
 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time SystemsJa
n’

0
1

Real Time Systems

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1Ja
n’

0
1

Introduction

A thread is a “light-weight” (cheap) process which
has low start-up costs, low context switch costs and
is intended to come and go easily. Threads are
schedulable activities that are attached to a process.
They work within the domain of the process. Threads
would share the resources of a process among
themselves, and take CPU time from that given to
the controlling process.

Thus this technique provides a kind of shared
resource multiprogramming (e.g., sharing the
controlling process’ memory). Clearly a thread can be
created and deleted much more quickly than a
process.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 2Ja
n’

0
1

Flies in a bottle

A process may be likened to fly in a
bottle. The bottle represents the
execution environment. When a process
“forks” it creates a new process, which
is like another fly in its own bottle.
However, a process creating a thread is
like a master fly laying eggs and
producing companion flies. Companions
are created and deleted by the master.
Still, like processes, threads in one
environment can communicate with
threads in another.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 3Ja
n’

0
1

Real-time kernel

A real-time kernel is the software skeleton that
provides for:
 task scheduling
 task initialization, and
 inter task communication and synchronization.

There are four key points with real-time systems
(RTS):

• Multitasking

• Foreground/Background processing

• Task Control Block (TCB) model

• Simplicity

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 4Ja
n’

0
1

Multitasking
Real-time multitasking can be achieved without interrupts, and
this leads to systems that are easier to analyze.

As a consequence:

• I/O devices are usually not allowed to interrupt the
CPU, but rather the I/O devices are polled to determine
their status and to service a pending “interrupt” . Clearly
this is a much slower way of handling I/O, but it is more
controlled and uniform.

• One priority action will not be superseded by another.

• The performance of critical sections more predictable,
making it possible that all deadlines are met.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 5Ja
n’

0
1

Foreground/Background

Foreground/Background processing is widely used
even in embedded applications.

An embedded system is one where the computing
element is integral to a larger unit. The hardware and
software are highly specialized to the application.

Most time-critical tasks or processes are kept in the
foreground, while book-keeping and service functions
run at a lower priority in the background.

QNX and Harmony are Canadian examples of Unix-
based real time operating systems.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 6Ja
n’

0
1

Task Control Block model

The Task Control Block (TCB) model is used in
commercial real-time executives, and in full-
featured operating systems where the number of
tasks is dynamic or indeterminate.

In normal operating systems courses the terms
task and process are more or less interchangeable.
Thus TCB = PCB.

The term task is preferable in real-time systems
because the word “process” is often used to
describe the system being controlled, as in paint
mixing process or chemical process.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 7Ja
n’

0
1

Simplicity

The more features a real-time kernel provides, the
more complex it is, the poorer its performance, and
the more difficult it is to analyze.

Usually the bigger and more complex systems provide
a better user interface and other facilities. Extra
features just increase the cost by requiring more
machine than necessary to do the job.

In embedded RTS low cost is important. But this
factor is problematic, since a general-purpose
computer may be cheaper than a specialized one.
Also a simple machine with few capabilities may offer
less debugging support.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 8Ja
n’

0
1

Hierarchy of kernel types

There are five variants of the definition of “kernel”.
Increasing complexity leads to more code and slower
response time.
• Nano-kernel: Simple flow-of-control (thread of

execution.) Provides only task initiation.
• Micro-kernel: Adds task scheduling, hence multi-

programming.
• Kernel: Provides inter task synchronization and

communication, with semaphores, mailboxes or
communication ports.

• Executive: Adds memory management and protection,
I/O services and other high-level features.

• Operating System: User interface, full resource sharing.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 9Ja
n’

0
1

Scheduling
In real time systems even a simple Round-Robin scheduler can be
good enough, and it is analyzable. Like polling it is fair and
guarantees service to everyone.

It is not so good at distinguishing important processes and
giving them special service when necessary. More useful is a
preemptive priority (PP) scheduler. This has the advantage that
a CPU intensive task can be preempted to provide some service
to a more important task. They work well in systems where the
priorities are set at task initiation time, and do not change later.

