
 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage Ja
n’

0
1

Secondary Storage

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1Ja
n’

0
1

Introduction

Secondary storage is the non-volatile repository for
(both user and system) data and programs.

As (integral or separate) part of an operating system,
the file system manages this information on
secondary storage.

Uses of secondary storage include storing various
forms of programs (source, object, executable) and
temporary storage of virtual memory pages (paging
device or swap space).

Information in secondary storage may be in a variety
of forms, including readable text and raw data (e.g.,
binary).

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2Ja
n’

0
1

File concept

A file is a named collection of related information,
usually as a sequence of bytes, with two views:
• Logical (programmer’s) view, as the users see it.
• Physical (operating system) view, as it actually

resides on secondary storage.

What is the difference between a file and a data
structure in memory? Basically,
• files are intended to be non-volatile; hence in

principle, they are long lasting,
• files are intended to be moved around (i.e., copied

from one place to another), accessed by different
programs and users, and so on.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 3Ja
n’

0
1

File attributes

Each file is associated with a collection of
information, known as attributes:
• NAME, owner, creator
• type (e.g., source, data, binary)
• location (e.g., I-node or disk address)
• organization (e.g., sequential, indexed, random)
• access permissions
• time and date (creation, modification, and last

accessed)
• size
• variety of other (e.g., maintenance) information.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 4Ja
n’

0
1

E
O
F

File operations

There are six basic operations for file manipulation:

 create, write, read, delete, reposition r/w pointer (a.k.a.
seek), and truncate (not very common.)

E
O
F

seek

E-O-F pointer
read truncate

read pointer

write pointer
write

read pointer

write pointer

E-O-F pointer

createdelete ???

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 5Ja
n’

0
1

File types

A common implementation technique (as
organizational help with consistent usage) is to
include the type as an extension to the file name:

File type Extension Function
Executable exe, com, bin ready-to-run code
Text txt, doc textual data, documents
Source c, f77, asm source in various languages
Object obj, o object code
Library lib, a library routines
Archive tar, zip, arc grouped files
Compressed Z, gz compressed
Print/view ps, eps, pdf printing or viewing
Word processor ppt, wp, tex various word processors

Files are structured internally to meet the
expectations of the program(s) that manipulate
them.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 6Ja
n’

0
1

File access methods

The information stored in a file can be accessed in
a variety of methods:
• Sequential: in order, one record after another.
• Direct (random): in any order, skipping the previous

records.
• Keyed: in any order, but with particular value(s); e.g.,

hash table or dictionary. TLB lookup is one example of
a keyed search.

Other access methods, such as indexed, can be
built on top of the above basic techniques. IBM’s
indexed sequential access method (ISAM) is built on
random and sequential access.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 7Ja
n’

0
1

Directories

A directory is a symbol table, which can be searched
for information about the files. Also, it is the
fundamental way of organizing files. Usually, a
directory is itself a file.

A typical directory entry contains information
(attributes) about a file. Directory entries are added
as files are created, and are removed when files are
deleted.

Common directory structures are:
• Single-level (flat): shared by all users.
• Two-level: one level for each user.
• Tree: arbitrary (sub)-tree for each user.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 8Ja
n’

0
1

An example: UNIX directories

UNIX uses an advanced form of tree structure, known
as directed acyclic-graph (DAG) directory.

. . .

...

... ...
...

...

...

...

/ Root directory

bin usr lib tmp

lib

Libc.a trash
/usr/ l i b /libc.a or /lib/libc.a

X11new.a

Basically a tree,
but links convert to
DAGs (no cycles!)

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 9Ja
n’

0
1

File sharing
Allowing users to share files raises a major issue: protection.

A general approach is to provide controlled access to files
through a set of operations such as read, write, delete, list, and
append. Then permit users to perform one or more operations.

One popular protection mechanism is a condensed version of
access list, where the system recognizes three classifications of
users with each file and directory:
• user
• group
• other

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 0Ja
n’

0
1

File systems

A file system provides a mapping between the
logical and physical views of a file, through a set of
services and an interface. Simply put, the file
system hides all the device-specific aspects of file
manipulation from users.
The basic services of a file system include:
• keeping track of files (knowing location),
• I/O support, especially the transmission mechanism

to and from main memory,
• management of secondary storage,
• sharing of I/O devices,
• providing protection mechanisms for information held

on the system.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 1Ja
n’

0
1

File system abstraction

Devices

Applications and
system programs

Interactive
(Shells)

Objects Typical
operations

files copy, delete,
rename

logical elements
(records)

open/close, buffering
seek (logical)

physical elements
(head, cylinder, …)

raw read/write,
seek (physical)
low-level format

file system check
soft repair
partitioning

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 2Ja
n’

0
1

Addressing levels

There are three basic mapping levels (abstractions)
from a logical to physical view of a file (contents):

• File relative:
 <filename, offset> form is used at the higher

levels, where the file system is viewed as a
collection of files.

