 
paging

used on 
IBM RS6000

The inverted page table has one entry for each memory frame. Adv:
independent of size of address space; small table(s).
Hashing is used to speedup table search. Here the inverted page table
is system-wide, since the PID is shown.  The Inverted Page Table can
also be one per process.

PID

125 7 3

(Page, PID)

7 3 125

?? ??
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Segmentation with paging

Logical Address

S # P # Offset
 Offset

Physical Address

Segment
Table

Page
Table

+

Segment
Base 

Register

Frame #

Main Memory

Frame
i
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Address translation on a Pentium

+

Logical address

Linear address (4KB pages)

Linear address (4MB pages)

4MB frame

4KB frame

Descriptor
table

selector offset

1 6 3 2

Page
directory

Page
table

The physical address of the
current page directory is stored

in the CR3 register.

dir table offset

dir offset

4KB entry

4MB entry

OR

This is a simplified summary of combined address
translation on a Pentium when paging is enabled.
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Associative memory

Problem: Both paging and segmentation schemes
introduce extra memory references to access translation
tables.
Solution? Translation buffers.

Based on the notion of locality (at a given time a
process is only using a few pages or segments), a very
fast but small associative (content addressable) memory
is used to store a few of the translation table entries.
This memory is known as a translation look-aside buffer
or TLB.

Virtual
Page Number PID 000000 00000000FlagsPhysical

Page Number

MIPS R2000/R3000 TLB entry (64 bits)

2 0 2 0 846 6
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Address translation with TLB
Logical address

Page # Offset

TLB
PFNVPN flags

Page Table

Physical address

Frame # Offset

PTEF
ir

st
 t

ry
 T

L
B

TLB miss
TLB hit

TLB update
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Memory caching
Similar to storing memory addresses
in TLBs, frequently used data in
main memory can also be stored in
fast buffers, called cache memory,
or simply cache. Basically, memory
access occurs as follows:

 for each memory reference
   if data is not in cache <miss>
      if cache is full
         remove some data (make space)
      if read access
         issue memory read
         place data in cache
         return data
   else <hit>
      if read access
         return data
      else
         update data in cache & memory

The idea is to make frequent
memory accesses faster!

Cache

..

.

CPU

Main
Memory

Block

2n-1

0

Word
Transfer Block

Transfer
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Cache terminology
Cache hit: item is in the cache.

Cache miss: item is not in the cache; must do a full operation.

Categories of cache miss:

• Compulsory: the first reference will always miss.

• Capacity: non-compulsory misses because of limited cache
size.

Effective access time:

 P(hit) * cost of hit + P(miss)* cost of miss

 P(miss) = 1 - P(hit)
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Issues in cache design
Although there are many different cache designs, all share a few
common design elements:

• Cache size—how big is the cache?

 The cache only contains a copy of portions of main memory. The
larger the cache the slower it is. Common sizes vary between
4KB and 4MB.

• Mapping function—how to map main memory blocks into cache
lines?
 Common schemes are: direct, fully associative, and set

associative.  (see later)

• Replacement algorithm—which line will be evicted if the cache lines
are full and a new block of memory is needed.
 A replacement  algorithm, such as LRU, FIFO, LFU, or Random is

needed only for associative mapping (Why?)

 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 4 5Ja
n’

0
1

Issues in cache design continued

• Write policy—What if CPU modifies a (cached) location?

 This design issue deals with store operations to cached memory
locations. Two basic approaches are: write through (modify the
original memory location as well as the cached data) and write
back (update the memory location only when the cache line is
evicted.)

• Block (or line) size—how many words can each line hold?

 Studies have shown that a cache line width of 4 to8  addressable
units (bytes or words) provide close to optimal number of hits.

• Number of caches—how many levels? Unified or split cache for data
and instructions?