Unfortunately PP scheduling can be inflexible and may not handle
the growing urgency of deadlines.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 0Ja
n’

0
1

Scheduling continued

It is easy to provide a more dynamic preemptive priority
scheduler (improvement on Shortest Job First) if you are
prepared to set the priority inversely proportional to the
CPU time (or elapsed time) to completion.

Unfortunately this implies that you know exactly how
much CPU time is required when the task is started, or
that you can always provide a deadline for the completion
of every task (even the most unimportant ones).

Further, tasks may languish for long periods early in their
work, only receiving crisis-type attention towards the
end. This is a very poor way to manage and use
resources.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 1Ja
n’

0
1

Rate monotonic scheduling (RMS)

With RMS, priority is proportional to the frequency with
which a task is requesting the CPU.

Good for I/O oriented tasks, and also for CPU intensive
tasks that give up the CPU at their time-slice end.

But totally unimportant tasks can be either I/O oriented
(taking characters from a keyboard, say) or CPU
intensive (a background process computing pi or e) .
Hence a task may have high priority despite the uncritical
nature of its work.

RMS is much loved, since the priority can change
automatically as the task moves though various phases
of execution.

This scheduler is well-accepted in the RT community.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 2Ja
n’

0
1

Rate monotonic systems
In rate monotonic systems (systems with cyclic tasks), it
can be shown that no deadline will be missed if the CPU
utilization is less than 70% (the number is actually ln(2),
which is derived by constructing and then analyzing an
event tree.)

Even if the CPU utilization is above 70%, a schedule may still
be feasible (no missed deadlines), but in general there are
no guarantees.

The theory itself does not take into account practical issues
such as: context switch time or resource contention delays.

Most solutions that allow for these delays are impossible to
analyze.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 3Ja
n’

0
1

Priority inversion
There are several priority inversion problems, where an
unimportant process with a high frequency of execution is
given a higher RMS priority than a task that is more
critical, but has a lower execution rate.

One solution is to place tasks in priority bands, and not
allow the priority to rise beyond that of a more critical
band. This may require some external intervention, or
decision at task initiation time.

Another problem occurs when a lower priority task locks a
resource that is needed by a higher priority action. Thus
the critical task is blocked and waits while the low priority
task with the resource struggles to get the CPU and use
the resource.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 4Ja
n’

0
1

Priority ceiling protocol
This solution requires that a task blocking a higher priority
one inherit the priority of the more critical task until the
block can be removed. The idea is excellent and deals
directly with the problem of low priority tasks blocking
high priority ones.

Another approach might be to preempt the resource from
the other task, and force it to return to some earlier
checkpoint.

Both are complex strategies, and are not without their
difficulties. In particular, when waiting for a resource, many
systems would not know which process currently holds it.
Modifying the priorities might not be too easy either,
though this can probably be done through another entry in
the TCB.

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 5Ja
n’

0
1

Priority scheduling strategies
In all cases, assume that tasks are periodic once they are
released and they arrive together at regular intervals.
• Prioritized inversely to their duration or frequency (Rate Monotonic);

that is, inversely to Fi = Di - Ri

• Prioritize according to their first deadline time, Di.
• Prioritize proportional to their load Ai/Fi.

The relevant data is shown in the following table:

Task Ri Di Ai Fi RMS 1/Di Ai/ Fi

 T1 0 10 4 1 0 5 2 5
 T2 3 5 1 2 1 1 4
 T3 6 12 3 6 4 4 3
 T4 7 10 2 3 2 3 2
 T5 10 15 4 5 3 5 1

All Ti arrive together, but have different “frequency” after release.

Priority

Ri = release time
Di = duration
Ai = activity
Fi = frequency

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 6Ja
n’

0
1

Exercise A

Consider three tasks, P, Q and R. P has a frequency of 75
milliseconds in which it requires 30 milliseconds of
processing. These values are given as a
frequency–processing pair: (75,30). The corresponding
values of Q and R are (5,1) and (25,5), respectively.