• Volume (partition) relative:
 device-independent part of a file system use

<sector, offset> (e.g., a partition is viewed as an
array of sectors.)

• Drive relative:
 at the lowest level, <cylinder, head, sector> (also

known as <track, platter, sector>) is used.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 3Ja
n’

0
1

File organization

One of the key elements of a file system is the way
the files are organized. File organization is the “logical
structuring’’ as well as the access method(s) of files.
Common file organization schemes are:

• Sequential

• Indexed-sequential

• Indexed

• Direct (or hashed)

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 4Ja
n’

0
1

File allocation

The file system allocates disk space, when a file is
created. With many files residing on the same disk,
the main problem is how to allocate space for them.
File allocation scheme has impact on the efficient use
of disk space and file access time.

Common file allocation techniques are:
• Contiguous
• Chained (linked)
• Indexed

All these techniques allocate disk space on a per
block (smallest addressable disk unit) basis.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 5Ja
n’

0
1

Contiguous allocation
Allocate disk space like paged,
segmented memory. Keep a free
list of unused disk space.

Advantages:
• easy access, both sequential

and random
• simple
• few seeks

Disadvantages:
• external fragmentation
• may not know the file size in

advance

0 0 0 1 0 2 0 3 0 4

0 5 0 6 0 7 0 8 0 9

1 0 1 1 1 2 1 3 1 4

1 5 1 6 1 7 1 8 1 9

2 0 2 1 2 2 2 3 2 4

2 5 2 6 2 7 2 8 2 9

3 0 3 1 3 2 3 3 3 4

Directory
name start len.

a.out
hw1.c
report.tex

0 0 3
1 2 6
2 0 1 1

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 6Ja
n’

0
1

Chained (linked) allocation
Space allocation is similar to
page frame allocation. Mark
allocated blocks as in-use.

Advantages:
• no external fragmentation
• files can grow easily

Disadvantages:
• lots of seeking
• random access difficult

Example:
 MSDOS (FAT) file system

0 0 0 1 0 2 0 3 0 4

0 5 0 6 0 7 0 8 0 9

1 0 1 1 1 2 1 3 1 4

1 5 1 6 1 7 1 8 1 9

2 0 2 1 2 2 2 3 2 4

2 5 2 6 2 7 2 8 2 9

3 0 3 1 3 2 3 3 3 4

Directory
name start len.

a.out
hw1.c
report.tex

0 1 3

1 2

2 0

-1

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 7Ja
n’

0
1

0 0 0 1 0 2 0 3 0 4

0 5 0 6 0 7 0 8 0 9

1 0 1 1 1 2 1 3 1 4

1 5 1 6 1 7 1 8 1 9

2 0 2 1 2 2 2 3 2 4

2 5 2 6 2 7 2 8 2 9

3 0 3 1 3 2 3 3 3 4

Directory
name index

a.out
hw1.c
report.tex

1 7

1 3
0 7
2 1
2 8
1 1
0 2

Indexed allocation

Allocate an array of pointers
during file creation. Fill the
array as new disk blocks are
assigned.

Advantages:
• small internal fragmentation
• easy sequential and direct

access

Disadvantages:
• lots of seeks if the file is big
• maximum file size is limited

to the size of a block

Example:
 UNIX file system

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 8Ja
n’

0
1

Free space management

Since the amount of disk space is limited (posing a
management problem similar to that of physical
memory), it is necessary to reuse the space released
by deleted files. In general, file systems keep a list of
free disk blocks (initially, all the blocks are free) and
manage this list by one of the following techniques:

• Bit vectors

• Linked lists or chains
– single list of a set of free block lists

• Indexing
– single level, multiple levels

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 1 9Ja
n’

0
1

An example: UNIX I-nodes

Mode

Link count

Uid

Gid

Size

Times
Disk block 1

Disk block 2

Disk block 3

Disk block 11

Single indirect

Double indirect

Triple indirect

... ...
...

...
...

...

Data
Block

Data
Block

Data
Block

File name
Directory entry

Disk block 10

Disk block 12

...