 Studies have shown that a second level cache improves
performance. Pentium and Power PC processors each have on-
chip level-1 (L1) split caches. Pentium Pro processors have on-
chip level-2 (L2) cache, as well.
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Mapping function

Since there are more main memory blocks (Blocki for
i=0 to n) than cache lines (Linej for j=0 to m, and n
>> m), an algorithm is needed for mapping main
memory blocks to cache lines.
• Direct mapping—maps each block of memory into only

one possible cache line. Blocki maps to Linej, where i = j
modulo m.

• Associative mapping—maps any memory block to any
line of the cache.

• Set associative mapping—cache lines are grouped into
sets and a memory block can be mapped to any line of
a cache set. Blocki maps to Setj where i=j modulo v and
v is the number of sets with k lines each.
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Set associative cache organization

Tag Set Word

set0
B0

B1

B2

setj

Setv-1

Compare Bj

memory address

Cache hit

Cache miss

Main memory

Cache



 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 4 8Ja
n’

0
1

Dynamic memory allocation

Static memory allocation schemes are not sufficient at
run-time because of the unpredictable nature of executing
programs. For certain programs, such as recursive
functions or programs that use complex data structures,
the memory needs cannot be known in advance.

Two basic operations are needed: allocate and free.

For example, in UNIX, these are malloc() and free().
                                              new []     delete []

Dynamic allocation can be handled using either stack
(hierarchical, restrictive) or heap (more general, but less
efficient) allocation.

 Copyright © 1998-2001  by Eskicioglu & Marsland Memory Mgmt 4 9Ja
n’

0
1

Stack organization

Memory allocation and freeing operations are partially
predictable. Since the organization is hierarchical, the
freeing operates in reverse (opposite) order.

Current stack After call 
to A

After call
to B

After returning
from B

After returning
from A

A’s
stack
frame

A’s
stack
frame

A’s
stack
frame

top

top

top

top

top

B’s
stack
frame
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Heap organization

Allocation and release of heap space is totally random.
Heaps are used for allocation of arbitrary list structures
and complex data organizations. As programs execute
(and allocate and free structures), heap space will fill
with holes (unallocated space.)

Analysis of memory allocation strategies indicates that,
when a system reaches a steady state condition, there
will be half as many holes as in-use segments in the
system. This result is known as the fifty percent rule.

A snapshot of heap
Free List
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“Free’’ memory management
• Bit maps

 This technique divides memory into fixed-size blocks (e.g.,
sectors of 256-byte blocks) and keeps an array of bits (bit
map), one bit for each block.

• Linked lists
 A free list keeps track of the unused memory. There are

several algorithms that can be used, depending on the way
the unused memory blocks are allocated: first fit, best fit,
next fit, and worst fit.

• Buddy system
 This algorithm takes advantage of binary systems. As a

process requests memory, it is given the smallest block
(with a size of power two) where it can fit.
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Reclaiming memory

How do we know when memory can be freed?

It is trivial when a memory block is used by one
process. However, this task becomes difficult when a
block is shared (e.g., accessed through pointers) by
several processes.

Two problems with reclaiming memory:

• Dangling pointers: occur when the original allocator
frees a shared pointer.

• Memory leaks: occur when we forget to free storage,
even when it will not or cannot be used again.
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Reference counts

Memory reclamation can be done by keeping track of
reference counters (i.e., the outstanding pointers to
each block of memory.) When the counter goes down
to zero, the memory block is freed. This scheme
works fine with hierarchical structures, but becomes
tricky with circular structures.

Examples:

•  Smalltalk uses a similar scheme.

• UNIX file descriptors. After a system crash, fsck
program runs (during rebooting) to check the integrity
of file systems.
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Garbage collection

As an alternative to an explicit free operation, some
systems implicitly free storage by simply deleting
pointers. These systems search through all deleted
pointers and reclaim the storage referenced by them.

Some languages, e.g., Lisp and Java, support this kind
of “reclaimed”  (free) memory management.

Garbage collection is often expensive; it could use
more than 20% of the total CPU time! Also, it is
difficult to code and debug garbage collectors.