Consider the case when P is the most important task,
followed by R and then Q. Using a preemptive scheduler and
these fixed priorities determine whether all three tasks meet
their deadlines.

1 0 2 0 3 0 4 0 5 0 6 0 7 0

P
R

Q

0

P
R
Q

R
Q

P
R
QQ Q Q Q QQ Q Q Q Q Q Q

R
Q

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 7Ja
n’

0
1

Exercise A continued

What is the processor utilization of P, Q and R?

P = 30/75 = 0.4, Q = 1/5 = 0.2, R = 5/25 = 0.2

For these same three processes, compute the rate monotonic
schedulability condition, and sketch the resultant timing chart.
Show in both theory and practice whether all processes meet
their deadlines.

In the general case of M processes we must confirm, for first k
processes in [1,M], that the following relationship holds:

For M=1, 0.4 < 1; for M=2, 0.6 < 0.82; but for M=3,0.8 > 3*(21/3-1) .
Therefore, an RMS schedule is not guaranteed, but one does exist.

 S
 k

 i=1
(Ai/Fi) < U(k) = k·(21/k-1)

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 8Ja
n’

0
1

Exercise B
A feature of many real-time systems is that they run a set of
cyclic tasks. In the table below there are three tasks. Task Ti is
released Ri seconds after task T1 starts, and restarts every Fi
seconds thereafter. During its execution-window, task Ti must
receive Ai seconds of CPU activity before its deadline (i.e., the
start time of the next instance of the same task.)

 (a) In the respective columns of the table below, fill in the
priorities of these 3 tasks according to the two
strategies: RMS (most frequent first) and U (largest
utilization, Ai/ Fi, first.)
Task Rel. Freq. Activ. RMS Utilization
 Ri Fi Ai Prio. Priority
 T1 0 10 4 2 1 = 4/10 = 0.4
 T2 4 7 1 1 3 = 1/7 = 0.143
 T3 6 12 3 3 2 = 3/12 = 0.25

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 1 9Ja
n’

0
1

Exercise B continued

 (b) Draw a sketch (a Gantt chart is appropriate), showing
how a priority preemptive scheduler allocates the CPU
to these three tasks according to the U priority strategy
of part (a), for the first 30 seconds of execution. The
sketch (diagram) should show not only when each task
is released, but also when it actually receives the CPU.
Do the tasks meet all their deadlines?

 No, the third instantiation of T2 misses its deadline. However
the system is RMS schedulable on theoretical grounds, so all
deadlines can be met by the use of RMS priority.

T1 T2
T3

T1T2 T2
T1 T2

T1

T3 T3

T1
T2

T3

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 2 0Ja
n’

0
1

Allow for blocking
Now assume that tasks T1 and T3 both access the same shared
variable, and thus that T3 (with lower priority) can block the
more important task T1 for 0.1 time units. For Rate Monotonic
Schedulability the condition:

must hold.

Task Period Active Util. Priority
Fi (ms) Ai (ms) A i/Fi

 T1 100 20 0.2 1 (high)
 T2 150 40 0.267 2
 T3 350 100 0.286 3 (low)

How do we represent blocking in our process-schedule diagram?

 S
 k

 i=1

(Ai/Fi) + Bi < U(k) = k·(21/k-1) Bi = time Ti may be blocked
 some Tj, j > i

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 2 1Ja
n’

0
1

Task Ai Ai/Fi Bi Util. U(k) Doable?

 T1 20 0.2 0.1 0.3 < 1.0 yes
 T2 40 0.267 0 0.467 < 0.828 yes
 T3 100 0.286 0 0.752 < 0.779 yes

preempted tasktask execution blocking allowance

Note if the T3 period had been 300, then lock step or convoy effect.
However, in the case here T3 gets an earlier start on its second cycle.

T1

0 5 0 100 150 200 250 300 350 400 450

T2

T3

Allow for blocking continued .

 Copyright © 1998-2001 by Eskicioglu and Marsland Real Time Systems 2 2Ja
n’

0
1

Deadline categories

Max

Utility

declining
utility

Start firm
deadline

soft
deadline

disaster
deadline

penalty

Time