Assume data block is 1Kb, index is 32 bits.
Hence, 256 indices per block
12 Kb direct access + 256 Kb 1-indirect
+ 64 Mb 2-indirect + 16 Gb 3-indirect.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 0Ja
n’

0
1

Other file system issues
• Disk blocking

– multiple sectors per block for efficiency

• Disk quotas

• Reliability
– Backup/restore (disaster scenarios)
– File system (consistency) check (e.g., UNIX fsck)

• Performance
– Block or buffer caches (a collection of blocks kept in

memory)

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 1Ja
n’

0
1

Case study—UNIX file system

Boot block

Super block

I nodes Data Blocks

Disk (partition) layout in traditional UNIX systems

The boot block usually contains (bootstrap) code to boot the
system.

The super block contains critical information about the layout
of the file system, such as number of I-nodes and the number
of disk blocks.

Each I-node entry contains the file attributes, except the
name. The first I-node points to the block containing the root
directory of the file system.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 2Ja
n’

0
1

Case study—UNIX file system cont.

There are three different indirection to access a file:
• File Descriptor Table: one per process, keeping track of

open files.

• Open File Table: one per system, keeping track of all the
files currently open.

• I-node Table: one per system (disk volume or partition)
keeping track all files.

Directories are stored just like ordinary files. User
programs can read directories, but special care is
needed to write a directory.
Each directory contains <file name, I-node number>
pairs. Root (i.e., /) is a special directory with no
name.

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 3Ja
n’

0
1

Case study—UNIX file system cont.

File
Descriptor

Tables

Processi

Processj

Processk

(parent)

(child)

Open File
Descriptor

Table

I-node ptr

I-nodes

I-node ptr

I-node ptr

R/W pointers

Active files

I-nodes

In memory On disk(s)

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 4Ja
n’

0
1

Case study—UNIX file system cont.

root

swap

bin

usr

usr2

logical file system

file systems
logical disks

physical disks

Mapping file systems
to disks

/usr

/bin /usr2

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 5Ja
n’

0
1

Disk structure revisited

Tracks

Sectors

Cylinder

Surface

Spindle

R/W head

Platter

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 6Ja
n’

0
1

Disk scheduling

In multiprogramming systems, there may be several
disk I/O requests at the same time. As a result, a disk
driver is typically faced with a pool of I/O requests:

The most costly component of a disk I/O operation is
the seek time. By scheduling multiple disk requests,
the total seek time can be reduced. For example,
shortest seek time first.

I/O requests
Disk

Driver

Disk

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 7Ja
n’

0
1

Disk scheduling strategies

Commonly used strategies include (in addition to
some common CPU scheduling policies!):

• First Come First Served (FCFS) or FIFO

• Shortest Service Time First (SSTF)

• SCAN—back and forth over disk

• C-SCAN—circular SCAN or one way SCAN and fast
return

• LOOK—look for a request before moving in that
direction

• C-LOOK—circular LOOK

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 8Ja
n’

0
1

A comparative example
0 1835 3

✩

✩

122

✩

✩

✩

✩

6 5

✩

✩

✩

6 7

✩

✩

✩

9 8

✩

✩

✩

✩
✩

3 7

✩

✩

✩

124

✩

✩

✩

1 4

✩

✩

✩

✩
✩

FCFS 640 tracks
SSTF 2 3 6
SCAN 2 3 6
C-SCAN 3 8 2
C-LOOK 3 2 2

tracks

Current head position

199

Request queue: 98, 183, 37, 122, 14, 124, 65, 67
 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 2 9Ja

n’
0

1

Disk management issues
• Formatting

– Physical: divide the blank slate into sectors identified by
headers containing such information as sector number;
sector interleaving

– Logical: marking bad blocks; partitioning (optional) and
writing a blank directory on disk; installing file allocation
tables, and other relevant information (file system
initialization)

• Reliability
– disk interleaving or striping
– RAIDs (Redundant Array of Inexpensive Disks): various

levels, e.g., level 0 is disk mirroring or shadowing, consists
of keeping a duplicate of each disk)

• Controller caches
– newer disks have on-disk caches (128KB—512KB)

 Copyright © 1998-2001 by Eskicioglu & Marsland Secondary Storage 3 0Ja
n’

0
1

Elements of storage management

Users

File
Structure

Records Block
Caches

Controller
CachesDirectory

management

Access
control

Access
methods

Disk
scheduling

File
allocation

Free space
management

Buffering

File
manipulation

